libceph: change ceph_msg_data_cursor_init() to take cursor
[linux-2.6-microblaze.git] / net / ceph / messenger.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef  CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif  /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78
79 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
84
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99                                        * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107         switch (con_flag) {
108         case CON_FLAG_LOSSYTX:
109         case CON_FLAG_KEEPALIVE_PENDING:
110         case CON_FLAG_WRITE_PENDING:
111         case CON_FLAG_SOCK_CLOSED:
112         case CON_FLAG_BACKOFF:
113                 return true;
114         default:
115                 return false;
116         }
117 }
118
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121         BUG_ON(!con_flag_valid(con_flag));
122
123         clear_bit(con_flag, &con->flags);
124 }
125
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128         BUG_ON(!con_flag_valid(con_flag));
129
130         set_bit(con_flag, &con->flags);
131 }
132
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135         BUG_ON(!con_flag_valid(con_flag));
136
137         return test_bit(con_flag, &con->flags);
138 }
139
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141                                         unsigned long con_flag)
142 {
143         BUG_ON(!con_flag_valid(con_flag));
144
145         return test_and_clear_bit(con_flag, &con->flags);
146 }
147
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149                                         unsigned long con_flag)
150 {
151         BUG_ON(!con_flag_valid(con_flag));
152
153         return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache        *ceph_msg_cache;
159
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
165
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169
170 static void queue_con(struct ceph_connection *con);
171 static void cancel_con(struct ceph_connection *con);
172 static void ceph_con_workfn(struct work_struct *);
173 static void con_fault(struct ceph_connection *con);
174
175 /*
176  * Nicely render a sockaddr as a string.  An array of formatted
177  * strings is used, to approximate reentrancy.
178  */
179 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
180 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
181 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
182 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
183
184 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
185 static atomic_t addr_str_seq = ATOMIC_INIT(0);
186
187 static struct page *zero_page;          /* used in certain error cases */
188
189 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
190 {
191         int i;
192         char *s;
193         struct sockaddr_storage ss = addr->in_addr; /* align */
194         struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
195         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
196
197         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
198         s = addr_str[i];
199
200         switch (ss.ss_family) {
201         case AF_INET:
202                 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
203                          le32_to_cpu(addr->type), &in4->sin_addr,
204                          ntohs(in4->sin_port));
205                 break;
206
207         case AF_INET6:
208                 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
209                          le32_to_cpu(addr->type), &in6->sin6_addr,
210                          ntohs(in6->sin6_port));
211                 break;
212
213         default:
214                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
215                          ss.ss_family);
216         }
217
218         return s;
219 }
220 EXPORT_SYMBOL(ceph_pr_addr);
221
222 static void encode_my_addr(struct ceph_messenger *msgr)
223 {
224         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
225         ceph_encode_banner_addr(&msgr->my_enc_addr);
226 }
227
228 /*
229  * work queue for all reading and writing to/from the socket.
230  */
231 static struct workqueue_struct *ceph_msgr_wq;
232
233 static int ceph_msgr_slab_init(void)
234 {
235         BUG_ON(ceph_msg_cache);
236         ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
237         if (!ceph_msg_cache)
238                 return -ENOMEM;
239
240         return 0;
241 }
242
243 static void ceph_msgr_slab_exit(void)
244 {
245         BUG_ON(!ceph_msg_cache);
246         kmem_cache_destroy(ceph_msg_cache);
247         ceph_msg_cache = NULL;
248 }
249
250 static void _ceph_msgr_exit(void)
251 {
252         if (ceph_msgr_wq) {
253                 destroy_workqueue(ceph_msgr_wq);
254                 ceph_msgr_wq = NULL;
255         }
256
257         BUG_ON(zero_page == NULL);
258         put_page(zero_page);
259         zero_page = NULL;
260
261         ceph_msgr_slab_exit();
262 }
263
264 int __init ceph_msgr_init(void)
265 {
266         if (ceph_msgr_slab_init())
267                 return -ENOMEM;
268
269         BUG_ON(zero_page != NULL);
270         zero_page = ZERO_PAGE(0);
271         get_page(zero_page);
272
273         /*
274          * The number of active work items is limited by the number of
275          * connections, so leave @max_active at default.
276          */
277         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
278         if (ceph_msgr_wq)
279                 return 0;
280
281         pr_err("msgr_init failed to create workqueue\n");
282         _ceph_msgr_exit();
283
284         return -ENOMEM;
285 }
286
287 void ceph_msgr_exit(void)
288 {
289         BUG_ON(ceph_msgr_wq == NULL);
290
291         _ceph_msgr_exit();
292 }
293
294 void ceph_msgr_flush(void)
295 {
296         flush_workqueue(ceph_msgr_wq);
297 }
298 EXPORT_SYMBOL(ceph_msgr_flush);
299
300 /* Connection socket state transition functions */
301
302 static void con_sock_state_init(struct ceph_connection *con)
303 {
304         int old_state;
305
306         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
307         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
308                 printk("%s: unexpected old state %d\n", __func__, old_state);
309         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
310              CON_SOCK_STATE_CLOSED);
311 }
312
313 static void con_sock_state_connecting(struct ceph_connection *con)
314 {
315         int old_state;
316
317         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
318         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
319                 printk("%s: unexpected old state %d\n", __func__, old_state);
320         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
321              CON_SOCK_STATE_CONNECTING);
322 }
323
324 static void con_sock_state_connected(struct ceph_connection *con)
325 {
326         int old_state;
327
328         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
329         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
330                 printk("%s: unexpected old state %d\n", __func__, old_state);
331         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332              CON_SOCK_STATE_CONNECTED);
333 }
334
335 static void con_sock_state_closing(struct ceph_connection *con)
336 {
337         int old_state;
338
339         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
340         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
341                         old_state != CON_SOCK_STATE_CONNECTED &&
342                         old_state != CON_SOCK_STATE_CLOSING))
343                 printk("%s: unexpected old state %d\n", __func__, old_state);
344         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345              CON_SOCK_STATE_CLOSING);
346 }
347
348 static void con_sock_state_closed(struct ceph_connection *con)
349 {
350         int old_state;
351
352         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
353         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
354                     old_state != CON_SOCK_STATE_CLOSING &&
355                     old_state != CON_SOCK_STATE_CONNECTING &&
356                     old_state != CON_SOCK_STATE_CLOSED))
357                 printk("%s: unexpected old state %d\n", __func__, old_state);
358         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
359              CON_SOCK_STATE_CLOSED);
360 }
361
362 /*
363  * socket callback functions
364  */
365
366 /* data available on socket, or listen socket received a connect */
367 static void ceph_sock_data_ready(struct sock *sk)
368 {
369         struct ceph_connection *con = sk->sk_user_data;
370         if (atomic_read(&con->msgr->stopping)) {
371                 return;
372         }
373
374         if (sk->sk_state != TCP_CLOSE_WAIT) {
375                 dout("%s on %p state = %lu, queueing work\n", __func__,
376                      con, con->state);
377                 queue_con(con);
378         }
379 }
380
381 /* socket has buffer space for writing */
382 static void ceph_sock_write_space(struct sock *sk)
383 {
384         struct ceph_connection *con = sk->sk_user_data;
385
386         /* only queue to workqueue if there is data we want to write,
387          * and there is sufficient space in the socket buffer to accept
388          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
389          * doesn't get called again until try_write() fills the socket
390          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
391          * and net/core/stream.c:sk_stream_write_space().
392          */
393         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
394                 if (sk_stream_is_writeable(sk)) {
395                         dout("%s %p queueing write work\n", __func__, con);
396                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
397                         queue_con(con);
398                 }
399         } else {
400                 dout("%s %p nothing to write\n", __func__, con);
401         }
402 }
403
404 /* socket's state has changed */
405 static void ceph_sock_state_change(struct sock *sk)
406 {
407         struct ceph_connection *con = sk->sk_user_data;
408
409         dout("%s %p state = %lu sk_state = %u\n", __func__,
410              con, con->state, sk->sk_state);
411
412         switch (sk->sk_state) {
413         case TCP_CLOSE:
414                 dout("%s TCP_CLOSE\n", __func__);
415                 fallthrough;
416         case TCP_CLOSE_WAIT:
417                 dout("%s TCP_CLOSE_WAIT\n", __func__);
418                 con_sock_state_closing(con);
419                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
420                 queue_con(con);
421                 break;
422         case TCP_ESTABLISHED:
423                 dout("%s TCP_ESTABLISHED\n", __func__);
424                 con_sock_state_connected(con);
425                 queue_con(con);
426                 break;
427         default:        /* Everything else is uninteresting */
428                 break;
429         }
430 }
431
432 /*
433  * set up socket callbacks
434  */
435 static void set_sock_callbacks(struct socket *sock,
436                                struct ceph_connection *con)
437 {
438         struct sock *sk = sock->sk;
439         sk->sk_user_data = con;
440         sk->sk_data_ready = ceph_sock_data_ready;
441         sk->sk_write_space = ceph_sock_write_space;
442         sk->sk_state_change = ceph_sock_state_change;
443 }
444
445
446 /*
447  * socket helpers
448  */
449
450 /*
451  * initiate connection to a remote socket.
452  */
453 static int ceph_tcp_connect(struct ceph_connection *con)
454 {
455         struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
456         struct socket *sock;
457         unsigned int noio_flag;
458         int ret;
459
460         BUG_ON(con->sock);
461
462         /* sock_create_kern() allocates with GFP_KERNEL */
463         noio_flag = memalloc_noio_save();
464         ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
465                                SOCK_STREAM, IPPROTO_TCP, &sock);
466         memalloc_noio_restore(noio_flag);
467         if (ret)
468                 return ret;
469         sock->sk->sk_allocation = GFP_NOFS;
470
471 #ifdef CONFIG_LOCKDEP
472         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
473 #endif
474
475         set_sock_callbacks(sock, con);
476
477         dout("connect %s\n", ceph_pr_addr(&con->peer_addr));
478
479         con_sock_state_connecting(con);
480         ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
481                                  O_NONBLOCK);
482         if (ret == -EINPROGRESS) {
483                 dout("connect %s EINPROGRESS sk_state = %u\n",
484                      ceph_pr_addr(&con->peer_addr),
485                      sock->sk->sk_state);
486         } else if (ret < 0) {
487                 pr_err("connect %s error %d\n",
488                        ceph_pr_addr(&con->peer_addr), ret);
489                 sock_release(sock);
490                 return ret;
491         }
492
493         if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
494                 tcp_sock_set_nodelay(sock->sk);
495
496         con->sock = sock;
497         return 0;
498 }
499
500 /*
501  * If @buf is NULL, discard up to @len bytes.
502  */
503 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
504 {
505         struct kvec iov = {buf, len};
506         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
507         int r;
508
509         if (!buf)
510                 msg.msg_flags |= MSG_TRUNC;
511
512         iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len);
513         r = sock_recvmsg(sock, &msg, msg.msg_flags);
514         if (r == -EAGAIN)
515                 r = 0;
516         return r;
517 }
518
519 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
520                      int page_offset, size_t length)
521 {
522         struct bio_vec bvec = {
523                 .bv_page = page,
524                 .bv_offset = page_offset,
525                 .bv_len = length
526         };
527         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
528         int r;
529
530         BUG_ON(page_offset + length > PAGE_SIZE);
531         iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length);
532         r = sock_recvmsg(sock, &msg, msg.msg_flags);
533         if (r == -EAGAIN)
534                 r = 0;
535         return r;
536 }
537
538 /*
539  * write something.  @more is true if caller will be sending more data
540  * shortly.
541  */
542 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
543                             size_t kvlen, size_t len, bool more)
544 {
545         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
546         int r;
547
548         if (more)
549                 msg.msg_flags |= MSG_MORE;
550         else
551                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
552
553         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
554         if (r == -EAGAIN)
555                 r = 0;
556         return r;
557 }
558
559 /*
560  * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST
561  */
562 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
563                              int offset, size_t size, int more)
564 {
565         ssize_t (*sendpage)(struct socket *sock, struct page *page,
566                             int offset, size_t size, int flags);
567         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more;
568         int ret;
569
570         /*
571          * sendpage cannot properly handle pages with page_count == 0,
572          * we need to fall back to sendmsg if that's the case.
573          *
574          * Same goes for slab pages: skb_can_coalesce() allows
575          * coalescing neighboring slab objects into a single frag which
576          * triggers one of hardened usercopy checks.
577          */
578         if (sendpage_ok(page))
579                 sendpage = sock->ops->sendpage;
580         else
581                 sendpage = sock_no_sendpage;
582
583         ret = sendpage(sock, page, offset, size, flags);
584         if (ret == -EAGAIN)
585                 ret = 0;
586
587         return ret;
588 }
589
590 /*
591  * Shutdown/close the socket for the given connection.
592  */
593 static int con_close_socket(struct ceph_connection *con)
594 {
595         int rc = 0;
596
597         dout("con_close_socket on %p sock %p\n", con, con->sock);
598         if (con->sock) {
599                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
600                 sock_release(con->sock);
601                 con->sock = NULL;
602         }
603
604         /*
605          * Forcibly clear the SOCK_CLOSED flag.  It gets set
606          * independent of the connection mutex, and we could have
607          * received a socket close event before we had the chance to
608          * shut the socket down.
609          */
610         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
611
612         con_sock_state_closed(con);
613         return rc;
614 }
615
616 static void ceph_con_reset_protocol(struct ceph_connection *con)
617 {
618         dout("%s con %p\n", __func__, con);
619
620         con_close_socket(con);
621         if (con->in_msg) {
622                 WARN_ON(con->in_msg->con != con);
623                 ceph_msg_put(con->in_msg);
624                 con->in_msg = NULL;
625         }
626         if (con->out_msg) {
627                 WARN_ON(con->out_msg->con != con);
628                 ceph_msg_put(con->out_msg);
629                 con->out_msg = NULL;
630         }
631
632         con->out_skip = 0;
633 }
634
635 /*
636  * Reset a connection.  Discard all incoming and outgoing messages
637  * and clear *_seq state.
638  */
639 static void ceph_msg_remove(struct ceph_msg *msg)
640 {
641         list_del_init(&msg->list_head);
642
643         ceph_msg_put(msg);
644 }
645 static void ceph_msg_remove_list(struct list_head *head)
646 {
647         while (!list_empty(head)) {
648                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
649                                                         list_head);
650                 ceph_msg_remove(msg);
651         }
652 }
653
654 static void ceph_con_reset_session(struct ceph_connection *con)
655 {
656         dout("%s con %p\n", __func__, con);
657
658         WARN_ON(con->in_msg);
659         WARN_ON(con->out_msg);
660         ceph_msg_remove_list(&con->out_queue);
661         ceph_msg_remove_list(&con->out_sent);
662         con->out_seq = 0;
663         con->in_seq = 0;
664         con->in_seq_acked = 0;
665
666         con->connect_seq = 0;
667         con->peer_global_seq = 0;
668 }
669
670 /*
671  * mark a peer down.  drop any open connections.
672  */
673 void ceph_con_close(struct ceph_connection *con)
674 {
675         mutex_lock(&con->mutex);
676         dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
677         con->state = CON_STATE_CLOSED;
678
679         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
680         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
681         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
682         con_flag_clear(con, CON_FLAG_BACKOFF);
683
684         ceph_con_reset_protocol(con);
685         ceph_con_reset_session(con);
686         cancel_con(con);
687         mutex_unlock(&con->mutex);
688 }
689 EXPORT_SYMBOL(ceph_con_close);
690
691 /*
692  * Reopen a closed connection, with a new peer address.
693  */
694 void ceph_con_open(struct ceph_connection *con,
695                    __u8 entity_type, __u64 entity_num,
696                    struct ceph_entity_addr *addr)
697 {
698         mutex_lock(&con->mutex);
699         dout("con_open %p %s\n", con, ceph_pr_addr(addr));
700
701         WARN_ON(con->state != CON_STATE_CLOSED);
702         con->state = CON_STATE_PREOPEN;
703
704         con->peer_name.type = (__u8) entity_type;
705         con->peer_name.num = cpu_to_le64(entity_num);
706
707         memcpy(&con->peer_addr, addr, sizeof(*addr));
708         con->delay = 0;      /* reset backoff memory */
709         mutex_unlock(&con->mutex);
710         queue_con(con);
711 }
712 EXPORT_SYMBOL(ceph_con_open);
713
714 /*
715  * return true if this connection ever successfully opened
716  */
717 bool ceph_con_opened(struct ceph_connection *con)
718 {
719         return con->connect_seq > 0;
720 }
721
722 /*
723  * initialize a new connection.
724  */
725 void ceph_con_init(struct ceph_connection *con, void *private,
726         const struct ceph_connection_operations *ops,
727         struct ceph_messenger *msgr)
728 {
729         dout("con_init %p\n", con);
730         memset(con, 0, sizeof(*con));
731         con->private = private;
732         con->ops = ops;
733         con->msgr = msgr;
734
735         con_sock_state_init(con);
736
737         mutex_init(&con->mutex);
738         INIT_LIST_HEAD(&con->out_queue);
739         INIT_LIST_HEAD(&con->out_sent);
740         INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
741
742         con->state = CON_STATE_CLOSED;
743 }
744 EXPORT_SYMBOL(ceph_con_init);
745
746
747 /*
748  * We maintain a global counter to order connection attempts.  Get
749  * a unique seq greater than @gt.
750  */
751 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
752 {
753         u32 ret;
754
755         spin_lock(&msgr->global_seq_lock);
756         if (msgr->global_seq < gt)
757                 msgr->global_seq = gt;
758         ret = ++msgr->global_seq;
759         spin_unlock(&msgr->global_seq_lock);
760         return ret;
761 }
762
763 /*
764  * Discard messages that have been acked by the server.
765  */
766 static void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
767 {
768         struct ceph_msg *msg;
769         u64 seq;
770
771         dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
772         while (!list_empty(&con->out_sent)) {
773                 msg = list_first_entry(&con->out_sent, struct ceph_msg,
774                                        list_head);
775                 WARN_ON(msg->needs_out_seq);
776                 seq = le64_to_cpu(msg->hdr.seq);
777                 if (seq > ack_seq)
778                         break;
779
780                 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
781                      msg, seq);
782                 ceph_msg_remove(msg);
783         }
784 }
785
786 /*
787  * Discard messages that have been requeued in con_fault(), up to
788  * reconnect_seq.  This avoids gratuitously resending messages that
789  * the server had received and handled prior to reconnect.
790  */
791 static void ceph_con_discard_requeued(struct ceph_connection *con,
792                                       u64 reconnect_seq)
793 {
794         struct ceph_msg *msg;
795         u64 seq;
796
797         dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
798         while (!list_empty(&con->out_queue)) {
799                 msg = list_first_entry(&con->out_queue, struct ceph_msg,
800                                        list_head);
801                 if (msg->needs_out_seq)
802                         break;
803                 seq = le64_to_cpu(msg->hdr.seq);
804                 if (seq > reconnect_seq)
805                         break;
806
807                 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
808                      msg, seq);
809                 ceph_msg_remove(msg);
810         }
811 }
812
813 static void con_out_kvec_reset(struct ceph_connection *con)
814 {
815         BUG_ON(con->out_skip);
816
817         con->out_kvec_left = 0;
818         con->out_kvec_bytes = 0;
819         con->out_kvec_cur = &con->out_kvec[0];
820 }
821
822 static void con_out_kvec_add(struct ceph_connection *con,
823                                 size_t size, void *data)
824 {
825         int index = con->out_kvec_left;
826
827         BUG_ON(con->out_skip);
828         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
829
830         con->out_kvec[index].iov_len = size;
831         con->out_kvec[index].iov_base = data;
832         con->out_kvec_left++;
833         con->out_kvec_bytes += size;
834 }
835
836 /*
837  * Chop off a kvec from the end.  Return residual number of bytes for
838  * that kvec, i.e. how many bytes would have been written if the kvec
839  * hadn't been nuked.
840  */
841 static int con_out_kvec_skip(struct ceph_connection *con)
842 {
843         int off = con->out_kvec_cur - con->out_kvec;
844         int skip = 0;
845
846         if (con->out_kvec_bytes > 0) {
847                 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
848                 BUG_ON(con->out_kvec_bytes < skip);
849                 BUG_ON(!con->out_kvec_left);
850                 con->out_kvec_bytes -= skip;
851                 con->out_kvec_left--;
852         }
853
854         return skip;
855 }
856
857 #ifdef CONFIG_BLOCK
858
859 /*
860  * For a bio data item, a piece is whatever remains of the next
861  * entry in the current bio iovec, or the first entry in the next
862  * bio in the list.
863  */
864 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
865                                         size_t length)
866 {
867         struct ceph_msg_data *data = cursor->data;
868         struct ceph_bio_iter *it = &cursor->bio_iter;
869
870         cursor->resid = min_t(size_t, length, data->bio_length);
871         *it = data->bio_pos;
872         if (cursor->resid < it->iter.bi_size)
873                 it->iter.bi_size = cursor->resid;
874
875         BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
876         cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
877 }
878
879 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
880                                                 size_t *page_offset,
881                                                 size_t *length)
882 {
883         struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
884                                            cursor->bio_iter.iter);
885
886         *page_offset = bv.bv_offset;
887         *length = bv.bv_len;
888         return bv.bv_page;
889 }
890
891 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
892                                         size_t bytes)
893 {
894         struct ceph_bio_iter *it = &cursor->bio_iter;
895         struct page *page = bio_iter_page(it->bio, it->iter);
896
897         BUG_ON(bytes > cursor->resid);
898         BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
899         cursor->resid -= bytes;
900         bio_advance_iter(it->bio, &it->iter, bytes);
901
902         if (!cursor->resid) {
903                 BUG_ON(!cursor->last_piece);
904                 return false;   /* no more data */
905         }
906
907         if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
908                        page == bio_iter_page(it->bio, it->iter)))
909                 return false;   /* more bytes to process in this segment */
910
911         if (!it->iter.bi_size) {
912                 it->bio = it->bio->bi_next;
913                 it->iter = it->bio->bi_iter;
914                 if (cursor->resid < it->iter.bi_size)
915                         it->iter.bi_size = cursor->resid;
916         }
917
918         BUG_ON(cursor->last_piece);
919         BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
920         cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
921         return true;
922 }
923 #endif /* CONFIG_BLOCK */
924
925 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
926                                         size_t length)
927 {
928         struct ceph_msg_data *data = cursor->data;
929         struct bio_vec *bvecs = data->bvec_pos.bvecs;
930
931         cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
932         cursor->bvec_iter = data->bvec_pos.iter;
933         cursor->bvec_iter.bi_size = cursor->resid;
934
935         BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
936         cursor->last_piece =
937             cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
938 }
939
940 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
941                                                 size_t *page_offset,
942                                                 size_t *length)
943 {
944         struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
945                                            cursor->bvec_iter);
946
947         *page_offset = bv.bv_offset;
948         *length = bv.bv_len;
949         return bv.bv_page;
950 }
951
952 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
953                                         size_t bytes)
954 {
955         struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
956         struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
957
958         BUG_ON(bytes > cursor->resid);
959         BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
960         cursor->resid -= bytes;
961         bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
962
963         if (!cursor->resid) {
964                 BUG_ON(!cursor->last_piece);
965                 return false;   /* no more data */
966         }
967
968         if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
969                        page == bvec_iter_page(bvecs, cursor->bvec_iter)))
970                 return false;   /* more bytes to process in this segment */
971
972         BUG_ON(cursor->last_piece);
973         BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
974         cursor->last_piece =
975             cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
976         return true;
977 }
978
979 /*
980  * For a page array, a piece comes from the first page in the array
981  * that has not already been fully consumed.
982  */
983 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
984                                         size_t length)
985 {
986         struct ceph_msg_data *data = cursor->data;
987         int page_count;
988
989         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
990
991         BUG_ON(!data->pages);
992         BUG_ON(!data->length);
993
994         cursor->resid = min(length, data->length);
995         page_count = calc_pages_for(data->alignment, (u64)data->length);
996         cursor->page_offset = data->alignment & ~PAGE_MASK;
997         cursor->page_index = 0;
998         BUG_ON(page_count > (int)USHRT_MAX);
999         cursor->page_count = (unsigned short)page_count;
1000         BUG_ON(length > SIZE_MAX - cursor->page_offset);
1001         cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
1002 }
1003
1004 static struct page *
1005 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
1006                                         size_t *page_offset, size_t *length)
1007 {
1008         struct ceph_msg_data *data = cursor->data;
1009
1010         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
1011
1012         BUG_ON(cursor->page_index >= cursor->page_count);
1013         BUG_ON(cursor->page_offset >= PAGE_SIZE);
1014
1015         *page_offset = cursor->page_offset;
1016         if (cursor->last_piece)
1017                 *length = cursor->resid;
1018         else
1019                 *length = PAGE_SIZE - *page_offset;
1020
1021         return data->pages[cursor->page_index];
1022 }
1023
1024 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
1025                                                 size_t bytes)
1026 {
1027         BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
1028
1029         BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
1030
1031         /* Advance the cursor page offset */
1032
1033         cursor->resid -= bytes;
1034         cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
1035         if (!bytes || cursor->page_offset)
1036                 return false;   /* more bytes to process in the current page */
1037
1038         if (!cursor->resid)
1039                 return false;   /* no more data */
1040
1041         /* Move on to the next page; offset is already at 0 */
1042
1043         BUG_ON(cursor->page_index >= cursor->page_count);
1044         cursor->page_index++;
1045         cursor->last_piece = cursor->resid <= PAGE_SIZE;
1046
1047         return true;
1048 }
1049
1050 /*
1051  * For a pagelist, a piece is whatever remains to be consumed in the
1052  * first page in the list, or the front of the next page.
1053  */
1054 static void
1055 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1056                                         size_t length)
1057 {
1058         struct ceph_msg_data *data = cursor->data;
1059         struct ceph_pagelist *pagelist;
1060         struct page *page;
1061
1062         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1063
1064         pagelist = data->pagelist;
1065         BUG_ON(!pagelist);
1066
1067         if (!length)
1068                 return;         /* pagelist can be assigned but empty */
1069
1070         BUG_ON(list_empty(&pagelist->head));
1071         page = list_first_entry(&pagelist->head, struct page, lru);
1072
1073         cursor->resid = min(length, pagelist->length);
1074         cursor->page = page;
1075         cursor->offset = 0;
1076         cursor->last_piece = cursor->resid <= PAGE_SIZE;
1077 }
1078
1079 static struct page *
1080 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1081                                 size_t *page_offset, size_t *length)
1082 {
1083         struct ceph_msg_data *data = cursor->data;
1084         struct ceph_pagelist *pagelist;
1085
1086         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1087
1088         pagelist = data->pagelist;
1089         BUG_ON(!pagelist);
1090
1091         BUG_ON(!cursor->page);
1092         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1093
1094         /* offset of first page in pagelist is always 0 */
1095         *page_offset = cursor->offset & ~PAGE_MASK;
1096         if (cursor->last_piece)
1097                 *length = cursor->resid;
1098         else
1099                 *length = PAGE_SIZE - *page_offset;
1100
1101         return cursor->page;
1102 }
1103
1104 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1105                                                 size_t bytes)
1106 {
1107         struct ceph_msg_data *data = cursor->data;
1108         struct ceph_pagelist *pagelist;
1109
1110         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1111
1112         pagelist = data->pagelist;
1113         BUG_ON(!pagelist);
1114
1115         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1116         BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1117
1118         /* Advance the cursor offset */
1119
1120         cursor->resid -= bytes;
1121         cursor->offset += bytes;
1122         /* offset of first page in pagelist is always 0 */
1123         if (!bytes || cursor->offset & ~PAGE_MASK)
1124                 return false;   /* more bytes to process in the current page */
1125
1126         if (!cursor->resid)
1127                 return false;   /* no more data */
1128
1129         /* Move on to the next page */
1130
1131         BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1132         cursor->page = list_next_entry(cursor->page, lru);
1133         cursor->last_piece = cursor->resid <= PAGE_SIZE;
1134
1135         return true;
1136 }
1137
1138 /*
1139  * Message data is handled (sent or received) in pieces, where each
1140  * piece resides on a single page.  The network layer might not
1141  * consume an entire piece at once.  A data item's cursor keeps
1142  * track of which piece is next to process and how much remains to
1143  * be processed in that piece.  It also tracks whether the current
1144  * piece is the last one in the data item.
1145  */
1146 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1147 {
1148         size_t length = cursor->total_resid;
1149
1150         switch (cursor->data->type) {
1151         case CEPH_MSG_DATA_PAGELIST:
1152                 ceph_msg_data_pagelist_cursor_init(cursor, length);
1153                 break;
1154         case CEPH_MSG_DATA_PAGES:
1155                 ceph_msg_data_pages_cursor_init(cursor, length);
1156                 break;
1157 #ifdef CONFIG_BLOCK
1158         case CEPH_MSG_DATA_BIO:
1159                 ceph_msg_data_bio_cursor_init(cursor, length);
1160                 break;
1161 #endif /* CONFIG_BLOCK */
1162         case CEPH_MSG_DATA_BVECS:
1163                 ceph_msg_data_bvecs_cursor_init(cursor, length);
1164                 break;
1165         case CEPH_MSG_DATA_NONE:
1166         default:
1167                 /* BUG(); */
1168                 break;
1169         }
1170         cursor->need_crc = true;
1171 }
1172
1173 static void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1174                                       struct ceph_msg *msg, size_t length)
1175 {
1176         BUG_ON(!length);
1177         BUG_ON(length > msg->data_length);
1178         BUG_ON(!msg->num_data_items);
1179
1180         cursor->total_resid = length;
1181         cursor->data = msg->data;
1182
1183         __ceph_msg_data_cursor_init(cursor);
1184 }
1185
1186 /*
1187  * Return the page containing the next piece to process for a given
1188  * data item, and supply the page offset and length of that piece.
1189  * Indicate whether this is the last piece in this data item.
1190  */
1191 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1192                                         size_t *page_offset, size_t *length,
1193                                         bool *last_piece)
1194 {
1195         struct page *page;
1196
1197         switch (cursor->data->type) {
1198         case CEPH_MSG_DATA_PAGELIST:
1199                 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1200                 break;
1201         case CEPH_MSG_DATA_PAGES:
1202                 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1203                 break;
1204 #ifdef CONFIG_BLOCK
1205         case CEPH_MSG_DATA_BIO:
1206                 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1207                 break;
1208 #endif /* CONFIG_BLOCK */
1209         case CEPH_MSG_DATA_BVECS:
1210                 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1211                 break;
1212         case CEPH_MSG_DATA_NONE:
1213         default:
1214                 page = NULL;
1215                 break;
1216         }
1217
1218         BUG_ON(!page);
1219         BUG_ON(*page_offset + *length > PAGE_SIZE);
1220         BUG_ON(!*length);
1221         BUG_ON(*length > cursor->resid);
1222         if (last_piece)
1223                 *last_piece = cursor->last_piece;
1224
1225         return page;
1226 }
1227
1228 /*
1229  * Returns true if the result moves the cursor on to the next piece
1230  * of the data item.
1231  */
1232 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1233                                   size_t bytes)
1234 {
1235         bool new_piece;
1236
1237         BUG_ON(bytes > cursor->resid);
1238         switch (cursor->data->type) {
1239         case CEPH_MSG_DATA_PAGELIST:
1240                 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1241                 break;
1242         case CEPH_MSG_DATA_PAGES:
1243                 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1244                 break;
1245 #ifdef CONFIG_BLOCK
1246         case CEPH_MSG_DATA_BIO:
1247                 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1248                 break;
1249 #endif /* CONFIG_BLOCK */
1250         case CEPH_MSG_DATA_BVECS:
1251                 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1252                 break;
1253         case CEPH_MSG_DATA_NONE:
1254         default:
1255                 BUG();
1256                 break;
1257         }
1258         cursor->total_resid -= bytes;
1259
1260         if (!cursor->resid && cursor->total_resid) {
1261                 WARN_ON(!cursor->last_piece);
1262                 cursor->data++;
1263                 __ceph_msg_data_cursor_init(cursor);
1264                 new_piece = true;
1265         }
1266         cursor->need_crc = new_piece;
1267 }
1268
1269 static size_t sizeof_footer(struct ceph_connection *con)
1270 {
1271         return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1272             sizeof(struct ceph_msg_footer) :
1273             sizeof(struct ceph_msg_footer_old);
1274 }
1275
1276 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1277 {
1278         /* Initialize data cursor */
1279
1280         ceph_msg_data_cursor_init(&msg->cursor, msg, data_len);
1281 }
1282
1283 /*
1284  * Prepare footer for currently outgoing message, and finish things
1285  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1286  */
1287 static void prepare_write_message_footer(struct ceph_connection *con)
1288 {
1289         struct ceph_msg *m = con->out_msg;
1290
1291         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1292
1293         dout("prepare_write_message_footer %p\n", con);
1294         con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1295         if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1296                 if (con->ops->sign_message)
1297                         con->ops->sign_message(m);
1298                 else
1299                         m->footer.sig = 0;
1300         } else {
1301                 m->old_footer.flags = m->footer.flags;
1302         }
1303         con->out_more = m->more_to_follow;
1304         con->out_msg_done = true;
1305 }
1306
1307 /*
1308  * Prepare headers for the next outgoing message.
1309  */
1310 static void prepare_write_message(struct ceph_connection *con)
1311 {
1312         struct ceph_msg *m;
1313         u32 crc;
1314
1315         con_out_kvec_reset(con);
1316         con->out_msg_done = false;
1317
1318         /* Sneak an ack in there first?  If we can get it into the same
1319          * TCP packet that's a good thing. */
1320         if (con->in_seq > con->in_seq_acked) {
1321                 con->in_seq_acked = con->in_seq;
1322                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1323                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1324                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1325                         &con->out_temp_ack);
1326         }
1327
1328         BUG_ON(list_empty(&con->out_queue));
1329         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1330         con->out_msg = m;
1331         BUG_ON(m->con != con);
1332
1333         /* put message on sent list */
1334         ceph_msg_get(m);
1335         list_move_tail(&m->list_head, &con->out_sent);
1336
1337         /*
1338          * only assign outgoing seq # if we haven't sent this message
1339          * yet.  if it is requeued, resend with it's original seq.
1340          */
1341         if (m->needs_out_seq) {
1342                 m->hdr.seq = cpu_to_le64(++con->out_seq);
1343                 m->needs_out_seq = false;
1344
1345                 if (con->ops->reencode_message)
1346                         con->ops->reencode_message(m);
1347         }
1348
1349         dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1350              m, con->out_seq, le16_to_cpu(m->hdr.type),
1351              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1352              m->data_length);
1353         WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1354         WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1355
1356         /* tag + hdr + front + middle */
1357         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1358         con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1359         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1360
1361         if (m->middle)
1362                 con_out_kvec_add(con, m->middle->vec.iov_len,
1363                         m->middle->vec.iov_base);
1364
1365         /* fill in hdr crc and finalize hdr */
1366         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1367         con->out_msg->hdr.crc = cpu_to_le32(crc);
1368         memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1369
1370         /* fill in front and middle crc, footer */
1371         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1372         con->out_msg->footer.front_crc = cpu_to_le32(crc);
1373         if (m->middle) {
1374                 crc = crc32c(0, m->middle->vec.iov_base,
1375                                 m->middle->vec.iov_len);
1376                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1377         } else
1378                 con->out_msg->footer.middle_crc = 0;
1379         dout("%s front_crc %u middle_crc %u\n", __func__,
1380              le32_to_cpu(con->out_msg->footer.front_crc),
1381              le32_to_cpu(con->out_msg->footer.middle_crc));
1382         con->out_msg->footer.flags = 0;
1383
1384         /* is there a data payload? */
1385         con->out_msg->footer.data_crc = 0;
1386         if (m->data_length) {
1387                 prepare_message_data(con->out_msg, m->data_length);
1388                 con->out_more = 1;  /* data + footer will follow */
1389         } else {
1390                 /* no, queue up footer too and be done */
1391                 prepare_write_message_footer(con);
1392         }
1393
1394         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1395 }
1396
1397 /*
1398  * Prepare an ack.
1399  */
1400 static void prepare_write_ack(struct ceph_connection *con)
1401 {
1402         dout("prepare_write_ack %p %llu -> %llu\n", con,
1403              con->in_seq_acked, con->in_seq);
1404         con->in_seq_acked = con->in_seq;
1405
1406         con_out_kvec_reset(con);
1407
1408         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1409
1410         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1411         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1412                                 &con->out_temp_ack);
1413
1414         con->out_more = 1;  /* more will follow.. eventually.. */
1415         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1416 }
1417
1418 /*
1419  * Prepare to share the seq during handshake
1420  */
1421 static void prepare_write_seq(struct ceph_connection *con)
1422 {
1423         dout("prepare_write_seq %p %llu -> %llu\n", con,
1424              con->in_seq_acked, con->in_seq);
1425         con->in_seq_acked = con->in_seq;
1426
1427         con_out_kvec_reset(con);
1428
1429         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1430         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1431                          &con->out_temp_ack);
1432
1433         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1434 }
1435
1436 /*
1437  * Prepare to write keepalive byte.
1438  */
1439 static void prepare_write_keepalive(struct ceph_connection *con)
1440 {
1441         dout("prepare_write_keepalive %p\n", con);
1442         con_out_kvec_reset(con);
1443         if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1444                 struct timespec64 now;
1445
1446                 ktime_get_real_ts64(&now);
1447                 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1448                 ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1449                 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1450                                  &con->out_temp_keepalive2);
1451         } else {
1452                 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1453         }
1454         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1455 }
1456
1457 /*
1458  * Connection negotiation.
1459  */
1460
1461 static int get_connect_authorizer(struct ceph_connection *con)
1462 {
1463         struct ceph_auth_handshake *auth;
1464         int auth_proto;
1465
1466         if (!con->ops->get_authorizer) {
1467                 con->auth = NULL;
1468                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1469                 con->out_connect.authorizer_len = 0;
1470                 return 0;
1471         }
1472
1473         auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1474         if (IS_ERR(auth))
1475                 return PTR_ERR(auth);
1476
1477         con->auth = auth;
1478         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1479         con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1480         return 0;
1481 }
1482
1483 /*
1484  * We connected to a peer and are saying hello.
1485  */
1486 static void prepare_write_banner(struct ceph_connection *con)
1487 {
1488         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1489         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1490                                         &con->msgr->my_enc_addr);
1491
1492         con->out_more = 0;
1493         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1494 }
1495
1496 static void __prepare_write_connect(struct ceph_connection *con)
1497 {
1498         con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1499         if (con->auth)
1500                 con_out_kvec_add(con, con->auth->authorizer_buf_len,
1501                                  con->auth->authorizer_buf);
1502
1503         con->out_more = 0;
1504         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1505 }
1506
1507 static int prepare_write_connect(struct ceph_connection *con)
1508 {
1509         unsigned int global_seq = get_global_seq(con->msgr, 0);
1510         int proto;
1511         int ret;
1512
1513         switch (con->peer_name.type) {
1514         case CEPH_ENTITY_TYPE_MON:
1515                 proto = CEPH_MONC_PROTOCOL;
1516                 break;
1517         case CEPH_ENTITY_TYPE_OSD:
1518                 proto = CEPH_OSDC_PROTOCOL;
1519                 break;
1520         case CEPH_ENTITY_TYPE_MDS:
1521                 proto = CEPH_MDSC_PROTOCOL;
1522                 break;
1523         default:
1524                 BUG();
1525         }
1526
1527         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1528              con->connect_seq, global_seq, proto);
1529
1530         con->out_connect.features =
1531             cpu_to_le64(from_msgr(con->msgr)->supported_features);
1532         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1533         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1534         con->out_connect.global_seq = cpu_to_le32(global_seq);
1535         con->out_connect.protocol_version = cpu_to_le32(proto);
1536         con->out_connect.flags = 0;
1537
1538         ret = get_connect_authorizer(con);
1539         if (ret)
1540                 return ret;
1541
1542         __prepare_write_connect(con);
1543         return 0;
1544 }
1545
1546 /*
1547  * write as much of pending kvecs to the socket as we can.
1548  *  1 -> done
1549  *  0 -> socket full, but more to do
1550  * <0 -> error
1551  */
1552 static int write_partial_kvec(struct ceph_connection *con)
1553 {
1554         int ret;
1555
1556         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1557         while (con->out_kvec_bytes > 0) {
1558                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1559                                        con->out_kvec_left, con->out_kvec_bytes,
1560                                        con->out_more);
1561                 if (ret <= 0)
1562                         goto out;
1563                 con->out_kvec_bytes -= ret;
1564                 if (con->out_kvec_bytes == 0)
1565                         break;            /* done */
1566
1567                 /* account for full iov entries consumed */
1568                 while (ret >= con->out_kvec_cur->iov_len) {
1569                         BUG_ON(!con->out_kvec_left);
1570                         ret -= con->out_kvec_cur->iov_len;
1571                         con->out_kvec_cur++;
1572                         con->out_kvec_left--;
1573                 }
1574                 /* and for a partially-consumed entry */
1575                 if (ret) {
1576                         con->out_kvec_cur->iov_len -= ret;
1577                         con->out_kvec_cur->iov_base += ret;
1578                 }
1579         }
1580         con->out_kvec_left = 0;
1581         ret = 1;
1582 out:
1583         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1584              con->out_kvec_bytes, con->out_kvec_left, ret);
1585         return ret;  /* done! */
1586 }
1587
1588 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1589                                 unsigned int page_offset,
1590                                 unsigned int length)
1591 {
1592         char *kaddr;
1593
1594         kaddr = kmap(page);
1595         BUG_ON(kaddr == NULL);
1596         crc = crc32c(crc, kaddr + page_offset, length);
1597         kunmap(page);
1598
1599         return crc;
1600 }
1601 /*
1602  * Write as much message data payload as we can.  If we finish, queue
1603  * up the footer.
1604  *  1 -> done, footer is now queued in out_kvec[].
1605  *  0 -> socket full, but more to do
1606  * <0 -> error
1607  */
1608 static int write_partial_message_data(struct ceph_connection *con)
1609 {
1610         struct ceph_msg *msg = con->out_msg;
1611         struct ceph_msg_data_cursor *cursor = &msg->cursor;
1612         bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1613         int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1614         u32 crc;
1615
1616         dout("%s %p msg %p\n", __func__, con, msg);
1617
1618         if (!msg->num_data_items)
1619                 return -EINVAL;
1620
1621         /*
1622          * Iterate through each page that contains data to be
1623          * written, and send as much as possible for each.
1624          *
1625          * If we are calculating the data crc (the default), we will
1626          * need to map the page.  If we have no pages, they have
1627          * been revoked, so use the zero page.
1628          */
1629         crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1630         while (cursor->total_resid) {
1631                 struct page *page;
1632                 size_t page_offset;
1633                 size_t length;
1634                 int ret;
1635
1636                 if (!cursor->resid) {
1637                         ceph_msg_data_advance(cursor, 0);
1638                         continue;
1639                 }
1640
1641                 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
1642                 if (length == cursor->total_resid)
1643                         more = MSG_MORE;
1644                 ret = ceph_tcp_sendpage(con->sock, page, page_offset, length,
1645                                         more);
1646                 if (ret <= 0) {
1647                         if (do_datacrc)
1648                                 msg->footer.data_crc = cpu_to_le32(crc);
1649
1650                         return ret;
1651                 }
1652                 if (do_datacrc && cursor->need_crc)
1653                         crc = ceph_crc32c_page(crc, page, page_offset, length);
1654                 ceph_msg_data_advance(cursor, (size_t)ret);
1655         }
1656
1657         dout("%s %p msg %p done\n", __func__, con, msg);
1658
1659         /* prepare and queue up footer, too */
1660         if (do_datacrc)
1661                 msg->footer.data_crc = cpu_to_le32(crc);
1662         else
1663                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1664         con_out_kvec_reset(con);
1665         prepare_write_message_footer(con);
1666
1667         return 1;       /* must return > 0 to indicate success */
1668 }
1669
1670 /*
1671  * write some zeros
1672  */
1673 static int write_partial_skip(struct ceph_connection *con)
1674 {
1675         int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1676         int ret;
1677
1678         dout("%s %p %d left\n", __func__, con, con->out_skip);
1679         while (con->out_skip > 0) {
1680                 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1681
1682                 if (size == con->out_skip)
1683                         more = MSG_MORE;
1684                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more);
1685                 if (ret <= 0)
1686                         goto out;
1687                 con->out_skip -= ret;
1688         }
1689         ret = 1;
1690 out:
1691         return ret;
1692 }
1693
1694 /*
1695  * Prepare to read connection handshake, or an ack.
1696  */
1697 static void prepare_read_banner(struct ceph_connection *con)
1698 {
1699         dout("prepare_read_banner %p\n", con);
1700         con->in_base_pos = 0;
1701 }
1702
1703 static void prepare_read_connect(struct ceph_connection *con)
1704 {
1705         dout("prepare_read_connect %p\n", con);
1706         con->in_base_pos = 0;
1707 }
1708
1709 static void prepare_read_ack(struct ceph_connection *con)
1710 {
1711         dout("prepare_read_ack %p\n", con);
1712         con->in_base_pos = 0;
1713 }
1714
1715 static void prepare_read_seq(struct ceph_connection *con)
1716 {
1717         dout("prepare_read_seq %p\n", con);
1718         con->in_base_pos = 0;
1719         con->in_tag = CEPH_MSGR_TAG_SEQ;
1720 }
1721
1722 static void prepare_read_tag(struct ceph_connection *con)
1723 {
1724         dout("prepare_read_tag %p\n", con);
1725         con->in_base_pos = 0;
1726         con->in_tag = CEPH_MSGR_TAG_READY;
1727 }
1728
1729 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1730 {
1731         dout("prepare_read_keepalive_ack %p\n", con);
1732         con->in_base_pos = 0;
1733 }
1734
1735 /*
1736  * Prepare to read a message.
1737  */
1738 static int prepare_read_message(struct ceph_connection *con)
1739 {
1740         dout("prepare_read_message %p\n", con);
1741         BUG_ON(con->in_msg != NULL);
1742         con->in_base_pos = 0;
1743         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1744         return 0;
1745 }
1746
1747
1748 static int read_partial(struct ceph_connection *con,
1749                         int end, int size, void *object)
1750 {
1751         while (con->in_base_pos < end) {
1752                 int left = end - con->in_base_pos;
1753                 int have = size - left;
1754                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1755                 if (ret <= 0)
1756                         return ret;
1757                 con->in_base_pos += ret;
1758         }
1759         return 1;
1760 }
1761
1762
1763 /*
1764  * Read all or part of the connect-side handshake on a new connection
1765  */
1766 static int read_partial_banner(struct ceph_connection *con)
1767 {
1768         int size;
1769         int end;
1770         int ret;
1771
1772         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1773
1774         /* peer's banner */
1775         size = strlen(CEPH_BANNER);
1776         end = size;
1777         ret = read_partial(con, end, size, con->in_banner);
1778         if (ret <= 0)
1779                 goto out;
1780
1781         size = sizeof (con->actual_peer_addr);
1782         end += size;
1783         ret = read_partial(con, end, size, &con->actual_peer_addr);
1784         if (ret <= 0)
1785                 goto out;
1786         ceph_decode_banner_addr(&con->actual_peer_addr);
1787
1788         size = sizeof (con->peer_addr_for_me);
1789         end += size;
1790         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1791         if (ret <= 0)
1792                 goto out;
1793         ceph_decode_banner_addr(&con->peer_addr_for_me);
1794
1795 out:
1796         return ret;
1797 }
1798
1799 static int read_partial_connect(struct ceph_connection *con)
1800 {
1801         int size;
1802         int end;
1803         int ret;
1804
1805         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1806
1807         size = sizeof (con->in_reply);
1808         end = size;
1809         ret = read_partial(con, end, size, &con->in_reply);
1810         if (ret <= 0)
1811                 goto out;
1812
1813         if (con->auth) {
1814                 size = le32_to_cpu(con->in_reply.authorizer_len);
1815                 if (size > con->auth->authorizer_reply_buf_len) {
1816                         pr_err("authorizer reply too big: %d > %zu\n", size,
1817                                con->auth->authorizer_reply_buf_len);
1818                         ret = -EINVAL;
1819                         goto out;
1820                 }
1821
1822                 end += size;
1823                 ret = read_partial(con, end, size,
1824                                    con->auth->authorizer_reply_buf);
1825                 if (ret <= 0)
1826                         goto out;
1827         }
1828
1829         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1830              con, (int)con->in_reply.tag,
1831              le32_to_cpu(con->in_reply.connect_seq),
1832              le32_to_cpu(con->in_reply.global_seq));
1833 out:
1834         return ret;
1835 }
1836
1837 /*
1838  * Verify the hello banner looks okay.
1839  */
1840 static int verify_hello(struct ceph_connection *con)
1841 {
1842         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1843                 pr_err("connect to %s got bad banner\n",
1844                        ceph_pr_addr(&con->peer_addr));
1845                 con->error_msg = "protocol error, bad banner";
1846                 return -1;
1847         }
1848         return 0;
1849 }
1850
1851 static bool addr_is_blank(struct ceph_entity_addr *addr)
1852 {
1853         struct sockaddr_storage ss = addr->in_addr; /* align */
1854         struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1855         struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1856
1857         switch (ss.ss_family) {
1858         case AF_INET:
1859                 return addr4->s_addr == htonl(INADDR_ANY);
1860         case AF_INET6:
1861                 return ipv6_addr_any(addr6);
1862         default:
1863                 return true;
1864         }
1865 }
1866
1867 static int addr_port(struct ceph_entity_addr *addr)
1868 {
1869         switch (get_unaligned(&addr->in_addr.ss_family)) {
1870         case AF_INET:
1871                 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1872         case AF_INET6:
1873                 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1874         }
1875         return 0;
1876 }
1877
1878 static void addr_set_port(struct ceph_entity_addr *addr, int p)
1879 {
1880         switch (get_unaligned(&addr->in_addr.ss_family)) {
1881         case AF_INET:
1882                 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1883                 break;
1884         case AF_INET6:
1885                 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1886                 break;
1887         }
1888 }
1889
1890 /*
1891  * Unlike other *_pton function semantics, zero indicates success.
1892  */
1893 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1894                 char delim, const char **ipend)
1895 {
1896         memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1897
1898         if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1899                 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1900                 return 0;
1901         }
1902
1903         if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1904                 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1905                 return 0;
1906         }
1907
1908         return -EINVAL;
1909 }
1910
1911 /*
1912  * Extract hostname string and resolve using kernel DNS facility.
1913  */
1914 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1915 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1916                 struct ceph_entity_addr *addr, char delim, const char **ipend)
1917 {
1918         const char *end, *delim_p;
1919         char *colon_p, *ip_addr = NULL;
1920         int ip_len, ret;
1921
1922         /*
1923          * The end of the hostname occurs immediately preceding the delimiter or
1924          * the port marker (':') where the delimiter takes precedence.
1925          */
1926         delim_p = memchr(name, delim, namelen);
1927         colon_p = memchr(name, ':', namelen);
1928
1929         if (delim_p && colon_p)
1930                 end = delim_p < colon_p ? delim_p : colon_p;
1931         else if (!delim_p && colon_p)
1932                 end = colon_p;
1933         else {
1934                 end = delim_p;
1935                 if (!end) /* case: hostname:/ */
1936                         end = name + namelen;
1937         }
1938
1939         if (end <= name)
1940                 return -EINVAL;
1941
1942         /* do dns_resolve upcall */
1943         ip_len = dns_query(current->nsproxy->net_ns,
1944                            NULL, name, end - name, NULL, &ip_addr, NULL, false);
1945         if (ip_len > 0)
1946                 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1947         else
1948                 ret = -ESRCH;
1949
1950         kfree(ip_addr);
1951
1952         *ipend = end;
1953
1954         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1955                         ret, ret ? "failed" : ceph_pr_addr(addr));
1956
1957         return ret;
1958 }
1959 #else
1960 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1961                 struct ceph_entity_addr *addr, char delim, const char **ipend)
1962 {
1963         return -EINVAL;
1964 }
1965 #endif
1966
1967 /*
1968  * Parse a server name (IP or hostname). If a valid IP address is not found
1969  * then try to extract a hostname to resolve using userspace DNS upcall.
1970  */
1971 static int ceph_parse_server_name(const char *name, size_t namelen,
1972                 struct ceph_entity_addr *addr, char delim, const char **ipend)
1973 {
1974         int ret;
1975
1976         ret = ceph_pton(name, namelen, addr, delim, ipend);
1977         if (ret)
1978                 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1979
1980         return ret;
1981 }
1982
1983 /*
1984  * Parse an ip[:port] list into an addr array.  Use the default
1985  * monitor port if a port isn't specified.
1986  */
1987 int ceph_parse_ips(const char *c, const char *end,
1988                    struct ceph_entity_addr *addr,
1989                    int max_count, int *count)
1990 {
1991         int i, ret = -EINVAL;
1992         const char *p = c;
1993
1994         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1995         for (i = 0; i < max_count; i++) {
1996                 const char *ipend;
1997                 int port;
1998                 char delim = ',';
1999
2000                 if (*p == '[') {
2001                         delim = ']';
2002                         p++;
2003                 }
2004
2005                 ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend);
2006                 if (ret)
2007                         goto bad;
2008                 ret = -EINVAL;
2009
2010                 p = ipend;
2011
2012                 if (delim == ']') {
2013                         if (*p != ']') {
2014                                 dout("missing matching ']'\n");
2015                                 goto bad;
2016                         }
2017                         p++;
2018                 }
2019
2020                 /* port? */
2021                 if (p < end && *p == ':') {
2022                         port = 0;
2023                         p++;
2024                         while (p < end && *p >= '0' && *p <= '9') {
2025                                 port = (port * 10) + (*p - '0');
2026                                 p++;
2027                         }
2028                         if (port == 0)
2029                                 port = CEPH_MON_PORT;
2030                         else if (port > 65535)
2031                                 goto bad;
2032                 } else {
2033                         port = CEPH_MON_PORT;
2034                 }
2035
2036                 addr_set_port(&addr[i], port);
2037                 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
2038
2039                 dout("parse_ips got %s\n", ceph_pr_addr(&addr[i]));
2040
2041                 if (p == end)
2042                         break;
2043                 if (*p != ',')
2044                         goto bad;
2045                 p++;
2046         }
2047
2048         if (p != end)
2049                 goto bad;
2050
2051         if (count)
2052                 *count = i + 1;
2053         return 0;
2054
2055 bad:
2056         return ret;
2057 }
2058
2059 static int process_banner(struct ceph_connection *con)
2060 {
2061         dout("process_banner on %p\n", con);
2062
2063         if (verify_hello(con) < 0)
2064                 return -1;
2065
2066         /*
2067          * Make sure the other end is who we wanted.  note that the other
2068          * end may not yet know their ip address, so if it's 0.0.0.0, give
2069          * them the benefit of the doubt.
2070          */
2071         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2072                    sizeof(con->peer_addr)) != 0 &&
2073             !(addr_is_blank(&con->actual_peer_addr) &&
2074               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2075                 pr_warn("wrong peer, want %s/%u, got %s/%u\n",
2076                         ceph_pr_addr(&con->peer_addr),
2077                         le32_to_cpu(con->peer_addr.nonce),
2078                         ceph_pr_addr(&con->actual_peer_addr),
2079                         le32_to_cpu(con->actual_peer_addr.nonce));
2080                 con->error_msg = "wrong peer at address";
2081                 return -1;
2082         }
2083
2084         /*
2085          * did we learn our address?
2086          */
2087         if (addr_is_blank(&con->msgr->inst.addr)) {
2088                 int port = addr_port(&con->msgr->inst.addr);
2089
2090                 memcpy(&con->msgr->inst.addr.in_addr,
2091                        &con->peer_addr_for_me.in_addr,
2092                        sizeof(con->peer_addr_for_me.in_addr));
2093                 addr_set_port(&con->msgr->inst.addr, port);
2094                 encode_my_addr(con->msgr);
2095                 dout("process_banner learned my addr is %s\n",
2096                      ceph_pr_addr(&con->msgr->inst.addr));
2097         }
2098
2099         return 0;
2100 }
2101
2102 static int process_connect(struct ceph_connection *con)
2103 {
2104         u64 sup_feat = from_msgr(con->msgr)->supported_features;
2105         u64 req_feat = from_msgr(con->msgr)->required_features;
2106         u64 server_feat = le64_to_cpu(con->in_reply.features);
2107         int ret;
2108
2109         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2110
2111         if (con->auth) {
2112                 int len = le32_to_cpu(con->in_reply.authorizer_len);
2113
2114                 /*
2115                  * Any connection that defines ->get_authorizer()
2116                  * should also define ->add_authorizer_challenge() and
2117                  * ->verify_authorizer_reply().
2118                  *
2119                  * See get_connect_authorizer().
2120                  */
2121                 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2122                         ret = con->ops->add_authorizer_challenge(
2123                                     con, con->auth->authorizer_reply_buf, len);
2124                         if (ret < 0)
2125                                 return ret;
2126
2127                         con_out_kvec_reset(con);
2128                         __prepare_write_connect(con);
2129                         prepare_read_connect(con);
2130                         return 0;
2131                 }
2132
2133                 if (len) {
2134                         ret = con->ops->verify_authorizer_reply(con);
2135                         if (ret < 0) {
2136                                 con->error_msg = "bad authorize reply";
2137                                 return ret;
2138                         }
2139                 }
2140         }
2141
2142         switch (con->in_reply.tag) {
2143         case CEPH_MSGR_TAG_FEATURES:
2144                 pr_err("%s%lld %s feature set mismatch,"
2145                        " my %llx < server's %llx, missing %llx\n",
2146                        ENTITY_NAME(con->peer_name),
2147                        ceph_pr_addr(&con->peer_addr),
2148                        sup_feat, server_feat, server_feat & ~sup_feat);
2149                 con->error_msg = "missing required protocol features";
2150                 return -1;
2151
2152         case CEPH_MSGR_TAG_BADPROTOVER:
2153                 pr_err("%s%lld %s protocol version mismatch,"
2154                        " my %d != server's %d\n",
2155                        ENTITY_NAME(con->peer_name),
2156                        ceph_pr_addr(&con->peer_addr),
2157                        le32_to_cpu(con->out_connect.protocol_version),
2158                        le32_to_cpu(con->in_reply.protocol_version));
2159                 con->error_msg = "protocol version mismatch";
2160                 return -1;
2161
2162         case CEPH_MSGR_TAG_BADAUTHORIZER:
2163                 con->auth_retry++;
2164                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2165                      con->auth_retry);
2166                 if (con->auth_retry == 2) {
2167                         con->error_msg = "connect authorization failure";
2168                         return -1;
2169                 }
2170                 con_out_kvec_reset(con);
2171                 ret = prepare_write_connect(con);
2172                 if (ret < 0)
2173                         return ret;
2174                 prepare_read_connect(con);
2175                 break;
2176
2177         case CEPH_MSGR_TAG_RESETSESSION:
2178                 /*
2179                  * If we connected with a large connect_seq but the peer
2180                  * has no record of a session with us (no connection, or
2181                  * connect_seq == 0), they will send RESETSESION to indicate
2182                  * that they must have reset their session, and may have
2183                  * dropped messages.
2184                  */
2185                 dout("process_connect got RESET peer seq %u\n",
2186                      le32_to_cpu(con->in_reply.connect_seq));
2187                 pr_info("%s%lld %s session reset\n",
2188                         ENTITY_NAME(con->peer_name),
2189                         ceph_pr_addr(&con->peer_addr));
2190                 ceph_con_reset_session(con);
2191                 con_out_kvec_reset(con);
2192                 ret = prepare_write_connect(con);
2193                 if (ret < 0)
2194                         return ret;
2195                 prepare_read_connect(con);
2196
2197                 /* Tell ceph about it. */
2198                 mutex_unlock(&con->mutex);
2199                 if (con->ops->peer_reset)
2200                         con->ops->peer_reset(con);
2201                 mutex_lock(&con->mutex);
2202                 if (con->state != CON_STATE_NEGOTIATING)
2203                         return -EAGAIN;
2204                 break;
2205
2206         case CEPH_MSGR_TAG_RETRY_SESSION:
2207                 /*
2208                  * If we sent a smaller connect_seq than the peer has, try
2209                  * again with a larger value.
2210                  */
2211                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2212                      le32_to_cpu(con->out_connect.connect_seq),
2213                      le32_to_cpu(con->in_reply.connect_seq));
2214                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2215                 con_out_kvec_reset(con);
2216                 ret = prepare_write_connect(con);
2217                 if (ret < 0)
2218                         return ret;
2219                 prepare_read_connect(con);
2220                 break;
2221
2222         case CEPH_MSGR_TAG_RETRY_GLOBAL:
2223                 /*
2224                  * If we sent a smaller global_seq than the peer has, try
2225                  * again with a larger value.
2226                  */
2227                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2228                      con->peer_global_seq,
2229                      le32_to_cpu(con->in_reply.global_seq));
2230                 get_global_seq(con->msgr,
2231                                le32_to_cpu(con->in_reply.global_seq));
2232                 con_out_kvec_reset(con);
2233                 ret = prepare_write_connect(con);
2234                 if (ret < 0)
2235                         return ret;
2236                 prepare_read_connect(con);
2237                 break;
2238
2239         case CEPH_MSGR_TAG_SEQ:
2240         case CEPH_MSGR_TAG_READY:
2241                 if (req_feat & ~server_feat) {
2242                         pr_err("%s%lld %s protocol feature mismatch,"
2243                                " my required %llx > server's %llx, need %llx\n",
2244                                ENTITY_NAME(con->peer_name),
2245                                ceph_pr_addr(&con->peer_addr),
2246                                req_feat, server_feat, req_feat & ~server_feat);
2247                         con->error_msg = "missing required protocol features";
2248                         return -1;
2249                 }
2250
2251                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2252                 con->state = CON_STATE_OPEN;
2253                 con->auth_retry = 0;    /* we authenticated; clear flag */
2254                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2255                 con->connect_seq++;
2256                 con->peer_features = server_feat;
2257                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2258                      con->peer_global_seq,
2259                      le32_to_cpu(con->in_reply.connect_seq),
2260                      con->connect_seq);
2261                 WARN_ON(con->connect_seq !=
2262                         le32_to_cpu(con->in_reply.connect_seq));
2263
2264                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2265                         con_flag_set(con, CON_FLAG_LOSSYTX);
2266
2267                 con->delay = 0;      /* reset backoff memory */
2268
2269                 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2270                         prepare_write_seq(con);
2271                         prepare_read_seq(con);
2272                 } else {
2273                         prepare_read_tag(con);
2274                 }
2275                 break;
2276
2277         case CEPH_MSGR_TAG_WAIT:
2278                 /*
2279                  * If there is a connection race (we are opening
2280                  * connections to each other), one of us may just have
2281                  * to WAIT.  This shouldn't happen if we are the
2282                  * client.
2283                  */
2284                 con->error_msg = "protocol error, got WAIT as client";
2285                 return -1;
2286
2287         default:
2288                 con->error_msg = "protocol error, garbage tag during connect";
2289                 return -1;
2290         }
2291         return 0;
2292 }
2293
2294
2295 /*
2296  * read (part of) an ack
2297  */
2298 static int read_partial_ack(struct ceph_connection *con)
2299 {
2300         int size = sizeof (con->in_temp_ack);
2301         int end = size;
2302
2303         return read_partial(con, end, size, &con->in_temp_ack);
2304 }
2305
2306 /*
2307  * We can finally discard anything that's been acked.
2308  */
2309 static void process_ack(struct ceph_connection *con)
2310 {
2311         u64 ack = le64_to_cpu(con->in_temp_ack);
2312
2313         if (con->in_tag == CEPH_MSGR_TAG_ACK)
2314                 ceph_con_discard_sent(con, ack);
2315         else
2316                 ceph_con_discard_requeued(con, ack);
2317
2318         prepare_read_tag(con);
2319 }
2320
2321
2322 static int read_partial_message_section(struct ceph_connection *con,
2323                                         struct kvec *section,
2324                                         unsigned int sec_len, u32 *crc)
2325 {
2326         int ret, left;
2327
2328         BUG_ON(!section);
2329
2330         while (section->iov_len < sec_len) {
2331                 BUG_ON(section->iov_base == NULL);
2332                 left = sec_len - section->iov_len;
2333                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2334                                        section->iov_len, left);
2335                 if (ret <= 0)
2336                         return ret;
2337                 section->iov_len += ret;
2338         }
2339         if (section->iov_len == sec_len)
2340                 *crc = crc32c(0, section->iov_base, section->iov_len);
2341
2342         return 1;
2343 }
2344
2345 static int read_partial_msg_data(struct ceph_connection *con)
2346 {
2347         struct ceph_msg *msg = con->in_msg;
2348         struct ceph_msg_data_cursor *cursor = &msg->cursor;
2349         bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2350         struct page *page;
2351         size_t page_offset;
2352         size_t length;
2353         u32 crc = 0;
2354         int ret;
2355
2356         if (!msg->num_data_items)
2357                 return -EIO;
2358
2359         if (do_datacrc)
2360                 crc = con->in_data_crc;
2361         while (cursor->total_resid) {
2362                 if (!cursor->resid) {
2363                         ceph_msg_data_advance(cursor, 0);
2364                         continue;
2365                 }
2366
2367                 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2368                 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2369                 if (ret <= 0) {
2370                         if (do_datacrc)
2371                                 con->in_data_crc = crc;
2372
2373                         return ret;
2374                 }
2375
2376                 if (do_datacrc)
2377                         crc = ceph_crc32c_page(crc, page, page_offset, ret);
2378                 ceph_msg_data_advance(cursor, (size_t)ret);
2379         }
2380         if (do_datacrc)
2381                 con->in_data_crc = crc;
2382
2383         return 1;       /* must return > 0 to indicate success */
2384 }
2385
2386 /*
2387  * read (part of) a message.
2388  */
2389 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2390
2391 static int read_partial_message(struct ceph_connection *con)
2392 {
2393         struct ceph_msg *m = con->in_msg;
2394         int size;
2395         int end;
2396         int ret;
2397         unsigned int front_len, middle_len, data_len;
2398         bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2399         bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2400         u64 seq;
2401         u32 crc;
2402
2403         dout("read_partial_message con %p msg %p\n", con, m);
2404
2405         /* header */
2406         size = sizeof (con->in_hdr);
2407         end = size;
2408         ret = read_partial(con, end, size, &con->in_hdr);
2409         if (ret <= 0)
2410                 return ret;
2411
2412         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2413         if (cpu_to_le32(crc) != con->in_hdr.crc) {
2414                 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2415                        crc, con->in_hdr.crc);
2416                 return -EBADMSG;
2417         }
2418
2419         front_len = le32_to_cpu(con->in_hdr.front_len);
2420         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2421                 return -EIO;
2422         middle_len = le32_to_cpu(con->in_hdr.middle_len);
2423         if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2424                 return -EIO;
2425         data_len = le32_to_cpu(con->in_hdr.data_len);
2426         if (data_len > CEPH_MSG_MAX_DATA_LEN)
2427                 return -EIO;
2428
2429         /* verify seq# */
2430         seq = le64_to_cpu(con->in_hdr.seq);
2431         if ((s64)seq - (s64)con->in_seq < 1) {
2432                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2433                         ENTITY_NAME(con->peer_name),
2434                         ceph_pr_addr(&con->peer_addr),
2435                         seq, con->in_seq + 1);
2436                 con->in_base_pos = -front_len - middle_len - data_len -
2437                         sizeof_footer(con);
2438                 con->in_tag = CEPH_MSGR_TAG_READY;
2439                 return 1;
2440         } else if ((s64)seq - (s64)con->in_seq > 1) {
2441                 pr_err("read_partial_message bad seq %lld expected %lld\n",
2442                        seq, con->in_seq + 1);
2443                 con->error_msg = "bad message sequence # for incoming message";
2444                 return -EBADE;
2445         }
2446
2447         /* allocate message? */
2448         if (!con->in_msg) {
2449                 int skip = 0;
2450
2451                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2452                      front_len, data_len);
2453                 ret = ceph_con_in_msg_alloc(con, &skip);
2454                 if (ret < 0)
2455                         return ret;
2456
2457                 BUG_ON(!con->in_msg ^ skip);
2458                 if (skip) {
2459                         /* skip this message */
2460                         dout("alloc_msg said skip message\n");
2461                         con->in_base_pos = -front_len - middle_len - data_len -
2462                                 sizeof_footer(con);
2463                         con->in_tag = CEPH_MSGR_TAG_READY;
2464                         con->in_seq++;
2465                         return 1;
2466                 }
2467
2468                 BUG_ON(!con->in_msg);
2469                 BUG_ON(con->in_msg->con != con);
2470                 m = con->in_msg;
2471                 m->front.iov_len = 0;    /* haven't read it yet */
2472                 if (m->middle)
2473                         m->middle->vec.iov_len = 0;
2474
2475                 /* prepare for data payload, if any */
2476
2477                 if (data_len)
2478                         prepare_message_data(con->in_msg, data_len);
2479         }
2480
2481         /* front */
2482         ret = read_partial_message_section(con, &m->front, front_len,
2483                                            &con->in_front_crc);
2484         if (ret <= 0)
2485                 return ret;
2486
2487         /* middle */
2488         if (m->middle) {
2489                 ret = read_partial_message_section(con, &m->middle->vec,
2490                                                    middle_len,
2491                                                    &con->in_middle_crc);
2492                 if (ret <= 0)
2493                         return ret;
2494         }
2495
2496         /* (page) data */
2497         if (data_len) {
2498                 ret = read_partial_msg_data(con);
2499                 if (ret <= 0)
2500                         return ret;
2501         }
2502
2503         /* footer */
2504         size = sizeof_footer(con);
2505         end += size;
2506         ret = read_partial(con, end, size, &m->footer);
2507         if (ret <= 0)
2508                 return ret;
2509
2510         if (!need_sign) {
2511                 m->footer.flags = m->old_footer.flags;
2512                 m->footer.sig = 0;
2513         }
2514
2515         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2516              m, front_len, m->footer.front_crc, middle_len,
2517              m->footer.middle_crc, data_len, m->footer.data_crc);
2518
2519         /* crc ok? */
2520         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2521                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2522                        m, con->in_front_crc, m->footer.front_crc);
2523                 return -EBADMSG;
2524         }
2525         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2526                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2527                        m, con->in_middle_crc, m->footer.middle_crc);
2528                 return -EBADMSG;
2529         }
2530         if (do_datacrc &&
2531             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2532             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2533                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2534                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2535                 return -EBADMSG;
2536         }
2537
2538         if (need_sign && con->ops->check_message_signature &&
2539             con->ops->check_message_signature(m)) {
2540                 pr_err("read_partial_message %p signature check failed\n", m);
2541                 return -EBADMSG;
2542         }
2543
2544         return 1; /* done! */
2545 }
2546
2547 /*
2548  * Process message.  This happens in the worker thread.  The callback should
2549  * be careful not to do anything that waits on other incoming messages or it
2550  * may deadlock.
2551  */
2552 static void process_message(struct ceph_connection *con)
2553 {
2554         struct ceph_msg *msg = con->in_msg;
2555
2556         BUG_ON(con->in_msg->con != con);
2557         con->in_msg = NULL;
2558
2559         /* if first message, set peer_name */
2560         if (con->peer_name.type == 0)
2561                 con->peer_name = msg->hdr.src;
2562
2563         con->in_seq++;
2564         mutex_unlock(&con->mutex);
2565
2566         dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
2567              msg, le64_to_cpu(msg->hdr.seq),
2568              ENTITY_NAME(msg->hdr.src),
2569              le16_to_cpu(msg->hdr.type),
2570              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2571              le32_to_cpu(msg->hdr.front_len),
2572              le32_to_cpu(msg->hdr.middle_len),
2573              le32_to_cpu(msg->hdr.data_len),
2574              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2575         con->ops->dispatch(con, msg);
2576
2577         mutex_lock(&con->mutex);
2578 }
2579
2580 static int read_keepalive_ack(struct ceph_connection *con)
2581 {
2582         struct ceph_timespec ceph_ts;
2583         size_t size = sizeof(ceph_ts);
2584         int ret = read_partial(con, size, size, &ceph_ts);
2585         if (ret <= 0)
2586                 return ret;
2587         ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2588         prepare_read_tag(con);
2589         return 1;
2590 }
2591
2592 /*
2593  * Write something to the socket.  Called in a worker thread when the
2594  * socket appears to be writeable and we have something ready to send.
2595  */
2596 static int try_write(struct ceph_connection *con)
2597 {
2598         int ret = 1;
2599
2600         dout("try_write start %p state %lu\n", con, con->state);
2601         if (con->state != CON_STATE_PREOPEN &&
2602             con->state != CON_STATE_CONNECTING &&
2603             con->state != CON_STATE_NEGOTIATING &&
2604             con->state != CON_STATE_OPEN)
2605                 return 0;
2606
2607         /* open the socket first? */
2608         if (con->state == CON_STATE_PREOPEN) {
2609                 BUG_ON(con->sock);
2610                 con->state = CON_STATE_CONNECTING;
2611
2612                 con_out_kvec_reset(con);
2613                 prepare_write_banner(con);
2614                 prepare_read_banner(con);
2615
2616                 BUG_ON(con->in_msg);
2617                 con->in_tag = CEPH_MSGR_TAG_READY;
2618                 dout("try_write initiating connect on %p new state %lu\n",
2619                      con, con->state);
2620                 ret = ceph_tcp_connect(con);
2621                 if (ret < 0) {
2622                         con->error_msg = "connect error";
2623                         goto out;
2624                 }
2625         }
2626
2627 more:
2628         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2629         BUG_ON(!con->sock);
2630
2631         /* kvec data queued? */
2632         if (con->out_kvec_left) {
2633                 ret = write_partial_kvec(con);
2634                 if (ret <= 0)
2635                         goto out;
2636         }
2637         if (con->out_skip) {
2638                 ret = write_partial_skip(con);
2639                 if (ret <= 0)
2640                         goto out;
2641         }
2642
2643         /* msg pages? */
2644         if (con->out_msg) {
2645                 if (con->out_msg_done) {
2646                         ceph_msg_put(con->out_msg);
2647                         con->out_msg = NULL;   /* we're done with this one */
2648                         goto do_next;
2649                 }
2650
2651                 ret = write_partial_message_data(con);
2652                 if (ret == 1)
2653                         goto more;  /* we need to send the footer, too! */
2654                 if (ret == 0)
2655                         goto out;
2656                 if (ret < 0) {
2657                         dout("try_write write_partial_message_data err %d\n",
2658                              ret);
2659                         goto out;
2660                 }
2661         }
2662
2663 do_next:
2664         if (con->state == CON_STATE_OPEN) {
2665                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2666                         prepare_write_keepalive(con);
2667                         goto more;
2668                 }
2669                 /* is anything else pending? */
2670                 if (!list_empty(&con->out_queue)) {
2671                         prepare_write_message(con);
2672                         goto more;
2673                 }
2674                 if (con->in_seq > con->in_seq_acked) {
2675                         prepare_write_ack(con);
2676                         goto more;
2677                 }
2678         }
2679
2680         /* Nothing to do! */
2681         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2682         dout("try_write nothing else to write.\n");
2683         ret = 0;
2684 out:
2685         dout("try_write done on %p ret %d\n", con, ret);
2686         return ret;
2687 }
2688
2689 /*
2690  * Read what we can from the socket.
2691  */
2692 static int try_read(struct ceph_connection *con)
2693 {
2694         int ret = -1;
2695
2696 more:
2697         dout("try_read start on %p state %lu\n", con, con->state);
2698         if (con->state != CON_STATE_CONNECTING &&
2699             con->state != CON_STATE_NEGOTIATING &&
2700             con->state != CON_STATE_OPEN)
2701                 return 0;
2702
2703         BUG_ON(!con->sock);
2704
2705         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2706              con->in_base_pos);
2707
2708         if (con->state == CON_STATE_CONNECTING) {
2709                 dout("try_read connecting\n");
2710                 ret = read_partial_banner(con);
2711                 if (ret <= 0)
2712                         goto out;
2713                 ret = process_banner(con);
2714                 if (ret < 0)
2715                         goto out;
2716
2717                 con->state = CON_STATE_NEGOTIATING;
2718
2719                 /*
2720                  * Received banner is good, exchange connection info.
2721                  * Do not reset out_kvec, as sending our banner raced
2722                  * with receiving peer banner after connect completed.
2723                  */
2724                 ret = prepare_write_connect(con);
2725                 if (ret < 0)
2726                         goto out;
2727                 prepare_read_connect(con);
2728
2729                 /* Send connection info before awaiting response */
2730                 goto out;
2731         }
2732
2733         if (con->state == CON_STATE_NEGOTIATING) {
2734                 dout("try_read negotiating\n");
2735                 ret = read_partial_connect(con);
2736                 if (ret <= 0)
2737                         goto out;
2738                 ret = process_connect(con);
2739                 if (ret < 0)
2740                         goto out;
2741                 goto more;
2742         }
2743
2744         WARN_ON(con->state != CON_STATE_OPEN);
2745
2746         if (con->in_base_pos < 0) {
2747                 /*
2748                  * skipping + discarding content.
2749                  */
2750                 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2751                 if (ret <= 0)
2752                         goto out;
2753                 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2754                 con->in_base_pos += ret;
2755                 if (con->in_base_pos)
2756                         goto more;
2757         }
2758         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2759                 /*
2760                  * what's next?
2761                  */
2762                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2763                 if (ret <= 0)
2764                         goto out;
2765                 dout("try_read got tag %d\n", (int)con->in_tag);
2766                 switch (con->in_tag) {
2767                 case CEPH_MSGR_TAG_MSG:
2768                         prepare_read_message(con);
2769                         break;
2770                 case CEPH_MSGR_TAG_ACK:
2771                         prepare_read_ack(con);
2772                         break;
2773                 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2774                         prepare_read_keepalive_ack(con);
2775                         break;
2776                 case CEPH_MSGR_TAG_CLOSE:
2777                         con_close_socket(con);
2778                         con->state = CON_STATE_CLOSED;
2779                         goto out;
2780                 default:
2781                         goto bad_tag;
2782                 }
2783         }
2784         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2785                 ret = read_partial_message(con);
2786                 if (ret <= 0) {
2787                         switch (ret) {
2788                         case -EBADMSG:
2789                                 con->error_msg = "bad crc/signature";
2790                                 fallthrough;
2791                         case -EBADE:
2792                                 ret = -EIO;
2793                                 break;
2794                         case -EIO:
2795                                 con->error_msg = "io error";
2796                                 break;
2797                         }
2798                         goto out;
2799                 }
2800                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2801                         goto more;
2802                 process_message(con);
2803                 if (con->state == CON_STATE_OPEN)
2804                         prepare_read_tag(con);
2805                 goto more;
2806         }
2807         if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2808             con->in_tag == CEPH_MSGR_TAG_SEQ) {
2809                 /*
2810                  * the final handshake seq exchange is semantically
2811                  * equivalent to an ACK
2812                  */
2813                 ret = read_partial_ack(con);
2814                 if (ret <= 0)
2815                         goto out;
2816                 process_ack(con);
2817                 goto more;
2818         }
2819         if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2820                 ret = read_keepalive_ack(con);
2821                 if (ret <= 0)
2822                         goto out;
2823                 goto more;
2824         }
2825
2826 out:
2827         dout("try_read done on %p ret %d\n", con, ret);
2828         return ret;
2829
2830 bad_tag:
2831         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2832         con->error_msg = "protocol error, garbage tag";
2833         ret = -1;
2834         goto out;
2835 }
2836
2837
2838 /*
2839  * Atomically queue work on a connection after the specified delay.
2840  * Bump @con reference to avoid races with connection teardown.
2841  * Returns 0 if work was queued, or an error code otherwise.
2842  */
2843 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2844 {
2845         if (!con->ops->get(con)) {
2846                 dout("%s %p ref count 0\n", __func__, con);
2847                 return -ENOENT;
2848         }
2849
2850         if (delay >= HZ)
2851                 delay = round_jiffies_relative(delay);
2852
2853         dout("%s %p %lu\n", __func__, con, delay);
2854         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2855                 dout("%s %p - already queued\n", __func__, con);
2856                 con->ops->put(con);
2857                 return -EBUSY;
2858         }
2859
2860         return 0;
2861 }
2862
2863 static void queue_con(struct ceph_connection *con)
2864 {
2865         (void) queue_con_delay(con, 0);
2866 }
2867
2868 static void cancel_con(struct ceph_connection *con)
2869 {
2870         if (cancel_delayed_work(&con->work)) {
2871                 dout("%s %p\n", __func__, con);
2872                 con->ops->put(con);
2873         }
2874 }
2875
2876 static bool con_sock_closed(struct ceph_connection *con)
2877 {
2878         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2879                 return false;
2880
2881 #define CASE(x)                                                         \
2882         case CON_STATE_ ## x:                                           \
2883                 con->error_msg = "socket closed (con state " #x ")";    \
2884                 break;
2885
2886         switch (con->state) {
2887         CASE(CLOSED);
2888         CASE(PREOPEN);
2889         CASE(CONNECTING);
2890         CASE(NEGOTIATING);
2891         CASE(OPEN);
2892         CASE(STANDBY);
2893         default:
2894                 pr_warn("%s con %p unrecognized state %lu\n",
2895                         __func__, con, con->state);
2896                 con->error_msg = "unrecognized con state";
2897                 BUG();
2898                 break;
2899         }
2900 #undef CASE
2901
2902         return true;
2903 }
2904
2905 static bool con_backoff(struct ceph_connection *con)
2906 {
2907         int ret;
2908
2909         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2910                 return false;
2911
2912         ret = queue_con_delay(con, con->delay);
2913         if (ret) {
2914                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2915                         con, con->delay);
2916                 BUG_ON(ret == -ENOENT);
2917                 con_flag_set(con, CON_FLAG_BACKOFF);
2918         }
2919
2920         return true;
2921 }
2922
2923 /* Finish fault handling; con->mutex must *not* be held here */
2924
2925 static void con_fault_finish(struct ceph_connection *con)
2926 {
2927         dout("%s %p\n", __func__, con);
2928
2929         /*
2930          * in case we faulted due to authentication, invalidate our
2931          * current tickets so that we can get new ones.
2932          */
2933         if (con->auth_retry) {
2934                 dout("auth_retry %d, invalidating\n", con->auth_retry);
2935                 if (con->ops->invalidate_authorizer)
2936                         con->ops->invalidate_authorizer(con);
2937                 con->auth_retry = 0;
2938         }
2939
2940         if (con->ops->fault)
2941                 con->ops->fault(con);
2942 }
2943
2944 /*
2945  * Do some work on a connection.  Drop a connection ref when we're done.
2946  */
2947 static void ceph_con_workfn(struct work_struct *work)
2948 {
2949         struct ceph_connection *con = container_of(work, struct ceph_connection,
2950                                                    work.work);
2951         bool fault;
2952
2953         mutex_lock(&con->mutex);
2954         while (true) {
2955                 int ret;
2956
2957                 if ((fault = con_sock_closed(con))) {
2958                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2959                         break;
2960                 }
2961                 if (con_backoff(con)) {
2962                         dout("%s: con %p BACKOFF\n", __func__, con);
2963                         break;
2964                 }
2965                 if (con->state == CON_STATE_STANDBY) {
2966                         dout("%s: con %p STANDBY\n", __func__, con);
2967                         break;
2968                 }
2969                 if (con->state == CON_STATE_CLOSED) {
2970                         dout("%s: con %p CLOSED\n", __func__, con);
2971                         BUG_ON(con->sock);
2972                         break;
2973                 }
2974                 if (con->state == CON_STATE_PREOPEN) {
2975                         dout("%s: con %p PREOPEN\n", __func__, con);
2976                         BUG_ON(con->sock);
2977                 }
2978
2979                 ret = try_read(con);
2980                 if (ret < 0) {
2981                         if (ret == -EAGAIN)
2982                                 continue;
2983                         if (!con->error_msg)
2984                                 con->error_msg = "socket error on read";
2985                         fault = true;
2986                         break;
2987                 }
2988
2989                 ret = try_write(con);
2990                 if (ret < 0) {
2991                         if (ret == -EAGAIN)
2992                                 continue;
2993                         if (!con->error_msg)
2994                                 con->error_msg = "socket error on write";
2995                         fault = true;
2996                 }
2997
2998                 break;  /* If we make it to here, we're done */
2999         }
3000         if (fault)
3001                 con_fault(con);
3002         mutex_unlock(&con->mutex);
3003
3004         if (fault)
3005                 con_fault_finish(con);
3006
3007         con->ops->put(con);
3008 }
3009
3010 /*
3011  * Generic error/fault handler.  A retry mechanism is used with
3012  * exponential backoff
3013  */
3014 static void con_fault(struct ceph_connection *con)
3015 {
3016         dout("fault %p state %lu to peer %s\n",
3017              con, con->state, ceph_pr_addr(&con->peer_addr));
3018
3019         pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
3020                 ceph_pr_addr(&con->peer_addr), con->error_msg);
3021         con->error_msg = NULL;
3022
3023         WARN_ON(con->state != CON_STATE_CONNECTING &&
3024                con->state != CON_STATE_NEGOTIATING &&
3025                con->state != CON_STATE_OPEN);
3026
3027         ceph_con_reset_protocol(con);
3028
3029         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
3030                 dout("fault on LOSSYTX channel, marking CLOSED\n");
3031                 con->state = CON_STATE_CLOSED;
3032                 return;
3033         }
3034
3035         /* Requeue anything that hasn't been acked */
3036         list_splice_init(&con->out_sent, &con->out_queue);
3037
3038         /* If there are no messages queued or keepalive pending, place
3039          * the connection in a STANDBY state */
3040         if (list_empty(&con->out_queue) &&
3041             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3042                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3043                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3044                 con->state = CON_STATE_STANDBY;
3045         } else {
3046                 /* retry after a delay. */
3047                 con->state = CON_STATE_PREOPEN;
3048                 if (!con->delay) {
3049                         con->delay = BASE_DELAY_INTERVAL;
3050                 } else if (con->delay < MAX_DELAY_INTERVAL) {
3051                         con->delay *= 2;
3052                         if (con->delay > MAX_DELAY_INTERVAL)
3053                                 con->delay = MAX_DELAY_INTERVAL;
3054                 }
3055                 con_flag_set(con, CON_FLAG_BACKOFF);
3056                 queue_con(con);
3057         }
3058 }
3059
3060
3061 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
3062 {
3063         u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
3064         msgr->inst.addr.nonce = cpu_to_le32(nonce);
3065         encode_my_addr(msgr);
3066 }
3067
3068 /*
3069  * initialize a new messenger instance
3070  */
3071 void ceph_messenger_init(struct ceph_messenger *msgr,
3072                          struct ceph_entity_addr *myaddr)
3073 {
3074         spin_lock_init(&msgr->global_seq_lock);
3075
3076         if (myaddr)
3077                 msgr->inst.addr = *myaddr;
3078
3079         /* select a random nonce */
3080         msgr->inst.addr.type = 0;
3081         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3082         encode_my_addr(msgr);
3083
3084         atomic_set(&msgr->stopping, 0);
3085         write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3086
3087         dout("%s %p\n", __func__, msgr);
3088 }
3089 EXPORT_SYMBOL(ceph_messenger_init);
3090
3091 void ceph_messenger_fini(struct ceph_messenger *msgr)
3092 {
3093         put_net(read_pnet(&msgr->net));
3094 }
3095 EXPORT_SYMBOL(ceph_messenger_fini);
3096
3097 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3098 {
3099         if (msg->con)
3100                 msg->con->ops->put(msg->con);
3101
3102         msg->con = con ? con->ops->get(con) : NULL;
3103         BUG_ON(msg->con != con);
3104 }
3105
3106 static void clear_standby(struct ceph_connection *con)
3107 {
3108         /* come back from STANDBY? */
3109         if (con->state == CON_STATE_STANDBY) {
3110                 dout("clear_standby %p and ++connect_seq\n", con);
3111                 con->state = CON_STATE_PREOPEN;
3112                 con->connect_seq++;
3113                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3114                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3115         }
3116 }
3117
3118 /*
3119  * Queue up an outgoing message on the given connection.
3120  */
3121 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3122 {
3123         /* set src+dst */
3124         msg->hdr.src = con->msgr->inst.name;
3125         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3126         msg->needs_out_seq = true;
3127
3128         mutex_lock(&con->mutex);
3129
3130         if (con->state == CON_STATE_CLOSED) {
3131                 dout("con_send %p closed, dropping %p\n", con, msg);
3132                 ceph_msg_put(msg);
3133                 mutex_unlock(&con->mutex);
3134                 return;
3135         }
3136
3137         msg_con_set(msg, con);
3138
3139         BUG_ON(!list_empty(&msg->list_head));
3140         list_add_tail(&msg->list_head, &con->out_queue);
3141         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3142              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3143              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3144              le32_to_cpu(msg->hdr.front_len),
3145              le32_to_cpu(msg->hdr.middle_len),
3146              le32_to_cpu(msg->hdr.data_len));
3147
3148         clear_standby(con);
3149         mutex_unlock(&con->mutex);
3150
3151         /* if there wasn't anything waiting to send before, queue
3152          * new work */
3153         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3154                 queue_con(con);
3155 }
3156 EXPORT_SYMBOL(ceph_con_send);
3157
3158 /*
3159  * Revoke a message that was previously queued for send
3160  */
3161 void ceph_msg_revoke(struct ceph_msg *msg)
3162 {
3163         struct ceph_connection *con = msg->con;
3164
3165         if (!con) {
3166                 dout("%s msg %p null con\n", __func__, msg);
3167                 return;         /* Message not in our possession */
3168         }
3169
3170         mutex_lock(&con->mutex);
3171         if (!list_empty(&msg->list_head)) {
3172                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3173                 list_del_init(&msg->list_head);
3174                 msg->hdr.seq = 0;
3175
3176                 ceph_msg_put(msg);
3177         }
3178         if (con->out_msg == msg) {
3179                 BUG_ON(con->out_skip);
3180                 /* footer */
3181                 if (con->out_msg_done) {
3182                         con->out_skip += con_out_kvec_skip(con);
3183                 } else {
3184                         BUG_ON(!msg->data_length);
3185                         con->out_skip += sizeof_footer(con);
3186                 }
3187                 /* data, middle, front */
3188                 if (msg->data_length)
3189                         con->out_skip += msg->cursor.total_resid;
3190                 if (msg->middle)
3191                         con->out_skip += con_out_kvec_skip(con);
3192                 con->out_skip += con_out_kvec_skip(con);
3193
3194                 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3195                      __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3196                 msg->hdr.seq = 0;
3197                 con->out_msg = NULL;
3198                 ceph_msg_put(msg);
3199         }
3200
3201         mutex_unlock(&con->mutex);
3202 }
3203
3204 /*
3205  * Revoke a message that we may be reading data into
3206  */
3207 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3208 {
3209         struct ceph_connection *con = msg->con;
3210
3211         if (!con) {
3212                 dout("%s msg %p null con\n", __func__, msg);
3213                 return;         /* Message not in our possession */
3214         }
3215
3216         mutex_lock(&con->mutex);
3217         if (con->in_msg == msg) {
3218                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3219                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3220                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3221
3222                 /* skip rest of message */
3223                 dout("%s %p msg %p revoked\n", __func__, con, msg);
3224                 con->in_base_pos = con->in_base_pos -
3225                                 sizeof(struct ceph_msg_header) -
3226                                 front_len -
3227                                 middle_len -
3228                                 data_len -
3229                                 sizeof(struct ceph_msg_footer);
3230                 ceph_msg_put(con->in_msg);
3231                 con->in_msg = NULL;
3232                 con->in_tag = CEPH_MSGR_TAG_READY;
3233                 con->in_seq++;
3234         } else {
3235                 dout("%s %p in_msg %p msg %p no-op\n",
3236                      __func__, con, con->in_msg, msg);
3237         }
3238         mutex_unlock(&con->mutex);
3239 }
3240
3241 /*
3242  * Queue a keepalive byte to ensure the tcp connection is alive.
3243  */
3244 void ceph_con_keepalive(struct ceph_connection *con)
3245 {
3246         dout("con_keepalive %p\n", con);
3247         mutex_lock(&con->mutex);
3248         clear_standby(con);
3249         con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING);
3250         mutex_unlock(&con->mutex);
3251
3252         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3253                 queue_con(con);
3254 }
3255 EXPORT_SYMBOL(ceph_con_keepalive);
3256
3257 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3258                                unsigned long interval)
3259 {
3260         if (interval > 0 &&
3261             (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3262                 struct timespec64 now;
3263                 struct timespec64 ts;
3264                 ktime_get_real_ts64(&now);
3265                 jiffies_to_timespec64(interval, &ts);
3266                 ts = timespec64_add(con->last_keepalive_ack, ts);
3267                 return timespec64_compare(&now, &ts) >= 0;
3268         }
3269         return false;
3270 }
3271
3272 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
3273 {
3274         BUG_ON(msg->num_data_items >= msg->max_data_items);
3275         return &msg->data[msg->num_data_items++];
3276 }
3277
3278 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3279 {
3280         if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
3281                 int num_pages = calc_pages_for(data->alignment, data->length);
3282                 ceph_release_page_vector(data->pages, num_pages);
3283         } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
3284                 ceph_pagelist_release(data->pagelist);
3285         }
3286 }
3287
3288 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3289                              size_t length, size_t alignment, bool own_pages)
3290 {
3291         struct ceph_msg_data *data;
3292
3293         BUG_ON(!pages);
3294         BUG_ON(!length);
3295
3296         data = ceph_msg_data_add(msg);
3297         data->type = CEPH_MSG_DATA_PAGES;
3298         data->pages = pages;
3299         data->length = length;
3300         data->alignment = alignment & ~PAGE_MASK;
3301         data->own_pages = own_pages;
3302
3303         msg->data_length += length;
3304 }
3305 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3306
3307 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3308                                 struct ceph_pagelist *pagelist)
3309 {
3310         struct ceph_msg_data *data;
3311
3312         BUG_ON(!pagelist);
3313         BUG_ON(!pagelist->length);
3314
3315         data = ceph_msg_data_add(msg);
3316         data->type = CEPH_MSG_DATA_PAGELIST;
3317         refcount_inc(&pagelist->refcnt);
3318         data->pagelist = pagelist;
3319
3320         msg->data_length += pagelist->length;
3321 }
3322 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3323
3324 #ifdef  CONFIG_BLOCK
3325 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3326                            u32 length)
3327 {
3328         struct ceph_msg_data *data;
3329
3330         data = ceph_msg_data_add(msg);
3331         data->type = CEPH_MSG_DATA_BIO;
3332         data->bio_pos = *bio_pos;
3333         data->bio_length = length;
3334
3335         msg->data_length += length;
3336 }
3337 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3338 #endif  /* CONFIG_BLOCK */
3339
3340 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3341                              struct ceph_bvec_iter *bvec_pos)
3342 {
3343         struct ceph_msg_data *data;
3344
3345         data = ceph_msg_data_add(msg);
3346         data->type = CEPH_MSG_DATA_BVECS;
3347         data->bvec_pos = *bvec_pos;
3348
3349         msg->data_length += bvec_pos->iter.bi_size;
3350 }
3351 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3352
3353 /*
3354  * construct a new message with given type, size
3355  * the new msg has a ref count of 1.
3356  */
3357 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
3358                                gfp_t flags, bool can_fail)
3359 {
3360         struct ceph_msg *m;
3361
3362         m = kmem_cache_zalloc(ceph_msg_cache, flags);
3363         if (m == NULL)
3364                 goto out;
3365
3366         m->hdr.type = cpu_to_le16(type);
3367         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3368         m->hdr.front_len = cpu_to_le32(front_len);
3369
3370         INIT_LIST_HEAD(&m->list_head);
3371         kref_init(&m->kref);
3372
3373         /* front */
3374         if (front_len) {
3375                 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3376                 if (m->front.iov_base == NULL) {
3377                         dout("ceph_msg_new can't allocate %d bytes\n",
3378                              front_len);
3379                         goto out2;
3380                 }
3381         } else {
3382                 m->front.iov_base = NULL;
3383         }
3384         m->front_alloc_len = m->front.iov_len = front_len;
3385
3386         if (max_data_items) {
3387                 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
3388                                         flags);
3389                 if (!m->data)
3390                         goto out2;
3391
3392                 m->max_data_items = max_data_items;
3393         }
3394
3395         dout("ceph_msg_new %p front %d\n", m, front_len);
3396         return m;
3397
3398 out2:
3399         ceph_msg_put(m);
3400 out:
3401         if (!can_fail) {
3402                 pr_err("msg_new can't create type %d front %d\n", type,
3403                        front_len);
3404                 WARN_ON(1);
3405         } else {
3406                 dout("msg_new can't create type %d front %d\n", type,
3407                      front_len);
3408         }
3409         return NULL;
3410 }
3411 EXPORT_SYMBOL(ceph_msg_new2);
3412
3413 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3414                               bool can_fail)
3415 {
3416         return ceph_msg_new2(type, front_len, 0, flags, can_fail);
3417 }
3418 EXPORT_SYMBOL(ceph_msg_new);
3419
3420 /*
3421  * Allocate "middle" portion of a message, if it is needed and wasn't
3422  * allocated by alloc_msg.  This allows us to read a small fixed-size
3423  * per-type header in the front and then gracefully fail (i.e.,
3424  * propagate the error to the caller based on info in the front) when
3425  * the middle is too large.
3426  */
3427 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3428 {
3429         int type = le16_to_cpu(msg->hdr.type);
3430         int middle_len = le32_to_cpu(msg->hdr.middle_len);
3431
3432         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3433              ceph_msg_type_name(type), middle_len);
3434         BUG_ON(!middle_len);
3435         BUG_ON(msg->middle);
3436
3437         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3438         if (!msg->middle)
3439                 return -ENOMEM;
3440         return 0;
3441 }
3442
3443 /*
3444  * Allocate a message for receiving an incoming message on a
3445  * connection, and save the result in con->in_msg.  Uses the
3446  * connection's private alloc_msg op if available.
3447  *
3448  * Returns 0 on success, or a negative error code.
3449  *
3450  * On success, if we set *skip = 1:
3451  *  - the next message should be skipped and ignored.
3452  *  - con->in_msg == NULL
3453  * or if we set *skip = 0:
3454  *  - con->in_msg is non-null.
3455  * On error (ENOMEM, EAGAIN, ...),
3456  *  - con->in_msg == NULL
3457  */
3458 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3459 {
3460         struct ceph_msg_header *hdr = &con->in_hdr;
3461         int middle_len = le32_to_cpu(hdr->middle_len);
3462         struct ceph_msg *msg;
3463         int ret = 0;
3464
3465         BUG_ON(con->in_msg != NULL);
3466         BUG_ON(!con->ops->alloc_msg);
3467
3468         mutex_unlock(&con->mutex);
3469         msg = con->ops->alloc_msg(con, hdr, skip);
3470         mutex_lock(&con->mutex);
3471         if (con->state != CON_STATE_OPEN) {
3472                 if (msg)
3473                         ceph_msg_put(msg);
3474                 return -EAGAIN;
3475         }
3476         if (msg) {
3477                 BUG_ON(*skip);
3478                 msg_con_set(msg, con);
3479                 con->in_msg = msg;
3480         } else {
3481                 /*
3482                  * Null message pointer means either we should skip
3483                  * this message or we couldn't allocate memory.  The
3484                  * former is not an error.
3485                  */
3486                 if (*skip)
3487                         return 0;
3488
3489                 con->error_msg = "error allocating memory for incoming message";
3490                 return -ENOMEM;
3491         }
3492         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3493
3494         if (middle_len && !con->in_msg->middle) {
3495                 ret = ceph_alloc_middle(con, con->in_msg);
3496                 if (ret < 0) {
3497                         ceph_msg_put(con->in_msg);
3498                         con->in_msg = NULL;
3499                 }
3500         }
3501
3502         return ret;
3503 }
3504
3505
3506 /*
3507  * Free a generically kmalloc'd message.
3508  */
3509 static void ceph_msg_free(struct ceph_msg *m)
3510 {
3511         dout("%s %p\n", __func__, m);
3512         kvfree(m->front.iov_base);
3513         kfree(m->data);
3514         kmem_cache_free(ceph_msg_cache, m);
3515 }
3516
3517 static void ceph_msg_release(struct kref *kref)
3518 {
3519         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3520         int i;
3521
3522         dout("%s %p\n", __func__, m);
3523         WARN_ON(!list_empty(&m->list_head));
3524
3525         msg_con_set(m, NULL);
3526
3527         /* drop middle, data, if any */
3528         if (m->middle) {
3529                 ceph_buffer_put(m->middle);
3530                 m->middle = NULL;
3531         }
3532
3533         for (i = 0; i < m->num_data_items; i++)
3534                 ceph_msg_data_destroy(&m->data[i]);
3535
3536         if (m->pool)
3537                 ceph_msgpool_put(m->pool, m);
3538         else
3539                 ceph_msg_free(m);
3540 }
3541
3542 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3543 {
3544         dout("%s %p (was %d)\n", __func__, msg,
3545              kref_read(&msg->kref));
3546         kref_get(&msg->kref);
3547         return msg;
3548 }
3549 EXPORT_SYMBOL(ceph_msg_get);
3550
3551 void ceph_msg_put(struct ceph_msg *msg)
3552 {
3553         dout("%s %p (was %d)\n", __func__, msg,
3554              kref_read(&msg->kref));
3555         kref_put(&msg->kref, ceph_msg_release);
3556 }
3557 EXPORT_SYMBOL(ceph_msg_put);
3558
3559 void ceph_msg_dump(struct ceph_msg *msg)
3560 {
3561         pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3562                  msg->front_alloc_len, msg->data_length);
3563         print_hex_dump(KERN_DEBUG, "header: ",
3564                        DUMP_PREFIX_OFFSET, 16, 1,
3565                        &msg->hdr, sizeof(msg->hdr), true);
3566         print_hex_dump(KERN_DEBUG, " front: ",
3567                        DUMP_PREFIX_OFFSET, 16, 1,
3568                        msg->front.iov_base, msg->front.iov_len, true);
3569         if (msg->middle)
3570                 print_hex_dump(KERN_DEBUG, "middle: ",
3571                                DUMP_PREFIX_OFFSET, 16, 1,
3572                                msg->middle->vec.iov_base,
3573                                msg->middle->vec.iov_len, true);
3574         print_hex_dump(KERN_DEBUG, "footer: ",
3575                        DUMP_PREFIX_OFFSET, 16, 1,
3576                        &msg->footer, sizeof(msg->footer), true);
3577 }
3578 EXPORT_SYMBOL(ceph_msg_dump);