Merge tag 'iio-fixes-for-5.4a' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / tools / perf / util / header.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
24
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "util/evsel_fprintf.h"
29 #include "header.h"
30 #include "memswap.h"
31 #include "trace-event.h"
32 #include "session.h"
33 #include "symbol.h"
34 #include "debug.h"
35 #include "cpumap.h"
36 #include "pmu.h"
37 #include "vdso.h"
38 #include "strbuf.h"
39 #include "build-id.h"
40 #include "data.h"
41 #include <api/fs/fs.h>
42 #include "asm/bug.h"
43 #include "tool.h"
44 #include "time-utils.h"
45 #include "units.h"
46 #include "util/util.h" // perf_exe()
47 #include "cputopo.h"
48 #include "bpf-event.h"
49
50 #include <linux/ctype.h>
51 #include <internal/lib.h>
52
53 /*
54  * magic2 = "PERFILE2"
55  * must be a numerical value to let the endianness
56  * determine the memory layout. That way we are able
57  * to detect endianness when reading the perf.data file
58  * back.
59  *
60  * we check for legacy (PERFFILE) format.
61  */
62 static const char *__perf_magic1 = "PERFFILE";
63 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
64 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65
66 #define PERF_MAGIC      __perf_magic2
67
68 const char perf_version_string[] = PERF_VERSION;
69
70 struct perf_file_attr {
71         struct perf_event_attr  attr;
72         struct perf_file_section        ids;
73 };
74
75 void perf_header__set_feat(struct perf_header *header, int feat)
76 {
77         set_bit(feat, header->adds_features);
78 }
79
80 void perf_header__clear_feat(struct perf_header *header, int feat)
81 {
82         clear_bit(feat, header->adds_features);
83 }
84
85 bool perf_header__has_feat(const struct perf_header *header, int feat)
86 {
87         return test_bit(feat, header->adds_features);
88 }
89
90 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
91 {
92         ssize_t ret = writen(ff->fd, buf, size);
93
94         if (ret != (ssize_t)size)
95                 return ret < 0 ? (int)ret : -1;
96         return 0;
97 }
98
99 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
100 {
101         /* struct perf_event_header::size is u16 */
102         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
103         size_t new_size = ff->size;
104         void *addr;
105
106         if (size + ff->offset > max_size)
107                 return -E2BIG;
108
109         while (size > (new_size - ff->offset))
110                 new_size <<= 1;
111         new_size = min(max_size, new_size);
112
113         if (ff->size < new_size) {
114                 addr = realloc(ff->buf, new_size);
115                 if (!addr)
116                         return -ENOMEM;
117                 ff->buf = addr;
118                 ff->size = new_size;
119         }
120
121         memcpy(ff->buf + ff->offset, buf, size);
122         ff->offset += size;
123
124         return 0;
125 }
126
127 /* Return: 0 if succeded, -ERR if failed. */
128 int do_write(struct feat_fd *ff, const void *buf, size_t size)
129 {
130         if (!ff->buf)
131                 return __do_write_fd(ff, buf, size);
132         return __do_write_buf(ff, buf, size);
133 }
134
135 /* Return: 0 if succeded, -ERR if failed. */
136 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
137 {
138         u64 *p = (u64 *) set;
139         int i, ret;
140
141         ret = do_write(ff, &size, sizeof(size));
142         if (ret < 0)
143                 return ret;
144
145         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
146                 ret = do_write(ff, p + i, sizeof(*p));
147                 if (ret < 0)
148                         return ret;
149         }
150
151         return 0;
152 }
153
154 /* Return: 0 if succeded, -ERR if failed. */
155 int write_padded(struct feat_fd *ff, const void *bf,
156                  size_t count, size_t count_aligned)
157 {
158         static const char zero_buf[NAME_ALIGN];
159         int err = do_write(ff, bf, count);
160
161         if (!err)
162                 err = do_write(ff, zero_buf, count_aligned - count);
163
164         return err;
165 }
166
167 #define string_size(str)                                                \
168         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
169
170 /* Return: 0 if succeded, -ERR if failed. */
171 static int do_write_string(struct feat_fd *ff, const char *str)
172 {
173         u32 len, olen;
174         int ret;
175
176         olen = strlen(str) + 1;
177         len = PERF_ALIGN(olen, NAME_ALIGN);
178
179         /* write len, incl. \0 */
180         ret = do_write(ff, &len, sizeof(len));
181         if (ret < 0)
182                 return ret;
183
184         return write_padded(ff, str, olen, len);
185 }
186
187 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
188 {
189         ssize_t ret = readn(ff->fd, addr, size);
190
191         if (ret != size)
192                 return ret < 0 ? (int)ret : -1;
193         return 0;
194 }
195
196 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
197 {
198         if (size > (ssize_t)ff->size - ff->offset)
199                 return -1;
200
201         memcpy(addr, ff->buf + ff->offset, size);
202         ff->offset += size;
203
204         return 0;
205
206 }
207
208 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
209 {
210         if (!ff->buf)
211                 return __do_read_fd(ff, addr, size);
212         return __do_read_buf(ff, addr, size);
213 }
214
215 static int do_read_u32(struct feat_fd *ff, u32 *addr)
216 {
217         int ret;
218
219         ret = __do_read(ff, addr, sizeof(*addr));
220         if (ret)
221                 return ret;
222
223         if (ff->ph->needs_swap)
224                 *addr = bswap_32(*addr);
225         return 0;
226 }
227
228 static int do_read_u64(struct feat_fd *ff, u64 *addr)
229 {
230         int ret;
231
232         ret = __do_read(ff, addr, sizeof(*addr));
233         if (ret)
234                 return ret;
235
236         if (ff->ph->needs_swap)
237                 *addr = bswap_64(*addr);
238         return 0;
239 }
240
241 static char *do_read_string(struct feat_fd *ff)
242 {
243         u32 len;
244         char *buf;
245
246         if (do_read_u32(ff, &len))
247                 return NULL;
248
249         buf = malloc(len);
250         if (!buf)
251                 return NULL;
252
253         if (!__do_read(ff, buf, len)) {
254                 /*
255                  * strings are padded by zeroes
256                  * thus the actual strlen of buf
257                  * may be less than len
258                  */
259                 return buf;
260         }
261
262         free(buf);
263         return NULL;
264 }
265
266 /* Return: 0 if succeded, -ERR if failed. */
267 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
268 {
269         unsigned long *set;
270         u64 size, *p;
271         int i, ret;
272
273         ret = do_read_u64(ff, &size);
274         if (ret)
275                 return ret;
276
277         set = bitmap_alloc(size);
278         if (!set)
279                 return -ENOMEM;
280
281         p = (u64 *) set;
282
283         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
284                 ret = do_read_u64(ff, p + i);
285                 if (ret < 0) {
286                         free(set);
287                         return ret;
288                 }
289         }
290
291         *pset  = set;
292         *psize = size;
293         return 0;
294 }
295
296 static int write_tracing_data(struct feat_fd *ff,
297                               struct evlist *evlist)
298 {
299         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
300                 return -1;
301
302         return read_tracing_data(ff->fd, &evlist->core.entries);
303 }
304
305 static int write_build_id(struct feat_fd *ff,
306                           struct evlist *evlist __maybe_unused)
307 {
308         struct perf_session *session;
309         int err;
310
311         session = container_of(ff->ph, struct perf_session, header);
312
313         if (!perf_session__read_build_ids(session, true))
314                 return -1;
315
316         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
317                 return -1;
318
319         err = perf_session__write_buildid_table(session, ff);
320         if (err < 0) {
321                 pr_debug("failed to write buildid table\n");
322                 return err;
323         }
324         perf_session__cache_build_ids(session);
325
326         return 0;
327 }
328
329 static int write_hostname(struct feat_fd *ff,
330                           struct evlist *evlist __maybe_unused)
331 {
332         struct utsname uts;
333         int ret;
334
335         ret = uname(&uts);
336         if (ret < 0)
337                 return -1;
338
339         return do_write_string(ff, uts.nodename);
340 }
341
342 static int write_osrelease(struct feat_fd *ff,
343                            struct evlist *evlist __maybe_unused)
344 {
345         struct utsname uts;
346         int ret;
347
348         ret = uname(&uts);
349         if (ret < 0)
350                 return -1;
351
352         return do_write_string(ff, uts.release);
353 }
354
355 static int write_arch(struct feat_fd *ff,
356                       struct evlist *evlist __maybe_unused)
357 {
358         struct utsname uts;
359         int ret;
360
361         ret = uname(&uts);
362         if (ret < 0)
363                 return -1;
364
365         return do_write_string(ff, uts.machine);
366 }
367
368 static int write_version(struct feat_fd *ff,
369                          struct evlist *evlist __maybe_unused)
370 {
371         return do_write_string(ff, perf_version_string);
372 }
373
374 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
375 {
376         FILE *file;
377         char *buf = NULL;
378         char *s, *p;
379         const char *search = cpuinfo_proc;
380         size_t len = 0;
381         int ret = -1;
382
383         if (!search)
384                 return -1;
385
386         file = fopen("/proc/cpuinfo", "r");
387         if (!file)
388                 return -1;
389
390         while (getline(&buf, &len, file) > 0) {
391                 ret = strncmp(buf, search, strlen(search));
392                 if (!ret)
393                         break;
394         }
395
396         if (ret) {
397                 ret = -1;
398                 goto done;
399         }
400
401         s = buf;
402
403         p = strchr(buf, ':');
404         if (p && *(p+1) == ' ' && *(p+2))
405                 s = p + 2;
406         p = strchr(s, '\n');
407         if (p)
408                 *p = '\0';
409
410         /* squash extra space characters (branding string) */
411         p = s;
412         while (*p) {
413                 if (isspace(*p)) {
414                         char *r = p + 1;
415                         char *q = skip_spaces(r);
416                         *p = ' ';
417                         if (q != (p+1))
418                                 while ((*r++ = *q++));
419                 }
420                 p++;
421         }
422         ret = do_write_string(ff, s);
423 done:
424         free(buf);
425         fclose(file);
426         return ret;
427 }
428
429 static int write_cpudesc(struct feat_fd *ff,
430                        struct evlist *evlist __maybe_unused)
431 {
432 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
433 #define CPUINFO_PROC    { "cpu", }
434 #elif defined(__s390__)
435 #define CPUINFO_PROC    { "vendor_id", }
436 #elif defined(__sh__)
437 #define CPUINFO_PROC    { "cpu type", }
438 #elif defined(__alpha__) || defined(__mips__)
439 #define CPUINFO_PROC    { "cpu model", }
440 #elif defined(__arm__)
441 #define CPUINFO_PROC    { "model name", "Processor", }
442 #elif defined(__arc__)
443 #define CPUINFO_PROC    { "Processor", }
444 #elif defined(__xtensa__)
445 #define CPUINFO_PROC    { "core ID", }
446 #else
447 #define CPUINFO_PROC    { "model name", }
448 #endif
449         const char *cpuinfo_procs[] = CPUINFO_PROC;
450 #undef CPUINFO_PROC
451         unsigned int i;
452
453         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
454                 int ret;
455                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456                 if (ret >= 0)
457                         return ret;
458         }
459         return -1;
460 }
461
462
463 static int write_nrcpus(struct feat_fd *ff,
464                         struct evlist *evlist __maybe_unused)
465 {
466         long nr;
467         u32 nrc, nra;
468         int ret;
469
470         nrc = cpu__max_present_cpu();
471
472         nr = sysconf(_SC_NPROCESSORS_ONLN);
473         if (nr < 0)
474                 return -1;
475
476         nra = (u32)(nr & UINT_MAX);
477
478         ret = do_write(ff, &nrc, sizeof(nrc));
479         if (ret < 0)
480                 return ret;
481
482         return do_write(ff, &nra, sizeof(nra));
483 }
484
485 static int write_event_desc(struct feat_fd *ff,
486                             struct evlist *evlist)
487 {
488         struct evsel *evsel;
489         u32 nre, nri, sz;
490         int ret;
491
492         nre = evlist->core.nr_entries;
493
494         /*
495          * write number of events
496          */
497         ret = do_write(ff, &nre, sizeof(nre));
498         if (ret < 0)
499                 return ret;
500
501         /*
502          * size of perf_event_attr struct
503          */
504         sz = (u32)sizeof(evsel->core.attr);
505         ret = do_write(ff, &sz, sizeof(sz));
506         if (ret < 0)
507                 return ret;
508
509         evlist__for_each_entry(evlist, evsel) {
510                 ret = do_write(ff, &evsel->core.attr, sz);
511                 if (ret < 0)
512                         return ret;
513                 /*
514                  * write number of unique id per event
515                  * there is one id per instance of an event
516                  *
517                  * copy into an nri to be independent of the
518                  * type of ids,
519                  */
520                 nri = evsel->core.ids;
521                 ret = do_write(ff, &nri, sizeof(nri));
522                 if (ret < 0)
523                         return ret;
524
525                 /*
526                  * write event string as passed on cmdline
527                  */
528                 ret = do_write_string(ff, perf_evsel__name(evsel));
529                 if (ret < 0)
530                         return ret;
531                 /*
532                  * write unique ids for this event
533                  */
534                 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535                 if (ret < 0)
536                         return ret;
537         }
538         return 0;
539 }
540
541 static int write_cmdline(struct feat_fd *ff,
542                          struct evlist *evlist __maybe_unused)
543 {
544         char pbuf[MAXPATHLEN], *buf;
545         int i, ret, n;
546
547         /* actual path to perf binary */
548         buf = perf_exe(pbuf, MAXPATHLEN);
549
550         /* account for binary path */
551         n = perf_env.nr_cmdline + 1;
552
553         ret = do_write(ff, &n, sizeof(n));
554         if (ret < 0)
555                 return ret;
556
557         ret = do_write_string(ff, buf);
558         if (ret < 0)
559                 return ret;
560
561         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563                 if (ret < 0)
564                         return ret;
565         }
566         return 0;
567 }
568
569
570 static int write_cpu_topology(struct feat_fd *ff,
571                               struct evlist *evlist __maybe_unused)
572 {
573         struct cpu_topology *tp;
574         u32 i;
575         int ret, j;
576
577         tp = cpu_topology__new();
578         if (!tp)
579                 return -1;
580
581         ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582         if (ret < 0)
583                 goto done;
584
585         for (i = 0; i < tp->core_sib; i++) {
586                 ret = do_write_string(ff, tp->core_siblings[i]);
587                 if (ret < 0)
588                         goto done;
589         }
590         ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591         if (ret < 0)
592                 goto done;
593
594         for (i = 0; i < tp->thread_sib; i++) {
595                 ret = do_write_string(ff, tp->thread_siblings[i]);
596                 if (ret < 0)
597                         break;
598         }
599
600         ret = perf_env__read_cpu_topology_map(&perf_env);
601         if (ret < 0)
602                 goto done;
603
604         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605                 ret = do_write(ff, &perf_env.cpu[j].core_id,
606                                sizeof(perf_env.cpu[j].core_id));
607                 if (ret < 0)
608                         return ret;
609                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
610                                sizeof(perf_env.cpu[j].socket_id));
611                 if (ret < 0)
612                         return ret;
613         }
614
615         if (!tp->die_sib)
616                 goto done;
617
618         ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
619         if (ret < 0)
620                 goto done;
621
622         for (i = 0; i < tp->die_sib; i++) {
623                 ret = do_write_string(ff, tp->die_siblings[i]);
624                 if (ret < 0)
625                         goto done;
626         }
627
628         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
629                 ret = do_write(ff, &perf_env.cpu[j].die_id,
630                                sizeof(perf_env.cpu[j].die_id));
631                 if (ret < 0)
632                         return ret;
633         }
634
635 done:
636         cpu_topology__delete(tp);
637         return ret;
638 }
639
640
641
642 static int write_total_mem(struct feat_fd *ff,
643                            struct evlist *evlist __maybe_unused)
644 {
645         char *buf = NULL;
646         FILE *fp;
647         size_t len = 0;
648         int ret = -1, n;
649         uint64_t mem;
650
651         fp = fopen("/proc/meminfo", "r");
652         if (!fp)
653                 return -1;
654
655         while (getline(&buf, &len, fp) > 0) {
656                 ret = strncmp(buf, "MemTotal:", 9);
657                 if (!ret)
658                         break;
659         }
660         if (!ret) {
661                 n = sscanf(buf, "%*s %"PRIu64, &mem);
662                 if (n == 1)
663                         ret = do_write(ff, &mem, sizeof(mem));
664         } else
665                 ret = -1;
666         free(buf);
667         fclose(fp);
668         return ret;
669 }
670
671 static int write_numa_topology(struct feat_fd *ff,
672                                struct evlist *evlist __maybe_unused)
673 {
674         struct numa_topology *tp;
675         int ret = -1;
676         u32 i;
677
678         tp = numa_topology__new();
679         if (!tp)
680                 return -ENOMEM;
681
682         ret = do_write(ff, &tp->nr, sizeof(u32));
683         if (ret < 0)
684                 goto err;
685
686         for (i = 0; i < tp->nr; i++) {
687                 struct numa_topology_node *n = &tp->nodes[i];
688
689                 ret = do_write(ff, &n->node, sizeof(u32));
690                 if (ret < 0)
691                         goto err;
692
693                 ret = do_write(ff, &n->mem_total, sizeof(u64));
694                 if (ret)
695                         goto err;
696
697                 ret = do_write(ff, &n->mem_free, sizeof(u64));
698                 if (ret)
699                         goto err;
700
701                 ret = do_write_string(ff, n->cpus);
702                 if (ret < 0)
703                         goto err;
704         }
705
706         ret = 0;
707
708 err:
709         numa_topology__delete(tp);
710         return ret;
711 }
712
713 /*
714  * File format:
715  *
716  * struct pmu_mappings {
717  *      u32     pmu_num;
718  *      struct pmu_map {
719  *              u32     type;
720  *              char    name[];
721  *      }[pmu_num];
722  * };
723  */
724
725 static int write_pmu_mappings(struct feat_fd *ff,
726                               struct evlist *evlist __maybe_unused)
727 {
728         struct perf_pmu *pmu = NULL;
729         u32 pmu_num = 0;
730         int ret;
731
732         /*
733          * Do a first pass to count number of pmu to avoid lseek so this
734          * works in pipe mode as well.
735          */
736         while ((pmu = perf_pmu__scan(pmu))) {
737                 if (!pmu->name)
738                         continue;
739                 pmu_num++;
740         }
741
742         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743         if (ret < 0)
744                 return ret;
745
746         while ((pmu = perf_pmu__scan(pmu))) {
747                 if (!pmu->name)
748                         continue;
749
750                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751                 if (ret < 0)
752                         return ret;
753
754                 ret = do_write_string(ff, pmu->name);
755                 if (ret < 0)
756                         return ret;
757         }
758
759         return 0;
760 }
761
762 /*
763  * File format:
764  *
765  * struct group_descs {
766  *      u32     nr_groups;
767  *      struct group_desc {
768  *              char    name[];
769  *              u32     leader_idx;
770  *              u32     nr_members;
771  *      }[nr_groups];
772  * };
773  */
774 static int write_group_desc(struct feat_fd *ff,
775                             struct evlist *evlist)
776 {
777         u32 nr_groups = evlist->nr_groups;
778         struct evsel *evsel;
779         int ret;
780
781         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782         if (ret < 0)
783                 return ret;
784
785         evlist__for_each_entry(evlist, evsel) {
786                 if (perf_evsel__is_group_leader(evsel) &&
787                     evsel->core.nr_members > 1) {
788                         const char *name = evsel->group_name ?: "{anon_group}";
789                         u32 leader_idx = evsel->idx;
790                         u32 nr_members = evsel->core.nr_members;
791
792                         ret = do_write_string(ff, name);
793                         if (ret < 0)
794                                 return ret;
795
796                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797                         if (ret < 0)
798                                 return ret;
799
800                         ret = do_write(ff, &nr_members, sizeof(nr_members));
801                         if (ret < 0)
802                                 return ret;
803                 }
804         }
805         return 0;
806 }
807
808 /*
809  * Return the CPU id as a raw string.
810  *
811  * Each architecture should provide a more precise id string that
812  * can be use to match the architecture's "mapfile".
813  */
814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815 {
816         return NULL;
817 }
818
819 /* Return zero when the cpuid from the mapfile.csv matches the
820  * cpuid string generated on this platform.
821  * Otherwise return non-zero.
822  */
823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824 {
825         regex_t re;
826         regmatch_t pmatch[1];
827         int match;
828
829         if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830                 /* Warn unable to generate match particular string. */
831                 pr_info("Invalid regular expression %s\n", mapcpuid);
832                 return 1;
833         }
834
835         match = !regexec(&re, cpuid, 1, pmatch, 0);
836         regfree(&re);
837         if (match) {
838                 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839
840                 /* Verify the entire string matched. */
841                 if (match_len == strlen(cpuid))
842                         return 0;
843         }
844         return 1;
845 }
846
847 /*
848  * default get_cpuid(): nothing gets recorded
849  * actual implementation must be in arch/$(SRCARCH)/util/header.c
850  */
851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852 {
853         return -1;
854 }
855
856 static int write_cpuid(struct feat_fd *ff,
857                        struct evlist *evlist __maybe_unused)
858 {
859         char buffer[64];
860         int ret;
861
862         ret = get_cpuid(buffer, sizeof(buffer));
863         if (ret)
864                 return -1;
865
866         return do_write_string(ff, buffer);
867 }
868
869 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870                               struct evlist *evlist __maybe_unused)
871 {
872         return 0;
873 }
874
875 static int write_auxtrace(struct feat_fd *ff,
876                           struct evlist *evlist __maybe_unused)
877 {
878         struct perf_session *session;
879         int err;
880
881         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882                 return -1;
883
884         session = container_of(ff->ph, struct perf_session, header);
885
886         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887         if (err < 0)
888                 pr_err("Failed to write auxtrace index\n");
889         return err;
890 }
891
892 static int write_clockid(struct feat_fd *ff,
893                          struct evlist *evlist __maybe_unused)
894 {
895         return do_write(ff, &ff->ph->env.clockid_res_ns,
896                         sizeof(ff->ph->env.clockid_res_ns));
897 }
898
899 static int write_dir_format(struct feat_fd *ff,
900                             struct evlist *evlist __maybe_unused)
901 {
902         struct perf_session *session;
903         struct perf_data *data;
904
905         session = container_of(ff->ph, struct perf_session, header);
906         data = session->data;
907
908         if (WARN_ON(!perf_data__is_dir(data)))
909                 return -1;
910
911         return do_write(ff, &data->dir.version, sizeof(data->dir.version));
912 }
913
914 #ifdef HAVE_LIBBPF_SUPPORT
915 static int write_bpf_prog_info(struct feat_fd *ff,
916                                struct evlist *evlist __maybe_unused)
917 {
918         struct perf_env *env = &ff->ph->env;
919         struct rb_root *root;
920         struct rb_node *next;
921         int ret;
922
923         down_read(&env->bpf_progs.lock);
924
925         ret = do_write(ff, &env->bpf_progs.infos_cnt,
926                        sizeof(env->bpf_progs.infos_cnt));
927         if (ret < 0)
928                 goto out;
929
930         root = &env->bpf_progs.infos;
931         next = rb_first(root);
932         while (next) {
933                 struct bpf_prog_info_node *node;
934                 size_t len;
935
936                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
937                 next = rb_next(&node->rb_node);
938                 len = sizeof(struct bpf_prog_info_linear) +
939                         node->info_linear->data_len;
940
941                 /* before writing to file, translate address to offset */
942                 bpf_program__bpil_addr_to_offs(node->info_linear);
943                 ret = do_write(ff, node->info_linear, len);
944                 /*
945                  * translate back to address even when do_write() fails,
946                  * so that this function never changes the data.
947                  */
948                 bpf_program__bpil_offs_to_addr(node->info_linear);
949                 if (ret < 0)
950                         goto out;
951         }
952 out:
953         up_read(&env->bpf_progs.lock);
954         return ret;
955 }
956 #else // HAVE_LIBBPF_SUPPORT
957 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
958                                struct evlist *evlist __maybe_unused)
959 {
960         return 0;
961 }
962 #endif // HAVE_LIBBPF_SUPPORT
963
964 static int write_bpf_btf(struct feat_fd *ff,
965                          struct evlist *evlist __maybe_unused)
966 {
967         struct perf_env *env = &ff->ph->env;
968         struct rb_root *root;
969         struct rb_node *next;
970         int ret;
971
972         down_read(&env->bpf_progs.lock);
973
974         ret = do_write(ff, &env->bpf_progs.btfs_cnt,
975                        sizeof(env->bpf_progs.btfs_cnt));
976
977         if (ret < 0)
978                 goto out;
979
980         root = &env->bpf_progs.btfs;
981         next = rb_first(root);
982         while (next) {
983                 struct btf_node *node;
984
985                 node = rb_entry(next, struct btf_node, rb_node);
986                 next = rb_next(&node->rb_node);
987                 ret = do_write(ff, &node->id,
988                                sizeof(u32) * 2 + node->data_size);
989                 if (ret < 0)
990                         goto out;
991         }
992 out:
993         up_read(&env->bpf_progs.lock);
994         return ret;
995 }
996
997 static int cpu_cache_level__sort(const void *a, const void *b)
998 {
999         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1001
1002         return cache_a->level - cache_b->level;
1003 }
1004
1005 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1006 {
1007         if (a->level != b->level)
1008                 return false;
1009
1010         if (a->line_size != b->line_size)
1011                 return false;
1012
1013         if (a->sets != b->sets)
1014                 return false;
1015
1016         if (a->ways != b->ways)
1017                 return false;
1018
1019         if (strcmp(a->type, b->type))
1020                 return false;
1021
1022         if (strcmp(a->size, b->size))
1023                 return false;
1024
1025         if (strcmp(a->map, b->map))
1026                 return false;
1027
1028         return true;
1029 }
1030
1031 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1032 {
1033         char path[PATH_MAX], file[PATH_MAX];
1034         struct stat st;
1035         size_t len;
1036
1037         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1039
1040         if (stat(file, &st))
1041                 return 1;
1042
1043         scnprintf(file, PATH_MAX, "%s/level", path);
1044         if (sysfs__read_int(file, (int *) &cache->level))
1045                 return -1;
1046
1047         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048         if (sysfs__read_int(file, (int *) &cache->line_size))
1049                 return -1;
1050
1051         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052         if (sysfs__read_int(file, (int *) &cache->sets))
1053                 return -1;
1054
1055         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056         if (sysfs__read_int(file, (int *) &cache->ways))
1057                 return -1;
1058
1059         scnprintf(file, PATH_MAX, "%s/type", path);
1060         if (sysfs__read_str(file, &cache->type, &len))
1061                 return -1;
1062
1063         cache->type[len] = 0;
1064         cache->type = strim(cache->type);
1065
1066         scnprintf(file, PATH_MAX, "%s/size", path);
1067         if (sysfs__read_str(file, &cache->size, &len)) {
1068                 zfree(&cache->type);
1069                 return -1;
1070         }
1071
1072         cache->size[len] = 0;
1073         cache->size = strim(cache->size);
1074
1075         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076         if (sysfs__read_str(file, &cache->map, &len)) {
1077                 zfree(&cache->size);
1078                 zfree(&cache->type);
1079                 return -1;
1080         }
1081
1082         cache->map[len] = 0;
1083         cache->map = strim(cache->map);
1084         return 0;
1085 }
1086
1087 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1088 {
1089         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1090 }
1091
1092 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1093 {
1094         u32 i, cnt = 0;
1095         long ncpus;
1096         u32 nr, cpu;
1097         u16 level;
1098
1099         ncpus = sysconf(_SC_NPROCESSORS_CONF);
1100         if (ncpus < 0)
1101                 return -1;
1102
1103         nr = (u32)(ncpus & UINT_MAX);
1104
1105         for (cpu = 0; cpu < nr; cpu++) {
1106                 for (level = 0; level < 10; level++) {
1107                         struct cpu_cache_level c;
1108                         int err;
1109
1110                         err = cpu_cache_level__read(&c, cpu, level);
1111                         if (err < 0)
1112                                 return err;
1113
1114                         if (err == 1)
1115                                 break;
1116
1117                         for (i = 0; i < cnt; i++) {
1118                                 if (cpu_cache_level__cmp(&c, &caches[i]))
1119                                         break;
1120                         }
1121
1122                         if (i == cnt)
1123                                 caches[cnt++] = c;
1124                         else
1125                                 cpu_cache_level__free(&c);
1126
1127                         if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1128                                 goto out;
1129                 }
1130         }
1131  out:
1132         *cntp = cnt;
1133         return 0;
1134 }
1135
1136 #define MAX_CACHE_LVL 4
1137
1138 static int write_cache(struct feat_fd *ff,
1139                        struct evlist *evlist __maybe_unused)
1140 {
1141         u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1142         struct cpu_cache_level caches[max_caches];
1143         u32 cnt = 0, i, version = 1;
1144         int ret;
1145
1146         ret = build_caches(caches, max_caches, &cnt);
1147         if (ret)
1148                 goto out;
1149
1150         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1151
1152         ret = do_write(ff, &version, sizeof(u32));
1153         if (ret < 0)
1154                 goto out;
1155
1156         ret = do_write(ff, &cnt, sizeof(u32));
1157         if (ret < 0)
1158                 goto out;
1159
1160         for (i = 0; i < cnt; i++) {
1161                 struct cpu_cache_level *c = &caches[i];
1162
1163                 #define _W(v)                                   \
1164                         ret = do_write(ff, &c->v, sizeof(u32)); \
1165                         if (ret < 0)                            \
1166                                 goto out;
1167
1168                 _W(level)
1169                 _W(line_size)
1170                 _W(sets)
1171                 _W(ways)
1172                 #undef _W
1173
1174                 #define _W(v)                                           \
1175                         ret = do_write_string(ff, (const char *) c->v); \
1176                         if (ret < 0)                                    \
1177                                 goto out;
1178
1179                 _W(type)
1180                 _W(size)
1181                 _W(map)
1182                 #undef _W
1183         }
1184
1185 out:
1186         for (i = 0; i < cnt; i++)
1187                 cpu_cache_level__free(&caches[i]);
1188         return ret;
1189 }
1190
1191 static int write_stat(struct feat_fd *ff __maybe_unused,
1192                       struct evlist *evlist __maybe_unused)
1193 {
1194         return 0;
1195 }
1196
1197 static int write_sample_time(struct feat_fd *ff,
1198                              struct evlist *evlist)
1199 {
1200         int ret;
1201
1202         ret = do_write(ff, &evlist->first_sample_time,
1203                        sizeof(evlist->first_sample_time));
1204         if (ret < 0)
1205                 return ret;
1206
1207         return do_write(ff, &evlist->last_sample_time,
1208                         sizeof(evlist->last_sample_time));
1209 }
1210
1211
1212 static int memory_node__read(struct memory_node *n, unsigned long idx)
1213 {
1214         unsigned int phys, size = 0;
1215         char path[PATH_MAX];
1216         struct dirent *ent;
1217         DIR *dir;
1218
1219 #define for_each_memory(mem, dir)                                       \
1220         while ((ent = readdir(dir)))                                    \
1221                 if (strcmp(ent->d_name, ".") &&                         \
1222                     strcmp(ent->d_name, "..") &&                        \
1223                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1224
1225         scnprintf(path, PATH_MAX,
1226                   "%s/devices/system/node/node%lu",
1227                   sysfs__mountpoint(), idx);
1228
1229         dir = opendir(path);
1230         if (!dir) {
1231                 pr_warning("failed: cant' open memory sysfs data\n");
1232                 return -1;
1233         }
1234
1235         for_each_memory(phys, dir) {
1236                 size = max(phys, size);
1237         }
1238
1239         size++;
1240
1241         n->set = bitmap_alloc(size);
1242         if (!n->set) {
1243                 closedir(dir);
1244                 return -ENOMEM;
1245         }
1246
1247         n->node = idx;
1248         n->size = size;
1249
1250         rewinddir(dir);
1251
1252         for_each_memory(phys, dir) {
1253                 set_bit(phys, n->set);
1254         }
1255
1256         closedir(dir);
1257         return 0;
1258 }
1259
1260 static int memory_node__sort(const void *a, const void *b)
1261 {
1262         const struct memory_node *na = a;
1263         const struct memory_node *nb = b;
1264
1265         return na->node - nb->node;
1266 }
1267
1268 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1269 {
1270         char path[PATH_MAX];
1271         struct dirent *ent;
1272         DIR *dir;
1273         u64 cnt = 0;
1274         int ret = 0;
1275
1276         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1277                   sysfs__mountpoint());
1278
1279         dir = opendir(path);
1280         if (!dir) {
1281                 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1282                           __func__, path);
1283                 return -1;
1284         }
1285
1286         while (!ret && (ent = readdir(dir))) {
1287                 unsigned int idx;
1288                 int r;
1289
1290                 if (!strcmp(ent->d_name, ".") ||
1291                     !strcmp(ent->d_name, ".."))
1292                         continue;
1293
1294                 r = sscanf(ent->d_name, "node%u", &idx);
1295                 if (r != 1)
1296                         continue;
1297
1298                 if (WARN_ONCE(cnt >= size,
1299                               "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1300                         return -1;
1301
1302                 ret = memory_node__read(&nodes[cnt++], idx);
1303         }
1304
1305         *cntp = cnt;
1306         closedir(dir);
1307
1308         if (!ret)
1309                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1310
1311         return ret;
1312 }
1313
1314 #define MAX_MEMORY_NODES 2000
1315
1316 /*
1317  * The MEM_TOPOLOGY holds physical memory map for every
1318  * node in system. The format of data is as follows:
1319  *
1320  *  0 - version          | for future changes
1321  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1322  * 16 - count            | number of nodes
1323  *
1324  * For each node we store map of physical indexes for
1325  * each node:
1326  *
1327  * 32 - node id          | node index
1328  * 40 - size             | size of bitmap
1329  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1330  */
1331 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1332                               struct evlist *evlist __maybe_unused)
1333 {
1334         static struct memory_node nodes[MAX_MEMORY_NODES];
1335         u64 bsize, version = 1, i, nr;
1336         int ret;
1337
1338         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1339                               (unsigned long long *) &bsize);
1340         if (ret)
1341                 return ret;
1342
1343         ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1344         if (ret)
1345                 return ret;
1346
1347         ret = do_write(ff, &version, sizeof(version));
1348         if (ret < 0)
1349                 goto out;
1350
1351         ret = do_write(ff, &bsize, sizeof(bsize));
1352         if (ret < 0)
1353                 goto out;
1354
1355         ret = do_write(ff, &nr, sizeof(nr));
1356         if (ret < 0)
1357                 goto out;
1358
1359         for (i = 0; i < nr; i++) {
1360                 struct memory_node *n = &nodes[i];
1361
1362                 #define _W(v)                                           \
1363                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1364                         if (ret < 0)                                    \
1365                                 goto out;
1366
1367                 _W(node)
1368                 _W(size)
1369
1370                 #undef _W
1371
1372                 ret = do_write_bitmap(ff, n->set, n->size);
1373                 if (ret < 0)
1374                         goto out;
1375         }
1376
1377 out:
1378         return ret;
1379 }
1380
1381 static int write_compressed(struct feat_fd *ff __maybe_unused,
1382                             struct evlist *evlist __maybe_unused)
1383 {
1384         int ret;
1385
1386         ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1387         if (ret)
1388                 return ret;
1389
1390         ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1391         if (ret)
1392                 return ret;
1393
1394         ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1395         if (ret)
1396                 return ret;
1397
1398         ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1399         if (ret)
1400                 return ret;
1401
1402         return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1403 }
1404
1405 static void print_hostname(struct feat_fd *ff, FILE *fp)
1406 {
1407         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1408 }
1409
1410 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1411 {
1412         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1413 }
1414
1415 static void print_arch(struct feat_fd *ff, FILE *fp)
1416 {
1417         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1418 }
1419
1420 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1421 {
1422         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1423 }
1424
1425 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1426 {
1427         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1428         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1429 }
1430
1431 static void print_version(struct feat_fd *ff, FILE *fp)
1432 {
1433         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1434 }
1435
1436 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1437 {
1438         int nr, i;
1439
1440         nr = ff->ph->env.nr_cmdline;
1441
1442         fprintf(fp, "# cmdline : ");
1443
1444         for (i = 0; i < nr; i++) {
1445                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1446                 if (!argv_i) {
1447                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1448                 } else {
1449                         char *mem = argv_i;
1450                         do {
1451                                 char *quote = strchr(argv_i, '\'');
1452                                 if (!quote)
1453                                         break;
1454                                 *quote++ = '\0';
1455                                 fprintf(fp, "%s\\\'", argv_i);
1456                                 argv_i = quote;
1457                         } while (1);
1458                         fprintf(fp, "%s ", argv_i);
1459                         free(mem);
1460                 }
1461         }
1462         fputc('\n', fp);
1463 }
1464
1465 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1466 {
1467         struct perf_header *ph = ff->ph;
1468         int cpu_nr = ph->env.nr_cpus_avail;
1469         int nr, i;
1470         char *str;
1471
1472         nr = ph->env.nr_sibling_cores;
1473         str = ph->env.sibling_cores;
1474
1475         for (i = 0; i < nr; i++) {
1476                 fprintf(fp, "# sibling sockets : %s\n", str);
1477                 str += strlen(str) + 1;
1478         }
1479
1480         if (ph->env.nr_sibling_dies) {
1481                 nr = ph->env.nr_sibling_dies;
1482                 str = ph->env.sibling_dies;
1483
1484                 for (i = 0; i < nr; i++) {
1485                         fprintf(fp, "# sibling dies    : %s\n", str);
1486                         str += strlen(str) + 1;
1487                 }
1488         }
1489
1490         nr = ph->env.nr_sibling_threads;
1491         str = ph->env.sibling_threads;
1492
1493         for (i = 0; i < nr; i++) {
1494                 fprintf(fp, "# sibling threads : %s\n", str);
1495                 str += strlen(str) + 1;
1496         }
1497
1498         if (ph->env.nr_sibling_dies) {
1499                 if (ph->env.cpu != NULL) {
1500                         for (i = 0; i < cpu_nr; i++)
1501                                 fprintf(fp, "# CPU %d: Core ID %d, "
1502                                             "Die ID %d, Socket ID %d\n",
1503                                             i, ph->env.cpu[i].core_id,
1504                                             ph->env.cpu[i].die_id,
1505                                             ph->env.cpu[i].socket_id);
1506                 } else
1507                         fprintf(fp, "# Core ID, Die ID and Socket ID "
1508                                     "information is not available\n");
1509         } else {
1510                 if (ph->env.cpu != NULL) {
1511                         for (i = 0; i < cpu_nr; i++)
1512                                 fprintf(fp, "# CPU %d: Core ID %d, "
1513                                             "Socket ID %d\n",
1514                                             i, ph->env.cpu[i].core_id,
1515                                             ph->env.cpu[i].socket_id);
1516                 } else
1517                         fprintf(fp, "# Core ID and Socket ID "
1518                                     "information is not available\n");
1519         }
1520 }
1521
1522 static void print_clockid(struct feat_fd *ff, FILE *fp)
1523 {
1524         fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1525                 ff->ph->env.clockid_res_ns * 1000);
1526 }
1527
1528 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1529 {
1530         struct perf_session *session;
1531         struct perf_data *data;
1532
1533         session = container_of(ff->ph, struct perf_session, header);
1534         data = session->data;
1535
1536         fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1537 }
1538
1539 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1540 {
1541         struct perf_env *env = &ff->ph->env;
1542         struct rb_root *root;
1543         struct rb_node *next;
1544
1545         down_read(&env->bpf_progs.lock);
1546
1547         root = &env->bpf_progs.infos;
1548         next = rb_first(root);
1549
1550         while (next) {
1551                 struct bpf_prog_info_node *node;
1552
1553                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1554                 next = rb_next(&node->rb_node);
1555
1556                 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1557                                                env, fp);
1558         }
1559
1560         up_read(&env->bpf_progs.lock);
1561 }
1562
1563 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1564 {
1565         struct perf_env *env = &ff->ph->env;
1566         struct rb_root *root;
1567         struct rb_node *next;
1568
1569         down_read(&env->bpf_progs.lock);
1570
1571         root = &env->bpf_progs.btfs;
1572         next = rb_first(root);
1573
1574         while (next) {
1575                 struct btf_node *node;
1576
1577                 node = rb_entry(next, struct btf_node, rb_node);
1578                 next = rb_next(&node->rb_node);
1579                 fprintf(fp, "# btf info of id %u\n", node->id);
1580         }
1581
1582         up_read(&env->bpf_progs.lock);
1583 }
1584
1585 static void free_event_desc(struct evsel *events)
1586 {
1587         struct evsel *evsel;
1588
1589         if (!events)
1590                 return;
1591
1592         for (evsel = events; evsel->core.attr.size; evsel++) {
1593                 zfree(&evsel->name);
1594                 zfree(&evsel->core.id);
1595         }
1596
1597         free(events);
1598 }
1599
1600 static struct evsel *read_event_desc(struct feat_fd *ff)
1601 {
1602         struct evsel *evsel, *events = NULL;
1603         u64 *id;
1604         void *buf = NULL;
1605         u32 nre, sz, nr, i, j;
1606         size_t msz;
1607
1608         /* number of events */
1609         if (do_read_u32(ff, &nre))
1610                 goto error;
1611
1612         if (do_read_u32(ff, &sz))
1613                 goto error;
1614
1615         /* buffer to hold on file attr struct */
1616         buf = malloc(sz);
1617         if (!buf)
1618                 goto error;
1619
1620         /* the last event terminates with evsel->core.attr.size == 0: */
1621         events = calloc(nre + 1, sizeof(*events));
1622         if (!events)
1623                 goto error;
1624
1625         msz = sizeof(evsel->core.attr);
1626         if (sz < msz)
1627                 msz = sz;
1628
1629         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1630                 evsel->idx = i;
1631
1632                 /*
1633                  * must read entire on-file attr struct to
1634                  * sync up with layout.
1635                  */
1636                 if (__do_read(ff, buf, sz))
1637                         goto error;
1638
1639                 if (ff->ph->needs_swap)
1640                         perf_event__attr_swap(buf);
1641
1642                 memcpy(&evsel->core.attr, buf, msz);
1643
1644                 if (do_read_u32(ff, &nr))
1645                         goto error;
1646
1647                 if (ff->ph->needs_swap)
1648                         evsel->needs_swap = true;
1649
1650                 evsel->name = do_read_string(ff);
1651                 if (!evsel->name)
1652                         goto error;
1653
1654                 if (!nr)
1655                         continue;
1656
1657                 id = calloc(nr, sizeof(*id));
1658                 if (!id)
1659                         goto error;
1660                 evsel->core.ids = nr;
1661                 evsel->core.id = id;
1662
1663                 for (j = 0 ; j < nr; j++) {
1664                         if (do_read_u64(ff, id))
1665                                 goto error;
1666                         id++;
1667                 }
1668         }
1669 out:
1670         free(buf);
1671         return events;
1672 error:
1673         free_event_desc(events);
1674         events = NULL;
1675         goto out;
1676 }
1677
1678 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1679                                 void *priv __maybe_unused)
1680 {
1681         return fprintf(fp, ", %s = %s", name, val);
1682 }
1683
1684 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1685 {
1686         struct evsel *evsel, *events;
1687         u32 j;
1688         u64 *id;
1689
1690         if (ff->events)
1691                 events = ff->events;
1692         else
1693                 events = read_event_desc(ff);
1694
1695         if (!events) {
1696                 fprintf(fp, "# event desc: not available or unable to read\n");
1697                 return;
1698         }
1699
1700         for (evsel = events; evsel->core.attr.size; evsel++) {
1701                 fprintf(fp, "# event : name = %s, ", evsel->name);
1702
1703                 if (evsel->core.ids) {
1704                         fprintf(fp, ", id = {");
1705                         for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1706                                 if (j)
1707                                         fputc(',', fp);
1708                                 fprintf(fp, " %"PRIu64, *id);
1709                         }
1710                         fprintf(fp, " }");
1711                 }
1712
1713                 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1714
1715                 fputc('\n', fp);
1716         }
1717
1718         free_event_desc(events);
1719         ff->events = NULL;
1720 }
1721
1722 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1723 {
1724         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1725 }
1726
1727 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1728 {
1729         int i;
1730         struct numa_node *n;
1731
1732         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1733                 n = &ff->ph->env.numa_nodes[i];
1734
1735                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1736                             " free = %"PRIu64" kB\n",
1737                         n->node, n->mem_total, n->mem_free);
1738
1739                 fprintf(fp, "# node%u cpu list : ", n->node);
1740                 cpu_map__fprintf(n->map, fp);
1741         }
1742 }
1743
1744 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1745 {
1746         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1747 }
1748
1749 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1750 {
1751         fprintf(fp, "# contains samples with branch stack\n");
1752 }
1753
1754 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1755 {
1756         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1757 }
1758
1759 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1760 {
1761         fprintf(fp, "# contains stat data\n");
1762 }
1763
1764 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1765 {
1766         int i;
1767
1768         fprintf(fp, "# CPU cache info:\n");
1769         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1770                 fprintf(fp, "#  ");
1771                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1772         }
1773 }
1774
1775 static void print_compressed(struct feat_fd *ff, FILE *fp)
1776 {
1777         fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1778                 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1779                 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1780 }
1781
1782 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1783 {
1784         const char *delimiter = "# pmu mappings: ";
1785         char *str, *tmp;
1786         u32 pmu_num;
1787         u32 type;
1788
1789         pmu_num = ff->ph->env.nr_pmu_mappings;
1790         if (!pmu_num) {
1791                 fprintf(fp, "# pmu mappings: not available\n");
1792                 return;
1793         }
1794
1795         str = ff->ph->env.pmu_mappings;
1796
1797         while (pmu_num) {
1798                 type = strtoul(str, &tmp, 0);
1799                 if (*tmp != ':')
1800                         goto error;
1801
1802                 str = tmp + 1;
1803                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1804
1805                 delimiter = ", ";
1806                 str += strlen(str) + 1;
1807                 pmu_num--;
1808         }
1809
1810         fprintf(fp, "\n");
1811
1812         if (!pmu_num)
1813                 return;
1814 error:
1815         fprintf(fp, "# pmu mappings: unable to read\n");
1816 }
1817
1818 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1819 {
1820         struct perf_session *session;
1821         struct evsel *evsel;
1822         u32 nr = 0;
1823
1824         session = container_of(ff->ph, struct perf_session, header);
1825
1826         evlist__for_each_entry(session->evlist, evsel) {
1827                 if (perf_evsel__is_group_leader(evsel) &&
1828                     evsel->core.nr_members > 1) {
1829                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1830                                 perf_evsel__name(evsel));
1831
1832                         nr = evsel->core.nr_members - 1;
1833                 } else if (nr) {
1834                         fprintf(fp, ",%s", perf_evsel__name(evsel));
1835
1836                         if (--nr == 0)
1837                                 fprintf(fp, "}\n");
1838                 }
1839         }
1840 }
1841
1842 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1843 {
1844         struct perf_session *session;
1845         char time_buf[32];
1846         double d;
1847
1848         session = container_of(ff->ph, struct perf_session, header);
1849
1850         timestamp__scnprintf_usec(session->evlist->first_sample_time,
1851                                   time_buf, sizeof(time_buf));
1852         fprintf(fp, "# time of first sample : %s\n", time_buf);
1853
1854         timestamp__scnprintf_usec(session->evlist->last_sample_time,
1855                                   time_buf, sizeof(time_buf));
1856         fprintf(fp, "# time of last sample : %s\n", time_buf);
1857
1858         d = (double)(session->evlist->last_sample_time -
1859                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1860
1861         fprintf(fp, "# sample duration : %10.3f ms\n", d);
1862 }
1863
1864 static void memory_node__fprintf(struct memory_node *n,
1865                                  unsigned long long bsize, FILE *fp)
1866 {
1867         char buf_map[100], buf_size[50];
1868         unsigned long long size;
1869
1870         size = bsize * bitmap_weight(n->set, n->size);
1871         unit_number__scnprintf(buf_size, 50, size);
1872
1873         bitmap_scnprintf(n->set, n->size, buf_map, 100);
1874         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1875 }
1876
1877 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1878 {
1879         struct memory_node *nodes;
1880         int i, nr;
1881
1882         nodes = ff->ph->env.memory_nodes;
1883         nr    = ff->ph->env.nr_memory_nodes;
1884
1885         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1886                 nr, ff->ph->env.memory_bsize);
1887
1888         for (i = 0; i < nr; i++) {
1889                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1890         }
1891 }
1892
1893 static int __event_process_build_id(struct perf_record_header_build_id *bev,
1894                                     char *filename,
1895                                     struct perf_session *session)
1896 {
1897         int err = -1;
1898         struct machine *machine;
1899         u16 cpumode;
1900         struct dso *dso;
1901         enum dso_kernel_type dso_type;
1902
1903         machine = perf_session__findnew_machine(session, bev->pid);
1904         if (!machine)
1905                 goto out;
1906
1907         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1908
1909         switch (cpumode) {
1910         case PERF_RECORD_MISC_KERNEL:
1911                 dso_type = DSO_TYPE_KERNEL;
1912                 break;
1913         case PERF_RECORD_MISC_GUEST_KERNEL:
1914                 dso_type = DSO_TYPE_GUEST_KERNEL;
1915                 break;
1916         case PERF_RECORD_MISC_USER:
1917         case PERF_RECORD_MISC_GUEST_USER:
1918                 dso_type = DSO_TYPE_USER;
1919                 break;
1920         default:
1921                 goto out;
1922         }
1923
1924         dso = machine__findnew_dso(machine, filename);
1925         if (dso != NULL) {
1926                 char sbuild_id[SBUILD_ID_SIZE];
1927
1928                 dso__set_build_id(dso, &bev->build_id);
1929
1930                 if (dso_type != DSO_TYPE_USER) {
1931                         struct kmod_path m = { .name = NULL, };
1932
1933                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
1934                                 dso__set_module_info(dso, &m, machine);
1935                         else
1936                                 dso->kernel = dso_type;
1937
1938                         free(m.name);
1939                 }
1940
1941                 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1942                                   sbuild_id);
1943                 pr_debug("build id event received for %s: %s\n",
1944                          dso->long_name, sbuild_id);
1945                 dso__put(dso);
1946         }
1947
1948         err = 0;
1949 out:
1950         return err;
1951 }
1952
1953 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1954                                                  int input, u64 offset, u64 size)
1955 {
1956         struct perf_session *session = container_of(header, struct perf_session, header);
1957         struct {
1958                 struct perf_event_header   header;
1959                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1960                 char                       filename[0];
1961         } old_bev;
1962         struct perf_record_header_build_id bev;
1963         char filename[PATH_MAX];
1964         u64 limit = offset + size;
1965
1966         while (offset < limit) {
1967                 ssize_t len;
1968
1969                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1970                         return -1;
1971
1972                 if (header->needs_swap)
1973                         perf_event_header__bswap(&old_bev.header);
1974
1975                 len = old_bev.header.size - sizeof(old_bev);
1976                 if (readn(input, filename, len) != len)
1977                         return -1;
1978
1979                 bev.header = old_bev.header;
1980
1981                 /*
1982                  * As the pid is the missing value, we need to fill
1983                  * it properly. The header.misc value give us nice hint.
1984                  */
1985                 bev.pid = HOST_KERNEL_ID;
1986                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1987                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1988                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
1989
1990                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1991                 __event_process_build_id(&bev, filename, session);
1992
1993                 offset += bev.header.size;
1994         }
1995
1996         return 0;
1997 }
1998
1999 static int perf_header__read_build_ids(struct perf_header *header,
2000                                        int input, u64 offset, u64 size)
2001 {
2002         struct perf_session *session = container_of(header, struct perf_session, header);
2003         struct perf_record_header_build_id bev;
2004         char filename[PATH_MAX];
2005         u64 limit = offset + size, orig_offset = offset;
2006         int err = -1;
2007
2008         while (offset < limit) {
2009                 ssize_t len;
2010
2011                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2012                         goto out;
2013
2014                 if (header->needs_swap)
2015                         perf_event_header__bswap(&bev.header);
2016
2017                 len = bev.header.size - sizeof(bev);
2018                 if (readn(input, filename, len) != len)
2019                         goto out;
2020                 /*
2021                  * The a1645ce1 changeset:
2022                  *
2023                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
2024                  *
2025                  * Added a field to struct perf_record_header_build_id that broke the file
2026                  * format.
2027                  *
2028                  * Since the kernel build-id is the first entry, process the
2029                  * table using the old format if the well known
2030                  * '[kernel.kallsyms]' string for the kernel build-id has the
2031                  * first 4 characters chopped off (where the pid_t sits).
2032                  */
2033                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2034                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2035                                 return -1;
2036                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2037                 }
2038
2039                 __event_process_build_id(&bev, filename, session);
2040
2041                 offset += bev.header.size;
2042         }
2043         err = 0;
2044 out:
2045         return err;
2046 }
2047
2048 /* Macro for features that simply need to read and store a string. */
2049 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2050 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2051 {\
2052         ff->ph->env.__feat_env = do_read_string(ff); \
2053         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2054 }
2055
2056 FEAT_PROCESS_STR_FUN(hostname, hostname);
2057 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2058 FEAT_PROCESS_STR_FUN(version, version);
2059 FEAT_PROCESS_STR_FUN(arch, arch);
2060 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2061 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2062
2063 static int process_tracing_data(struct feat_fd *ff, void *data)
2064 {
2065         ssize_t ret = trace_report(ff->fd, data, false);
2066
2067         return ret < 0 ? -1 : 0;
2068 }
2069
2070 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2071 {
2072         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2073                 pr_debug("Failed to read buildids, continuing...\n");
2074         return 0;
2075 }
2076
2077 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2078 {
2079         int ret;
2080         u32 nr_cpus_avail, nr_cpus_online;
2081
2082         ret = do_read_u32(ff, &nr_cpus_avail);
2083         if (ret)
2084                 return ret;
2085
2086         ret = do_read_u32(ff, &nr_cpus_online);
2087         if (ret)
2088                 return ret;
2089         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2090         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2091         return 0;
2092 }
2093
2094 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2095 {
2096         u64 total_mem;
2097         int ret;
2098
2099         ret = do_read_u64(ff, &total_mem);
2100         if (ret)
2101                 return -1;
2102         ff->ph->env.total_mem = (unsigned long long)total_mem;
2103         return 0;
2104 }
2105
2106 static struct evsel *
2107 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2108 {
2109         struct evsel *evsel;
2110
2111         evlist__for_each_entry(evlist, evsel) {
2112                 if (evsel->idx == idx)
2113                         return evsel;
2114         }
2115
2116         return NULL;
2117 }
2118
2119 static void
2120 perf_evlist__set_event_name(struct evlist *evlist,
2121                             struct evsel *event)
2122 {
2123         struct evsel *evsel;
2124
2125         if (!event->name)
2126                 return;
2127
2128         evsel = perf_evlist__find_by_index(evlist, event->idx);
2129         if (!evsel)
2130                 return;
2131
2132         if (evsel->name)
2133                 return;
2134
2135         evsel->name = strdup(event->name);
2136 }
2137
2138 static int
2139 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2140 {
2141         struct perf_session *session;
2142         struct evsel *evsel, *events = read_event_desc(ff);
2143
2144         if (!events)
2145                 return 0;
2146
2147         session = container_of(ff->ph, struct perf_session, header);
2148
2149         if (session->data->is_pipe) {
2150                 /* Save events for reading later by print_event_desc,
2151                  * since they can't be read again in pipe mode. */
2152                 ff->events = events;
2153         }
2154
2155         for (evsel = events; evsel->core.attr.size; evsel++)
2156                 perf_evlist__set_event_name(session->evlist, evsel);
2157
2158         if (!session->data->is_pipe)
2159                 free_event_desc(events);
2160
2161         return 0;
2162 }
2163
2164 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2165 {
2166         char *str, *cmdline = NULL, **argv = NULL;
2167         u32 nr, i, len = 0;
2168
2169         if (do_read_u32(ff, &nr))
2170                 return -1;
2171
2172         ff->ph->env.nr_cmdline = nr;
2173
2174         cmdline = zalloc(ff->size + nr + 1);
2175         if (!cmdline)
2176                 return -1;
2177
2178         argv = zalloc(sizeof(char *) * (nr + 1));
2179         if (!argv)
2180                 goto error;
2181
2182         for (i = 0; i < nr; i++) {
2183                 str = do_read_string(ff);
2184                 if (!str)
2185                         goto error;
2186
2187                 argv[i] = cmdline + len;
2188                 memcpy(argv[i], str, strlen(str) + 1);
2189                 len += strlen(str) + 1;
2190                 free(str);
2191         }
2192         ff->ph->env.cmdline = cmdline;
2193         ff->ph->env.cmdline_argv = (const char **) argv;
2194         return 0;
2195
2196 error:
2197         free(argv);
2198         free(cmdline);
2199         return -1;
2200 }
2201
2202 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2203 {
2204         u32 nr, i;
2205         char *str;
2206         struct strbuf sb;
2207         int cpu_nr = ff->ph->env.nr_cpus_avail;
2208         u64 size = 0;
2209         struct perf_header *ph = ff->ph;
2210         bool do_core_id_test = true;
2211
2212         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2213         if (!ph->env.cpu)
2214                 return -1;
2215
2216         if (do_read_u32(ff, &nr))
2217                 goto free_cpu;
2218
2219         ph->env.nr_sibling_cores = nr;
2220         size += sizeof(u32);
2221         if (strbuf_init(&sb, 128) < 0)
2222                 goto free_cpu;
2223
2224         for (i = 0; i < nr; i++) {
2225                 str = do_read_string(ff);
2226                 if (!str)
2227                         goto error;
2228
2229                 /* include a NULL character at the end */
2230                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2231                         goto error;
2232                 size += string_size(str);
2233                 free(str);
2234         }
2235         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2236
2237         if (do_read_u32(ff, &nr))
2238                 return -1;
2239
2240         ph->env.nr_sibling_threads = nr;
2241         size += sizeof(u32);
2242
2243         for (i = 0; i < nr; i++) {
2244                 str = do_read_string(ff);
2245                 if (!str)
2246                         goto error;
2247
2248                 /* include a NULL character at the end */
2249                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2250                         goto error;
2251                 size += string_size(str);
2252                 free(str);
2253         }
2254         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2255
2256         /*
2257          * The header may be from old perf,
2258          * which doesn't include core id and socket id information.
2259          */
2260         if (ff->size <= size) {
2261                 zfree(&ph->env.cpu);
2262                 return 0;
2263         }
2264
2265         /* On s390 the socket_id number is not related to the numbers of cpus.
2266          * The socket_id number might be higher than the numbers of cpus.
2267          * This depends on the configuration.
2268          * AArch64 is the same.
2269          */
2270         if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2271                           || !strncmp(ph->env.arch, "aarch64", 7)))
2272                 do_core_id_test = false;
2273
2274         for (i = 0; i < (u32)cpu_nr; i++) {
2275                 if (do_read_u32(ff, &nr))
2276                         goto free_cpu;
2277
2278                 ph->env.cpu[i].core_id = nr;
2279                 size += sizeof(u32);
2280
2281                 if (do_read_u32(ff, &nr))
2282                         goto free_cpu;
2283
2284                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2285                         pr_debug("socket_id number is too big."
2286                                  "You may need to upgrade the perf tool.\n");
2287                         goto free_cpu;
2288                 }
2289
2290                 ph->env.cpu[i].socket_id = nr;
2291                 size += sizeof(u32);
2292         }
2293
2294         /*
2295          * The header may be from old perf,
2296          * which doesn't include die information.
2297          */
2298         if (ff->size <= size)
2299                 return 0;
2300
2301         if (do_read_u32(ff, &nr))
2302                 return -1;
2303
2304         ph->env.nr_sibling_dies = nr;
2305         size += sizeof(u32);
2306
2307         for (i = 0; i < nr; i++) {
2308                 str = do_read_string(ff);
2309                 if (!str)
2310                         goto error;
2311
2312                 /* include a NULL character at the end */
2313                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2314                         goto error;
2315                 size += string_size(str);
2316                 free(str);
2317         }
2318         ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2319
2320         for (i = 0; i < (u32)cpu_nr; i++) {
2321                 if (do_read_u32(ff, &nr))
2322                         goto free_cpu;
2323
2324                 ph->env.cpu[i].die_id = nr;
2325         }
2326
2327         return 0;
2328
2329 error:
2330         strbuf_release(&sb);
2331 free_cpu:
2332         zfree(&ph->env.cpu);
2333         return -1;
2334 }
2335
2336 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2337 {
2338         struct numa_node *nodes, *n;
2339         u32 nr, i;
2340         char *str;
2341
2342         /* nr nodes */
2343         if (do_read_u32(ff, &nr))
2344                 return -1;
2345
2346         nodes = zalloc(sizeof(*nodes) * nr);
2347         if (!nodes)
2348                 return -ENOMEM;
2349
2350         for (i = 0; i < nr; i++) {
2351                 n = &nodes[i];
2352
2353                 /* node number */
2354                 if (do_read_u32(ff, &n->node))
2355                         goto error;
2356
2357                 if (do_read_u64(ff, &n->mem_total))
2358                         goto error;
2359
2360                 if (do_read_u64(ff, &n->mem_free))
2361                         goto error;
2362
2363                 str = do_read_string(ff);
2364                 if (!str)
2365                         goto error;
2366
2367                 n->map = perf_cpu_map__new(str);
2368                 if (!n->map)
2369                         goto error;
2370
2371                 free(str);
2372         }
2373         ff->ph->env.nr_numa_nodes = nr;
2374         ff->ph->env.numa_nodes = nodes;
2375         return 0;
2376
2377 error:
2378         free(nodes);
2379         return -1;
2380 }
2381
2382 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2383 {
2384         char *name;
2385         u32 pmu_num;
2386         u32 type;
2387         struct strbuf sb;
2388
2389         if (do_read_u32(ff, &pmu_num))
2390                 return -1;
2391
2392         if (!pmu_num) {
2393                 pr_debug("pmu mappings not available\n");
2394                 return 0;
2395         }
2396
2397         ff->ph->env.nr_pmu_mappings = pmu_num;
2398         if (strbuf_init(&sb, 128) < 0)
2399                 return -1;
2400
2401         while (pmu_num) {
2402                 if (do_read_u32(ff, &type))
2403                         goto error;
2404
2405                 name = do_read_string(ff);
2406                 if (!name)
2407                         goto error;
2408
2409                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2410                         goto error;
2411                 /* include a NULL character at the end */
2412                 if (strbuf_add(&sb, "", 1) < 0)
2413                         goto error;
2414
2415                 if (!strcmp(name, "msr"))
2416                         ff->ph->env.msr_pmu_type = type;
2417
2418                 free(name);
2419                 pmu_num--;
2420         }
2421         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2422         return 0;
2423
2424 error:
2425         strbuf_release(&sb);
2426         return -1;
2427 }
2428
2429 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2430 {
2431         size_t ret = -1;
2432         u32 i, nr, nr_groups;
2433         struct perf_session *session;
2434         struct evsel *evsel, *leader = NULL;
2435         struct group_desc {
2436                 char *name;
2437                 u32 leader_idx;
2438                 u32 nr_members;
2439         } *desc;
2440
2441         if (do_read_u32(ff, &nr_groups))
2442                 return -1;
2443
2444         ff->ph->env.nr_groups = nr_groups;
2445         if (!nr_groups) {
2446                 pr_debug("group desc not available\n");
2447                 return 0;
2448         }
2449
2450         desc = calloc(nr_groups, sizeof(*desc));
2451         if (!desc)
2452                 return -1;
2453
2454         for (i = 0; i < nr_groups; i++) {
2455                 desc[i].name = do_read_string(ff);
2456                 if (!desc[i].name)
2457                         goto out_free;
2458
2459                 if (do_read_u32(ff, &desc[i].leader_idx))
2460                         goto out_free;
2461
2462                 if (do_read_u32(ff, &desc[i].nr_members))
2463                         goto out_free;
2464         }
2465
2466         /*
2467          * Rebuild group relationship based on the group_desc
2468          */
2469         session = container_of(ff->ph, struct perf_session, header);
2470         session->evlist->nr_groups = nr_groups;
2471
2472         i = nr = 0;
2473         evlist__for_each_entry(session->evlist, evsel) {
2474                 if (evsel->idx == (int) desc[i].leader_idx) {
2475                         evsel->leader = evsel;
2476                         /* {anon_group} is a dummy name */
2477                         if (strcmp(desc[i].name, "{anon_group}")) {
2478                                 evsel->group_name = desc[i].name;
2479                                 desc[i].name = NULL;
2480                         }
2481                         evsel->core.nr_members = desc[i].nr_members;
2482
2483                         if (i >= nr_groups || nr > 0) {
2484                                 pr_debug("invalid group desc\n");
2485                                 goto out_free;
2486                         }
2487
2488                         leader = evsel;
2489                         nr = evsel->core.nr_members - 1;
2490                         i++;
2491                 } else if (nr) {
2492                         /* This is a group member */
2493                         evsel->leader = leader;
2494
2495                         nr--;
2496                 }
2497         }
2498
2499         if (i != nr_groups || nr != 0) {
2500                 pr_debug("invalid group desc\n");
2501                 goto out_free;
2502         }
2503
2504         ret = 0;
2505 out_free:
2506         for (i = 0; i < nr_groups; i++)
2507                 zfree(&desc[i].name);
2508         free(desc);
2509
2510         return ret;
2511 }
2512
2513 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2514 {
2515         struct perf_session *session;
2516         int err;
2517
2518         session = container_of(ff->ph, struct perf_session, header);
2519
2520         err = auxtrace_index__process(ff->fd, ff->size, session,
2521                                       ff->ph->needs_swap);
2522         if (err < 0)
2523                 pr_err("Failed to process auxtrace index\n");
2524         return err;
2525 }
2526
2527 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2528 {
2529         struct cpu_cache_level *caches;
2530         u32 cnt, i, version;
2531
2532         if (do_read_u32(ff, &version))
2533                 return -1;
2534
2535         if (version != 1)
2536                 return -1;
2537
2538         if (do_read_u32(ff, &cnt))
2539                 return -1;
2540
2541         caches = zalloc(sizeof(*caches) * cnt);
2542         if (!caches)
2543                 return -1;
2544
2545         for (i = 0; i < cnt; i++) {
2546                 struct cpu_cache_level c;
2547
2548                 #define _R(v)                                           \
2549                         if (do_read_u32(ff, &c.v))\
2550                                 goto out_free_caches;                   \
2551
2552                 _R(level)
2553                 _R(line_size)
2554                 _R(sets)
2555                 _R(ways)
2556                 #undef _R
2557
2558                 #define _R(v)                                   \
2559                         c.v = do_read_string(ff);               \
2560                         if (!c.v)                               \
2561                                 goto out_free_caches;
2562
2563                 _R(type)
2564                 _R(size)
2565                 _R(map)
2566                 #undef _R
2567
2568                 caches[i] = c;
2569         }
2570
2571         ff->ph->env.caches = caches;
2572         ff->ph->env.caches_cnt = cnt;
2573         return 0;
2574 out_free_caches:
2575         free(caches);
2576         return -1;
2577 }
2578
2579 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2580 {
2581         struct perf_session *session;
2582         u64 first_sample_time, last_sample_time;
2583         int ret;
2584
2585         session = container_of(ff->ph, struct perf_session, header);
2586
2587         ret = do_read_u64(ff, &first_sample_time);
2588         if (ret)
2589                 return -1;
2590
2591         ret = do_read_u64(ff, &last_sample_time);
2592         if (ret)
2593                 return -1;
2594
2595         session->evlist->first_sample_time = first_sample_time;
2596         session->evlist->last_sample_time = last_sample_time;
2597         return 0;
2598 }
2599
2600 static int process_mem_topology(struct feat_fd *ff,
2601                                 void *data __maybe_unused)
2602 {
2603         struct memory_node *nodes;
2604         u64 version, i, nr, bsize;
2605         int ret = -1;
2606
2607         if (do_read_u64(ff, &version))
2608                 return -1;
2609
2610         if (version != 1)
2611                 return -1;
2612
2613         if (do_read_u64(ff, &bsize))
2614                 return -1;
2615
2616         if (do_read_u64(ff, &nr))
2617                 return -1;
2618
2619         nodes = zalloc(sizeof(*nodes) * nr);
2620         if (!nodes)
2621                 return -1;
2622
2623         for (i = 0; i < nr; i++) {
2624                 struct memory_node n;
2625
2626                 #define _R(v)                           \
2627                         if (do_read_u64(ff, &n.v))      \
2628                                 goto out;               \
2629
2630                 _R(node)
2631                 _R(size)
2632
2633                 #undef _R
2634
2635                 if (do_read_bitmap(ff, &n.set, &n.size))
2636                         goto out;
2637
2638                 nodes[i] = n;
2639         }
2640
2641         ff->ph->env.memory_bsize    = bsize;
2642         ff->ph->env.memory_nodes    = nodes;
2643         ff->ph->env.nr_memory_nodes = nr;
2644         ret = 0;
2645
2646 out:
2647         if (ret)
2648                 free(nodes);
2649         return ret;
2650 }
2651
2652 static int process_clockid(struct feat_fd *ff,
2653                            void *data __maybe_unused)
2654 {
2655         if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2656                 return -1;
2657
2658         return 0;
2659 }
2660
2661 static int process_dir_format(struct feat_fd *ff,
2662                               void *_data __maybe_unused)
2663 {
2664         struct perf_session *session;
2665         struct perf_data *data;
2666
2667         session = container_of(ff->ph, struct perf_session, header);
2668         data = session->data;
2669
2670         if (WARN_ON(!perf_data__is_dir(data)))
2671                 return -1;
2672
2673         return do_read_u64(ff, &data->dir.version);
2674 }
2675
2676 #ifdef HAVE_LIBBPF_SUPPORT
2677 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2678 {
2679         struct bpf_prog_info_linear *info_linear;
2680         struct bpf_prog_info_node *info_node;
2681         struct perf_env *env = &ff->ph->env;
2682         u32 count, i;
2683         int err = -1;
2684
2685         if (ff->ph->needs_swap) {
2686                 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2687                 return 0;
2688         }
2689
2690         if (do_read_u32(ff, &count))
2691                 return -1;
2692
2693         down_write(&env->bpf_progs.lock);
2694
2695         for (i = 0; i < count; ++i) {
2696                 u32 info_len, data_len;
2697
2698                 info_linear = NULL;
2699                 info_node = NULL;
2700                 if (do_read_u32(ff, &info_len))
2701                         goto out;
2702                 if (do_read_u32(ff, &data_len))
2703                         goto out;
2704
2705                 if (info_len > sizeof(struct bpf_prog_info)) {
2706                         pr_warning("detected invalid bpf_prog_info\n");
2707                         goto out;
2708                 }
2709
2710                 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2711                                      data_len);
2712                 if (!info_linear)
2713                         goto out;
2714                 info_linear->info_len = sizeof(struct bpf_prog_info);
2715                 info_linear->data_len = data_len;
2716                 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2717                         goto out;
2718                 if (__do_read(ff, &info_linear->info, info_len))
2719                         goto out;
2720                 if (info_len < sizeof(struct bpf_prog_info))
2721                         memset(((void *)(&info_linear->info)) + info_len, 0,
2722                                sizeof(struct bpf_prog_info) - info_len);
2723
2724                 if (__do_read(ff, info_linear->data, data_len))
2725                         goto out;
2726
2727                 info_node = malloc(sizeof(struct bpf_prog_info_node));
2728                 if (!info_node)
2729                         goto out;
2730
2731                 /* after reading from file, translate offset to address */
2732                 bpf_program__bpil_offs_to_addr(info_linear);
2733                 info_node->info_linear = info_linear;
2734                 perf_env__insert_bpf_prog_info(env, info_node);
2735         }
2736
2737         up_write(&env->bpf_progs.lock);
2738         return 0;
2739 out:
2740         free(info_linear);
2741         free(info_node);
2742         up_write(&env->bpf_progs.lock);
2743         return err;
2744 }
2745 #else // HAVE_LIBBPF_SUPPORT
2746 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2747 {
2748         return 0;
2749 }
2750 #endif // HAVE_LIBBPF_SUPPORT
2751
2752 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2753 {
2754         struct perf_env *env = &ff->ph->env;
2755         struct btf_node *node = NULL;
2756         u32 count, i;
2757         int err = -1;
2758
2759         if (ff->ph->needs_swap) {
2760                 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2761                 return 0;
2762         }
2763
2764         if (do_read_u32(ff, &count))
2765                 return -1;
2766
2767         down_write(&env->bpf_progs.lock);
2768
2769         for (i = 0; i < count; ++i) {
2770                 u32 id, data_size;
2771
2772                 if (do_read_u32(ff, &id))
2773                         goto out;
2774                 if (do_read_u32(ff, &data_size))
2775                         goto out;
2776
2777                 node = malloc(sizeof(struct btf_node) + data_size);
2778                 if (!node)
2779                         goto out;
2780
2781                 node->id = id;
2782                 node->data_size = data_size;
2783
2784                 if (__do_read(ff, node->data, data_size))
2785                         goto out;
2786
2787                 perf_env__insert_btf(env, node);
2788                 node = NULL;
2789         }
2790
2791         err = 0;
2792 out:
2793         up_write(&env->bpf_progs.lock);
2794         free(node);
2795         return err;
2796 }
2797
2798 static int process_compressed(struct feat_fd *ff,
2799                               void *data __maybe_unused)
2800 {
2801         if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2802                 return -1;
2803
2804         if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2805                 return -1;
2806
2807         if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2808                 return -1;
2809
2810         if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2811                 return -1;
2812
2813         if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2814                 return -1;
2815
2816         return 0;
2817 }
2818
2819 #define FEAT_OPR(n, func, __full_only) \
2820         [HEADER_##n] = {                                        \
2821                 .name       = __stringify(n),                   \
2822                 .write      = write_##func,                     \
2823                 .print      = print_##func,                     \
2824                 .full_only  = __full_only,                      \
2825                 .process    = process_##func,                   \
2826                 .synthesize = true                              \
2827         }
2828
2829 #define FEAT_OPN(n, func, __full_only) \
2830         [HEADER_##n] = {                                        \
2831                 .name       = __stringify(n),                   \
2832                 .write      = write_##func,                     \
2833                 .print      = print_##func,                     \
2834                 .full_only  = __full_only,                      \
2835                 .process    = process_##func                    \
2836         }
2837
2838 /* feature_ops not implemented: */
2839 #define print_tracing_data      NULL
2840 #define print_build_id          NULL
2841
2842 #define process_branch_stack    NULL
2843 #define process_stat            NULL
2844
2845 // Only used in util/synthetic-events.c
2846 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2847
2848 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2849         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
2850         FEAT_OPN(BUILD_ID,      build_id,       false),
2851         FEAT_OPR(HOSTNAME,      hostname,       false),
2852         FEAT_OPR(OSRELEASE,     osrelease,      false),
2853         FEAT_OPR(VERSION,       version,        false),
2854         FEAT_OPR(ARCH,          arch,           false),
2855         FEAT_OPR(NRCPUS,        nrcpus,         false),
2856         FEAT_OPR(CPUDESC,       cpudesc,        false),
2857         FEAT_OPR(CPUID,         cpuid,          false),
2858         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
2859         FEAT_OPR(EVENT_DESC,    event_desc,     false),
2860         FEAT_OPR(CMDLINE,       cmdline,        false),
2861         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
2862         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
2863         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
2864         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
2865         FEAT_OPR(GROUP_DESC,    group_desc,     false),
2866         FEAT_OPN(AUXTRACE,      auxtrace,       false),
2867         FEAT_OPN(STAT,          stat,           false),
2868         FEAT_OPN(CACHE,         cache,          true),
2869         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
2870         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
2871         FEAT_OPR(CLOCKID,       clockid,        false),
2872         FEAT_OPN(DIR_FORMAT,    dir_format,     false),
2873         FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2874         FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2875         FEAT_OPR(COMPRESSED,    compressed,     false),
2876 };
2877
2878 struct header_print_data {
2879         FILE *fp;
2880         bool full; /* extended list of headers */
2881 };
2882
2883 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2884                                            struct perf_header *ph,
2885                                            int feat, int fd, void *data)
2886 {
2887         struct header_print_data *hd = data;
2888         struct feat_fd ff;
2889
2890         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2891                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2892                                 "%d, continuing...\n", section->offset, feat);
2893                 return 0;
2894         }
2895         if (feat >= HEADER_LAST_FEATURE) {
2896                 pr_warning("unknown feature %d\n", feat);
2897                 return 0;
2898         }
2899         if (!feat_ops[feat].print)
2900                 return 0;
2901
2902         ff = (struct  feat_fd) {
2903                 .fd = fd,
2904                 .ph = ph,
2905         };
2906
2907         if (!feat_ops[feat].full_only || hd->full)
2908                 feat_ops[feat].print(&ff, hd->fp);
2909         else
2910                 fprintf(hd->fp, "# %s info available, use -I to display\n",
2911                         feat_ops[feat].name);
2912
2913         return 0;
2914 }
2915
2916 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2917 {
2918         struct header_print_data hd;
2919         struct perf_header *header = &session->header;
2920         int fd = perf_data__fd(session->data);
2921         struct stat st;
2922         time_t stctime;
2923         int ret, bit;
2924
2925         hd.fp = fp;
2926         hd.full = full;
2927
2928         ret = fstat(fd, &st);
2929         if (ret == -1)
2930                 return -1;
2931
2932         stctime = st.st_ctime;
2933         fprintf(fp, "# captured on    : %s", ctime(&stctime));
2934
2935         fprintf(fp, "# header version : %u\n", header->version);
2936         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2937         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2938         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2939
2940         perf_header__process_sections(header, fd, &hd,
2941                                       perf_file_section__fprintf_info);
2942
2943         if (session->data->is_pipe)
2944                 return 0;
2945
2946         fprintf(fp, "# missing features: ");
2947         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2948                 if (bit)
2949                         fprintf(fp, "%s ", feat_ops[bit].name);
2950         }
2951
2952         fprintf(fp, "\n");
2953         return 0;
2954 }
2955
2956 static int do_write_feat(struct feat_fd *ff, int type,
2957                          struct perf_file_section **p,
2958                          struct evlist *evlist)
2959 {
2960         int err;
2961         int ret = 0;
2962
2963         if (perf_header__has_feat(ff->ph, type)) {
2964                 if (!feat_ops[type].write)
2965                         return -1;
2966
2967                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2968                         return -1;
2969
2970                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2971
2972                 err = feat_ops[type].write(ff, evlist);
2973                 if (err < 0) {
2974                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
2975
2976                         /* undo anything written */
2977                         lseek(ff->fd, (*p)->offset, SEEK_SET);
2978
2979                         return -1;
2980                 }
2981                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2982                 (*p)++;
2983         }
2984         return ret;
2985 }
2986
2987 static int perf_header__adds_write(struct perf_header *header,
2988                                    struct evlist *evlist, int fd)
2989 {
2990         int nr_sections;
2991         struct feat_fd ff;
2992         struct perf_file_section *feat_sec, *p;
2993         int sec_size;
2994         u64 sec_start;
2995         int feat;
2996         int err;
2997
2998         ff = (struct feat_fd){
2999                 .fd  = fd,
3000                 .ph = header,
3001         };
3002
3003         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3004         if (!nr_sections)
3005                 return 0;
3006
3007         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3008         if (feat_sec == NULL)
3009                 return -ENOMEM;
3010
3011         sec_size = sizeof(*feat_sec) * nr_sections;
3012
3013         sec_start = header->feat_offset;
3014         lseek(fd, sec_start + sec_size, SEEK_SET);
3015
3016         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3017                 if (do_write_feat(&ff, feat, &p, evlist))
3018                         perf_header__clear_feat(header, feat);
3019         }
3020
3021         lseek(fd, sec_start, SEEK_SET);
3022         /*
3023          * may write more than needed due to dropped feature, but
3024          * this is okay, reader will skip the missing entries
3025          */
3026         err = do_write(&ff, feat_sec, sec_size);
3027         if (err < 0)
3028                 pr_debug("failed to write feature section\n");
3029         free(feat_sec);
3030         return err;
3031 }
3032
3033 int perf_header__write_pipe(int fd)
3034 {
3035         struct perf_pipe_file_header f_header;
3036         struct feat_fd ff;
3037         int err;
3038
3039         ff = (struct feat_fd){ .fd = fd };
3040
3041         f_header = (struct perf_pipe_file_header){
3042                 .magic     = PERF_MAGIC,
3043                 .size      = sizeof(f_header),
3044         };
3045
3046         err = do_write(&ff, &f_header, sizeof(f_header));
3047         if (err < 0) {
3048                 pr_debug("failed to write perf pipe header\n");
3049                 return err;
3050         }
3051
3052         return 0;
3053 }
3054
3055 int perf_session__write_header(struct perf_session *session,
3056                                struct evlist *evlist,
3057                                int fd, bool at_exit)
3058 {
3059         struct perf_file_header f_header;
3060         struct perf_file_attr   f_attr;
3061         struct perf_header *header = &session->header;
3062         struct evsel *evsel;
3063         struct feat_fd ff;
3064         u64 attr_offset;
3065         int err;
3066
3067         ff = (struct feat_fd){ .fd = fd};
3068         lseek(fd, sizeof(f_header), SEEK_SET);
3069
3070         evlist__for_each_entry(session->evlist, evsel) {
3071                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3072                 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3073                 if (err < 0) {
3074                         pr_debug("failed to write perf header\n");
3075                         return err;
3076                 }
3077         }
3078
3079         attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3080
3081         evlist__for_each_entry(evlist, evsel) {
3082                 f_attr = (struct perf_file_attr){
3083                         .attr = evsel->core.attr,
3084                         .ids  = {
3085                                 .offset = evsel->id_offset,
3086                                 .size   = evsel->core.ids * sizeof(u64),
3087                         }
3088                 };
3089                 err = do_write(&ff, &f_attr, sizeof(f_attr));
3090                 if (err < 0) {
3091                         pr_debug("failed to write perf header attribute\n");
3092                         return err;
3093                 }
3094         }
3095
3096         if (!header->data_offset)
3097                 header->data_offset = lseek(fd, 0, SEEK_CUR);
3098         header->feat_offset = header->data_offset + header->data_size;
3099
3100         if (at_exit) {
3101                 err = perf_header__adds_write(header, evlist, fd);
3102                 if (err < 0)
3103                         return err;
3104         }
3105
3106         f_header = (struct perf_file_header){
3107                 .magic     = PERF_MAGIC,
3108                 .size      = sizeof(f_header),
3109                 .attr_size = sizeof(f_attr),
3110                 .attrs = {
3111                         .offset = attr_offset,
3112                         .size   = evlist->core.nr_entries * sizeof(f_attr),
3113                 },
3114                 .data = {
3115                         .offset = header->data_offset,
3116                         .size   = header->data_size,
3117                 },
3118                 /* event_types is ignored, store zeros */
3119         };
3120
3121         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3122
3123         lseek(fd, 0, SEEK_SET);
3124         err = do_write(&ff, &f_header, sizeof(f_header));
3125         if (err < 0) {
3126                 pr_debug("failed to write perf header\n");
3127                 return err;
3128         }
3129         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3130
3131         return 0;
3132 }
3133
3134 static int perf_header__getbuffer64(struct perf_header *header,
3135                                     int fd, void *buf, size_t size)
3136 {
3137         if (readn(fd, buf, size) <= 0)
3138                 return -1;
3139
3140         if (header->needs_swap)
3141                 mem_bswap_64(buf, size);
3142
3143         return 0;
3144 }
3145
3146 int perf_header__process_sections(struct perf_header *header, int fd,
3147                                   void *data,
3148                                   int (*process)(struct perf_file_section *section,
3149                                                  struct perf_header *ph,
3150                                                  int feat, int fd, void *data))
3151 {
3152         struct perf_file_section *feat_sec, *sec;
3153         int nr_sections;
3154         int sec_size;
3155         int feat;
3156         int err;
3157
3158         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3159         if (!nr_sections)
3160                 return 0;
3161
3162         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3163         if (!feat_sec)
3164                 return -1;
3165
3166         sec_size = sizeof(*feat_sec) * nr_sections;
3167
3168         lseek(fd, header->feat_offset, SEEK_SET);
3169
3170         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3171         if (err < 0)
3172                 goto out_free;
3173
3174         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3175                 err = process(sec++, header, feat, fd, data);
3176                 if (err < 0)
3177                         goto out_free;
3178         }
3179         err = 0;
3180 out_free:
3181         free(feat_sec);
3182         return err;
3183 }
3184
3185 static const int attr_file_abi_sizes[] = {
3186         [0] = PERF_ATTR_SIZE_VER0,
3187         [1] = PERF_ATTR_SIZE_VER1,
3188         [2] = PERF_ATTR_SIZE_VER2,
3189         [3] = PERF_ATTR_SIZE_VER3,
3190         [4] = PERF_ATTR_SIZE_VER4,
3191         0,
3192 };
3193
3194 /*
3195  * In the legacy file format, the magic number is not used to encode endianness.
3196  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3197  * on ABI revisions, we need to try all combinations for all endianness to
3198  * detect the endianness.
3199  */
3200 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3201 {
3202         uint64_t ref_size, attr_size;
3203         int i;
3204
3205         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3206                 ref_size = attr_file_abi_sizes[i]
3207                          + sizeof(struct perf_file_section);
3208                 if (hdr_sz != ref_size) {
3209                         attr_size = bswap_64(hdr_sz);
3210                         if (attr_size != ref_size)
3211                                 continue;
3212
3213                         ph->needs_swap = true;
3214                 }
3215                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3216                          i,
3217                          ph->needs_swap);
3218                 return 0;
3219         }
3220         /* could not determine endianness */
3221         return -1;
3222 }
3223
3224 #define PERF_PIPE_HDR_VER0      16
3225
3226 static const size_t attr_pipe_abi_sizes[] = {
3227         [0] = PERF_PIPE_HDR_VER0,
3228         0,
3229 };
3230
3231 /*
3232  * In the legacy pipe format, there is an implicit assumption that endiannesss
3233  * between host recording the samples, and host parsing the samples is the
3234  * same. This is not always the case given that the pipe output may always be
3235  * redirected into a file and analyzed on a different machine with possibly a
3236  * different endianness and perf_event ABI revsions in the perf tool itself.
3237  */
3238 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3239 {
3240         u64 attr_size;
3241         int i;
3242
3243         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3244                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3245                         attr_size = bswap_64(hdr_sz);
3246                         if (attr_size != hdr_sz)
3247                                 continue;
3248
3249                         ph->needs_swap = true;
3250                 }
3251                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3252                 return 0;
3253         }
3254         return -1;
3255 }
3256
3257 bool is_perf_magic(u64 magic)
3258 {
3259         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3260                 || magic == __perf_magic2
3261                 || magic == __perf_magic2_sw)
3262                 return true;
3263
3264         return false;
3265 }
3266
3267 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3268                               bool is_pipe, struct perf_header *ph)
3269 {
3270         int ret;
3271
3272         /* check for legacy format */
3273         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3274         if (ret == 0) {
3275                 ph->version = PERF_HEADER_VERSION_1;
3276                 pr_debug("legacy perf.data format\n");
3277                 if (is_pipe)
3278                         return try_all_pipe_abis(hdr_sz, ph);
3279
3280                 return try_all_file_abis(hdr_sz, ph);
3281         }
3282         /*
3283          * the new magic number serves two purposes:
3284          * - unique number to identify actual perf.data files
3285          * - encode endianness of file
3286          */
3287         ph->version = PERF_HEADER_VERSION_2;
3288
3289         /* check magic number with one endianness */
3290         if (magic == __perf_magic2)
3291                 return 0;
3292
3293         /* check magic number with opposite endianness */
3294         if (magic != __perf_magic2_sw)
3295                 return -1;
3296
3297         ph->needs_swap = true;
3298
3299         return 0;
3300 }
3301
3302 int perf_file_header__read(struct perf_file_header *header,
3303                            struct perf_header *ph, int fd)
3304 {
3305         ssize_t ret;
3306
3307         lseek(fd, 0, SEEK_SET);
3308
3309         ret = readn(fd, header, sizeof(*header));
3310         if (ret <= 0)
3311                 return -1;
3312
3313         if (check_magic_endian(header->magic,
3314                                header->attr_size, false, ph) < 0) {
3315                 pr_debug("magic/endian check failed\n");
3316                 return -1;
3317         }
3318
3319         if (ph->needs_swap) {
3320                 mem_bswap_64(header, offsetof(struct perf_file_header,
3321                              adds_features));
3322         }
3323
3324         if (header->size != sizeof(*header)) {
3325                 /* Support the previous format */
3326                 if (header->size == offsetof(typeof(*header), adds_features))
3327                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3328                 else
3329                         return -1;
3330         } else if (ph->needs_swap) {
3331                 /*
3332                  * feature bitmap is declared as an array of unsigned longs --
3333                  * not good since its size can differ between the host that
3334                  * generated the data file and the host analyzing the file.
3335                  *
3336                  * We need to handle endianness, but we don't know the size of
3337                  * the unsigned long where the file was generated. Take a best
3338                  * guess at determining it: try 64-bit swap first (ie., file
3339                  * created on a 64-bit host), and check if the hostname feature
3340                  * bit is set (this feature bit is forced on as of fbe96f2).
3341                  * If the bit is not, undo the 64-bit swap and try a 32-bit
3342                  * swap. If the hostname bit is still not set (e.g., older data
3343                  * file), punt and fallback to the original behavior --
3344                  * clearing all feature bits and setting buildid.
3345                  */
3346                 mem_bswap_64(&header->adds_features,
3347                             BITS_TO_U64(HEADER_FEAT_BITS));
3348
3349                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3350                         /* unswap as u64 */
3351                         mem_bswap_64(&header->adds_features,
3352                                     BITS_TO_U64(HEADER_FEAT_BITS));
3353
3354                         /* unswap as u32 */
3355                         mem_bswap_32(&header->adds_features,
3356                                     BITS_TO_U32(HEADER_FEAT_BITS));
3357                 }
3358
3359                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3360                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3361                         set_bit(HEADER_BUILD_ID, header->adds_features);
3362                 }
3363         }
3364
3365         memcpy(&ph->adds_features, &header->adds_features,
3366                sizeof(ph->adds_features));
3367
3368         ph->data_offset  = header->data.offset;
3369         ph->data_size    = header->data.size;
3370         ph->feat_offset  = header->data.offset + header->data.size;
3371         return 0;
3372 }
3373
3374 static int perf_file_section__process(struct perf_file_section *section,
3375                                       struct perf_header *ph,
3376                                       int feat, int fd, void *data)
3377 {
3378         struct feat_fd fdd = {
3379                 .fd     = fd,
3380                 .ph     = ph,
3381                 .size   = section->size,
3382                 .offset = section->offset,
3383         };
3384
3385         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3386                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3387                           "%d, continuing...\n", section->offset, feat);
3388                 return 0;
3389         }
3390
3391         if (feat >= HEADER_LAST_FEATURE) {
3392                 pr_debug("unknown feature %d, continuing...\n", feat);
3393                 return 0;
3394         }
3395
3396         if (!feat_ops[feat].process)
3397                 return 0;
3398
3399         return feat_ops[feat].process(&fdd, data);
3400 }
3401
3402 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3403                                        struct perf_header *ph, int fd,
3404                                        bool repipe)
3405 {
3406         struct feat_fd ff = {
3407                 .fd = STDOUT_FILENO,
3408                 .ph = ph,
3409         };
3410         ssize_t ret;
3411
3412         ret = readn(fd, header, sizeof(*header));
3413         if (ret <= 0)
3414                 return -1;
3415
3416         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3417                 pr_debug("endian/magic failed\n");
3418                 return -1;
3419         }
3420
3421         if (ph->needs_swap)
3422                 header->size = bswap_64(header->size);
3423
3424         if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3425                 return -1;
3426
3427         return 0;
3428 }
3429
3430 static int perf_header__read_pipe(struct perf_session *session)
3431 {
3432         struct perf_header *header = &session->header;
3433         struct perf_pipe_file_header f_header;
3434
3435         if (perf_file_header__read_pipe(&f_header, header,
3436                                         perf_data__fd(session->data),
3437                                         session->repipe) < 0) {
3438                 pr_debug("incompatible file format\n");
3439                 return -EINVAL;
3440         }
3441
3442         return 0;
3443 }
3444
3445 static int read_attr(int fd, struct perf_header *ph,
3446                      struct perf_file_attr *f_attr)
3447 {
3448         struct perf_event_attr *attr = &f_attr->attr;
3449         size_t sz, left;
3450         size_t our_sz = sizeof(f_attr->attr);
3451         ssize_t ret;
3452
3453         memset(f_attr, 0, sizeof(*f_attr));
3454
3455         /* read minimal guaranteed structure */
3456         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3457         if (ret <= 0) {
3458                 pr_debug("cannot read %d bytes of header attr\n",
3459                          PERF_ATTR_SIZE_VER0);
3460                 return -1;
3461         }
3462
3463         /* on file perf_event_attr size */
3464         sz = attr->size;
3465
3466         if (ph->needs_swap)
3467                 sz = bswap_32(sz);
3468
3469         if (sz == 0) {
3470                 /* assume ABI0 */
3471                 sz =  PERF_ATTR_SIZE_VER0;
3472         } else if (sz > our_sz) {
3473                 pr_debug("file uses a more recent and unsupported ABI"
3474                          " (%zu bytes extra)\n", sz - our_sz);
3475                 return -1;
3476         }
3477         /* what we have not yet read and that we know about */
3478         left = sz - PERF_ATTR_SIZE_VER0;
3479         if (left) {
3480                 void *ptr = attr;
3481                 ptr += PERF_ATTR_SIZE_VER0;
3482
3483                 ret = readn(fd, ptr, left);
3484         }
3485         /* read perf_file_section, ids are read in caller */
3486         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3487
3488         return ret <= 0 ? -1 : 0;
3489 }
3490
3491 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3492                                                 struct tep_handle *pevent)
3493 {
3494         struct tep_event *event;
3495         char bf[128];
3496
3497         /* already prepared */
3498         if (evsel->tp_format)
3499                 return 0;
3500
3501         if (pevent == NULL) {
3502                 pr_debug("broken or missing trace data\n");
3503                 return -1;
3504         }
3505
3506         event = tep_find_event(pevent, evsel->core.attr.config);
3507         if (event == NULL) {
3508                 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3509                 return -1;
3510         }
3511
3512         if (!evsel->name) {
3513                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3514                 evsel->name = strdup(bf);
3515                 if (evsel->name == NULL)
3516                         return -1;
3517         }
3518
3519         evsel->tp_format = event;
3520         return 0;
3521 }
3522
3523 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3524                                                   struct tep_handle *pevent)
3525 {
3526         struct evsel *pos;
3527
3528         evlist__for_each_entry(evlist, pos) {
3529                 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3530                     perf_evsel__prepare_tracepoint_event(pos, pevent))
3531                         return -1;
3532         }
3533
3534         return 0;
3535 }
3536
3537 int perf_session__read_header(struct perf_session *session)
3538 {
3539         struct perf_data *data = session->data;
3540         struct perf_header *header = &session->header;
3541         struct perf_file_header f_header;
3542         struct perf_file_attr   f_attr;
3543         u64                     f_id;
3544         int nr_attrs, nr_ids, i, j;
3545         int fd = perf_data__fd(data);
3546
3547         session->evlist = evlist__new();
3548         if (session->evlist == NULL)
3549                 return -ENOMEM;
3550
3551         session->evlist->env = &header->env;
3552         session->machines.host.env = &header->env;
3553         if (perf_data__is_pipe(data))
3554                 return perf_header__read_pipe(session);
3555
3556         if (perf_file_header__read(&f_header, header, fd) < 0)
3557                 return -EINVAL;
3558
3559         /*
3560          * Sanity check that perf.data was written cleanly; data size is
3561          * initialized to 0 and updated only if the on_exit function is run.
3562          * If data size is still 0 then the file contains only partial
3563          * information.  Just warn user and process it as much as it can.
3564          */
3565         if (f_header.data.size == 0) {
3566                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3567                            "Was the 'perf record' command properly terminated?\n",
3568                            data->file.path);
3569         }
3570
3571         if (f_header.attr_size == 0) {
3572                 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3573                        "Was the 'perf record' command properly terminated?\n",
3574                        data->file.path);
3575                 return -EINVAL;
3576         }
3577
3578         nr_attrs = f_header.attrs.size / f_header.attr_size;
3579         lseek(fd, f_header.attrs.offset, SEEK_SET);
3580
3581         for (i = 0; i < nr_attrs; i++) {
3582                 struct evsel *evsel;
3583                 off_t tmp;
3584
3585                 if (read_attr(fd, header, &f_attr) < 0)
3586                         goto out_errno;
3587
3588                 if (header->needs_swap) {
3589                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
3590                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3591                         perf_event__attr_swap(&f_attr.attr);
3592                 }
3593
3594                 tmp = lseek(fd, 0, SEEK_CUR);
3595                 evsel = evsel__new(&f_attr.attr);
3596
3597                 if (evsel == NULL)
3598                         goto out_delete_evlist;
3599
3600                 evsel->needs_swap = header->needs_swap;
3601                 /*
3602                  * Do it before so that if perf_evsel__alloc_id fails, this
3603                  * entry gets purged too at evlist__delete().
3604                  */
3605                 evlist__add(session->evlist, evsel);
3606
3607                 nr_ids = f_attr.ids.size / sizeof(u64);
3608                 /*
3609                  * We don't have the cpu and thread maps on the header, so
3610                  * for allocating the perf_sample_id table we fake 1 cpu and
3611                  * hattr->ids threads.
3612                  */
3613                 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3614                         goto out_delete_evlist;
3615
3616                 lseek(fd, f_attr.ids.offset, SEEK_SET);
3617
3618                 for (j = 0; j < nr_ids; j++) {
3619                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3620                                 goto out_errno;
3621
3622                         perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3623                 }
3624
3625                 lseek(fd, tmp, SEEK_SET);
3626         }
3627
3628         perf_header__process_sections(header, fd, &session->tevent,
3629                                       perf_file_section__process);
3630
3631         if (perf_evlist__prepare_tracepoint_events(session->evlist,
3632                                                    session->tevent.pevent))
3633                 goto out_delete_evlist;
3634
3635         return 0;
3636 out_errno:
3637         return -errno;
3638
3639 out_delete_evlist:
3640         evlist__delete(session->evlist);
3641         session->evlist = NULL;
3642         return -ENOMEM;
3643 }
3644
3645 int perf_event__process_feature(struct perf_session *session,
3646                                 union perf_event *event)
3647 {
3648         struct perf_tool *tool = session->tool;
3649         struct feat_fd ff = { .fd = 0 };
3650         struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3651         int type = fe->header.type;
3652         u64 feat = fe->feat_id;
3653
3654         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3655                 pr_warning("invalid record type %d in pipe-mode\n", type);
3656                 return 0;
3657         }
3658         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3659                 pr_warning("invalid record type %d in pipe-mode\n", type);
3660                 return -1;
3661         }
3662
3663         if (!feat_ops[feat].process)
3664                 return 0;
3665
3666         ff.buf  = (void *)fe->data;
3667         ff.size = event->header.size - sizeof(*fe);
3668         ff.ph = &session->header;
3669
3670         if (feat_ops[feat].process(&ff, NULL))
3671                 return -1;
3672
3673         if (!feat_ops[feat].print || !tool->show_feat_hdr)
3674                 return 0;
3675
3676         if (!feat_ops[feat].full_only ||
3677             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3678                 feat_ops[feat].print(&ff, stdout);
3679         } else {
3680                 fprintf(stdout, "# %s info available, use -I to display\n",
3681                         feat_ops[feat].name);
3682         }
3683
3684         return 0;
3685 }
3686
3687 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3688 {
3689         struct perf_record_event_update *ev = &event->event_update;
3690         struct perf_record_event_update_scale *ev_scale;
3691         struct perf_record_event_update_cpus *ev_cpus;
3692         struct perf_cpu_map *map;
3693         size_t ret;
3694
3695         ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3696
3697         switch (ev->type) {
3698         case PERF_EVENT_UPDATE__SCALE:
3699                 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3700                 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3701                 break;
3702         case PERF_EVENT_UPDATE__UNIT:
3703                 ret += fprintf(fp, "... unit:  %s\n", ev->data);
3704                 break;
3705         case PERF_EVENT_UPDATE__NAME:
3706                 ret += fprintf(fp, "... name:  %s\n", ev->data);
3707                 break;
3708         case PERF_EVENT_UPDATE__CPUS:
3709                 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3710                 ret += fprintf(fp, "... ");
3711
3712                 map = cpu_map__new_data(&ev_cpus->cpus);
3713                 if (map)
3714                         ret += cpu_map__fprintf(map, fp);
3715                 else
3716                         ret += fprintf(fp, "failed to get cpus\n");
3717                 break;
3718         default:
3719                 ret += fprintf(fp, "... unknown type\n");
3720                 break;
3721         }
3722
3723         return ret;
3724 }
3725
3726 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3727                              union perf_event *event,
3728                              struct evlist **pevlist)
3729 {
3730         u32 i, ids, n_ids;
3731         struct evsel *evsel;
3732         struct evlist *evlist = *pevlist;
3733
3734         if (evlist == NULL) {
3735                 *pevlist = evlist = evlist__new();
3736                 if (evlist == NULL)
3737                         return -ENOMEM;
3738         }
3739
3740         evsel = evsel__new(&event->attr.attr);
3741         if (evsel == NULL)
3742                 return -ENOMEM;
3743
3744         evlist__add(evlist, evsel);
3745
3746         ids = event->header.size;
3747         ids -= (void *)&event->attr.id - (void *)event;
3748         n_ids = ids / sizeof(u64);
3749         /*
3750          * We don't have the cpu and thread maps on the header, so
3751          * for allocating the perf_sample_id table we fake 1 cpu and
3752          * hattr->ids threads.
3753          */
3754         if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3755                 return -ENOMEM;
3756
3757         for (i = 0; i < n_ids; i++) {
3758                 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3759         }
3760
3761         return 0;
3762 }
3763
3764 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3765                                      union perf_event *event,
3766                                      struct evlist **pevlist)
3767 {
3768         struct perf_record_event_update *ev = &event->event_update;
3769         struct perf_record_event_update_scale *ev_scale;
3770         struct perf_record_event_update_cpus *ev_cpus;
3771         struct evlist *evlist;
3772         struct evsel *evsel;
3773         struct perf_cpu_map *map;
3774
3775         if (!pevlist || *pevlist == NULL)
3776                 return -EINVAL;
3777
3778         evlist = *pevlist;
3779
3780         evsel = perf_evlist__id2evsel(evlist, ev->id);
3781         if (evsel == NULL)
3782                 return -EINVAL;
3783
3784         switch (ev->type) {
3785         case PERF_EVENT_UPDATE__UNIT:
3786                 evsel->unit = strdup(ev->data);
3787                 break;
3788         case PERF_EVENT_UPDATE__NAME:
3789                 evsel->name = strdup(ev->data);
3790                 break;
3791         case PERF_EVENT_UPDATE__SCALE:
3792                 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3793                 evsel->scale = ev_scale->scale;
3794                 break;
3795         case PERF_EVENT_UPDATE__CPUS:
3796                 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3797
3798                 map = cpu_map__new_data(&ev_cpus->cpus);
3799                 if (map)
3800                         evsel->core.own_cpus = map;
3801                 else
3802                         pr_err("failed to get event_update cpus\n");
3803         default:
3804                 break;
3805         }
3806
3807         return 0;
3808 }
3809
3810 int perf_event__process_tracing_data(struct perf_session *session,
3811                                      union perf_event *event)
3812 {
3813         ssize_t size_read, padding, size = event->tracing_data.size;
3814         int fd = perf_data__fd(session->data);
3815         off_t offset = lseek(fd, 0, SEEK_CUR);
3816         char buf[BUFSIZ];
3817
3818         /* setup for reading amidst mmap */
3819         lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3820               SEEK_SET);
3821
3822         size_read = trace_report(fd, &session->tevent,
3823                                  session->repipe);
3824         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3825
3826         if (readn(fd, buf, padding) < 0) {
3827                 pr_err("%s: reading input file", __func__);
3828                 return -1;
3829         }
3830         if (session->repipe) {
3831                 int retw = write(STDOUT_FILENO, buf, padding);
3832                 if (retw <= 0 || retw != padding) {
3833                         pr_err("%s: repiping tracing data padding", __func__);
3834                         return -1;
3835                 }
3836         }
3837
3838         if (size_read + padding != size) {
3839                 pr_err("%s: tracing data size mismatch", __func__);
3840                 return -1;
3841         }
3842
3843         perf_evlist__prepare_tracepoint_events(session->evlist,
3844                                                session->tevent.pevent);
3845
3846         return size_read + padding;
3847 }
3848
3849 int perf_event__process_build_id(struct perf_session *session,
3850                                  union perf_event *event)
3851 {
3852         __event_process_build_id(&event->build_id,
3853                                  event->build_id.filename,
3854                                  session);
3855         return 0;
3856 }