Linux 6.9-rc1
[linux-2.6-microblaze.git] / Documentation / bpf / llvm_reloc.rst
1 .. SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 ====================
4 BPF LLVM Relocations
5 ====================
6
7 This document describes LLVM BPF backend relocation types.
8
9 Relocation Record
10 =================
11
12 LLVM BPF backend records each relocation with the following 16-byte
13 ELF structure::
14
15   typedef struct
16   {
17     Elf64_Addr    r_offset;  // Offset from the beginning of section.
18     Elf64_Xword   r_info;    // Relocation type and symbol index.
19   } Elf64_Rel;
20
21 For example, for the following code::
22
23   int g1 __attribute__((section("sec")));
24   int g2 __attribute__((section("sec")));
25   static volatile int l1 __attribute__((section("sec")));
26   static volatile int l2 __attribute__((section("sec")));
27   int test() {
28     return g1 + g2 + l1 + l2;
29   }
30
31 Compiled with ``clang --target=bpf -O2 -c test.c``, the following is
32 the code with ``llvm-objdump -dr test.o``::
33
34        0:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
35                 0000000000000000:  R_BPF_64_64  g1
36        2:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
37        3:       18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0 ll
38                 0000000000000018:  R_BPF_64_64  g2
39        5:       61 20 00 00 00 00 00 00 r0 = *(u32 *)(r2 + 0)
40        6:       0f 10 00 00 00 00 00 00 r0 += r1
41        7:       18 01 00 00 08 00 00 00 00 00 00 00 00 00 00 00 r1 = 8 ll
42                 0000000000000038:  R_BPF_64_64  sec
43        9:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
44       10:       0f 10 00 00 00 00 00 00 r0 += r1
45       11:       18 01 00 00 0c 00 00 00 00 00 00 00 00 00 00 00 r1 = 12 ll
46                 0000000000000058:  R_BPF_64_64  sec
47       13:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
48       14:       0f 10 00 00 00 00 00 00 r0 += r1
49       15:       95 00 00 00 00 00 00 00 exit
50
51 There are four relocations in the above for four ``LD_imm64`` instructions.
52 The following ``llvm-readelf -r test.o`` shows the binary values of the four
53 relocations::
54
55   Relocation section '.rel.text' at offset 0x190 contains 4 entries:
56       Offset             Info             Type               Symbol's Value  Symbol's Name
57   0000000000000000  0000000600000001 R_BPF_64_64            0000000000000000 g1
58   0000000000000018  0000000700000001 R_BPF_64_64            0000000000000004 g2
59   0000000000000038  0000000400000001 R_BPF_64_64            0000000000000000 sec
60   0000000000000058  0000000400000001 R_BPF_64_64            0000000000000000 sec
61
62 Each relocation is represented by ``Offset`` (8 bytes) and ``Info`` (8 bytes).
63 For example, the first relocation corresponds to the first instruction
64 (Offset 0x0) and the corresponding ``Info`` indicates the relocation type
65 of ``R_BPF_64_64`` (type 1) and the entry in the symbol table (entry 6).
66 The following is the symbol table with ``llvm-readelf -s test.o``::
67
68   Symbol table '.symtab' contains 8 entries:
69      Num:    Value          Size Type    Bind   Vis       Ndx Name
70        0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT   UND
71        1: 0000000000000000     0 FILE    LOCAL  DEFAULT   ABS test.c
72        2: 0000000000000008     4 OBJECT  LOCAL  DEFAULT     4 l1
73        3: 000000000000000c     4 OBJECT  LOCAL  DEFAULT     4 l2
74        4: 0000000000000000     0 SECTION LOCAL  DEFAULT     4 sec
75        5: 0000000000000000   128 FUNC    GLOBAL DEFAULT     2 test
76        6: 0000000000000000     4 OBJECT  GLOBAL DEFAULT     4 g1
77        7: 0000000000000004     4 OBJECT  GLOBAL DEFAULT     4 g2
78
79 The 6th entry is global variable ``g1`` with value 0.
80
81 Similarly, the second relocation is at ``.text`` offset ``0x18``, instruction 3,
82 has a type of ``R_BPF_64_64`` and refers to entry 7 in the symbol table.
83 The second relocation resolves to global variable ``g2`` which has a symbol
84 value 4. The symbol value represents the offset from the start of ``.data``
85 section where the initial value of the global variable ``g2`` is stored.
86
87 The third and fourth relocations refer to static variables ``l1``
88 and ``l2``. From the ``.rel.text`` section above, it is not clear
89 to which symbols they really refer as they both refer to
90 symbol table entry 4, symbol ``sec``, which has ``STT_SECTION`` type
91 and represents a section. So for a static variable or function,
92 the section offset is written to the original insn
93 buffer, which is called ``A`` (addend). Looking at
94 above insn ``7`` and ``11``, they have section offset ``8`` and ``12``.
95 From symbol table, we can find that they correspond to entries ``2``
96 and ``3`` for ``l1`` and ``l2``.
97
98 In general, the ``A`` is 0 for global variables and functions,
99 and is the section offset or some computation result based on
100 section offset for static variables/functions. The non-section-offset
101 case refers to function calls. See below for more details.
102
103 Different Relocation Types
104 ==========================
105
106 Six relocation types are supported. The following is an overview and
107 ``S`` represents the value of the symbol in the symbol table::
108
109   Enum  ELF Reloc Type     Description      BitSize  Offset        Calculation
110   0     R_BPF_NONE         None
111   1     R_BPF_64_64        ld_imm64 insn    32       r_offset + 4  S + A
112   2     R_BPF_64_ABS64     normal data      64       r_offset      S + A
113   3     R_BPF_64_ABS32     normal data      32       r_offset      S + A
114   4     R_BPF_64_NODYLD32  .BTF[.ext] data  32       r_offset      S + A
115   10    R_BPF_64_32        call insn        32       r_offset + 4  (S + A) / 8 - 1
116
117 For example, ``R_BPF_64_64`` relocation type is used for ``ld_imm64`` instruction.
118 The actual to-be-relocated data (0 or section offset)
119 is stored at ``r_offset + 4`` and the read/write
120 data bitsize is 32 (4 bytes). The relocation can be resolved with
121 the symbol value plus implicit addend. Note that the ``BitSize`` is 32 which
122 means the section offset must be less than or equal to ``UINT32_MAX`` and this
123 is enforced by LLVM BPF backend.
124
125 In another case, ``R_BPF_64_ABS64`` relocation type is used for normal 64-bit data.
126 The actual to-be-relocated data is stored at ``r_offset`` and the read/write data
127 bitsize is 64 (8 bytes). The relocation can be resolved with
128 the symbol value plus implicit addend.
129
130 Both ``R_BPF_64_ABS32`` and ``R_BPF_64_NODYLD32`` types are for 32-bit data.
131 But ``R_BPF_64_NODYLD32`` specifically refers to relocations in ``.BTF`` and
132 ``.BTF.ext`` sections. For cases like bcc where llvm ``ExecutionEngine RuntimeDyld``
133 is involved, ``R_BPF_64_NODYLD32`` types of relocations should not be resolved
134 to actual function/variable address. Otherwise, ``.BTF`` and ``.BTF.ext``
135 become unusable by bcc and kernel.
136
137 Type ``R_BPF_64_32`` is used for call instruction. The call target section
138 offset is stored at ``r_offset + 4`` (32bit) and calculated as
139 ``(S + A) / 8 - 1``.
140
141 Examples
142 ========
143
144 Types ``R_BPF_64_64`` and ``R_BPF_64_32`` are used to resolve ``ld_imm64``
145 and ``call`` instructions. For example::
146
147   __attribute__((noinline)) __attribute__((section("sec1")))
148   int gfunc(int a, int b) {
149     return a * b;
150   }
151   static __attribute__((noinline)) __attribute__((section("sec1")))
152   int lfunc(int a, int b) {
153     return a + b;
154   }
155   int global __attribute__((section("sec2")));
156   int test(int a, int b) {
157     return gfunc(a, b) +  lfunc(a, b) + global;
158   }
159
160 Compiled with ``clang --target=bpf -O2 -c test.c``, we will have
161 following code with `llvm-objdump -dr test.o``::
162
163   Disassembly of section .text:
164
165   0000000000000000 <test>:
166          0:       bf 26 00 00 00 00 00 00 r6 = r2
167          1:       bf 17 00 00 00 00 00 00 r7 = r1
168          2:       85 10 00 00 ff ff ff ff call -1
169                   0000000000000010:  R_BPF_64_32  gfunc
170          3:       bf 08 00 00 00 00 00 00 r8 = r0
171          4:       bf 71 00 00 00 00 00 00 r1 = r7
172          5:       bf 62 00 00 00 00 00 00 r2 = r6
173          6:       85 10 00 00 02 00 00 00 call 2
174                   0000000000000030:  R_BPF_64_32  sec1
175          7:       0f 80 00 00 00 00 00 00 r0 += r8
176          8:       18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
177                   0000000000000040:  R_BPF_64_64  global
178         10:       61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
179         11:       0f 10 00 00 00 00 00 00 r0 += r1
180         12:       95 00 00 00 00 00 00 00 exit
181
182   Disassembly of section sec1:
183
184   0000000000000000 <gfunc>:
185          0:       bf 20 00 00 00 00 00 00 r0 = r2
186          1:       2f 10 00 00 00 00 00 00 r0 *= r1
187          2:       95 00 00 00 00 00 00 00 exit
188
189   0000000000000018 <lfunc>:
190          3:       bf 20 00 00 00 00 00 00 r0 = r2
191          4:       0f 10 00 00 00 00 00 00 r0 += r1
192          5:       95 00 00 00 00 00 00 00 exit
193
194 The first relocation corresponds to ``gfunc(a, b)`` where ``gfunc`` has a value of 0,
195 so the ``call`` instruction offset is ``(0 + 0)/8 - 1 = -1``.
196 The second relocation corresponds to ``lfunc(a, b)`` where ``lfunc`` has a section
197 offset ``0x18``, so the ``call`` instruction offset is ``(0 + 0x18)/8 - 1 = 2``.
198 The third relocation corresponds to ld_imm64 of ``global``, which has a section
199 offset ``0``.
200
201 The following is an example to show how R_BPF_64_ABS64 could be generated::
202
203   int global() { return 0; }
204   struct t { void *g; } gbl = { global };
205
206 Compiled with ``clang --target=bpf -O2 -g -c test.c``, we will see a
207 relocation below in ``.data`` section with command
208 ``llvm-readelf -r test.o``::
209
210   Relocation section '.rel.data' at offset 0x458 contains 1 entries:
211       Offset             Info             Type               Symbol's Value  Symbol's Name
212   0000000000000000  0000000700000002 R_BPF_64_ABS64         0000000000000000 global
213
214 The relocation says the first 8-byte of ``.data`` section should be
215 filled with address of ``global`` variable.
216
217 With ``llvm-readelf`` output, we can see that dwarf sections have a bunch of
218 ``R_BPF_64_ABS32`` and ``R_BPF_64_ABS64`` relocations::
219
220   Relocation section '.rel.debug_info' at offset 0x468 contains 13 entries:
221       Offset             Info             Type               Symbol's Value  Symbol's Name
222   0000000000000006  0000000300000003 R_BPF_64_ABS32         0000000000000000 .debug_abbrev
223   000000000000000c  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
224   0000000000000012  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
225   0000000000000016  0000000600000003 R_BPF_64_ABS32         0000000000000000 .debug_line
226   000000000000001a  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
227   000000000000001e  0000000200000002 R_BPF_64_ABS64         0000000000000000 .text
228   000000000000002b  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
229   0000000000000037  0000000800000002 R_BPF_64_ABS64         0000000000000000 gbl
230   0000000000000040  0000000400000003 R_BPF_64_ABS32         0000000000000000 .debug_str
231   ......
232
233 The .BTF/.BTF.ext sections has R_BPF_64_NODYLD32 relocations::
234
235   Relocation section '.rel.BTF' at offset 0x538 contains 1 entries:
236       Offset             Info             Type               Symbol's Value  Symbol's Name
237   0000000000000084  0000000800000004 R_BPF_64_NODYLD32      0000000000000000 gbl
238
239   Relocation section '.rel.BTF.ext' at offset 0x548 contains 2 entries:
240       Offset             Info             Type               Symbol's Value  Symbol's Name
241   000000000000002c  0000000200000004 R_BPF_64_NODYLD32      0000000000000000 .text
242   0000000000000040  0000000200000004 R_BPF_64_NODYLD32      0000000000000000 .text
243
244 .. _btf-co-re-relocations:
245
246 =================
247 CO-RE Relocations
248 =================
249
250 From object file point of view CO-RE mechanism is implemented as a set
251 of CO-RE specific relocation records. These relocation records are not
252 related to ELF relocations and are encoded in .BTF.ext section.
253 See :ref:`Documentation/bpf/btf.rst <BTF_Ext_Section>` for more
254 information on .BTF.ext structure.
255
256 CO-RE relocations are applied to BPF instructions to update immediate
257 or offset fields of the instruction at load time with information
258 relevant for target kernel.
259
260 Field to patch is selected basing on the instruction class:
261
262 * For BPF_ALU, BPF_ALU64, BPF_LD `immediate` field is patched;
263 * For BPF_LDX, BPF_STX, BPF_ST `offset` field is patched;
264 * BPF_JMP, BPF_JMP32 instructions **should not** be patched.
265
266 Relocation kinds
267 ================
268
269 There are several kinds of CO-RE relocations that could be split in
270 three groups:
271
272 * Field-based - patch instruction with field related information, e.g.
273   change offset field of the BPF_LDX instruction to reflect offset
274   of a specific structure field in the target kernel.
275
276 * Type-based - patch instruction with type related information, e.g.
277   change immediate field of the BPF_ALU move instruction to 0 or 1 to
278   reflect if specific type is present in the target kernel.
279
280 * Enum-based - patch instruction with enum related information, e.g.
281   change immediate field of the BPF_LD_IMM64 instruction to reflect
282   value of a specific enum literal in the target kernel.
283
284 The complete list of relocation kinds is represented by the following enum:
285
286 .. code-block:: c
287
288  enum bpf_core_relo_kind {
289         BPF_CORE_FIELD_BYTE_OFFSET = 0,  /* field byte offset */
290         BPF_CORE_FIELD_BYTE_SIZE   = 1,  /* field size in bytes */
291         BPF_CORE_FIELD_EXISTS      = 2,  /* field existence in target kernel */
292         BPF_CORE_FIELD_SIGNED      = 3,  /* field signedness (0 - unsigned, 1 - signed) */
293         BPF_CORE_FIELD_LSHIFT_U64  = 4,  /* bitfield-specific left bitshift */
294         BPF_CORE_FIELD_RSHIFT_U64  = 5,  /* bitfield-specific right bitshift */
295         BPF_CORE_TYPE_ID_LOCAL     = 6,  /* type ID in local BPF object */
296         BPF_CORE_TYPE_ID_TARGET    = 7,  /* type ID in target kernel */
297         BPF_CORE_TYPE_EXISTS       = 8,  /* type existence in target kernel */
298         BPF_CORE_TYPE_SIZE         = 9,  /* type size in bytes */
299         BPF_CORE_ENUMVAL_EXISTS    = 10, /* enum value existence in target kernel */
300         BPF_CORE_ENUMVAL_VALUE     = 11, /* enum value integer value */
301         BPF_CORE_TYPE_MATCHES      = 12, /* type match in target kernel */
302  };
303
304 Notes:
305
306 * ``BPF_CORE_FIELD_LSHIFT_U64`` and ``BPF_CORE_FIELD_RSHIFT_U64`` are
307   supposed to be used to read bitfield values using the following
308   algorithm:
309
310   .. code-block:: c
311
312      // To read bitfield ``f`` from ``struct s``
313      is_signed = relo(s->f, BPF_CORE_FIELD_SIGNED)
314      off = relo(s->f, BPF_CORE_FIELD_BYTE_OFFSET)
315      sz  = relo(s->f, BPF_CORE_FIELD_BYTE_SIZE)
316      l   = relo(s->f, BPF_CORE_FIELD_LSHIFT_U64)
317      r   = relo(s->f, BPF_CORE_FIELD_RSHIFT_U64)
318      // define ``v`` as signed or unsigned integer of size ``sz``
319      v = *({s|u}<sz> *)((void *)s + off)
320      v <<= l
321      v >>= r
322
323 * The ``BPF_CORE_TYPE_MATCHES`` queries matching relation, defined as
324   follows:
325
326   * for integers: types match if size and signedness match;
327   * for arrays & pointers: target types are recursively matched;
328   * for structs & unions:
329
330     * local members need to exist in target with the same name;
331
332     * for each member we recursively check match unless it is already behind a
333       pointer, in which case we only check matching names and compatible kind;
334
335   * for enums:
336
337     * local variants have to have a match in target by symbolic name (but not
338       numeric value);
339
340     * size has to match (but enum may match enum64 and vice versa);
341
342   * for function pointers:
343
344     * number and position of arguments in local type has to match target;
345     * for each argument and the return value we recursively check match.
346
347 CO-RE Relocation Record
348 =======================
349
350 Relocation record is encoded as the following structure:
351
352 .. code-block:: c
353
354  struct bpf_core_relo {
355         __u32 insn_off;
356         __u32 type_id;
357         __u32 access_str_off;
358         enum bpf_core_relo_kind kind;
359  };
360
361 * ``insn_off`` - instruction offset (in bytes) within a code section
362   associated with this relocation;
363
364 * ``type_id`` - BTF type ID of the "root" (containing) entity of a
365   relocatable type or field;
366
367 * ``access_str_off`` - offset into corresponding .BTF string section.
368   String interpretation depends on specific relocation kind:
369
370   * for field-based relocations, string encodes an accessed field using
371     a sequence of field and array indices, separated by colon (:). It's
372     conceptually very close to LLVM's `getelementptr <GEP_>`_ instruction's
373     arguments for identifying offset to a field. For example, consider the
374     following C code:
375
376     .. code-block:: c
377
378        struct sample {
379            int a;
380            int b;
381            struct { int c[10]; };
382        } __attribute__((preserve_access_index));
383        struct sample *s;
384
385     * Access to ``s[0].a`` would be encoded as ``0:0``:
386
387       * ``0``: first element of ``s`` (as if ``s`` is an array);
388       * ``0``: index of field ``a`` in ``struct sample``.
389
390     * Access to ``s->a`` would be encoded as ``0:0`` as well.
391     * Access to ``s->b`` would be encoded as ``0:1``:
392
393       * ``0``: first element of ``s``;
394       * ``1``: index of field ``b`` in ``struct sample``.
395
396     * Access to ``s[1].c[5]`` would be encoded as ``1:2:0:5``:
397
398       * ``1``: second element of ``s``;
399       * ``2``: index of anonymous structure field in ``struct sample``;
400       * ``0``: index of field ``c`` in anonymous structure;
401       * ``5``: access to array element #5.
402
403   * for type-based relocations, string is expected to be just "0";
404
405   * for enum value-based relocations, string contains an index of enum
406      value within its enum type;
407
408 * ``kind`` - one of ``enum bpf_core_relo_kind``.
409
410 .. _GEP: https://llvm.org/docs/LangRef.html#getelementptr-instruction
411
412 .. _btf_co_re_relocation_examples:
413
414 CO-RE Relocation Examples
415 =========================
416
417 For the following C code:
418
419 .. code-block:: c
420
421  struct foo {
422    int a;
423    int b;
424    unsigned c:15;
425  } __attribute__((preserve_access_index));
426
427  enum bar { U, V };
428
429 With the following BTF definitions:
430
431 .. code-block::
432
433  ...
434  [2] STRUCT 'foo' size=8 vlen=2
435         'a' type_id=3 bits_offset=0
436         'b' type_id=3 bits_offset=32
437         'c' type_id=4 bits_offset=64 bitfield_size=15
438  [3] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
439  [4] INT 'unsigned int' size=4 bits_offset=0 nr_bits=32 encoding=(none)
440  ...
441  [16] ENUM 'bar' encoding=UNSIGNED size=4 vlen=2
442         'U' val=0
443         'V' val=1
444
445 Field offset relocations are generated automatically when
446 ``__attribute__((preserve_access_index))`` is used, for example:
447
448 .. code-block:: c
449
450   void alpha(struct foo *s, volatile unsigned long *g) {
451     *g = s->a;
452     s->a = 1;
453   }
454
455   00 <alpha>:
456     0:  r3 = *(s32 *)(r1 + 0x0)
457            00:  CO-RE <byte_off> [2] struct foo::a (0:0)
458     1:  *(u64 *)(r2 + 0x0) = r3
459     2:  *(u32 *)(r1 + 0x0) = 0x1
460            10:  CO-RE <byte_off> [2] struct foo::a (0:0)
461     3:  exit
462
463
464 All relocation kinds could be requested via built-in functions.
465 E.g. field-based relocations:
466
467 .. code-block:: c
468
469   void bravo(struct foo *s, volatile unsigned long *g) {
470     *g = __builtin_preserve_field_info(s->b, 0 /* field byte offset */);
471     *g = __builtin_preserve_field_info(s->b, 1 /* field byte size */);
472     *g = __builtin_preserve_field_info(s->b, 2 /* field existence */);
473     *g = __builtin_preserve_field_info(s->b, 3 /* field signedness */);
474     *g = __builtin_preserve_field_info(s->c, 4 /* bitfield left shift */);
475     *g = __builtin_preserve_field_info(s->c, 5 /* bitfield right shift */);
476   }
477
478   20 <bravo>:
479      4:     r1 = 0x4
480             20:  CO-RE <byte_off> [2] struct foo::b (0:1)
481      5:     *(u64 *)(r2 + 0x0) = r1
482      6:     r1 = 0x4
483             30:  CO-RE <byte_sz> [2] struct foo::b (0:1)
484      7:     *(u64 *)(r2 + 0x0) = r1
485      8:     r1 = 0x1
486             40:  CO-RE <field_exists> [2] struct foo::b (0:1)
487      9:     *(u64 *)(r2 + 0x0) = r1
488     10:     r1 = 0x1
489             50:  CO-RE <signed> [2] struct foo::b (0:1)
490     11:     *(u64 *)(r2 + 0x0) = r1
491     12:     r1 = 0x31
492             60:  CO-RE <lshift_u64> [2] struct foo::c (0:2)
493     13:     *(u64 *)(r2 + 0x0) = r1
494     14:     r1 = 0x31
495             70:  CO-RE <rshift_u64> [2] struct foo::c (0:2)
496     15:     *(u64 *)(r2 + 0x0) = r1
497     16:     exit
498
499
500 Type-based relocations:
501
502 .. code-block:: c
503
504   void charlie(struct foo *s, volatile unsigned long *g) {
505     *g = __builtin_preserve_type_info(*s, 0 /* type existence */);
506     *g = __builtin_preserve_type_info(*s, 1 /* type size */);
507     *g = __builtin_preserve_type_info(*s, 2 /* type matches */);
508     *g = __builtin_btf_type_id(*s, 0 /* type id in this object file */);
509     *g = __builtin_btf_type_id(*s, 1 /* type id in target kernel */);
510   }
511
512   88 <charlie>:
513     17:     r1 = 0x1
514             88:  CO-RE <type_exists> [2] struct foo
515     18:     *(u64 *)(r2 + 0x0) = r1
516     19:     r1 = 0xc
517             98:  CO-RE <type_size> [2] struct foo
518     20:     *(u64 *)(r2 + 0x0) = r1
519     21:     r1 = 0x1
520             a8:  CO-RE <type_matches> [2] struct foo
521     22:     *(u64 *)(r2 + 0x0) = r1
522     23:     r1 = 0x2 ll
523             b8:  CO-RE <local_type_id> [2] struct foo
524     25:     *(u64 *)(r2 + 0x0) = r1
525     26:     r1 = 0x2 ll
526             d0:  CO-RE <target_type_id> [2] struct foo
527     28:     *(u64 *)(r2 + 0x0) = r1
528     29:     exit
529
530 Enum-based relocations:
531
532 .. code-block:: c
533
534   void delta(struct foo *s, volatile unsigned long *g) {
535     *g = __builtin_preserve_enum_value(*(enum bar *)U, 0 /* enum literal existence */);
536     *g = __builtin_preserve_enum_value(*(enum bar *)V, 1 /* enum literal value */);
537   }
538
539   f0 <delta>:
540     30:     r1 = 0x1 ll
541             f0:  CO-RE <enumval_exists> [16] enum bar::U = 0
542     32:     *(u64 *)(r2 + 0x0) = r1
543     33:     r1 = 0x1 ll
544             108:  CO-RE <enumval_value> [16] enum bar::V = 1
545     35:     *(u64 *)(r2 + 0x0) = r1
546     36:     exit