libceph: rename reset_connection() to ceph_con_reset_session()
[linux-2.6-microblaze.git] / net / ceph / messenger.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef  CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif  /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78
79 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
84
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99                                        * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107         switch (con_flag) {
108         case CON_FLAG_LOSSYTX:
109         case CON_FLAG_KEEPALIVE_PENDING:
110         case CON_FLAG_WRITE_PENDING:
111         case CON_FLAG_SOCK_CLOSED:
112         case CON_FLAG_BACKOFF:
113                 return true;
114         default:
115                 return false;
116         }
117 }
118
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121         BUG_ON(!con_flag_valid(con_flag));
122
123         clear_bit(con_flag, &con->flags);
124 }
125
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128         BUG_ON(!con_flag_valid(con_flag));
129
130         set_bit(con_flag, &con->flags);
131 }
132
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135         BUG_ON(!con_flag_valid(con_flag));
136
137         return test_bit(con_flag, &con->flags);
138 }
139
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141                                         unsigned long con_flag)
142 {
143         BUG_ON(!con_flag_valid(con_flag));
144
145         return test_and_clear_bit(con_flag, &con->flags);
146 }
147
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149                                         unsigned long con_flag)
150 {
151         BUG_ON(!con_flag_valid(con_flag));
152
153         return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache        *ceph_msg_cache;
159
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
165
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169
170 static void queue_con(struct ceph_connection *con);
171 static void cancel_con(struct ceph_connection *con);
172 static void ceph_con_workfn(struct work_struct *);
173 static void con_fault(struct ceph_connection *con);
174
175 /*
176  * Nicely render a sockaddr as a string.  An array of formatted
177  * strings is used, to approximate reentrancy.
178  */
179 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
180 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
181 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
182 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
183
184 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
185 static atomic_t addr_str_seq = ATOMIC_INIT(0);
186
187 static struct page *zero_page;          /* used in certain error cases */
188
189 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
190 {
191         int i;
192         char *s;
193         struct sockaddr_storage ss = addr->in_addr; /* align */
194         struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
195         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
196
197         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
198         s = addr_str[i];
199
200         switch (ss.ss_family) {
201         case AF_INET:
202                 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
203                          le32_to_cpu(addr->type), &in4->sin_addr,
204                          ntohs(in4->sin_port));
205                 break;
206
207         case AF_INET6:
208                 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
209                          le32_to_cpu(addr->type), &in6->sin6_addr,
210                          ntohs(in6->sin6_port));
211                 break;
212
213         default:
214                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
215                          ss.ss_family);
216         }
217
218         return s;
219 }
220 EXPORT_SYMBOL(ceph_pr_addr);
221
222 static void encode_my_addr(struct ceph_messenger *msgr)
223 {
224         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
225         ceph_encode_banner_addr(&msgr->my_enc_addr);
226 }
227
228 /*
229  * work queue for all reading and writing to/from the socket.
230  */
231 static struct workqueue_struct *ceph_msgr_wq;
232
233 static int ceph_msgr_slab_init(void)
234 {
235         BUG_ON(ceph_msg_cache);
236         ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
237         if (!ceph_msg_cache)
238                 return -ENOMEM;
239
240         return 0;
241 }
242
243 static void ceph_msgr_slab_exit(void)
244 {
245         BUG_ON(!ceph_msg_cache);
246         kmem_cache_destroy(ceph_msg_cache);
247         ceph_msg_cache = NULL;
248 }
249
250 static void _ceph_msgr_exit(void)
251 {
252         if (ceph_msgr_wq) {
253                 destroy_workqueue(ceph_msgr_wq);
254                 ceph_msgr_wq = NULL;
255         }
256
257         BUG_ON(zero_page == NULL);
258         put_page(zero_page);
259         zero_page = NULL;
260
261         ceph_msgr_slab_exit();
262 }
263
264 int __init ceph_msgr_init(void)
265 {
266         if (ceph_msgr_slab_init())
267                 return -ENOMEM;
268
269         BUG_ON(zero_page != NULL);
270         zero_page = ZERO_PAGE(0);
271         get_page(zero_page);
272
273         /*
274          * The number of active work items is limited by the number of
275          * connections, so leave @max_active at default.
276          */
277         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
278         if (ceph_msgr_wq)
279                 return 0;
280
281         pr_err("msgr_init failed to create workqueue\n");
282         _ceph_msgr_exit();
283
284         return -ENOMEM;
285 }
286
287 void ceph_msgr_exit(void)
288 {
289         BUG_ON(ceph_msgr_wq == NULL);
290
291         _ceph_msgr_exit();
292 }
293
294 void ceph_msgr_flush(void)
295 {
296         flush_workqueue(ceph_msgr_wq);
297 }
298 EXPORT_SYMBOL(ceph_msgr_flush);
299
300 /* Connection socket state transition functions */
301
302 static void con_sock_state_init(struct ceph_connection *con)
303 {
304         int old_state;
305
306         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
307         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
308                 printk("%s: unexpected old state %d\n", __func__, old_state);
309         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
310              CON_SOCK_STATE_CLOSED);
311 }
312
313 static void con_sock_state_connecting(struct ceph_connection *con)
314 {
315         int old_state;
316
317         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
318         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
319                 printk("%s: unexpected old state %d\n", __func__, old_state);
320         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
321              CON_SOCK_STATE_CONNECTING);
322 }
323
324 static void con_sock_state_connected(struct ceph_connection *con)
325 {
326         int old_state;
327
328         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
329         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
330                 printk("%s: unexpected old state %d\n", __func__, old_state);
331         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332              CON_SOCK_STATE_CONNECTED);
333 }
334
335 static void con_sock_state_closing(struct ceph_connection *con)
336 {
337         int old_state;
338
339         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
340         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
341                         old_state != CON_SOCK_STATE_CONNECTED &&
342                         old_state != CON_SOCK_STATE_CLOSING))
343                 printk("%s: unexpected old state %d\n", __func__, old_state);
344         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345              CON_SOCK_STATE_CLOSING);
346 }
347
348 static void con_sock_state_closed(struct ceph_connection *con)
349 {
350         int old_state;
351
352         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
353         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
354                     old_state != CON_SOCK_STATE_CLOSING &&
355                     old_state != CON_SOCK_STATE_CONNECTING &&
356                     old_state != CON_SOCK_STATE_CLOSED))
357                 printk("%s: unexpected old state %d\n", __func__, old_state);
358         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
359              CON_SOCK_STATE_CLOSED);
360 }
361
362 /*
363  * socket callback functions
364  */
365
366 /* data available on socket, or listen socket received a connect */
367 static void ceph_sock_data_ready(struct sock *sk)
368 {
369         struct ceph_connection *con = sk->sk_user_data;
370         if (atomic_read(&con->msgr->stopping)) {
371                 return;
372         }
373
374         if (sk->sk_state != TCP_CLOSE_WAIT) {
375                 dout("%s on %p state = %lu, queueing work\n", __func__,
376                      con, con->state);
377                 queue_con(con);
378         }
379 }
380
381 /* socket has buffer space for writing */
382 static void ceph_sock_write_space(struct sock *sk)
383 {
384         struct ceph_connection *con = sk->sk_user_data;
385
386         /* only queue to workqueue if there is data we want to write,
387          * and there is sufficient space in the socket buffer to accept
388          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
389          * doesn't get called again until try_write() fills the socket
390          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
391          * and net/core/stream.c:sk_stream_write_space().
392          */
393         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
394                 if (sk_stream_is_writeable(sk)) {
395                         dout("%s %p queueing write work\n", __func__, con);
396                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
397                         queue_con(con);
398                 }
399         } else {
400                 dout("%s %p nothing to write\n", __func__, con);
401         }
402 }
403
404 /* socket's state has changed */
405 static void ceph_sock_state_change(struct sock *sk)
406 {
407         struct ceph_connection *con = sk->sk_user_data;
408
409         dout("%s %p state = %lu sk_state = %u\n", __func__,
410              con, con->state, sk->sk_state);
411
412         switch (sk->sk_state) {
413         case TCP_CLOSE:
414                 dout("%s TCP_CLOSE\n", __func__);
415                 fallthrough;
416         case TCP_CLOSE_WAIT:
417                 dout("%s TCP_CLOSE_WAIT\n", __func__);
418                 con_sock_state_closing(con);
419                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
420                 queue_con(con);
421                 break;
422         case TCP_ESTABLISHED:
423                 dout("%s TCP_ESTABLISHED\n", __func__);
424                 con_sock_state_connected(con);
425                 queue_con(con);
426                 break;
427         default:        /* Everything else is uninteresting */
428                 break;
429         }
430 }
431
432 /*
433  * set up socket callbacks
434  */
435 static void set_sock_callbacks(struct socket *sock,
436                                struct ceph_connection *con)
437 {
438         struct sock *sk = sock->sk;
439         sk->sk_user_data = con;
440         sk->sk_data_ready = ceph_sock_data_ready;
441         sk->sk_write_space = ceph_sock_write_space;
442         sk->sk_state_change = ceph_sock_state_change;
443 }
444
445
446 /*
447  * socket helpers
448  */
449
450 /*
451  * initiate connection to a remote socket.
452  */
453 static int ceph_tcp_connect(struct ceph_connection *con)
454 {
455         struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
456         struct socket *sock;
457         unsigned int noio_flag;
458         int ret;
459
460         BUG_ON(con->sock);
461
462         /* sock_create_kern() allocates with GFP_KERNEL */
463         noio_flag = memalloc_noio_save();
464         ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
465                                SOCK_STREAM, IPPROTO_TCP, &sock);
466         memalloc_noio_restore(noio_flag);
467         if (ret)
468                 return ret;
469         sock->sk->sk_allocation = GFP_NOFS;
470
471 #ifdef CONFIG_LOCKDEP
472         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
473 #endif
474
475         set_sock_callbacks(sock, con);
476
477         dout("connect %s\n", ceph_pr_addr(&con->peer_addr));
478
479         con_sock_state_connecting(con);
480         ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
481                                  O_NONBLOCK);
482         if (ret == -EINPROGRESS) {
483                 dout("connect %s EINPROGRESS sk_state = %u\n",
484                      ceph_pr_addr(&con->peer_addr),
485                      sock->sk->sk_state);
486         } else if (ret < 0) {
487                 pr_err("connect %s error %d\n",
488                        ceph_pr_addr(&con->peer_addr), ret);
489                 sock_release(sock);
490                 return ret;
491         }
492
493         if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
494                 tcp_sock_set_nodelay(sock->sk);
495
496         con->sock = sock;
497         return 0;
498 }
499
500 /*
501  * If @buf is NULL, discard up to @len bytes.
502  */
503 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
504 {
505         struct kvec iov = {buf, len};
506         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
507         int r;
508
509         if (!buf)
510                 msg.msg_flags |= MSG_TRUNC;
511
512         iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len);
513         r = sock_recvmsg(sock, &msg, msg.msg_flags);
514         if (r == -EAGAIN)
515                 r = 0;
516         return r;
517 }
518
519 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
520                      int page_offset, size_t length)
521 {
522         struct bio_vec bvec = {
523                 .bv_page = page,
524                 .bv_offset = page_offset,
525                 .bv_len = length
526         };
527         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
528         int r;
529
530         BUG_ON(page_offset + length > PAGE_SIZE);
531         iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length);
532         r = sock_recvmsg(sock, &msg, msg.msg_flags);
533         if (r == -EAGAIN)
534                 r = 0;
535         return r;
536 }
537
538 /*
539  * write something.  @more is true if caller will be sending more data
540  * shortly.
541  */
542 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
543                             size_t kvlen, size_t len, bool more)
544 {
545         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
546         int r;
547
548         if (more)
549                 msg.msg_flags |= MSG_MORE;
550         else
551                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
552
553         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
554         if (r == -EAGAIN)
555                 r = 0;
556         return r;
557 }
558
559 /*
560  * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST
561  */
562 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
563                              int offset, size_t size, int more)
564 {
565         ssize_t (*sendpage)(struct socket *sock, struct page *page,
566                             int offset, size_t size, int flags);
567         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more;
568         int ret;
569
570         /*
571          * sendpage cannot properly handle pages with page_count == 0,
572          * we need to fall back to sendmsg if that's the case.
573          *
574          * Same goes for slab pages: skb_can_coalesce() allows
575          * coalescing neighboring slab objects into a single frag which
576          * triggers one of hardened usercopy checks.
577          */
578         if (sendpage_ok(page))
579                 sendpage = sock->ops->sendpage;
580         else
581                 sendpage = sock_no_sendpage;
582
583         ret = sendpage(sock, page, offset, size, flags);
584         if (ret == -EAGAIN)
585                 ret = 0;
586
587         return ret;
588 }
589
590 /*
591  * Shutdown/close the socket for the given connection.
592  */
593 static int con_close_socket(struct ceph_connection *con)
594 {
595         int rc = 0;
596
597         dout("con_close_socket on %p sock %p\n", con, con->sock);
598         if (con->sock) {
599                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
600                 sock_release(con->sock);
601                 con->sock = NULL;
602         }
603
604         /*
605          * Forcibly clear the SOCK_CLOSED flag.  It gets set
606          * independent of the connection mutex, and we could have
607          * received a socket close event before we had the chance to
608          * shut the socket down.
609          */
610         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
611
612         con_sock_state_closed(con);
613         return rc;
614 }
615
616 static void ceph_con_reset_protocol(struct ceph_connection *con)
617 {
618         dout("%s con %p\n", __func__, con);
619
620         con_close_socket(con);
621         if (con->in_msg) {
622                 WARN_ON(con->in_msg->con != con);
623                 ceph_msg_put(con->in_msg);
624                 con->in_msg = NULL;
625         }
626         if (con->out_msg) {
627                 WARN_ON(con->out_msg->con != con);
628                 ceph_msg_put(con->out_msg);
629                 con->out_msg = NULL;
630         }
631
632         con->out_skip = 0;
633 }
634
635 /*
636  * Reset a connection.  Discard all incoming and outgoing messages
637  * and clear *_seq state.
638  */
639 static void ceph_msg_remove(struct ceph_msg *msg)
640 {
641         list_del_init(&msg->list_head);
642
643         ceph_msg_put(msg);
644 }
645 static void ceph_msg_remove_list(struct list_head *head)
646 {
647         while (!list_empty(head)) {
648                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
649                                                         list_head);
650                 ceph_msg_remove(msg);
651         }
652 }
653
654 static void ceph_con_reset_session(struct ceph_connection *con)
655 {
656         dout("%s con %p\n", __func__, con);
657
658         WARN_ON(con->in_msg);
659         WARN_ON(con->out_msg);
660         ceph_msg_remove_list(&con->out_queue);
661         ceph_msg_remove_list(&con->out_sent);
662
663         con->connect_seq = 0;
664         con->out_seq = 0;
665         con->in_seq = 0;
666         con->in_seq_acked = 0;
667 }
668
669 /*
670  * mark a peer down.  drop any open connections.
671  */
672 void ceph_con_close(struct ceph_connection *con)
673 {
674         mutex_lock(&con->mutex);
675         dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
676         con->state = CON_STATE_CLOSED;
677
678         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
679         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
680         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
681         con_flag_clear(con, CON_FLAG_BACKOFF);
682
683         ceph_con_reset_protocol(con);
684         ceph_con_reset_session(con);
685         con->peer_global_seq = 0;
686         cancel_con(con);
687         mutex_unlock(&con->mutex);
688 }
689 EXPORT_SYMBOL(ceph_con_close);
690
691 /*
692  * Reopen a closed connection, with a new peer address.
693  */
694 void ceph_con_open(struct ceph_connection *con,
695                    __u8 entity_type, __u64 entity_num,
696                    struct ceph_entity_addr *addr)
697 {
698         mutex_lock(&con->mutex);
699         dout("con_open %p %s\n", con, ceph_pr_addr(addr));
700
701         WARN_ON(con->state != CON_STATE_CLOSED);
702         con->state = CON_STATE_PREOPEN;
703
704         con->peer_name.type = (__u8) entity_type;
705         con->peer_name.num = cpu_to_le64(entity_num);
706
707         memcpy(&con->peer_addr, addr, sizeof(*addr));
708         con->delay = 0;      /* reset backoff memory */
709         mutex_unlock(&con->mutex);
710         queue_con(con);
711 }
712 EXPORT_SYMBOL(ceph_con_open);
713
714 /*
715  * return true if this connection ever successfully opened
716  */
717 bool ceph_con_opened(struct ceph_connection *con)
718 {
719         return con->connect_seq > 0;
720 }
721
722 /*
723  * initialize a new connection.
724  */
725 void ceph_con_init(struct ceph_connection *con, void *private,
726         const struct ceph_connection_operations *ops,
727         struct ceph_messenger *msgr)
728 {
729         dout("con_init %p\n", con);
730         memset(con, 0, sizeof(*con));
731         con->private = private;
732         con->ops = ops;
733         con->msgr = msgr;
734
735         con_sock_state_init(con);
736
737         mutex_init(&con->mutex);
738         INIT_LIST_HEAD(&con->out_queue);
739         INIT_LIST_HEAD(&con->out_sent);
740         INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
741
742         con->state = CON_STATE_CLOSED;
743 }
744 EXPORT_SYMBOL(ceph_con_init);
745
746
747 /*
748  * We maintain a global counter to order connection attempts.  Get
749  * a unique seq greater than @gt.
750  */
751 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
752 {
753         u32 ret;
754
755         spin_lock(&msgr->global_seq_lock);
756         if (msgr->global_seq < gt)
757                 msgr->global_seq = gt;
758         ret = ++msgr->global_seq;
759         spin_unlock(&msgr->global_seq_lock);
760         return ret;
761 }
762
763 static void con_out_kvec_reset(struct ceph_connection *con)
764 {
765         BUG_ON(con->out_skip);
766
767         con->out_kvec_left = 0;
768         con->out_kvec_bytes = 0;
769         con->out_kvec_cur = &con->out_kvec[0];
770 }
771
772 static void con_out_kvec_add(struct ceph_connection *con,
773                                 size_t size, void *data)
774 {
775         int index = con->out_kvec_left;
776
777         BUG_ON(con->out_skip);
778         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
779
780         con->out_kvec[index].iov_len = size;
781         con->out_kvec[index].iov_base = data;
782         con->out_kvec_left++;
783         con->out_kvec_bytes += size;
784 }
785
786 /*
787  * Chop off a kvec from the end.  Return residual number of bytes for
788  * that kvec, i.e. how many bytes would have been written if the kvec
789  * hadn't been nuked.
790  */
791 static int con_out_kvec_skip(struct ceph_connection *con)
792 {
793         int off = con->out_kvec_cur - con->out_kvec;
794         int skip = 0;
795
796         if (con->out_kvec_bytes > 0) {
797                 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
798                 BUG_ON(con->out_kvec_bytes < skip);
799                 BUG_ON(!con->out_kvec_left);
800                 con->out_kvec_bytes -= skip;
801                 con->out_kvec_left--;
802         }
803
804         return skip;
805 }
806
807 #ifdef CONFIG_BLOCK
808
809 /*
810  * For a bio data item, a piece is whatever remains of the next
811  * entry in the current bio iovec, or the first entry in the next
812  * bio in the list.
813  */
814 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
815                                         size_t length)
816 {
817         struct ceph_msg_data *data = cursor->data;
818         struct ceph_bio_iter *it = &cursor->bio_iter;
819
820         cursor->resid = min_t(size_t, length, data->bio_length);
821         *it = data->bio_pos;
822         if (cursor->resid < it->iter.bi_size)
823                 it->iter.bi_size = cursor->resid;
824
825         BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
826         cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
827 }
828
829 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
830                                                 size_t *page_offset,
831                                                 size_t *length)
832 {
833         struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
834                                            cursor->bio_iter.iter);
835
836         *page_offset = bv.bv_offset;
837         *length = bv.bv_len;
838         return bv.bv_page;
839 }
840
841 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
842                                         size_t bytes)
843 {
844         struct ceph_bio_iter *it = &cursor->bio_iter;
845         struct page *page = bio_iter_page(it->bio, it->iter);
846
847         BUG_ON(bytes > cursor->resid);
848         BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
849         cursor->resid -= bytes;
850         bio_advance_iter(it->bio, &it->iter, bytes);
851
852         if (!cursor->resid) {
853                 BUG_ON(!cursor->last_piece);
854                 return false;   /* no more data */
855         }
856
857         if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
858                        page == bio_iter_page(it->bio, it->iter)))
859                 return false;   /* more bytes to process in this segment */
860
861         if (!it->iter.bi_size) {
862                 it->bio = it->bio->bi_next;
863                 it->iter = it->bio->bi_iter;
864                 if (cursor->resid < it->iter.bi_size)
865                         it->iter.bi_size = cursor->resid;
866         }
867
868         BUG_ON(cursor->last_piece);
869         BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
870         cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
871         return true;
872 }
873 #endif /* CONFIG_BLOCK */
874
875 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
876                                         size_t length)
877 {
878         struct ceph_msg_data *data = cursor->data;
879         struct bio_vec *bvecs = data->bvec_pos.bvecs;
880
881         cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
882         cursor->bvec_iter = data->bvec_pos.iter;
883         cursor->bvec_iter.bi_size = cursor->resid;
884
885         BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
886         cursor->last_piece =
887             cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
888 }
889
890 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
891                                                 size_t *page_offset,
892                                                 size_t *length)
893 {
894         struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
895                                            cursor->bvec_iter);
896
897         *page_offset = bv.bv_offset;
898         *length = bv.bv_len;
899         return bv.bv_page;
900 }
901
902 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
903                                         size_t bytes)
904 {
905         struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
906         struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
907
908         BUG_ON(bytes > cursor->resid);
909         BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
910         cursor->resid -= bytes;
911         bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
912
913         if (!cursor->resid) {
914                 BUG_ON(!cursor->last_piece);
915                 return false;   /* no more data */
916         }
917
918         if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
919                        page == bvec_iter_page(bvecs, cursor->bvec_iter)))
920                 return false;   /* more bytes to process in this segment */
921
922         BUG_ON(cursor->last_piece);
923         BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
924         cursor->last_piece =
925             cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
926         return true;
927 }
928
929 /*
930  * For a page array, a piece comes from the first page in the array
931  * that has not already been fully consumed.
932  */
933 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
934                                         size_t length)
935 {
936         struct ceph_msg_data *data = cursor->data;
937         int page_count;
938
939         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
940
941         BUG_ON(!data->pages);
942         BUG_ON(!data->length);
943
944         cursor->resid = min(length, data->length);
945         page_count = calc_pages_for(data->alignment, (u64)data->length);
946         cursor->page_offset = data->alignment & ~PAGE_MASK;
947         cursor->page_index = 0;
948         BUG_ON(page_count > (int)USHRT_MAX);
949         cursor->page_count = (unsigned short)page_count;
950         BUG_ON(length > SIZE_MAX - cursor->page_offset);
951         cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
952 }
953
954 static struct page *
955 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
956                                         size_t *page_offset, size_t *length)
957 {
958         struct ceph_msg_data *data = cursor->data;
959
960         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
961
962         BUG_ON(cursor->page_index >= cursor->page_count);
963         BUG_ON(cursor->page_offset >= PAGE_SIZE);
964
965         *page_offset = cursor->page_offset;
966         if (cursor->last_piece)
967                 *length = cursor->resid;
968         else
969                 *length = PAGE_SIZE - *page_offset;
970
971         return data->pages[cursor->page_index];
972 }
973
974 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
975                                                 size_t bytes)
976 {
977         BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
978
979         BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
980
981         /* Advance the cursor page offset */
982
983         cursor->resid -= bytes;
984         cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
985         if (!bytes || cursor->page_offset)
986                 return false;   /* more bytes to process in the current page */
987
988         if (!cursor->resid)
989                 return false;   /* no more data */
990
991         /* Move on to the next page; offset is already at 0 */
992
993         BUG_ON(cursor->page_index >= cursor->page_count);
994         cursor->page_index++;
995         cursor->last_piece = cursor->resid <= PAGE_SIZE;
996
997         return true;
998 }
999
1000 /*
1001  * For a pagelist, a piece is whatever remains to be consumed in the
1002  * first page in the list, or the front of the next page.
1003  */
1004 static void
1005 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1006                                         size_t length)
1007 {
1008         struct ceph_msg_data *data = cursor->data;
1009         struct ceph_pagelist *pagelist;
1010         struct page *page;
1011
1012         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1013
1014         pagelist = data->pagelist;
1015         BUG_ON(!pagelist);
1016
1017         if (!length)
1018                 return;         /* pagelist can be assigned but empty */
1019
1020         BUG_ON(list_empty(&pagelist->head));
1021         page = list_first_entry(&pagelist->head, struct page, lru);
1022
1023         cursor->resid = min(length, pagelist->length);
1024         cursor->page = page;
1025         cursor->offset = 0;
1026         cursor->last_piece = cursor->resid <= PAGE_SIZE;
1027 }
1028
1029 static struct page *
1030 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1031                                 size_t *page_offset, size_t *length)
1032 {
1033         struct ceph_msg_data *data = cursor->data;
1034         struct ceph_pagelist *pagelist;
1035
1036         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1037
1038         pagelist = data->pagelist;
1039         BUG_ON(!pagelist);
1040
1041         BUG_ON(!cursor->page);
1042         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1043
1044         /* offset of first page in pagelist is always 0 */
1045         *page_offset = cursor->offset & ~PAGE_MASK;
1046         if (cursor->last_piece)
1047                 *length = cursor->resid;
1048         else
1049                 *length = PAGE_SIZE - *page_offset;
1050
1051         return cursor->page;
1052 }
1053
1054 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1055                                                 size_t bytes)
1056 {
1057         struct ceph_msg_data *data = cursor->data;
1058         struct ceph_pagelist *pagelist;
1059
1060         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1061
1062         pagelist = data->pagelist;
1063         BUG_ON(!pagelist);
1064
1065         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1066         BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1067
1068         /* Advance the cursor offset */
1069
1070         cursor->resid -= bytes;
1071         cursor->offset += bytes;
1072         /* offset of first page in pagelist is always 0 */
1073         if (!bytes || cursor->offset & ~PAGE_MASK)
1074                 return false;   /* more bytes to process in the current page */
1075
1076         if (!cursor->resid)
1077                 return false;   /* no more data */
1078
1079         /* Move on to the next page */
1080
1081         BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1082         cursor->page = list_next_entry(cursor->page, lru);
1083         cursor->last_piece = cursor->resid <= PAGE_SIZE;
1084
1085         return true;
1086 }
1087
1088 /*
1089  * Message data is handled (sent or received) in pieces, where each
1090  * piece resides on a single page.  The network layer might not
1091  * consume an entire piece at once.  A data item's cursor keeps
1092  * track of which piece is next to process and how much remains to
1093  * be processed in that piece.  It also tracks whether the current
1094  * piece is the last one in the data item.
1095  */
1096 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1097 {
1098         size_t length = cursor->total_resid;
1099
1100         switch (cursor->data->type) {
1101         case CEPH_MSG_DATA_PAGELIST:
1102                 ceph_msg_data_pagelist_cursor_init(cursor, length);
1103                 break;
1104         case CEPH_MSG_DATA_PAGES:
1105                 ceph_msg_data_pages_cursor_init(cursor, length);
1106                 break;
1107 #ifdef CONFIG_BLOCK
1108         case CEPH_MSG_DATA_BIO:
1109                 ceph_msg_data_bio_cursor_init(cursor, length);
1110                 break;
1111 #endif /* CONFIG_BLOCK */
1112         case CEPH_MSG_DATA_BVECS:
1113                 ceph_msg_data_bvecs_cursor_init(cursor, length);
1114                 break;
1115         case CEPH_MSG_DATA_NONE:
1116         default:
1117                 /* BUG(); */
1118                 break;
1119         }
1120         cursor->need_crc = true;
1121 }
1122
1123 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1124 {
1125         struct ceph_msg_data_cursor *cursor = &msg->cursor;
1126
1127         BUG_ON(!length);
1128         BUG_ON(length > msg->data_length);
1129         BUG_ON(!msg->num_data_items);
1130
1131         cursor->total_resid = length;
1132         cursor->data = msg->data;
1133
1134         __ceph_msg_data_cursor_init(cursor);
1135 }
1136
1137 /*
1138  * Return the page containing the next piece to process for a given
1139  * data item, and supply the page offset and length of that piece.
1140  * Indicate whether this is the last piece in this data item.
1141  */
1142 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1143                                         size_t *page_offset, size_t *length,
1144                                         bool *last_piece)
1145 {
1146         struct page *page;
1147
1148         switch (cursor->data->type) {
1149         case CEPH_MSG_DATA_PAGELIST:
1150                 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1151                 break;
1152         case CEPH_MSG_DATA_PAGES:
1153                 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1154                 break;
1155 #ifdef CONFIG_BLOCK
1156         case CEPH_MSG_DATA_BIO:
1157                 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1158                 break;
1159 #endif /* CONFIG_BLOCK */
1160         case CEPH_MSG_DATA_BVECS:
1161                 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1162                 break;
1163         case CEPH_MSG_DATA_NONE:
1164         default:
1165                 page = NULL;
1166                 break;
1167         }
1168
1169         BUG_ON(!page);
1170         BUG_ON(*page_offset + *length > PAGE_SIZE);
1171         BUG_ON(!*length);
1172         BUG_ON(*length > cursor->resid);
1173         if (last_piece)
1174                 *last_piece = cursor->last_piece;
1175
1176         return page;
1177 }
1178
1179 /*
1180  * Returns true if the result moves the cursor on to the next piece
1181  * of the data item.
1182  */
1183 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1184                                   size_t bytes)
1185 {
1186         bool new_piece;
1187
1188         BUG_ON(bytes > cursor->resid);
1189         switch (cursor->data->type) {
1190         case CEPH_MSG_DATA_PAGELIST:
1191                 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1192                 break;
1193         case CEPH_MSG_DATA_PAGES:
1194                 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1195                 break;
1196 #ifdef CONFIG_BLOCK
1197         case CEPH_MSG_DATA_BIO:
1198                 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1199                 break;
1200 #endif /* CONFIG_BLOCK */
1201         case CEPH_MSG_DATA_BVECS:
1202                 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1203                 break;
1204         case CEPH_MSG_DATA_NONE:
1205         default:
1206                 BUG();
1207                 break;
1208         }
1209         cursor->total_resid -= bytes;
1210
1211         if (!cursor->resid && cursor->total_resid) {
1212                 WARN_ON(!cursor->last_piece);
1213                 cursor->data++;
1214                 __ceph_msg_data_cursor_init(cursor);
1215                 new_piece = true;
1216         }
1217         cursor->need_crc = new_piece;
1218 }
1219
1220 static size_t sizeof_footer(struct ceph_connection *con)
1221 {
1222         return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1223             sizeof(struct ceph_msg_footer) :
1224             sizeof(struct ceph_msg_footer_old);
1225 }
1226
1227 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1228 {
1229         /* Initialize data cursor */
1230
1231         ceph_msg_data_cursor_init(msg, (size_t)data_len);
1232 }
1233
1234 /*
1235  * Prepare footer for currently outgoing message, and finish things
1236  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1237  */
1238 static void prepare_write_message_footer(struct ceph_connection *con)
1239 {
1240         struct ceph_msg *m = con->out_msg;
1241
1242         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1243
1244         dout("prepare_write_message_footer %p\n", con);
1245         con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1246         if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1247                 if (con->ops->sign_message)
1248                         con->ops->sign_message(m);
1249                 else
1250                         m->footer.sig = 0;
1251         } else {
1252                 m->old_footer.flags = m->footer.flags;
1253         }
1254         con->out_more = m->more_to_follow;
1255         con->out_msg_done = true;
1256 }
1257
1258 /*
1259  * Prepare headers for the next outgoing message.
1260  */
1261 static void prepare_write_message(struct ceph_connection *con)
1262 {
1263         struct ceph_msg *m;
1264         u32 crc;
1265
1266         con_out_kvec_reset(con);
1267         con->out_msg_done = false;
1268
1269         /* Sneak an ack in there first?  If we can get it into the same
1270          * TCP packet that's a good thing. */
1271         if (con->in_seq > con->in_seq_acked) {
1272                 con->in_seq_acked = con->in_seq;
1273                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1274                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1275                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1276                         &con->out_temp_ack);
1277         }
1278
1279         BUG_ON(list_empty(&con->out_queue));
1280         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1281         con->out_msg = m;
1282         BUG_ON(m->con != con);
1283
1284         /* put message on sent list */
1285         ceph_msg_get(m);
1286         list_move_tail(&m->list_head, &con->out_sent);
1287
1288         /*
1289          * only assign outgoing seq # if we haven't sent this message
1290          * yet.  if it is requeued, resend with it's original seq.
1291          */
1292         if (m->needs_out_seq) {
1293                 m->hdr.seq = cpu_to_le64(++con->out_seq);
1294                 m->needs_out_seq = false;
1295
1296                 if (con->ops->reencode_message)
1297                         con->ops->reencode_message(m);
1298         }
1299
1300         dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1301              m, con->out_seq, le16_to_cpu(m->hdr.type),
1302              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1303              m->data_length);
1304         WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1305         WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1306
1307         /* tag + hdr + front + middle */
1308         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1309         con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1310         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1311
1312         if (m->middle)
1313                 con_out_kvec_add(con, m->middle->vec.iov_len,
1314                         m->middle->vec.iov_base);
1315
1316         /* fill in hdr crc and finalize hdr */
1317         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1318         con->out_msg->hdr.crc = cpu_to_le32(crc);
1319         memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1320
1321         /* fill in front and middle crc, footer */
1322         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1323         con->out_msg->footer.front_crc = cpu_to_le32(crc);
1324         if (m->middle) {
1325                 crc = crc32c(0, m->middle->vec.iov_base,
1326                                 m->middle->vec.iov_len);
1327                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1328         } else
1329                 con->out_msg->footer.middle_crc = 0;
1330         dout("%s front_crc %u middle_crc %u\n", __func__,
1331              le32_to_cpu(con->out_msg->footer.front_crc),
1332              le32_to_cpu(con->out_msg->footer.middle_crc));
1333         con->out_msg->footer.flags = 0;
1334
1335         /* is there a data payload? */
1336         con->out_msg->footer.data_crc = 0;
1337         if (m->data_length) {
1338                 prepare_message_data(con->out_msg, m->data_length);
1339                 con->out_more = 1;  /* data + footer will follow */
1340         } else {
1341                 /* no, queue up footer too and be done */
1342                 prepare_write_message_footer(con);
1343         }
1344
1345         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1346 }
1347
1348 /*
1349  * Prepare an ack.
1350  */
1351 static void prepare_write_ack(struct ceph_connection *con)
1352 {
1353         dout("prepare_write_ack %p %llu -> %llu\n", con,
1354              con->in_seq_acked, con->in_seq);
1355         con->in_seq_acked = con->in_seq;
1356
1357         con_out_kvec_reset(con);
1358
1359         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1360
1361         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1362         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1363                                 &con->out_temp_ack);
1364
1365         con->out_more = 1;  /* more will follow.. eventually.. */
1366         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1367 }
1368
1369 /*
1370  * Prepare to share the seq during handshake
1371  */
1372 static void prepare_write_seq(struct ceph_connection *con)
1373 {
1374         dout("prepare_write_seq %p %llu -> %llu\n", con,
1375              con->in_seq_acked, con->in_seq);
1376         con->in_seq_acked = con->in_seq;
1377
1378         con_out_kvec_reset(con);
1379
1380         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1381         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1382                          &con->out_temp_ack);
1383
1384         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1385 }
1386
1387 /*
1388  * Prepare to write keepalive byte.
1389  */
1390 static void prepare_write_keepalive(struct ceph_connection *con)
1391 {
1392         dout("prepare_write_keepalive %p\n", con);
1393         con_out_kvec_reset(con);
1394         if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1395                 struct timespec64 now;
1396
1397                 ktime_get_real_ts64(&now);
1398                 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1399                 ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1400                 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1401                                  &con->out_temp_keepalive2);
1402         } else {
1403                 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1404         }
1405         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1406 }
1407
1408 /*
1409  * Connection negotiation.
1410  */
1411
1412 static int get_connect_authorizer(struct ceph_connection *con)
1413 {
1414         struct ceph_auth_handshake *auth;
1415         int auth_proto;
1416
1417         if (!con->ops->get_authorizer) {
1418                 con->auth = NULL;
1419                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1420                 con->out_connect.authorizer_len = 0;
1421                 return 0;
1422         }
1423
1424         auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1425         if (IS_ERR(auth))
1426                 return PTR_ERR(auth);
1427
1428         con->auth = auth;
1429         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1430         con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1431         return 0;
1432 }
1433
1434 /*
1435  * We connected to a peer and are saying hello.
1436  */
1437 static void prepare_write_banner(struct ceph_connection *con)
1438 {
1439         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1440         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1441                                         &con->msgr->my_enc_addr);
1442
1443         con->out_more = 0;
1444         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1445 }
1446
1447 static void __prepare_write_connect(struct ceph_connection *con)
1448 {
1449         con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1450         if (con->auth)
1451                 con_out_kvec_add(con, con->auth->authorizer_buf_len,
1452                                  con->auth->authorizer_buf);
1453
1454         con->out_more = 0;
1455         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1456 }
1457
1458 static int prepare_write_connect(struct ceph_connection *con)
1459 {
1460         unsigned int global_seq = get_global_seq(con->msgr, 0);
1461         int proto;
1462         int ret;
1463
1464         switch (con->peer_name.type) {
1465         case CEPH_ENTITY_TYPE_MON:
1466                 proto = CEPH_MONC_PROTOCOL;
1467                 break;
1468         case CEPH_ENTITY_TYPE_OSD:
1469                 proto = CEPH_OSDC_PROTOCOL;
1470                 break;
1471         case CEPH_ENTITY_TYPE_MDS:
1472                 proto = CEPH_MDSC_PROTOCOL;
1473                 break;
1474         default:
1475                 BUG();
1476         }
1477
1478         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1479              con->connect_seq, global_seq, proto);
1480
1481         con->out_connect.features =
1482             cpu_to_le64(from_msgr(con->msgr)->supported_features);
1483         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1484         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1485         con->out_connect.global_seq = cpu_to_le32(global_seq);
1486         con->out_connect.protocol_version = cpu_to_le32(proto);
1487         con->out_connect.flags = 0;
1488
1489         ret = get_connect_authorizer(con);
1490         if (ret)
1491                 return ret;
1492
1493         __prepare_write_connect(con);
1494         return 0;
1495 }
1496
1497 /*
1498  * write as much of pending kvecs to the socket as we can.
1499  *  1 -> done
1500  *  0 -> socket full, but more to do
1501  * <0 -> error
1502  */
1503 static int write_partial_kvec(struct ceph_connection *con)
1504 {
1505         int ret;
1506
1507         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1508         while (con->out_kvec_bytes > 0) {
1509                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1510                                        con->out_kvec_left, con->out_kvec_bytes,
1511                                        con->out_more);
1512                 if (ret <= 0)
1513                         goto out;
1514                 con->out_kvec_bytes -= ret;
1515                 if (con->out_kvec_bytes == 0)
1516                         break;            /* done */
1517
1518                 /* account for full iov entries consumed */
1519                 while (ret >= con->out_kvec_cur->iov_len) {
1520                         BUG_ON(!con->out_kvec_left);
1521                         ret -= con->out_kvec_cur->iov_len;
1522                         con->out_kvec_cur++;
1523                         con->out_kvec_left--;
1524                 }
1525                 /* and for a partially-consumed entry */
1526                 if (ret) {
1527                         con->out_kvec_cur->iov_len -= ret;
1528                         con->out_kvec_cur->iov_base += ret;
1529                 }
1530         }
1531         con->out_kvec_left = 0;
1532         ret = 1;
1533 out:
1534         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1535              con->out_kvec_bytes, con->out_kvec_left, ret);
1536         return ret;  /* done! */
1537 }
1538
1539 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1540                                 unsigned int page_offset,
1541                                 unsigned int length)
1542 {
1543         char *kaddr;
1544
1545         kaddr = kmap(page);
1546         BUG_ON(kaddr == NULL);
1547         crc = crc32c(crc, kaddr + page_offset, length);
1548         kunmap(page);
1549
1550         return crc;
1551 }
1552 /*
1553  * Write as much message data payload as we can.  If we finish, queue
1554  * up the footer.
1555  *  1 -> done, footer is now queued in out_kvec[].
1556  *  0 -> socket full, but more to do
1557  * <0 -> error
1558  */
1559 static int write_partial_message_data(struct ceph_connection *con)
1560 {
1561         struct ceph_msg *msg = con->out_msg;
1562         struct ceph_msg_data_cursor *cursor = &msg->cursor;
1563         bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1564         int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1565         u32 crc;
1566
1567         dout("%s %p msg %p\n", __func__, con, msg);
1568
1569         if (!msg->num_data_items)
1570                 return -EINVAL;
1571
1572         /*
1573          * Iterate through each page that contains data to be
1574          * written, and send as much as possible for each.
1575          *
1576          * If we are calculating the data crc (the default), we will
1577          * need to map the page.  If we have no pages, they have
1578          * been revoked, so use the zero page.
1579          */
1580         crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1581         while (cursor->total_resid) {
1582                 struct page *page;
1583                 size_t page_offset;
1584                 size_t length;
1585                 int ret;
1586
1587                 if (!cursor->resid) {
1588                         ceph_msg_data_advance(cursor, 0);
1589                         continue;
1590                 }
1591
1592                 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
1593                 if (length == cursor->total_resid)
1594                         more = MSG_MORE;
1595                 ret = ceph_tcp_sendpage(con->sock, page, page_offset, length,
1596                                         more);
1597                 if (ret <= 0) {
1598                         if (do_datacrc)
1599                                 msg->footer.data_crc = cpu_to_le32(crc);
1600
1601                         return ret;
1602                 }
1603                 if (do_datacrc && cursor->need_crc)
1604                         crc = ceph_crc32c_page(crc, page, page_offset, length);
1605                 ceph_msg_data_advance(cursor, (size_t)ret);
1606         }
1607
1608         dout("%s %p msg %p done\n", __func__, con, msg);
1609
1610         /* prepare and queue up footer, too */
1611         if (do_datacrc)
1612                 msg->footer.data_crc = cpu_to_le32(crc);
1613         else
1614                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1615         con_out_kvec_reset(con);
1616         prepare_write_message_footer(con);
1617
1618         return 1;       /* must return > 0 to indicate success */
1619 }
1620
1621 /*
1622  * write some zeros
1623  */
1624 static int write_partial_skip(struct ceph_connection *con)
1625 {
1626         int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1627         int ret;
1628
1629         dout("%s %p %d left\n", __func__, con, con->out_skip);
1630         while (con->out_skip > 0) {
1631                 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1632
1633                 if (size == con->out_skip)
1634                         more = MSG_MORE;
1635                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more);
1636                 if (ret <= 0)
1637                         goto out;
1638                 con->out_skip -= ret;
1639         }
1640         ret = 1;
1641 out:
1642         return ret;
1643 }
1644
1645 /*
1646  * Prepare to read connection handshake, or an ack.
1647  */
1648 static void prepare_read_banner(struct ceph_connection *con)
1649 {
1650         dout("prepare_read_banner %p\n", con);
1651         con->in_base_pos = 0;
1652 }
1653
1654 static void prepare_read_connect(struct ceph_connection *con)
1655 {
1656         dout("prepare_read_connect %p\n", con);
1657         con->in_base_pos = 0;
1658 }
1659
1660 static void prepare_read_ack(struct ceph_connection *con)
1661 {
1662         dout("prepare_read_ack %p\n", con);
1663         con->in_base_pos = 0;
1664 }
1665
1666 static void prepare_read_seq(struct ceph_connection *con)
1667 {
1668         dout("prepare_read_seq %p\n", con);
1669         con->in_base_pos = 0;
1670         con->in_tag = CEPH_MSGR_TAG_SEQ;
1671 }
1672
1673 static void prepare_read_tag(struct ceph_connection *con)
1674 {
1675         dout("prepare_read_tag %p\n", con);
1676         con->in_base_pos = 0;
1677         con->in_tag = CEPH_MSGR_TAG_READY;
1678 }
1679
1680 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1681 {
1682         dout("prepare_read_keepalive_ack %p\n", con);
1683         con->in_base_pos = 0;
1684 }
1685
1686 /*
1687  * Prepare to read a message.
1688  */
1689 static int prepare_read_message(struct ceph_connection *con)
1690 {
1691         dout("prepare_read_message %p\n", con);
1692         BUG_ON(con->in_msg != NULL);
1693         con->in_base_pos = 0;
1694         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1695         return 0;
1696 }
1697
1698
1699 static int read_partial(struct ceph_connection *con,
1700                         int end, int size, void *object)
1701 {
1702         while (con->in_base_pos < end) {
1703                 int left = end - con->in_base_pos;
1704                 int have = size - left;
1705                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1706                 if (ret <= 0)
1707                         return ret;
1708                 con->in_base_pos += ret;
1709         }
1710         return 1;
1711 }
1712
1713
1714 /*
1715  * Read all or part of the connect-side handshake on a new connection
1716  */
1717 static int read_partial_banner(struct ceph_connection *con)
1718 {
1719         int size;
1720         int end;
1721         int ret;
1722
1723         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1724
1725         /* peer's banner */
1726         size = strlen(CEPH_BANNER);
1727         end = size;
1728         ret = read_partial(con, end, size, con->in_banner);
1729         if (ret <= 0)
1730                 goto out;
1731
1732         size = sizeof (con->actual_peer_addr);
1733         end += size;
1734         ret = read_partial(con, end, size, &con->actual_peer_addr);
1735         if (ret <= 0)
1736                 goto out;
1737         ceph_decode_banner_addr(&con->actual_peer_addr);
1738
1739         size = sizeof (con->peer_addr_for_me);
1740         end += size;
1741         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1742         if (ret <= 0)
1743                 goto out;
1744         ceph_decode_banner_addr(&con->peer_addr_for_me);
1745
1746 out:
1747         return ret;
1748 }
1749
1750 static int read_partial_connect(struct ceph_connection *con)
1751 {
1752         int size;
1753         int end;
1754         int ret;
1755
1756         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1757
1758         size = sizeof (con->in_reply);
1759         end = size;
1760         ret = read_partial(con, end, size, &con->in_reply);
1761         if (ret <= 0)
1762                 goto out;
1763
1764         if (con->auth) {
1765                 size = le32_to_cpu(con->in_reply.authorizer_len);
1766                 if (size > con->auth->authorizer_reply_buf_len) {
1767                         pr_err("authorizer reply too big: %d > %zu\n", size,
1768                                con->auth->authorizer_reply_buf_len);
1769                         ret = -EINVAL;
1770                         goto out;
1771                 }
1772
1773                 end += size;
1774                 ret = read_partial(con, end, size,
1775                                    con->auth->authorizer_reply_buf);
1776                 if (ret <= 0)
1777                         goto out;
1778         }
1779
1780         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1781              con, (int)con->in_reply.tag,
1782              le32_to_cpu(con->in_reply.connect_seq),
1783              le32_to_cpu(con->in_reply.global_seq));
1784 out:
1785         return ret;
1786 }
1787
1788 /*
1789  * Verify the hello banner looks okay.
1790  */
1791 static int verify_hello(struct ceph_connection *con)
1792 {
1793         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1794                 pr_err("connect to %s got bad banner\n",
1795                        ceph_pr_addr(&con->peer_addr));
1796                 con->error_msg = "protocol error, bad banner";
1797                 return -1;
1798         }
1799         return 0;
1800 }
1801
1802 static bool addr_is_blank(struct ceph_entity_addr *addr)
1803 {
1804         struct sockaddr_storage ss = addr->in_addr; /* align */
1805         struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1806         struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1807
1808         switch (ss.ss_family) {
1809         case AF_INET:
1810                 return addr4->s_addr == htonl(INADDR_ANY);
1811         case AF_INET6:
1812                 return ipv6_addr_any(addr6);
1813         default:
1814                 return true;
1815         }
1816 }
1817
1818 static int addr_port(struct ceph_entity_addr *addr)
1819 {
1820         switch (get_unaligned(&addr->in_addr.ss_family)) {
1821         case AF_INET:
1822                 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1823         case AF_INET6:
1824                 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1825         }
1826         return 0;
1827 }
1828
1829 static void addr_set_port(struct ceph_entity_addr *addr, int p)
1830 {
1831         switch (get_unaligned(&addr->in_addr.ss_family)) {
1832         case AF_INET:
1833                 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1834                 break;
1835         case AF_INET6:
1836                 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1837                 break;
1838         }
1839 }
1840
1841 /*
1842  * Unlike other *_pton function semantics, zero indicates success.
1843  */
1844 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1845                 char delim, const char **ipend)
1846 {
1847         memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1848
1849         if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1850                 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1851                 return 0;
1852         }
1853
1854         if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1855                 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1856                 return 0;
1857         }
1858
1859         return -EINVAL;
1860 }
1861
1862 /*
1863  * Extract hostname string and resolve using kernel DNS facility.
1864  */
1865 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1866 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1867                 struct ceph_entity_addr *addr, char delim, const char **ipend)
1868 {
1869         const char *end, *delim_p;
1870         char *colon_p, *ip_addr = NULL;
1871         int ip_len, ret;
1872
1873         /*
1874          * The end of the hostname occurs immediately preceding the delimiter or
1875          * the port marker (':') where the delimiter takes precedence.
1876          */
1877         delim_p = memchr(name, delim, namelen);
1878         colon_p = memchr(name, ':', namelen);
1879
1880         if (delim_p && colon_p)
1881                 end = delim_p < colon_p ? delim_p : colon_p;
1882         else if (!delim_p && colon_p)
1883                 end = colon_p;
1884         else {
1885                 end = delim_p;
1886                 if (!end) /* case: hostname:/ */
1887                         end = name + namelen;
1888         }
1889
1890         if (end <= name)
1891                 return -EINVAL;
1892
1893         /* do dns_resolve upcall */
1894         ip_len = dns_query(current->nsproxy->net_ns,
1895                            NULL, name, end - name, NULL, &ip_addr, NULL, false);
1896         if (ip_len > 0)
1897                 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1898         else
1899                 ret = -ESRCH;
1900
1901         kfree(ip_addr);
1902
1903         *ipend = end;
1904
1905         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1906                         ret, ret ? "failed" : ceph_pr_addr(addr));
1907
1908         return ret;
1909 }
1910 #else
1911 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1912                 struct ceph_entity_addr *addr, char delim, const char **ipend)
1913 {
1914         return -EINVAL;
1915 }
1916 #endif
1917
1918 /*
1919  * Parse a server name (IP or hostname). If a valid IP address is not found
1920  * then try to extract a hostname to resolve using userspace DNS upcall.
1921  */
1922 static int ceph_parse_server_name(const char *name, size_t namelen,
1923                 struct ceph_entity_addr *addr, char delim, const char **ipend)
1924 {
1925         int ret;
1926
1927         ret = ceph_pton(name, namelen, addr, delim, ipend);
1928         if (ret)
1929                 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1930
1931         return ret;
1932 }
1933
1934 /*
1935  * Parse an ip[:port] list into an addr array.  Use the default
1936  * monitor port if a port isn't specified.
1937  */
1938 int ceph_parse_ips(const char *c, const char *end,
1939                    struct ceph_entity_addr *addr,
1940                    int max_count, int *count)
1941 {
1942         int i, ret = -EINVAL;
1943         const char *p = c;
1944
1945         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1946         for (i = 0; i < max_count; i++) {
1947                 const char *ipend;
1948                 int port;
1949                 char delim = ',';
1950
1951                 if (*p == '[') {
1952                         delim = ']';
1953                         p++;
1954                 }
1955
1956                 ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend);
1957                 if (ret)
1958                         goto bad;
1959                 ret = -EINVAL;
1960
1961                 p = ipend;
1962
1963                 if (delim == ']') {
1964                         if (*p != ']') {
1965                                 dout("missing matching ']'\n");
1966                                 goto bad;
1967                         }
1968                         p++;
1969                 }
1970
1971                 /* port? */
1972                 if (p < end && *p == ':') {
1973                         port = 0;
1974                         p++;
1975                         while (p < end && *p >= '0' && *p <= '9') {
1976                                 port = (port * 10) + (*p - '0');
1977                                 p++;
1978                         }
1979                         if (port == 0)
1980                                 port = CEPH_MON_PORT;
1981                         else if (port > 65535)
1982                                 goto bad;
1983                 } else {
1984                         port = CEPH_MON_PORT;
1985                 }
1986
1987                 addr_set_port(&addr[i], port);
1988                 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1989
1990                 dout("parse_ips got %s\n", ceph_pr_addr(&addr[i]));
1991
1992                 if (p == end)
1993                         break;
1994                 if (*p != ',')
1995                         goto bad;
1996                 p++;
1997         }
1998
1999         if (p != end)
2000                 goto bad;
2001
2002         if (count)
2003                 *count = i + 1;
2004         return 0;
2005
2006 bad:
2007         return ret;
2008 }
2009
2010 static int process_banner(struct ceph_connection *con)
2011 {
2012         dout("process_banner on %p\n", con);
2013
2014         if (verify_hello(con) < 0)
2015                 return -1;
2016
2017         /*
2018          * Make sure the other end is who we wanted.  note that the other
2019          * end may not yet know their ip address, so if it's 0.0.0.0, give
2020          * them the benefit of the doubt.
2021          */
2022         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2023                    sizeof(con->peer_addr)) != 0 &&
2024             !(addr_is_blank(&con->actual_peer_addr) &&
2025               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2026                 pr_warn("wrong peer, want %s/%u, got %s/%u\n",
2027                         ceph_pr_addr(&con->peer_addr),
2028                         le32_to_cpu(con->peer_addr.nonce),
2029                         ceph_pr_addr(&con->actual_peer_addr),
2030                         le32_to_cpu(con->actual_peer_addr.nonce));
2031                 con->error_msg = "wrong peer at address";
2032                 return -1;
2033         }
2034
2035         /*
2036          * did we learn our address?
2037          */
2038         if (addr_is_blank(&con->msgr->inst.addr)) {
2039                 int port = addr_port(&con->msgr->inst.addr);
2040
2041                 memcpy(&con->msgr->inst.addr.in_addr,
2042                        &con->peer_addr_for_me.in_addr,
2043                        sizeof(con->peer_addr_for_me.in_addr));
2044                 addr_set_port(&con->msgr->inst.addr, port);
2045                 encode_my_addr(con->msgr);
2046                 dout("process_banner learned my addr is %s\n",
2047                      ceph_pr_addr(&con->msgr->inst.addr));
2048         }
2049
2050         return 0;
2051 }
2052
2053 static int process_connect(struct ceph_connection *con)
2054 {
2055         u64 sup_feat = from_msgr(con->msgr)->supported_features;
2056         u64 req_feat = from_msgr(con->msgr)->required_features;
2057         u64 server_feat = le64_to_cpu(con->in_reply.features);
2058         int ret;
2059
2060         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2061
2062         if (con->auth) {
2063                 int len = le32_to_cpu(con->in_reply.authorizer_len);
2064
2065                 /*
2066                  * Any connection that defines ->get_authorizer()
2067                  * should also define ->add_authorizer_challenge() and
2068                  * ->verify_authorizer_reply().
2069                  *
2070                  * See get_connect_authorizer().
2071                  */
2072                 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2073                         ret = con->ops->add_authorizer_challenge(
2074                                     con, con->auth->authorizer_reply_buf, len);
2075                         if (ret < 0)
2076                                 return ret;
2077
2078                         con_out_kvec_reset(con);
2079                         __prepare_write_connect(con);
2080                         prepare_read_connect(con);
2081                         return 0;
2082                 }
2083
2084                 if (len) {
2085                         ret = con->ops->verify_authorizer_reply(con);
2086                         if (ret < 0) {
2087                                 con->error_msg = "bad authorize reply";
2088                                 return ret;
2089                         }
2090                 }
2091         }
2092
2093         switch (con->in_reply.tag) {
2094         case CEPH_MSGR_TAG_FEATURES:
2095                 pr_err("%s%lld %s feature set mismatch,"
2096                        " my %llx < server's %llx, missing %llx\n",
2097                        ENTITY_NAME(con->peer_name),
2098                        ceph_pr_addr(&con->peer_addr),
2099                        sup_feat, server_feat, server_feat & ~sup_feat);
2100                 con->error_msg = "missing required protocol features";
2101                 return -1;
2102
2103         case CEPH_MSGR_TAG_BADPROTOVER:
2104                 pr_err("%s%lld %s protocol version mismatch,"
2105                        " my %d != server's %d\n",
2106                        ENTITY_NAME(con->peer_name),
2107                        ceph_pr_addr(&con->peer_addr),
2108                        le32_to_cpu(con->out_connect.protocol_version),
2109                        le32_to_cpu(con->in_reply.protocol_version));
2110                 con->error_msg = "protocol version mismatch";
2111                 return -1;
2112
2113         case CEPH_MSGR_TAG_BADAUTHORIZER:
2114                 con->auth_retry++;
2115                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2116                      con->auth_retry);
2117                 if (con->auth_retry == 2) {
2118                         con->error_msg = "connect authorization failure";
2119                         return -1;
2120                 }
2121                 con_out_kvec_reset(con);
2122                 ret = prepare_write_connect(con);
2123                 if (ret < 0)
2124                         return ret;
2125                 prepare_read_connect(con);
2126                 break;
2127
2128         case CEPH_MSGR_TAG_RESETSESSION:
2129                 /*
2130                  * If we connected with a large connect_seq but the peer
2131                  * has no record of a session with us (no connection, or
2132                  * connect_seq == 0), they will send RESETSESION to indicate
2133                  * that they must have reset their session, and may have
2134                  * dropped messages.
2135                  */
2136                 dout("process_connect got RESET peer seq %u\n",
2137                      le32_to_cpu(con->in_reply.connect_seq));
2138                 pr_err("%s%lld %s connection reset\n",
2139                        ENTITY_NAME(con->peer_name),
2140                        ceph_pr_addr(&con->peer_addr));
2141                 ceph_con_reset_session(con);
2142                 con_out_kvec_reset(con);
2143                 ret = prepare_write_connect(con);
2144                 if (ret < 0)
2145                         return ret;
2146                 prepare_read_connect(con);
2147
2148                 /* Tell ceph about it. */
2149                 mutex_unlock(&con->mutex);
2150                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2151                 if (con->ops->peer_reset)
2152                         con->ops->peer_reset(con);
2153                 mutex_lock(&con->mutex);
2154                 if (con->state != CON_STATE_NEGOTIATING)
2155                         return -EAGAIN;
2156                 break;
2157
2158         case CEPH_MSGR_TAG_RETRY_SESSION:
2159                 /*
2160                  * If we sent a smaller connect_seq than the peer has, try
2161                  * again with a larger value.
2162                  */
2163                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2164                      le32_to_cpu(con->out_connect.connect_seq),
2165                      le32_to_cpu(con->in_reply.connect_seq));
2166                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2167                 con_out_kvec_reset(con);
2168                 ret = prepare_write_connect(con);
2169                 if (ret < 0)
2170                         return ret;
2171                 prepare_read_connect(con);
2172                 break;
2173
2174         case CEPH_MSGR_TAG_RETRY_GLOBAL:
2175                 /*
2176                  * If we sent a smaller global_seq than the peer has, try
2177                  * again with a larger value.
2178                  */
2179                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2180                      con->peer_global_seq,
2181                      le32_to_cpu(con->in_reply.global_seq));
2182                 get_global_seq(con->msgr,
2183                                le32_to_cpu(con->in_reply.global_seq));
2184                 con_out_kvec_reset(con);
2185                 ret = prepare_write_connect(con);
2186                 if (ret < 0)
2187                         return ret;
2188                 prepare_read_connect(con);
2189                 break;
2190
2191         case CEPH_MSGR_TAG_SEQ:
2192         case CEPH_MSGR_TAG_READY:
2193                 if (req_feat & ~server_feat) {
2194                         pr_err("%s%lld %s protocol feature mismatch,"
2195                                " my required %llx > server's %llx, need %llx\n",
2196                                ENTITY_NAME(con->peer_name),
2197                                ceph_pr_addr(&con->peer_addr),
2198                                req_feat, server_feat, req_feat & ~server_feat);
2199                         con->error_msg = "missing required protocol features";
2200                         return -1;
2201                 }
2202
2203                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2204                 con->state = CON_STATE_OPEN;
2205                 con->auth_retry = 0;    /* we authenticated; clear flag */
2206                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2207                 con->connect_seq++;
2208                 con->peer_features = server_feat;
2209                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2210                      con->peer_global_seq,
2211                      le32_to_cpu(con->in_reply.connect_seq),
2212                      con->connect_seq);
2213                 WARN_ON(con->connect_seq !=
2214                         le32_to_cpu(con->in_reply.connect_seq));
2215
2216                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2217                         con_flag_set(con, CON_FLAG_LOSSYTX);
2218
2219                 con->delay = 0;      /* reset backoff memory */
2220
2221                 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2222                         prepare_write_seq(con);
2223                         prepare_read_seq(con);
2224                 } else {
2225                         prepare_read_tag(con);
2226                 }
2227                 break;
2228
2229         case CEPH_MSGR_TAG_WAIT:
2230                 /*
2231                  * If there is a connection race (we are opening
2232                  * connections to each other), one of us may just have
2233                  * to WAIT.  This shouldn't happen if we are the
2234                  * client.
2235                  */
2236                 con->error_msg = "protocol error, got WAIT as client";
2237                 return -1;
2238
2239         default:
2240                 con->error_msg = "protocol error, garbage tag during connect";
2241                 return -1;
2242         }
2243         return 0;
2244 }
2245
2246
2247 /*
2248  * read (part of) an ack
2249  */
2250 static int read_partial_ack(struct ceph_connection *con)
2251 {
2252         int size = sizeof (con->in_temp_ack);
2253         int end = size;
2254
2255         return read_partial(con, end, size, &con->in_temp_ack);
2256 }
2257
2258 /*
2259  * We can finally discard anything that's been acked.
2260  */
2261 static void process_ack(struct ceph_connection *con)
2262 {
2263         struct ceph_msg *m;
2264         u64 ack = le64_to_cpu(con->in_temp_ack);
2265         u64 seq;
2266         bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2267         struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2268
2269         /*
2270          * In the reconnect case, con_fault() has requeued messages
2271          * in out_sent. We should cleanup old messages according to
2272          * the reconnect seq.
2273          */
2274         while (!list_empty(list)) {
2275                 m = list_first_entry(list, struct ceph_msg, list_head);
2276                 if (reconnect && m->needs_out_seq)
2277                         break;
2278                 seq = le64_to_cpu(m->hdr.seq);
2279                 if (seq > ack)
2280                         break;
2281                 dout("got ack for seq %llu type %d at %p\n", seq,
2282                      le16_to_cpu(m->hdr.type), m);
2283                 m->ack_stamp = jiffies;
2284                 ceph_msg_remove(m);
2285         }
2286
2287         prepare_read_tag(con);
2288 }
2289
2290
2291 static int read_partial_message_section(struct ceph_connection *con,
2292                                         struct kvec *section,
2293                                         unsigned int sec_len, u32 *crc)
2294 {
2295         int ret, left;
2296
2297         BUG_ON(!section);
2298
2299         while (section->iov_len < sec_len) {
2300                 BUG_ON(section->iov_base == NULL);
2301                 left = sec_len - section->iov_len;
2302                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2303                                        section->iov_len, left);
2304                 if (ret <= 0)
2305                         return ret;
2306                 section->iov_len += ret;
2307         }
2308         if (section->iov_len == sec_len)
2309                 *crc = crc32c(0, section->iov_base, section->iov_len);
2310
2311         return 1;
2312 }
2313
2314 static int read_partial_msg_data(struct ceph_connection *con)
2315 {
2316         struct ceph_msg *msg = con->in_msg;
2317         struct ceph_msg_data_cursor *cursor = &msg->cursor;
2318         bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2319         struct page *page;
2320         size_t page_offset;
2321         size_t length;
2322         u32 crc = 0;
2323         int ret;
2324
2325         if (!msg->num_data_items)
2326                 return -EIO;
2327
2328         if (do_datacrc)
2329                 crc = con->in_data_crc;
2330         while (cursor->total_resid) {
2331                 if (!cursor->resid) {
2332                         ceph_msg_data_advance(cursor, 0);
2333                         continue;
2334                 }
2335
2336                 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2337                 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2338                 if (ret <= 0) {
2339                         if (do_datacrc)
2340                                 con->in_data_crc = crc;
2341
2342                         return ret;
2343                 }
2344
2345                 if (do_datacrc)
2346                         crc = ceph_crc32c_page(crc, page, page_offset, ret);
2347                 ceph_msg_data_advance(cursor, (size_t)ret);
2348         }
2349         if (do_datacrc)
2350                 con->in_data_crc = crc;
2351
2352         return 1;       /* must return > 0 to indicate success */
2353 }
2354
2355 /*
2356  * read (part of) a message.
2357  */
2358 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2359
2360 static int read_partial_message(struct ceph_connection *con)
2361 {
2362         struct ceph_msg *m = con->in_msg;
2363         int size;
2364         int end;
2365         int ret;
2366         unsigned int front_len, middle_len, data_len;
2367         bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2368         bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2369         u64 seq;
2370         u32 crc;
2371
2372         dout("read_partial_message con %p msg %p\n", con, m);
2373
2374         /* header */
2375         size = sizeof (con->in_hdr);
2376         end = size;
2377         ret = read_partial(con, end, size, &con->in_hdr);
2378         if (ret <= 0)
2379                 return ret;
2380
2381         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2382         if (cpu_to_le32(crc) != con->in_hdr.crc) {
2383                 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2384                        crc, con->in_hdr.crc);
2385                 return -EBADMSG;
2386         }
2387
2388         front_len = le32_to_cpu(con->in_hdr.front_len);
2389         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2390                 return -EIO;
2391         middle_len = le32_to_cpu(con->in_hdr.middle_len);
2392         if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2393                 return -EIO;
2394         data_len = le32_to_cpu(con->in_hdr.data_len);
2395         if (data_len > CEPH_MSG_MAX_DATA_LEN)
2396                 return -EIO;
2397
2398         /* verify seq# */
2399         seq = le64_to_cpu(con->in_hdr.seq);
2400         if ((s64)seq - (s64)con->in_seq < 1) {
2401                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2402                         ENTITY_NAME(con->peer_name),
2403                         ceph_pr_addr(&con->peer_addr),
2404                         seq, con->in_seq + 1);
2405                 con->in_base_pos = -front_len - middle_len - data_len -
2406                         sizeof_footer(con);
2407                 con->in_tag = CEPH_MSGR_TAG_READY;
2408                 return 1;
2409         } else if ((s64)seq - (s64)con->in_seq > 1) {
2410                 pr_err("read_partial_message bad seq %lld expected %lld\n",
2411                        seq, con->in_seq + 1);
2412                 con->error_msg = "bad message sequence # for incoming message";
2413                 return -EBADE;
2414         }
2415
2416         /* allocate message? */
2417         if (!con->in_msg) {
2418                 int skip = 0;
2419
2420                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2421                      front_len, data_len);
2422                 ret = ceph_con_in_msg_alloc(con, &skip);
2423                 if (ret < 0)
2424                         return ret;
2425
2426                 BUG_ON(!con->in_msg ^ skip);
2427                 if (skip) {
2428                         /* skip this message */
2429                         dout("alloc_msg said skip message\n");
2430                         con->in_base_pos = -front_len - middle_len - data_len -
2431                                 sizeof_footer(con);
2432                         con->in_tag = CEPH_MSGR_TAG_READY;
2433                         con->in_seq++;
2434                         return 1;
2435                 }
2436
2437                 BUG_ON(!con->in_msg);
2438                 BUG_ON(con->in_msg->con != con);
2439                 m = con->in_msg;
2440                 m->front.iov_len = 0;    /* haven't read it yet */
2441                 if (m->middle)
2442                         m->middle->vec.iov_len = 0;
2443
2444                 /* prepare for data payload, if any */
2445
2446                 if (data_len)
2447                         prepare_message_data(con->in_msg, data_len);
2448         }
2449
2450         /* front */
2451         ret = read_partial_message_section(con, &m->front, front_len,
2452                                            &con->in_front_crc);
2453         if (ret <= 0)
2454                 return ret;
2455
2456         /* middle */
2457         if (m->middle) {
2458                 ret = read_partial_message_section(con, &m->middle->vec,
2459                                                    middle_len,
2460                                                    &con->in_middle_crc);
2461                 if (ret <= 0)
2462                         return ret;
2463         }
2464
2465         /* (page) data */
2466         if (data_len) {
2467                 ret = read_partial_msg_data(con);
2468                 if (ret <= 0)
2469                         return ret;
2470         }
2471
2472         /* footer */
2473         size = sizeof_footer(con);
2474         end += size;
2475         ret = read_partial(con, end, size, &m->footer);
2476         if (ret <= 0)
2477                 return ret;
2478
2479         if (!need_sign) {
2480                 m->footer.flags = m->old_footer.flags;
2481                 m->footer.sig = 0;
2482         }
2483
2484         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2485              m, front_len, m->footer.front_crc, middle_len,
2486              m->footer.middle_crc, data_len, m->footer.data_crc);
2487
2488         /* crc ok? */
2489         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2490                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2491                        m, con->in_front_crc, m->footer.front_crc);
2492                 return -EBADMSG;
2493         }
2494         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2495                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2496                        m, con->in_middle_crc, m->footer.middle_crc);
2497                 return -EBADMSG;
2498         }
2499         if (do_datacrc &&
2500             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2501             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2502                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2503                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2504                 return -EBADMSG;
2505         }
2506
2507         if (need_sign && con->ops->check_message_signature &&
2508             con->ops->check_message_signature(m)) {
2509                 pr_err("read_partial_message %p signature check failed\n", m);
2510                 return -EBADMSG;
2511         }
2512
2513         return 1; /* done! */
2514 }
2515
2516 /*
2517  * Process message.  This happens in the worker thread.  The callback should
2518  * be careful not to do anything that waits on other incoming messages or it
2519  * may deadlock.
2520  */
2521 static void process_message(struct ceph_connection *con)
2522 {
2523         struct ceph_msg *msg = con->in_msg;
2524
2525         BUG_ON(con->in_msg->con != con);
2526         con->in_msg = NULL;
2527
2528         /* if first message, set peer_name */
2529         if (con->peer_name.type == 0)
2530                 con->peer_name = msg->hdr.src;
2531
2532         con->in_seq++;
2533         mutex_unlock(&con->mutex);
2534
2535         dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
2536              msg, le64_to_cpu(msg->hdr.seq),
2537              ENTITY_NAME(msg->hdr.src),
2538              le16_to_cpu(msg->hdr.type),
2539              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2540              le32_to_cpu(msg->hdr.front_len),
2541              le32_to_cpu(msg->hdr.middle_len),
2542              le32_to_cpu(msg->hdr.data_len),
2543              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2544         con->ops->dispatch(con, msg);
2545
2546         mutex_lock(&con->mutex);
2547 }
2548
2549 static int read_keepalive_ack(struct ceph_connection *con)
2550 {
2551         struct ceph_timespec ceph_ts;
2552         size_t size = sizeof(ceph_ts);
2553         int ret = read_partial(con, size, size, &ceph_ts);
2554         if (ret <= 0)
2555                 return ret;
2556         ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2557         prepare_read_tag(con);
2558         return 1;
2559 }
2560
2561 /*
2562  * Write something to the socket.  Called in a worker thread when the
2563  * socket appears to be writeable and we have something ready to send.
2564  */
2565 static int try_write(struct ceph_connection *con)
2566 {
2567         int ret = 1;
2568
2569         dout("try_write start %p state %lu\n", con, con->state);
2570         if (con->state != CON_STATE_PREOPEN &&
2571             con->state != CON_STATE_CONNECTING &&
2572             con->state != CON_STATE_NEGOTIATING &&
2573             con->state != CON_STATE_OPEN)
2574                 return 0;
2575
2576         /* open the socket first? */
2577         if (con->state == CON_STATE_PREOPEN) {
2578                 BUG_ON(con->sock);
2579                 con->state = CON_STATE_CONNECTING;
2580
2581                 con_out_kvec_reset(con);
2582                 prepare_write_banner(con);
2583                 prepare_read_banner(con);
2584
2585                 BUG_ON(con->in_msg);
2586                 con->in_tag = CEPH_MSGR_TAG_READY;
2587                 dout("try_write initiating connect on %p new state %lu\n",
2588                      con, con->state);
2589                 ret = ceph_tcp_connect(con);
2590                 if (ret < 0) {
2591                         con->error_msg = "connect error";
2592                         goto out;
2593                 }
2594         }
2595
2596 more:
2597         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2598         BUG_ON(!con->sock);
2599
2600         /* kvec data queued? */
2601         if (con->out_kvec_left) {
2602                 ret = write_partial_kvec(con);
2603                 if (ret <= 0)
2604                         goto out;
2605         }
2606         if (con->out_skip) {
2607                 ret = write_partial_skip(con);
2608                 if (ret <= 0)
2609                         goto out;
2610         }
2611
2612         /* msg pages? */
2613         if (con->out_msg) {
2614                 if (con->out_msg_done) {
2615                         ceph_msg_put(con->out_msg);
2616                         con->out_msg = NULL;   /* we're done with this one */
2617                         goto do_next;
2618                 }
2619
2620                 ret = write_partial_message_data(con);
2621                 if (ret == 1)
2622                         goto more;  /* we need to send the footer, too! */
2623                 if (ret == 0)
2624                         goto out;
2625                 if (ret < 0) {
2626                         dout("try_write write_partial_message_data err %d\n",
2627                              ret);
2628                         goto out;
2629                 }
2630         }
2631
2632 do_next:
2633         if (con->state == CON_STATE_OPEN) {
2634                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2635                         prepare_write_keepalive(con);
2636                         goto more;
2637                 }
2638                 /* is anything else pending? */
2639                 if (!list_empty(&con->out_queue)) {
2640                         prepare_write_message(con);
2641                         goto more;
2642                 }
2643                 if (con->in_seq > con->in_seq_acked) {
2644                         prepare_write_ack(con);
2645                         goto more;
2646                 }
2647         }
2648
2649         /* Nothing to do! */
2650         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2651         dout("try_write nothing else to write.\n");
2652         ret = 0;
2653 out:
2654         dout("try_write done on %p ret %d\n", con, ret);
2655         return ret;
2656 }
2657
2658 /*
2659  * Read what we can from the socket.
2660  */
2661 static int try_read(struct ceph_connection *con)
2662 {
2663         int ret = -1;
2664
2665 more:
2666         dout("try_read start on %p state %lu\n", con, con->state);
2667         if (con->state != CON_STATE_CONNECTING &&
2668             con->state != CON_STATE_NEGOTIATING &&
2669             con->state != CON_STATE_OPEN)
2670                 return 0;
2671
2672         BUG_ON(!con->sock);
2673
2674         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2675              con->in_base_pos);
2676
2677         if (con->state == CON_STATE_CONNECTING) {
2678                 dout("try_read connecting\n");
2679                 ret = read_partial_banner(con);
2680                 if (ret <= 0)
2681                         goto out;
2682                 ret = process_banner(con);
2683                 if (ret < 0)
2684                         goto out;
2685
2686                 con->state = CON_STATE_NEGOTIATING;
2687
2688                 /*
2689                  * Received banner is good, exchange connection info.
2690                  * Do not reset out_kvec, as sending our banner raced
2691                  * with receiving peer banner after connect completed.
2692                  */
2693                 ret = prepare_write_connect(con);
2694                 if (ret < 0)
2695                         goto out;
2696                 prepare_read_connect(con);
2697
2698                 /* Send connection info before awaiting response */
2699                 goto out;
2700         }
2701
2702         if (con->state == CON_STATE_NEGOTIATING) {
2703                 dout("try_read negotiating\n");
2704                 ret = read_partial_connect(con);
2705                 if (ret <= 0)
2706                         goto out;
2707                 ret = process_connect(con);
2708                 if (ret < 0)
2709                         goto out;
2710                 goto more;
2711         }
2712
2713         WARN_ON(con->state != CON_STATE_OPEN);
2714
2715         if (con->in_base_pos < 0) {
2716                 /*
2717                  * skipping + discarding content.
2718                  */
2719                 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2720                 if (ret <= 0)
2721                         goto out;
2722                 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2723                 con->in_base_pos += ret;
2724                 if (con->in_base_pos)
2725                         goto more;
2726         }
2727         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2728                 /*
2729                  * what's next?
2730                  */
2731                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2732                 if (ret <= 0)
2733                         goto out;
2734                 dout("try_read got tag %d\n", (int)con->in_tag);
2735                 switch (con->in_tag) {
2736                 case CEPH_MSGR_TAG_MSG:
2737                         prepare_read_message(con);
2738                         break;
2739                 case CEPH_MSGR_TAG_ACK:
2740                         prepare_read_ack(con);
2741                         break;
2742                 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2743                         prepare_read_keepalive_ack(con);
2744                         break;
2745                 case CEPH_MSGR_TAG_CLOSE:
2746                         con_close_socket(con);
2747                         con->state = CON_STATE_CLOSED;
2748                         goto out;
2749                 default:
2750                         goto bad_tag;
2751                 }
2752         }
2753         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2754                 ret = read_partial_message(con);
2755                 if (ret <= 0) {
2756                         switch (ret) {
2757                         case -EBADMSG:
2758                                 con->error_msg = "bad crc/signature";
2759                                 fallthrough;
2760                         case -EBADE:
2761                                 ret = -EIO;
2762                                 break;
2763                         case -EIO:
2764                                 con->error_msg = "io error";
2765                                 break;
2766                         }
2767                         goto out;
2768                 }
2769                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2770                         goto more;
2771                 process_message(con);
2772                 if (con->state == CON_STATE_OPEN)
2773                         prepare_read_tag(con);
2774                 goto more;
2775         }
2776         if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2777             con->in_tag == CEPH_MSGR_TAG_SEQ) {
2778                 /*
2779                  * the final handshake seq exchange is semantically
2780                  * equivalent to an ACK
2781                  */
2782                 ret = read_partial_ack(con);
2783                 if (ret <= 0)
2784                         goto out;
2785                 process_ack(con);
2786                 goto more;
2787         }
2788         if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2789                 ret = read_keepalive_ack(con);
2790                 if (ret <= 0)
2791                         goto out;
2792                 goto more;
2793         }
2794
2795 out:
2796         dout("try_read done on %p ret %d\n", con, ret);
2797         return ret;
2798
2799 bad_tag:
2800         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2801         con->error_msg = "protocol error, garbage tag";
2802         ret = -1;
2803         goto out;
2804 }
2805
2806
2807 /*
2808  * Atomically queue work on a connection after the specified delay.
2809  * Bump @con reference to avoid races with connection teardown.
2810  * Returns 0 if work was queued, or an error code otherwise.
2811  */
2812 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2813 {
2814         if (!con->ops->get(con)) {
2815                 dout("%s %p ref count 0\n", __func__, con);
2816                 return -ENOENT;
2817         }
2818
2819         if (delay >= HZ)
2820                 delay = round_jiffies_relative(delay);
2821
2822         dout("%s %p %lu\n", __func__, con, delay);
2823         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2824                 dout("%s %p - already queued\n", __func__, con);
2825                 con->ops->put(con);
2826                 return -EBUSY;
2827         }
2828
2829         return 0;
2830 }
2831
2832 static void queue_con(struct ceph_connection *con)
2833 {
2834         (void) queue_con_delay(con, 0);
2835 }
2836
2837 static void cancel_con(struct ceph_connection *con)
2838 {
2839         if (cancel_delayed_work(&con->work)) {
2840                 dout("%s %p\n", __func__, con);
2841                 con->ops->put(con);
2842         }
2843 }
2844
2845 static bool con_sock_closed(struct ceph_connection *con)
2846 {
2847         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2848                 return false;
2849
2850 #define CASE(x)                                                         \
2851         case CON_STATE_ ## x:                                           \
2852                 con->error_msg = "socket closed (con state " #x ")";    \
2853                 break;
2854
2855         switch (con->state) {
2856         CASE(CLOSED);
2857         CASE(PREOPEN);
2858         CASE(CONNECTING);
2859         CASE(NEGOTIATING);
2860         CASE(OPEN);
2861         CASE(STANDBY);
2862         default:
2863                 pr_warn("%s con %p unrecognized state %lu\n",
2864                         __func__, con, con->state);
2865                 con->error_msg = "unrecognized con state";
2866                 BUG();
2867                 break;
2868         }
2869 #undef CASE
2870
2871         return true;
2872 }
2873
2874 static bool con_backoff(struct ceph_connection *con)
2875 {
2876         int ret;
2877
2878         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2879                 return false;
2880
2881         ret = queue_con_delay(con, con->delay);
2882         if (ret) {
2883                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2884                         con, con->delay);
2885                 BUG_ON(ret == -ENOENT);
2886                 con_flag_set(con, CON_FLAG_BACKOFF);
2887         }
2888
2889         return true;
2890 }
2891
2892 /* Finish fault handling; con->mutex must *not* be held here */
2893
2894 static void con_fault_finish(struct ceph_connection *con)
2895 {
2896         dout("%s %p\n", __func__, con);
2897
2898         /*
2899          * in case we faulted due to authentication, invalidate our
2900          * current tickets so that we can get new ones.
2901          */
2902         if (con->auth_retry) {
2903                 dout("auth_retry %d, invalidating\n", con->auth_retry);
2904                 if (con->ops->invalidate_authorizer)
2905                         con->ops->invalidate_authorizer(con);
2906                 con->auth_retry = 0;
2907         }
2908
2909         if (con->ops->fault)
2910                 con->ops->fault(con);
2911 }
2912
2913 /*
2914  * Do some work on a connection.  Drop a connection ref when we're done.
2915  */
2916 static void ceph_con_workfn(struct work_struct *work)
2917 {
2918         struct ceph_connection *con = container_of(work, struct ceph_connection,
2919                                                    work.work);
2920         bool fault;
2921
2922         mutex_lock(&con->mutex);
2923         while (true) {
2924                 int ret;
2925
2926                 if ((fault = con_sock_closed(con))) {
2927                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2928                         break;
2929                 }
2930                 if (con_backoff(con)) {
2931                         dout("%s: con %p BACKOFF\n", __func__, con);
2932                         break;
2933                 }
2934                 if (con->state == CON_STATE_STANDBY) {
2935                         dout("%s: con %p STANDBY\n", __func__, con);
2936                         break;
2937                 }
2938                 if (con->state == CON_STATE_CLOSED) {
2939                         dout("%s: con %p CLOSED\n", __func__, con);
2940                         BUG_ON(con->sock);
2941                         break;
2942                 }
2943                 if (con->state == CON_STATE_PREOPEN) {
2944                         dout("%s: con %p PREOPEN\n", __func__, con);
2945                         BUG_ON(con->sock);
2946                 }
2947
2948                 ret = try_read(con);
2949                 if (ret < 0) {
2950                         if (ret == -EAGAIN)
2951                                 continue;
2952                         if (!con->error_msg)
2953                                 con->error_msg = "socket error on read";
2954                         fault = true;
2955                         break;
2956                 }
2957
2958                 ret = try_write(con);
2959                 if (ret < 0) {
2960                         if (ret == -EAGAIN)
2961                                 continue;
2962                         if (!con->error_msg)
2963                                 con->error_msg = "socket error on write";
2964                         fault = true;
2965                 }
2966
2967                 break;  /* If we make it to here, we're done */
2968         }
2969         if (fault)
2970                 con_fault(con);
2971         mutex_unlock(&con->mutex);
2972
2973         if (fault)
2974                 con_fault_finish(con);
2975
2976         con->ops->put(con);
2977 }
2978
2979 /*
2980  * Generic error/fault handler.  A retry mechanism is used with
2981  * exponential backoff
2982  */
2983 static void con_fault(struct ceph_connection *con)
2984 {
2985         dout("fault %p state %lu to peer %s\n",
2986              con, con->state, ceph_pr_addr(&con->peer_addr));
2987
2988         pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2989                 ceph_pr_addr(&con->peer_addr), con->error_msg);
2990         con->error_msg = NULL;
2991
2992         WARN_ON(con->state != CON_STATE_CONNECTING &&
2993                con->state != CON_STATE_NEGOTIATING &&
2994                con->state != CON_STATE_OPEN);
2995
2996         ceph_con_reset_protocol(con);
2997
2998         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2999                 dout("fault on LOSSYTX channel, marking CLOSED\n");
3000                 con->state = CON_STATE_CLOSED;
3001                 return;
3002         }
3003
3004         /* Requeue anything that hasn't been acked */
3005         list_splice_init(&con->out_sent, &con->out_queue);
3006
3007         /* If there are no messages queued or keepalive pending, place
3008          * the connection in a STANDBY state */
3009         if (list_empty(&con->out_queue) &&
3010             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3011                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3012                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3013                 con->state = CON_STATE_STANDBY;
3014         } else {
3015                 /* retry after a delay. */
3016                 con->state = CON_STATE_PREOPEN;
3017                 if (!con->delay) {
3018                         con->delay = BASE_DELAY_INTERVAL;
3019                 } else if (con->delay < MAX_DELAY_INTERVAL) {
3020                         con->delay *= 2;
3021                         if (con->delay > MAX_DELAY_INTERVAL)
3022                                 con->delay = MAX_DELAY_INTERVAL;
3023                 }
3024                 con_flag_set(con, CON_FLAG_BACKOFF);
3025                 queue_con(con);
3026         }
3027 }
3028
3029
3030 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
3031 {
3032         u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
3033         msgr->inst.addr.nonce = cpu_to_le32(nonce);
3034         encode_my_addr(msgr);
3035 }
3036
3037 /*
3038  * initialize a new messenger instance
3039  */
3040 void ceph_messenger_init(struct ceph_messenger *msgr,
3041                          struct ceph_entity_addr *myaddr)
3042 {
3043         spin_lock_init(&msgr->global_seq_lock);
3044
3045         if (myaddr)
3046                 msgr->inst.addr = *myaddr;
3047
3048         /* select a random nonce */
3049         msgr->inst.addr.type = 0;
3050         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3051         encode_my_addr(msgr);
3052
3053         atomic_set(&msgr->stopping, 0);
3054         write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3055
3056         dout("%s %p\n", __func__, msgr);
3057 }
3058 EXPORT_SYMBOL(ceph_messenger_init);
3059
3060 void ceph_messenger_fini(struct ceph_messenger *msgr)
3061 {
3062         put_net(read_pnet(&msgr->net));
3063 }
3064 EXPORT_SYMBOL(ceph_messenger_fini);
3065
3066 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3067 {
3068         if (msg->con)
3069                 msg->con->ops->put(msg->con);
3070
3071         msg->con = con ? con->ops->get(con) : NULL;
3072         BUG_ON(msg->con != con);
3073 }
3074
3075 static void clear_standby(struct ceph_connection *con)
3076 {
3077         /* come back from STANDBY? */
3078         if (con->state == CON_STATE_STANDBY) {
3079                 dout("clear_standby %p and ++connect_seq\n", con);
3080                 con->state = CON_STATE_PREOPEN;
3081                 con->connect_seq++;
3082                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3083                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3084         }
3085 }
3086
3087 /*
3088  * Queue up an outgoing message on the given connection.
3089  */
3090 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3091 {
3092         /* set src+dst */
3093         msg->hdr.src = con->msgr->inst.name;
3094         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3095         msg->needs_out_seq = true;
3096
3097         mutex_lock(&con->mutex);
3098
3099         if (con->state == CON_STATE_CLOSED) {
3100                 dout("con_send %p closed, dropping %p\n", con, msg);
3101                 ceph_msg_put(msg);
3102                 mutex_unlock(&con->mutex);
3103                 return;
3104         }
3105
3106         msg_con_set(msg, con);
3107
3108         BUG_ON(!list_empty(&msg->list_head));
3109         list_add_tail(&msg->list_head, &con->out_queue);
3110         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3111              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3112              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3113              le32_to_cpu(msg->hdr.front_len),
3114              le32_to_cpu(msg->hdr.middle_len),
3115              le32_to_cpu(msg->hdr.data_len));
3116
3117         clear_standby(con);
3118         mutex_unlock(&con->mutex);
3119
3120         /* if there wasn't anything waiting to send before, queue
3121          * new work */
3122         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3123                 queue_con(con);
3124 }
3125 EXPORT_SYMBOL(ceph_con_send);
3126
3127 /*
3128  * Revoke a message that was previously queued for send
3129  */
3130 void ceph_msg_revoke(struct ceph_msg *msg)
3131 {
3132         struct ceph_connection *con = msg->con;
3133
3134         if (!con) {
3135                 dout("%s msg %p null con\n", __func__, msg);
3136                 return;         /* Message not in our possession */
3137         }
3138
3139         mutex_lock(&con->mutex);
3140         if (!list_empty(&msg->list_head)) {
3141                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3142                 list_del_init(&msg->list_head);
3143                 msg->hdr.seq = 0;
3144
3145                 ceph_msg_put(msg);
3146         }
3147         if (con->out_msg == msg) {
3148                 BUG_ON(con->out_skip);
3149                 /* footer */
3150                 if (con->out_msg_done) {
3151                         con->out_skip += con_out_kvec_skip(con);
3152                 } else {
3153                         BUG_ON(!msg->data_length);
3154                         con->out_skip += sizeof_footer(con);
3155                 }
3156                 /* data, middle, front */
3157                 if (msg->data_length)
3158                         con->out_skip += msg->cursor.total_resid;
3159                 if (msg->middle)
3160                         con->out_skip += con_out_kvec_skip(con);
3161                 con->out_skip += con_out_kvec_skip(con);
3162
3163                 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3164                      __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3165                 msg->hdr.seq = 0;
3166                 con->out_msg = NULL;
3167                 ceph_msg_put(msg);
3168         }
3169
3170         mutex_unlock(&con->mutex);
3171 }
3172
3173 /*
3174  * Revoke a message that we may be reading data into
3175  */
3176 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3177 {
3178         struct ceph_connection *con = msg->con;
3179
3180         if (!con) {
3181                 dout("%s msg %p null con\n", __func__, msg);
3182                 return;         /* Message not in our possession */
3183         }
3184
3185         mutex_lock(&con->mutex);
3186         if (con->in_msg == msg) {
3187                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3188                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3189                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3190
3191                 /* skip rest of message */
3192                 dout("%s %p msg %p revoked\n", __func__, con, msg);
3193                 con->in_base_pos = con->in_base_pos -
3194                                 sizeof(struct ceph_msg_header) -
3195                                 front_len -
3196                                 middle_len -
3197                                 data_len -
3198                                 sizeof(struct ceph_msg_footer);
3199                 ceph_msg_put(con->in_msg);
3200                 con->in_msg = NULL;
3201                 con->in_tag = CEPH_MSGR_TAG_READY;
3202                 con->in_seq++;
3203         } else {
3204                 dout("%s %p in_msg %p msg %p no-op\n",
3205                      __func__, con, con->in_msg, msg);
3206         }
3207         mutex_unlock(&con->mutex);
3208 }
3209
3210 /*
3211  * Queue a keepalive byte to ensure the tcp connection is alive.
3212  */
3213 void ceph_con_keepalive(struct ceph_connection *con)
3214 {
3215         dout("con_keepalive %p\n", con);
3216         mutex_lock(&con->mutex);
3217         clear_standby(con);
3218         con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING);
3219         mutex_unlock(&con->mutex);
3220
3221         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3222                 queue_con(con);
3223 }
3224 EXPORT_SYMBOL(ceph_con_keepalive);
3225
3226 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3227                                unsigned long interval)
3228 {
3229         if (interval > 0 &&
3230             (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3231                 struct timespec64 now;
3232                 struct timespec64 ts;
3233                 ktime_get_real_ts64(&now);
3234                 jiffies_to_timespec64(interval, &ts);
3235                 ts = timespec64_add(con->last_keepalive_ack, ts);
3236                 return timespec64_compare(&now, &ts) >= 0;
3237         }
3238         return false;
3239 }
3240
3241 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
3242 {
3243         BUG_ON(msg->num_data_items >= msg->max_data_items);
3244         return &msg->data[msg->num_data_items++];
3245 }
3246
3247 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3248 {
3249         if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
3250                 int num_pages = calc_pages_for(data->alignment, data->length);
3251                 ceph_release_page_vector(data->pages, num_pages);
3252         } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
3253                 ceph_pagelist_release(data->pagelist);
3254         }
3255 }
3256
3257 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3258                              size_t length, size_t alignment, bool own_pages)
3259 {
3260         struct ceph_msg_data *data;
3261
3262         BUG_ON(!pages);
3263         BUG_ON(!length);
3264
3265         data = ceph_msg_data_add(msg);
3266         data->type = CEPH_MSG_DATA_PAGES;
3267         data->pages = pages;
3268         data->length = length;
3269         data->alignment = alignment & ~PAGE_MASK;
3270         data->own_pages = own_pages;
3271
3272         msg->data_length += length;
3273 }
3274 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3275
3276 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3277                                 struct ceph_pagelist *pagelist)
3278 {
3279         struct ceph_msg_data *data;
3280
3281         BUG_ON(!pagelist);
3282         BUG_ON(!pagelist->length);
3283
3284         data = ceph_msg_data_add(msg);
3285         data->type = CEPH_MSG_DATA_PAGELIST;
3286         refcount_inc(&pagelist->refcnt);
3287         data->pagelist = pagelist;
3288
3289         msg->data_length += pagelist->length;
3290 }
3291 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3292
3293 #ifdef  CONFIG_BLOCK
3294 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3295                            u32 length)
3296 {
3297         struct ceph_msg_data *data;
3298
3299         data = ceph_msg_data_add(msg);
3300         data->type = CEPH_MSG_DATA_BIO;
3301         data->bio_pos = *bio_pos;
3302         data->bio_length = length;
3303
3304         msg->data_length += length;
3305 }
3306 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3307 #endif  /* CONFIG_BLOCK */
3308
3309 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3310                              struct ceph_bvec_iter *bvec_pos)
3311 {
3312         struct ceph_msg_data *data;
3313
3314         data = ceph_msg_data_add(msg);
3315         data->type = CEPH_MSG_DATA_BVECS;
3316         data->bvec_pos = *bvec_pos;
3317
3318         msg->data_length += bvec_pos->iter.bi_size;
3319 }
3320 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3321
3322 /*
3323  * construct a new message with given type, size
3324  * the new msg has a ref count of 1.
3325  */
3326 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
3327                                gfp_t flags, bool can_fail)
3328 {
3329         struct ceph_msg *m;
3330
3331         m = kmem_cache_zalloc(ceph_msg_cache, flags);
3332         if (m == NULL)
3333                 goto out;
3334
3335         m->hdr.type = cpu_to_le16(type);
3336         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3337         m->hdr.front_len = cpu_to_le32(front_len);
3338
3339         INIT_LIST_HEAD(&m->list_head);
3340         kref_init(&m->kref);
3341
3342         /* front */
3343         if (front_len) {
3344                 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3345                 if (m->front.iov_base == NULL) {
3346                         dout("ceph_msg_new can't allocate %d bytes\n",
3347                              front_len);
3348                         goto out2;
3349                 }
3350         } else {
3351                 m->front.iov_base = NULL;
3352         }
3353         m->front_alloc_len = m->front.iov_len = front_len;
3354
3355         if (max_data_items) {
3356                 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
3357                                         flags);
3358                 if (!m->data)
3359                         goto out2;
3360
3361                 m->max_data_items = max_data_items;
3362         }
3363
3364         dout("ceph_msg_new %p front %d\n", m, front_len);
3365         return m;
3366
3367 out2:
3368         ceph_msg_put(m);
3369 out:
3370         if (!can_fail) {
3371                 pr_err("msg_new can't create type %d front %d\n", type,
3372                        front_len);
3373                 WARN_ON(1);
3374         } else {
3375                 dout("msg_new can't create type %d front %d\n", type,
3376                      front_len);
3377         }
3378         return NULL;
3379 }
3380 EXPORT_SYMBOL(ceph_msg_new2);
3381
3382 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3383                               bool can_fail)
3384 {
3385         return ceph_msg_new2(type, front_len, 0, flags, can_fail);
3386 }
3387 EXPORT_SYMBOL(ceph_msg_new);
3388
3389 /*
3390  * Allocate "middle" portion of a message, if it is needed and wasn't
3391  * allocated by alloc_msg.  This allows us to read a small fixed-size
3392  * per-type header in the front and then gracefully fail (i.e.,
3393  * propagate the error to the caller based on info in the front) when
3394  * the middle is too large.
3395  */
3396 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3397 {
3398         int type = le16_to_cpu(msg->hdr.type);
3399         int middle_len = le32_to_cpu(msg->hdr.middle_len);
3400
3401         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3402              ceph_msg_type_name(type), middle_len);
3403         BUG_ON(!middle_len);
3404         BUG_ON(msg->middle);
3405
3406         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3407         if (!msg->middle)
3408                 return -ENOMEM;
3409         return 0;
3410 }
3411
3412 /*
3413  * Allocate a message for receiving an incoming message on a
3414  * connection, and save the result in con->in_msg.  Uses the
3415  * connection's private alloc_msg op if available.
3416  *
3417  * Returns 0 on success, or a negative error code.
3418  *
3419  * On success, if we set *skip = 1:
3420  *  - the next message should be skipped and ignored.
3421  *  - con->in_msg == NULL
3422  * or if we set *skip = 0:
3423  *  - con->in_msg is non-null.
3424  * On error (ENOMEM, EAGAIN, ...),
3425  *  - con->in_msg == NULL
3426  */
3427 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3428 {
3429         struct ceph_msg_header *hdr = &con->in_hdr;
3430         int middle_len = le32_to_cpu(hdr->middle_len);
3431         struct ceph_msg *msg;
3432         int ret = 0;
3433
3434         BUG_ON(con->in_msg != NULL);
3435         BUG_ON(!con->ops->alloc_msg);
3436
3437         mutex_unlock(&con->mutex);
3438         msg = con->ops->alloc_msg(con, hdr, skip);
3439         mutex_lock(&con->mutex);
3440         if (con->state != CON_STATE_OPEN) {
3441                 if (msg)
3442                         ceph_msg_put(msg);
3443                 return -EAGAIN;
3444         }
3445         if (msg) {
3446                 BUG_ON(*skip);
3447                 msg_con_set(msg, con);
3448                 con->in_msg = msg;
3449         } else {
3450                 /*
3451                  * Null message pointer means either we should skip
3452                  * this message or we couldn't allocate memory.  The
3453                  * former is not an error.
3454                  */
3455                 if (*skip)
3456                         return 0;
3457
3458                 con->error_msg = "error allocating memory for incoming message";
3459                 return -ENOMEM;
3460         }
3461         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3462
3463         if (middle_len && !con->in_msg->middle) {
3464                 ret = ceph_alloc_middle(con, con->in_msg);
3465                 if (ret < 0) {
3466                         ceph_msg_put(con->in_msg);
3467                         con->in_msg = NULL;
3468                 }
3469         }
3470
3471         return ret;
3472 }
3473
3474
3475 /*
3476  * Free a generically kmalloc'd message.
3477  */
3478 static void ceph_msg_free(struct ceph_msg *m)
3479 {
3480         dout("%s %p\n", __func__, m);
3481         kvfree(m->front.iov_base);
3482         kfree(m->data);
3483         kmem_cache_free(ceph_msg_cache, m);
3484 }
3485
3486 static void ceph_msg_release(struct kref *kref)
3487 {
3488         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3489         int i;
3490
3491         dout("%s %p\n", __func__, m);
3492         WARN_ON(!list_empty(&m->list_head));
3493
3494         msg_con_set(m, NULL);
3495
3496         /* drop middle, data, if any */
3497         if (m->middle) {
3498                 ceph_buffer_put(m->middle);
3499                 m->middle = NULL;
3500         }
3501
3502         for (i = 0; i < m->num_data_items; i++)
3503                 ceph_msg_data_destroy(&m->data[i]);
3504
3505         if (m->pool)
3506                 ceph_msgpool_put(m->pool, m);
3507         else
3508                 ceph_msg_free(m);
3509 }
3510
3511 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3512 {
3513         dout("%s %p (was %d)\n", __func__, msg,
3514              kref_read(&msg->kref));
3515         kref_get(&msg->kref);
3516         return msg;
3517 }
3518 EXPORT_SYMBOL(ceph_msg_get);
3519
3520 void ceph_msg_put(struct ceph_msg *msg)
3521 {
3522         dout("%s %p (was %d)\n", __func__, msg,
3523              kref_read(&msg->kref));
3524         kref_put(&msg->kref, ceph_msg_release);
3525 }
3526 EXPORT_SYMBOL(ceph_msg_put);
3527
3528 void ceph_msg_dump(struct ceph_msg *msg)
3529 {
3530         pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3531                  msg->front_alloc_len, msg->data_length);
3532         print_hex_dump(KERN_DEBUG, "header: ",
3533                        DUMP_PREFIX_OFFSET, 16, 1,
3534                        &msg->hdr, sizeof(msg->hdr), true);
3535         print_hex_dump(KERN_DEBUG, " front: ",
3536                        DUMP_PREFIX_OFFSET, 16, 1,
3537                        msg->front.iov_base, msg->front.iov_len, true);
3538         if (msg->middle)
3539                 print_hex_dump(KERN_DEBUG, "middle: ",
3540                                DUMP_PREFIX_OFFSET, 16, 1,
3541                                msg->middle->vec.iov_base,
3542                                msg->middle->vec.iov_len, true);
3543         print_hex_dump(KERN_DEBUG, "footer: ",
3544                        DUMP_PREFIX_OFFSET, 16, 1,
3545                        &msg->footer, sizeof(msg->footer), true);
3546 }
3547 EXPORT_SYMBOL(ceph_msg_dump);