Merge branch 'i2c/for-mergewindow' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / Documentation / firmware-guide / acpi / enumeration.rst
1 .. SPDX-License-Identifier: GPL-2.0
2
3 =============================
4 ACPI Based Device Enumeration
5 =============================
6
7 ACPI 5 introduced a set of new resources (UartTSerialBus, I2cSerialBus,
8 SpiSerialBus, GpioIo and GpioInt) which can be used in enumerating slave
9 devices behind serial bus controllers.
10
11 In addition we are starting to see peripherals integrated in the
12 SoC/Chipset to appear only in ACPI namespace. These are typically devices
13 that are accessed through memory-mapped registers.
14
15 In order to support this and re-use the existing drivers as much as
16 possible we decided to do following:
17
18   - Devices that have no bus connector resource are represented as
19     platform devices.
20
21   - Devices behind real busses where there is a connector resource
22     are represented as struct spi_device or struct i2c_device. Note
23     that standard UARTs are not busses so there is no struct uart_device,
24     although some of them may be represented by sturct serdev_device.
25
26 As both ACPI and Device Tree represent a tree of devices (and their
27 resources) this implementation follows the Device Tree way as much as
28 possible.
29
30 The ACPI implementation enumerates devices behind busses (platform, SPI,
31 I2C, and in some cases UART), creates the physical devices and binds them
32 to their ACPI handle in the ACPI namespace.
33
34 This means that when ACPI_HANDLE(dev) returns non-NULL the device was
35 enumerated from ACPI namespace. This handle can be used to extract other
36 device-specific configuration. There is an example of this below.
37
38 Platform bus support
39 ====================
40
41 Since we are using platform devices to represent devices that are not
42 connected to any physical bus we only need to implement a platform driver
43 for the device and add supported ACPI IDs. If this same IP-block is used on
44 some other non-ACPI platform, the driver might work out of the box or needs
45 some minor changes.
46
47 Adding ACPI support for an existing driver should be pretty
48 straightforward. Here is the simplest example::
49
50         static const struct acpi_device_id mydrv_acpi_match[] = {
51                 /* ACPI IDs here */
52                 { }
53         };
54         MODULE_DEVICE_TABLE(acpi, mydrv_acpi_match);
55
56         static struct platform_driver my_driver = {
57                 ...
58                 .driver = {
59                         .acpi_match_table = mydrv_acpi_match,
60                 },
61         };
62
63 If the driver needs to perform more complex initialization like getting and
64 configuring GPIOs it can get its ACPI handle and extract this information
65 from ACPI tables.
66
67 DMA support
68 ===========
69
70 DMA controllers enumerated via ACPI should be registered in the system to
71 provide generic access to their resources. For example, a driver that would
72 like to be accessible to slave devices via generic API call
73 dma_request_chan() must register itself at the end of the probe function like
74 this::
75
76         err = devm_acpi_dma_controller_register(dev, xlate_func, dw);
77         /* Handle the error if it's not a case of !CONFIG_ACPI */
78
79 and implement custom xlate function if needed (usually acpi_dma_simple_xlate()
80 is enough) which converts the FixedDMA resource provided by struct
81 acpi_dma_spec into the corresponding DMA channel. A piece of code for that case
82 could look like::
83
84         #ifdef CONFIG_ACPI
85         struct filter_args {
86                 /* Provide necessary information for the filter_func */
87                 ...
88         };
89
90         static bool filter_func(struct dma_chan *chan, void *param)
91         {
92                 /* Choose the proper channel */
93                 ...
94         }
95
96         static struct dma_chan *xlate_func(struct acpi_dma_spec *dma_spec,
97                         struct acpi_dma *adma)
98         {
99                 dma_cap_mask_t cap;
100                 struct filter_args args;
101
102                 /* Prepare arguments for filter_func */
103                 ...
104                 return dma_request_channel(cap, filter_func, &args);
105         }
106         #else
107         static struct dma_chan *xlate_func(struct acpi_dma_spec *dma_spec,
108                         struct acpi_dma *adma)
109         {
110                 return NULL;
111         }
112         #endif
113
114 dma_request_chan() will call xlate_func() for each registered DMA controller.
115 In the xlate function the proper channel must be chosen based on
116 information in struct acpi_dma_spec and the properties of the controller
117 provided by struct acpi_dma.
118
119 Clients must call dma_request_chan() with the string parameter that corresponds
120 to a specific FixedDMA resource. By default "tx" means the first entry of the
121 FixedDMA resource array, "rx" means the second entry. The table below shows a
122 layout::
123
124         Device (I2C0)
125         {
126                 ...
127                 Method (_CRS, 0, NotSerialized)
128                 {
129                         Name (DBUF, ResourceTemplate ()
130                         {
131                                 FixedDMA (0x0018, 0x0004, Width32bit, _Y48)
132                                 FixedDMA (0x0019, 0x0005, Width32bit, )
133                         })
134                 ...
135                 }
136         }
137
138 So, the FixedDMA with request line 0x0018 is "tx" and next one is "rx" in
139 this example.
140
141 In robust cases the client unfortunately needs to call
142 acpi_dma_request_slave_chan_by_index() directly and therefore choose the
143 specific FixedDMA resource by its index.
144
145 Named Interrupts
146 ================
147
148 Drivers enumerated via ACPI can have names to interrupts in the ACPI table
149 which can be used to get the IRQ number in the driver.
150
151 The interrupt name can be listed in _DSD as 'interrupt-names'. The names
152 should be listed as an array of strings which will map to the Interrupt()
153 resource in the ACPI table corresponding to its index.
154
155 The table below shows an example of its usage::
156
157     Device (DEV0) {
158         ...
159         Name (_CRS, ResourceTemplate() {
160             ...
161             Interrupt (ResourceConsumer, Level, ActiveHigh, Exclusive) {
162                 0x20,
163                 0x24
164             }
165         })
166
167         Name (_DSD, Package () {
168             ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
169             Package () {
170                 Package () {"interrupt-names",
171                 Package (2) {"default", "alert"}},
172             }
173         ...
174         })
175     }
176
177 The interrupt name 'default' will correspond to 0x20 in Interrupt()
178 resource and 'alert' to 0x24. Note that only the Interrupt() resource
179 is mapped and not GpioInt() or similar.
180
181 The driver can call the function - fwnode_irq_get_byname() with the fwnode
182 and interrupt name as arguments to get the corresponding IRQ number.
183
184 SPI serial bus support
185 ======================
186
187 Slave devices behind SPI bus have SpiSerialBus resource attached to them.
188 This is extracted automatically by the SPI core and the slave devices are
189 enumerated once spi_register_master() is called by the bus driver.
190
191 Here is what the ACPI namespace for a SPI slave might look like::
192
193         Device (EEP0)
194         {
195                 Name (_ADR, 1)
196                 Name (_CID, Package () {
197                         "ATML0025",
198                         "AT25",
199                 })
200                 ...
201                 Method (_CRS, 0, NotSerialized)
202                 {
203                         SPISerialBus(1, PolarityLow, FourWireMode, 8,
204                                 ControllerInitiated, 1000000, ClockPolarityLow,
205                                 ClockPhaseFirst, "\\_SB.PCI0.SPI1",)
206                 }
207                 ...
208
209 The SPI device drivers only need to add ACPI IDs in a similar way than with
210 the platform device drivers. Below is an example where we add ACPI support
211 to at25 SPI eeprom driver (this is meant for the above ACPI snippet)::
212
213         static const struct acpi_device_id at25_acpi_match[] = {
214                 { "AT25", 0 },
215                 { }
216         };
217         MODULE_DEVICE_TABLE(acpi, at25_acpi_match);
218
219         static struct spi_driver at25_driver = {
220                 .driver = {
221                         ...
222                         .acpi_match_table = at25_acpi_match,
223                 },
224         };
225
226 Note that this driver actually needs more information like page size of the
227 eeprom, etc. This information can be passed via _DSD method like::
228
229         Device (EEP0)
230         {
231                 ...
232                 Name (_DSD, Package ()
233                 {
234                         ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
235                         Package ()
236                         {
237                                 Package () { "size", 1024 },
238                                 Package () { "pagesize", 32 },
239                                 Package () { "address-width", 16 },
240                         }
241                 })
242         }
243
244 Then the at25 SPI driver can get this configuration by calling device property
245 APIs during ->probe() phase like::
246
247         err = device_property_read_u32(dev, "size", &size);
248         if (err)
249                 ...error handling...
250
251         err = device_property_read_u32(dev, "pagesize", &page_size);
252         if (err)
253                 ...error handling...
254
255         err = device_property_read_u32(dev, "address-width", &addr_width);
256         if (err)
257                 ...error handling...
258
259 I2C serial bus support
260 ======================
261
262 The slaves behind I2C bus controller only need to add the ACPI IDs like
263 with the platform and SPI drivers. The I2C core automatically enumerates
264 any slave devices behind the controller device once the adapter is
265 registered.
266
267 Below is an example of how to add ACPI support to the existing mpu3050
268 input driver::
269
270         static const struct acpi_device_id mpu3050_acpi_match[] = {
271                 { "MPU3050", 0 },
272                 { }
273         };
274         MODULE_DEVICE_TABLE(acpi, mpu3050_acpi_match);
275
276         static struct i2c_driver mpu3050_i2c_driver = {
277                 .driver = {
278                         .name   = "mpu3050",
279                         .pm     = &mpu3050_pm,
280                         .of_match_table = mpu3050_of_match,
281                         .acpi_match_table = mpu3050_acpi_match,
282                 },
283                 .probe          = mpu3050_probe,
284                 .remove         = mpu3050_remove,
285                 .id_table       = mpu3050_ids,
286         };
287         module_i2c_driver(mpu3050_i2c_driver);
288
289 Reference to PWM device
290 =======================
291
292 Sometimes a device can be a consumer of PWM channel. Obviously OS would like
293 to know which one. To provide this mapping the special property has been
294 introduced, i.e.::
295
296     Device (DEV)
297     {
298         Name (_DSD, Package ()
299         {
300             ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
301             Package () {
302                 Package () { "compatible", Package () { "pwm-leds" } },
303                 Package () { "label", "alarm-led" },
304                 Package () { "pwms",
305                     Package () {
306                         "\\_SB.PCI0.PWM",  // <PWM device reference>
307                         0,                 // <PWM index>
308                         600000000,         // <PWM period>
309                         0,                 // <PWM flags>
310                     }
311                 }
312             }
313         })
314         ...
315     }
316
317 In the above example the PWM-based LED driver references to the PWM channel 0
318 of \_SB.PCI0.PWM device with initial period setting equal to 600 ms (note that
319 value is given in nanoseconds).
320
321 GPIO support
322 ============
323
324 ACPI 5 introduced two new resources to describe GPIO connections: GpioIo
325 and GpioInt. These resources can be used to pass GPIO numbers used by
326 the device to the driver. ACPI 5.1 extended this with _DSD (Device
327 Specific Data) which made it possible to name the GPIOs among other things.
328
329 For example::
330
331         Device (DEV)
332         {
333                 Method (_CRS, 0, NotSerialized)
334                 {
335                         Name (SBUF, ResourceTemplate()
336                         {
337                                 // Used to power on/off the device
338                                 GpioIo (Exclusive, PullNone, 0, 0, IoRestrictionOutputOnly,
339                                         "\\_SB.PCI0.GPI0", 0, ResourceConsumer) { 85 }
340
341                                 // Interrupt for the device
342                                 GpioInt (Edge, ActiveHigh, ExclusiveAndWake, PullNone, 0,
343                                          "\\_SB.PCI0.GPI0", 0, ResourceConsumer) { 88 }
344                         }
345
346                         Return (SBUF)
347                 }
348
349                 // ACPI 5.1 _DSD used for naming the GPIOs
350                 Name (_DSD, Package ()
351                 {
352                         ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
353                         Package ()
354                         {
355                                 Package () { "power-gpios", Package () { ^DEV, 0, 0, 0 } },
356                                 Package () { "irq-gpios", Package () { ^DEV, 1, 0, 0 } },
357                         }
358                 })
359                 ...
360         }
361
362 These GPIO numbers are controller relative and path "\\_SB.PCI0.GPI0"
363 specifies the path to the controller. In order to use these GPIOs in Linux
364 we need to translate them to the corresponding Linux GPIO descriptors.
365
366 There is a standard GPIO API for that and is documented in
367 Documentation/admin-guide/gpio/.
368
369 In the above example we can get the corresponding two GPIO descriptors with
370 a code like this::
371
372         #include <linux/gpio/consumer.h>
373         ...
374
375         struct gpio_desc *irq_desc, *power_desc;
376
377         irq_desc = gpiod_get(dev, "irq");
378         if (IS_ERR(irq_desc))
379                 /* handle error */
380
381         power_desc = gpiod_get(dev, "power");
382         if (IS_ERR(power_desc))
383                 /* handle error */
384
385         /* Now we can use the GPIO descriptors */
386
387 There are also devm_* versions of these functions which release the
388 descriptors once the device is released.
389
390 See Documentation/firmware-guide/acpi/gpio-properties.rst for more information
391 about the _DSD binding related to GPIOs.
392
393 MFD devices
394 ===========
395
396 The MFD devices register their children as platform devices. For the child
397 devices there needs to be an ACPI handle that they can use to reference
398 parts of the ACPI namespace that relate to them. In the Linux MFD subsystem
399 we provide two ways:
400
401   - The children share the parent ACPI handle.
402   - The MFD cell can specify the ACPI id of the device.
403
404 For the first case, the MFD drivers do not need to do anything. The
405 resulting child platform device will have its ACPI_COMPANION() set to point
406 to the parent device.
407
408 If the ACPI namespace has a device that we can match using an ACPI id or ACPI
409 adr, the cell should be set like::
410
411         static struct mfd_cell_acpi_match my_subdevice_cell_acpi_match = {
412                 .pnpid = "XYZ0001",
413                 .adr = 0,
414         };
415
416         static struct mfd_cell my_subdevice_cell = {
417                 .name = "my_subdevice",
418                 /* set the resources relative to the parent */
419                 .acpi_match = &my_subdevice_cell_acpi_match,
420         };
421
422 The ACPI id "XYZ0001" is then used to lookup an ACPI device directly under
423 the MFD device and if found, that ACPI companion device is bound to the
424 resulting child platform device.
425
426 Device Tree namespace link device ID
427 ====================================
428
429 The Device Tree protocol uses device identification based on the "compatible"
430 property whose value is a string or an array of strings recognized as device
431 identifiers by drivers and the driver core.  The set of all those strings may be
432 regarded as a device identification namespace analogous to the ACPI/PNP device
433 ID namespace.  Consequently, in principle it should not be necessary to allocate
434 a new (and arguably redundant) ACPI/PNP device ID for a devices with an existing
435 identification string in the Device Tree (DT) namespace, especially if that ID
436 is only needed to indicate that a given device is compatible with another one,
437 presumably having a matching driver in the kernel already.
438
439 In ACPI, the device identification object called _CID (Compatible ID) is used to
440 list the IDs of devices the given one is compatible with, but those IDs must
441 belong to one of the namespaces prescribed by the ACPI specification (see
442 Section 6.1.2 of ACPI 6.0 for details) and the DT namespace is not one of them.
443 Moreover, the specification mandates that either a _HID or an _ADR identification
444 object be present for all ACPI objects representing devices (Section 6.1 of ACPI
445 6.0).  For non-enumerable bus types that object must be _HID and its value must
446 be a device ID from one of the namespaces prescribed by the specification too.
447
448 The special DT namespace link device ID, PRP0001, provides a means to use the
449 existing DT-compatible device identification in ACPI and to satisfy the above
450 requirements following from the ACPI specification at the same time.  Namely,
451 if PRP0001 is returned by _HID, the ACPI subsystem will look for the
452 "compatible" property in the device object's _DSD and will use the value of that
453 property to identify the corresponding device in analogy with the original DT
454 device identification algorithm.  If the "compatible" property is not present
455 or its value is not valid, the device will not be enumerated by the ACPI
456 subsystem.  Otherwise, it will be enumerated automatically as a platform device
457 (except when an I2C or SPI link from the device to its parent is present, in
458 which case the ACPI core will leave the device enumeration to the parent's
459 driver) and the identification strings from the "compatible" property value will
460 be used to find a driver for the device along with the device IDs listed by _CID
461 (if present).
462
463 Analogously, if PRP0001 is present in the list of device IDs returned by _CID,
464 the identification strings listed by the "compatible" property value (if present
465 and valid) will be used to look for a driver matching the device, but in that
466 case their relative priority with respect to the other device IDs listed by
467 _HID and _CID depends on the position of PRP0001 in the _CID return package.
468 Specifically, the device IDs returned by _HID and preceding PRP0001 in the _CID
469 return package will be checked first.  Also in that case the bus type the device
470 will be enumerated to depends on the device ID returned by _HID.
471
472 For example, the following ACPI sample might be used to enumerate an lm75-type
473 I2C temperature sensor and match it to the driver using the Device Tree
474 namespace link::
475
476         Device (TMP0)
477         {
478                 Name (_HID, "PRP0001")
479                 Name (_DSD, Package () {
480                         ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
481                         Package () {
482                                 Package () { "compatible", "ti,tmp75" },
483                         }
484                 })
485                 Method (_CRS, 0, Serialized)
486                 {
487                         Name (SBUF, ResourceTemplate ()
488                         {
489                                 I2cSerialBusV2 (0x48, ControllerInitiated,
490                                         400000, AddressingMode7Bit,
491                                         "\\_SB.PCI0.I2C1", 0x00,
492                                         ResourceConsumer, , Exclusive,)
493                         })
494                         Return (SBUF)
495                 }
496         }
497
498 It is valid to define device objects with a _HID returning PRP0001 and without
499 the "compatible" property in the _DSD or a _CID as long as one of their
500 ancestors provides a _DSD with a valid "compatible" property.  Such device
501 objects are then simply regarded as additional "blocks" providing hierarchical
502 configuration information to the driver of the composite ancestor device.
503
504 However, PRP0001 can only be returned from either _HID or _CID of a device
505 object if all of the properties returned by the _DSD associated with it (either
506 the _DSD of the device object itself or the _DSD of its ancestor in the
507 "composite device" case described above) can be used in the ACPI environment.
508 Otherwise, the _DSD itself is regarded as invalid and therefore the "compatible"
509 property returned by it is meaningless.
510
511 Refer to Documentation/firmware-guide/acpi/DSD-properties-rules.rst for more
512 information.
513
514 PCI hierarchy representation
515 ============================
516
517 Sometimes could be useful to enumerate a PCI device, knowing its position on the
518 PCI bus.
519
520 For example, some systems use PCI devices soldered directly on the mother board,
521 in a fixed position (ethernet, Wi-Fi, serial ports, etc.). In this conditions it
522 is possible to refer to these PCI devices knowing their position on the PCI bus
523 topology.
524
525 To identify a PCI device, a complete hierarchical description is required, from
526 the chipset root port to the final device, through all the intermediate
527 bridges/switches of the board.
528
529 For example, let us assume to have a system with a PCIe serial port, an
530 Exar XR17V3521, soldered on the main board. This UART chip also includes
531 16 GPIOs and we want to add the property ``gpio-line-names`` [1] to these pins.
532 In this case, the ``lspci`` output for this component is::
533
534         07:00.0 Serial controller: Exar Corp. XR17V3521 Dual PCIe UART (rev 03)
535
536 The complete ``lspci`` output (manually reduced in length) is::
537
538         00:00.0 Host bridge: Intel Corp... Host Bridge (rev 0d)
539         ...
540         00:13.0 PCI bridge: Intel Corp... PCI Express Port A #1 (rev fd)
541         00:13.1 PCI bridge: Intel Corp... PCI Express Port A #2 (rev fd)
542         00:13.2 PCI bridge: Intel Corp... PCI Express Port A #3 (rev fd)
543         00:14.0 PCI bridge: Intel Corp... PCI Express Port B #1 (rev fd)
544         00:14.1 PCI bridge: Intel Corp... PCI Express Port B #2 (rev fd)
545         ...
546         05:00.0 PCI bridge: Pericom Semiconductor Device 2404 (rev 05)
547         06:01.0 PCI bridge: Pericom Semiconductor Device 2404 (rev 05)
548         06:02.0 PCI bridge: Pericom Semiconductor Device 2404 (rev 05)
549         06:03.0 PCI bridge: Pericom Semiconductor Device 2404 (rev 05)
550         07:00.0 Serial controller: Exar Corp. XR17V3521 Dual PCIe UART (rev 03) <-- Exar
551         ...
552
553 The bus topology is::
554
555         -[0000:00]-+-00.0
556                    ...
557                    +-13.0-[01]----00.0
558                    +-13.1-[02]----00.0
559                    +-13.2-[03]--
560                    +-14.0-[04]----00.0
561                    +-14.1-[05-09]----00.0-[06-09]--+-01.0-[07]----00.0 <-- Exar
562                    |                               +-02.0-[08]----00.0
563                    |                               \-03.0-[09]--
564                    ...
565                    \-1f.1
566
567 To describe this Exar device on the PCI bus, we must start from the ACPI name
568 of the chipset bridge (also called "root port") with address::
569
570         Bus: 0 - Device: 14 - Function: 1
571
572 To find this information is necessary disassemble the BIOS ACPI tables, in
573 particular the DSDT (see also [2])::
574
575         mkdir ~/tables/
576         cd ~/tables/
577         acpidump > acpidump
578         acpixtract -a acpidump
579         iasl -e ssdt?.* -d dsdt.dat
580
581 Now, in the dsdt.dsl, we have to search the device whose address is related to
582 0x14 (device) and 0x01 (function). In this case we can find the following
583 device::
584
585         Scope (_SB.PCI0)
586         {
587         ... other definitions follow ...
588                 Device (RP02)
589                 {
590                         Method (_ADR, 0, NotSerialized)  // _ADR: Address
591                         {
592                                 If ((RPA2 != Zero))
593                                 {
594                                         Return (RPA2) /* \RPA2 */
595                                 }
596                                 Else
597                                 {
598                                         Return (0x00140001)
599                                 }
600                         }
601         ... other definitions follow ...
602
603 and the _ADR method [3] returns exactly the device/function couple that
604 we are looking for. With this information and analyzing the above ``lspci``
605 output (both the devices list and the devices tree), we can write the following
606 ACPI description for the Exar PCIe UART, also adding the list of its GPIO line
607 names::
608
609         Scope (_SB.PCI0.RP02)
610         {
611                 Device (BRG1) //Bridge
612                 {
613                         Name (_ADR, 0x0000)
614
615                         Device (BRG2) //Bridge
616                         {
617                                 Name (_ADR, 0x00010000)
618
619                                 Device (EXAR)
620                                 {
621                                         Name (_ADR, 0x0000)
622
623                                         Name (_DSD, Package ()
624                                         {
625                                                 ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
626                                                 Package ()
627                                                 {
628                                                         Package ()
629                                                         {
630                                                                 "gpio-line-names",
631                                                                 Package ()
632                                                                 {
633                                                                         "mode_232",
634                                                                         "mode_422",
635                                                                         "mode_485",
636                                                                         "misc_1",
637                                                                         "misc_2",
638                                                                         "misc_3",
639                                                                         "",
640                                                                         "",
641                                                                         "aux_1",
642                                                                         "aux_2",
643                                                                         "aux_3",
644                                                                 }
645                                                         }
646                                                 }
647                                         })
648                                 }
649                         }
650                 }
651         }
652
653 The location "_SB.PCI0.RP02" is obtained by the above investigation in the
654 dsdt.dsl table, whereas the device names "BRG1", "BRG2" and "EXAR" are
655 created analyzing the position of the Exar UART in the PCI bus topology.
656
657 References
658 ==========
659
660 [1] Documentation/firmware-guide/acpi/gpio-properties.rst
661
662 [2] Documentation/admin-guide/acpi/initrd_table_override.rst
663
664 [3] ACPI Specifications, Version 6.3 - Paragraph 6.1.1 _ADR Address)
665     https://uefi.org/sites/default/files/resources/ACPI_6_3_May16.pdf,
666     referenced 2020-11-18