nvme-pci: Free tagset if no IO queues
[linux-2.6-microblaze.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/isolation.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/smt.h>
15 #include <linux/unistd.h>
16 #include <linux/cpu.h>
17 #include <linux/oom.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bug.h>
21 #include <linux/kthread.h>
22 #include <linux/stop_machine.h>
23 #include <linux/mutex.h>
24 #include <linux/gfp.h>
25 #include <linux/suspend.h>
26 #include <linux/lockdep.h>
27 #include <linux/tick.h>
28 #include <linux/irq.h>
29 #include <linux/nmi.h>
30 #include <linux/smpboot.h>
31 #include <linux/relay.h>
32 #include <linux/slab.h>
33 #include <linux/percpu-rwsem.h>
34
35 #include <trace/events/power.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/cpuhp.h>
38
39 #include "smpboot.h"
40
41 /**
42  * cpuhp_cpu_state - Per cpu hotplug state storage
43  * @state:      The current cpu state
44  * @target:     The target state
45  * @thread:     Pointer to the hotplug thread
46  * @should_run: Thread should execute
47  * @rollback:   Perform a rollback
48  * @single:     Single callback invocation
49  * @bringup:    Single callback bringup or teardown selector
50  * @cb_state:   The state for a single callback (install/uninstall)
51  * @result:     Result of the operation
52  * @done_up:    Signal completion to the issuer of the task for cpu-up
53  * @done_down:  Signal completion to the issuer of the task for cpu-down
54  */
55 struct cpuhp_cpu_state {
56         enum cpuhp_state        state;
57         enum cpuhp_state        target;
58         enum cpuhp_state        fail;
59 #ifdef CONFIG_SMP
60         struct task_struct      *thread;
61         bool                    should_run;
62         bool                    rollback;
63         bool                    single;
64         bool                    bringup;
65         struct hlist_node       *node;
66         struct hlist_node       *last;
67         enum cpuhp_state        cb_state;
68         int                     result;
69         struct completion       done_up;
70         struct completion       done_down;
71 #endif
72 };
73
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75         .fail = CPUHP_INVALID,
76 };
77
78 #ifdef CONFIG_SMP
79 cpumask_t cpus_booted_once_mask;
80 #endif
81
82 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
83 static struct lockdep_map cpuhp_state_up_map =
84         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
85 static struct lockdep_map cpuhp_state_down_map =
86         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
87
88
89 static inline void cpuhp_lock_acquire(bool bringup)
90 {
91         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
92 }
93
94 static inline void cpuhp_lock_release(bool bringup)
95 {
96         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
97 }
98 #else
99
100 static inline void cpuhp_lock_acquire(bool bringup) { }
101 static inline void cpuhp_lock_release(bool bringup) { }
102
103 #endif
104
105 /**
106  * cpuhp_step - Hotplug state machine step
107  * @name:       Name of the step
108  * @startup:    Startup function of the step
109  * @teardown:   Teardown function of the step
110  * @cant_stop:  Bringup/teardown can't be stopped at this step
111  */
112 struct cpuhp_step {
113         const char              *name;
114         union {
115                 int             (*single)(unsigned int cpu);
116                 int             (*multi)(unsigned int cpu,
117                                          struct hlist_node *node);
118         } startup;
119         union {
120                 int             (*single)(unsigned int cpu);
121                 int             (*multi)(unsigned int cpu,
122                                          struct hlist_node *node);
123         } teardown;
124         struct hlist_head       list;
125         bool                    cant_stop;
126         bool                    multi_instance;
127 };
128
129 static DEFINE_MUTEX(cpuhp_state_mutex);
130 static struct cpuhp_step cpuhp_hp_states[];
131
132 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
133 {
134         return cpuhp_hp_states + state;
135 }
136
137 /**
138  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
139  * @cpu:        The cpu for which the callback should be invoked
140  * @state:      The state to do callbacks for
141  * @bringup:    True if the bringup callback should be invoked
142  * @node:       For multi-instance, do a single entry callback for install/remove
143  * @lastp:      For multi-instance rollback, remember how far we got
144  *
145  * Called from cpu hotplug and from the state register machinery.
146  */
147 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
148                                  bool bringup, struct hlist_node *node,
149                                  struct hlist_node **lastp)
150 {
151         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
152         struct cpuhp_step *step = cpuhp_get_step(state);
153         int (*cbm)(unsigned int cpu, struct hlist_node *node);
154         int (*cb)(unsigned int cpu);
155         int ret, cnt;
156
157         if (st->fail == state) {
158                 st->fail = CPUHP_INVALID;
159
160                 if (!(bringup ? step->startup.single : step->teardown.single))
161                         return 0;
162
163                 return -EAGAIN;
164         }
165
166         if (!step->multi_instance) {
167                 WARN_ON_ONCE(lastp && *lastp);
168                 cb = bringup ? step->startup.single : step->teardown.single;
169                 if (!cb)
170                         return 0;
171                 trace_cpuhp_enter(cpu, st->target, state, cb);
172                 ret = cb(cpu);
173                 trace_cpuhp_exit(cpu, st->state, state, ret);
174                 return ret;
175         }
176         cbm = bringup ? step->startup.multi : step->teardown.multi;
177         if (!cbm)
178                 return 0;
179
180         /* Single invocation for instance add/remove */
181         if (node) {
182                 WARN_ON_ONCE(lastp && *lastp);
183                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
184                 ret = cbm(cpu, node);
185                 trace_cpuhp_exit(cpu, st->state, state, ret);
186                 return ret;
187         }
188
189         /* State transition. Invoke on all instances */
190         cnt = 0;
191         hlist_for_each(node, &step->list) {
192                 if (lastp && node == *lastp)
193                         break;
194
195                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
196                 ret = cbm(cpu, node);
197                 trace_cpuhp_exit(cpu, st->state, state, ret);
198                 if (ret) {
199                         if (!lastp)
200                                 goto err;
201
202                         *lastp = node;
203                         return ret;
204                 }
205                 cnt++;
206         }
207         if (lastp)
208                 *lastp = NULL;
209         return 0;
210 err:
211         /* Rollback the instances if one failed */
212         cbm = !bringup ? step->startup.multi : step->teardown.multi;
213         if (!cbm)
214                 return ret;
215
216         hlist_for_each(node, &step->list) {
217                 if (!cnt--)
218                         break;
219
220                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
221                 ret = cbm(cpu, node);
222                 trace_cpuhp_exit(cpu, st->state, state, ret);
223                 /*
224                  * Rollback must not fail,
225                  */
226                 WARN_ON_ONCE(ret);
227         }
228         return ret;
229 }
230
231 #ifdef CONFIG_SMP
232 static bool cpuhp_is_ap_state(enum cpuhp_state state)
233 {
234         /*
235          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
236          * purposes as that state is handled explicitly in cpu_down.
237          */
238         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
239 }
240
241 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
242 {
243         struct completion *done = bringup ? &st->done_up : &st->done_down;
244         wait_for_completion(done);
245 }
246
247 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
248 {
249         struct completion *done = bringup ? &st->done_up : &st->done_down;
250         complete(done);
251 }
252
253 /*
254  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
255  */
256 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
257 {
258         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
259 }
260
261 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
262 static DEFINE_MUTEX(cpu_add_remove_lock);
263 bool cpuhp_tasks_frozen;
264 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
265
266 /*
267  * The following two APIs (cpu_maps_update_begin/done) must be used when
268  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
269  */
270 void cpu_maps_update_begin(void)
271 {
272         mutex_lock(&cpu_add_remove_lock);
273 }
274
275 void cpu_maps_update_done(void)
276 {
277         mutex_unlock(&cpu_add_remove_lock);
278 }
279
280 /*
281  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
282  * Should always be manipulated under cpu_add_remove_lock
283  */
284 static int cpu_hotplug_disabled;
285
286 #ifdef CONFIG_HOTPLUG_CPU
287
288 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
289
290 void cpus_read_lock(void)
291 {
292         percpu_down_read(&cpu_hotplug_lock);
293 }
294 EXPORT_SYMBOL_GPL(cpus_read_lock);
295
296 int cpus_read_trylock(void)
297 {
298         return percpu_down_read_trylock(&cpu_hotplug_lock);
299 }
300 EXPORT_SYMBOL_GPL(cpus_read_trylock);
301
302 void cpus_read_unlock(void)
303 {
304         percpu_up_read(&cpu_hotplug_lock);
305 }
306 EXPORT_SYMBOL_GPL(cpus_read_unlock);
307
308 void cpus_write_lock(void)
309 {
310         percpu_down_write(&cpu_hotplug_lock);
311 }
312
313 void cpus_write_unlock(void)
314 {
315         percpu_up_write(&cpu_hotplug_lock);
316 }
317
318 void lockdep_assert_cpus_held(void)
319 {
320         /*
321          * We can't have hotplug operations before userspace starts running,
322          * and some init codepaths will knowingly not take the hotplug lock.
323          * This is all valid, so mute lockdep until it makes sense to report
324          * unheld locks.
325          */
326         if (system_state < SYSTEM_RUNNING)
327                 return;
328
329         percpu_rwsem_assert_held(&cpu_hotplug_lock);
330 }
331
332 static void lockdep_acquire_cpus_lock(void)
333 {
334         rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
335 }
336
337 static void lockdep_release_cpus_lock(void)
338 {
339         rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
340 }
341
342 /*
343  * Wait for currently running CPU hotplug operations to complete (if any) and
344  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
345  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
346  * hotplug path before performing hotplug operations. So acquiring that lock
347  * guarantees mutual exclusion from any currently running hotplug operations.
348  */
349 void cpu_hotplug_disable(void)
350 {
351         cpu_maps_update_begin();
352         cpu_hotplug_disabled++;
353         cpu_maps_update_done();
354 }
355 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
356
357 static void __cpu_hotplug_enable(void)
358 {
359         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
360                 return;
361         cpu_hotplug_disabled--;
362 }
363
364 void cpu_hotplug_enable(void)
365 {
366         cpu_maps_update_begin();
367         __cpu_hotplug_enable();
368         cpu_maps_update_done();
369 }
370 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
371
372 #else
373
374 static void lockdep_acquire_cpus_lock(void)
375 {
376 }
377
378 static void lockdep_release_cpus_lock(void)
379 {
380 }
381
382 #endif  /* CONFIG_HOTPLUG_CPU */
383
384 /*
385  * Architectures that need SMT-specific errata handling during SMT hotplug
386  * should override this.
387  */
388 void __weak arch_smt_update(void) { }
389
390 #ifdef CONFIG_HOTPLUG_SMT
391 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
392
393 void __init cpu_smt_disable(bool force)
394 {
395         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
396                 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
397                 return;
398
399         if (force) {
400                 pr_info("SMT: Force disabled\n");
401                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
402         } else {
403                 pr_info("SMT: disabled\n");
404                 cpu_smt_control = CPU_SMT_DISABLED;
405         }
406 }
407
408 /*
409  * The decision whether SMT is supported can only be done after the full
410  * CPU identification. Called from architecture code.
411  */
412 void __init cpu_smt_check_topology(void)
413 {
414         if (!topology_smt_supported())
415                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
416 }
417
418 static int __init smt_cmdline_disable(char *str)
419 {
420         cpu_smt_disable(str && !strcmp(str, "force"));
421         return 0;
422 }
423 early_param("nosmt", smt_cmdline_disable);
424
425 static inline bool cpu_smt_allowed(unsigned int cpu)
426 {
427         if (cpu_smt_control == CPU_SMT_ENABLED)
428                 return true;
429
430         if (topology_is_primary_thread(cpu))
431                 return true;
432
433         /*
434          * On x86 it's required to boot all logical CPUs at least once so
435          * that the init code can get a chance to set CR4.MCE on each
436          * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
437          * core will shutdown the machine.
438          */
439         return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
440 }
441 #else
442 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
443 #endif
444
445 static inline enum cpuhp_state
446 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
447 {
448         enum cpuhp_state prev_state = st->state;
449
450         st->rollback = false;
451         st->last = NULL;
452
453         st->target = target;
454         st->single = false;
455         st->bringup = st->state < target;
456
457         return prev_state;
458 }
459
460 static inline void
461 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
462 {
463         st->rollback = true;
464
465         /*
466          * If we have st->last we need to undo partial multi_instance of this
467          * state first. Otherwise start undo at the previous state.
468          */
469         if (!st->last) {
470                 if (st->bringup)
471                         st->state--;
472                 else
473                         st->state++;
474         }
475
476         st->target = prev_state;
477         st->bringup = !st->bringup;
478 }
479
480 /* Regular hotplug invocation of the AP hotplug thread */
481 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
482 {
483         if (!st->single && st->state == st->target)
484                 return;
485
486         st->result = 0;
487         /*
488          * Make sure the above stores are visible before should_run becomes
489          * true. Paired with the mb() above in cpuhp_thread_fun()
490          */
491         smp_mb();
492         st->should_run = true;
493         wake_up_process(st->thread);
494         wait_for_ap_thread(st, st->bringup);
495 }
496
497 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
498 {
499         enum cpuhp_state prev_state;
500         int ret;
501
502         prev_state = cpuhp_set_state(st, target);
503         __cpuhp_kick_ap(st);
504         if ((ret = st->result)) {
505                 cpuhp_reset_state(st, prev_state);
506                 __cpuhp_kick_ap(st);
507         }
508
509         return ret;
510 }
511
512 static int bringup_wait_for_ap(unsigned int cpu)
513 {
514         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
515
516         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
517         wait_for_ap_thread(st, true);
518         if (WARN_ON_ONCE((!cpu_online(cpu))))
519                 return -ECANCELED;
520
521         /* Unpark the stopper thread and the hotplug thread of the target cpu */
522         stop_machine_unpark(cpu);
523         kthread_unpark(st->thread);
524
525         /*
526          * SMT soft disabling on X86 requires to bring the CPU out of the
527          * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
528          * CPU marked itself as booted_once in notify_cpu_starting() so the
529          * cpu_smt_allowed() check will now return false if this is not the
530          * primary sibling.
531          */
532         if (!cpu_smt_allowed(cpu))
533                 return -ECANCELED;
534
535         if (st->target <= CPUHP_AP_ONLINE_IDLE)
536                 return 0;
537
538         return cpuhp_kick_ap(st, st->target);
539 }
540
541 static int bringup_cpu(unsigned int cpu)
542 {
543         struct task_struct *idle = idle_thread_get(cpu);
544         int ret;
545
546         /*
547          * Some architectures have to walk the irq descriptors to
548          * setup the vector space for the cpu which comes online.
549          * Prevent irq alloc/free across the bringup.
550          */
551         irq_lock_sparse();
552
553         /* Arch-specific enabling code. */
554         ret = __cpu_up(cpu, idle);
555         irq_unlock_sparse();
556         if (ret)
557                 return ret;
558         return bringup_wait_for_ap(cpu);
559 }
560
561 /*
562  * Hotplug state machine related functions
563  */
564
565 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
566 {
567         for (st->state--; st->state > st->target; st->state--)
568                 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
569 }
570
571 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
572 {
573         if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
574                 return true;
575         /*
576          * When CPU hotplug is disabled, then taking the CPU down is not
577          * possible because takedown_cpu() and the architecture and
578          * subsystem specific mechanisms are not available. So the CPU
579          * which would be completely unplugged again needs to stay around
580          * in the current state.
581          */
582         return st->state <= CPUHP_BRINGUP_CPU;
583 }
584
585 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
586                               enum cpuhp_state target)
587 {
588         enum cpuhp_state prev_state = st->state;
589         int ret = 0;
590
591         while (st->state < target) {
592                 st->state++;
593                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
594                 if (ret) {
595                         if (can_rollback_cpu(st)) {
596                                 st->target = prev_state;
597                                 undo_cpu_up(cpu, st);
598                         }
599                         break;
600                 }
601         }
602         return ret;
603 }
604
605 /*
606  * The cpu hotplug threads manage the bringup and teardown of the cpus
607  */
608 static void cpuhp_create(unsigned int cpu)
609 {
610         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
611
612         init_completion(&st->done_up);
613         init_completion(&st->done_down);
614 }
615
616 static int cpuhp_should_run(unsigned int cpu)
617 {
618         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
619
620         return st->should_run;
621 }
622
623 /*
624  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
625  * callbacks when a state gets [un]installed at runtime.
626  *
627  * Each invocation of this function by the smpboot thread does a single AP
628  * state callback.
629  *
630  * It has 3 modes of operation:
631  *  - single: runs st->cb_state
632  *  - up:     runs ++st->state, while st->state < st->target
633  *  - down:   runs st->state--, while st->state > st->target
634  *
635  * When complete or on error, should_run is cleared and the completion is fired.
636  */
637 static void cpuhp_thread_fun(unsigned int cpu)
638 {
639         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
640         bool bringup = st->bringup;
641         enum cpuhp_state state;
642
643         if (WARN_ON_ONCE(!st->should_run))
644                 return;
645
646         /*
647          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
648          * that if we see ->should_run we also see the rest of the state.
649          */
650         smp_mb();
651
652         /*
653          * The BP holds the hotplug lock, but we're now running on the AP,
654          * ensure that anybody asserting the lock is held, will actually find
655          * it so.
656          */
657         lockdep_acquire_cpus_lock();
658         cpuhp_lock_acquire(bringup);
659
660         if (st->single) {
661                 state = st->cb_state;
662                 st->should_run = false;
663         } else {
664                 if (bringup) {
665                         st->state++;
666                         state = st->state;
667                         st->should_run = (st->state < st->target);
668                         WARN_ON_ONCE(st->state > st->target);
669                 } else {
670                         state = st->state;
671                         st->state--;
672                         st->should_run = (st->state > st->target);
673                         WARN_ON_ONCE(st->state < st->target);
674                 }
675         }
676
677         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
678
679         if (cpuhp_is_atomic_state(state)) {
680                 local_irq_disable();
681                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
682                 local_irq_enable();
683
684                 /*
685                  * STARTING/DYING must not fail!
686                  */
687                 WARN_ON_ONCE(st->result);
688         } else {
689                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
690         }
691
692         if (st->result) {
693                 /*
694                  * If we fail on a rollback, we're up a creek without no
695                  * paddle, no way forward, no way back. We loose, thanks for
696                  * playing.
697                  */
698                 WARN_ON_ONCE(st->rollback);
699                 st->should_run = false;
700         }
701
702         cpuhp_lock_release(bringup);
703         lockdep_release_cpus_lock();
704
705         if (!st->should_run)
706                 complete_ap_thread(st, bringup);
707 }
708
709 /* Invoke a single callback on a remote cpu */
710 static int
711 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
712                          struct hlist_node *node)
713 {
714         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
715         int ret;
716
717         if (!cpu_online(cpu))
718                 return 0;
719
720         cpuhp_lock_acquire(false);
721         cpuhp_lock_release(false);
722
723         cpuhp_lock_acquire(true);
724         cpuhp_lock_release(true);
725
726         /*
727          * If we are up and running, use the hotplug thread. For early calls
728          * we invoke the thread function directly.
729          */
730         if (!st->thread)
731                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
732
733         st->rollback = false;
734         st->last = NULL;
735
736         st->node = node;
737         st->bringup = bringup;
738         st->cb_state = state;
739         st->single = true;
740
741         __cpuhp_kick_ap(st);
742
743         /*
744          * If we failed and did a partial, do a rollback.
745          */
746         if ((ret = st->result) && st->last) {
747                 st->rollback = true;
748                 st->bringup = !bringup;
749
750                 __cpuhp_kick_ap(st);
751         }
752
753         /*
754          * Clean up the leftovers so the next hotplug operation wont use stale
755          * data.
756          */
757         st->node = st->last = NULL;
758         return ret;
759 }
760
761 static int cpuhp_kick_ap_work(unsigned int cpu)
762 {
763         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
764         enum cpuhp_state prev_state = st->state;
765         int ret;
766
767         cpuhp_lock_acquire(false);
768         cpuhp_lock_release(false);
769
770         cpuhp_lock_acquire(true);
771         cpuhp_lock_release(true);
772
773         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
774         ret = cpuhp_kick_ap(st, st->target);
775         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
776
777         return ret;
778 }
779
780 static struct smp_hotplug_thread cpuhp_threads = {
781         .store                  = &cpuhp_state.thread,
782         .create                 = &cpuhp_create,
783         .thread_should_run      = cpuhp_should_run,
784         .thread_fn              = cpuhp_thread_fun,
785         .thread_comm            = "cpuhp/%u",
786         .selfparking            = true,
787 };
788
789 void __init cpuhp_threads_init(void)
790 {
791         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
792         kthread_unpark(this_cpu_read(cpuhp_state.thread));
793 }
794
795 #ifdef CONFIG_HOTPLUG_CPU
796 /**
797  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
798  * @cpu: a CPU id
799  *
800  * This function walks all processes, finds a valid mm struct for each one and
801  * then clears a corresponding bit in mm's cpumask.  While this all sounds
802  * trivial, there are various non-obvious corner cases, which this function
803  * tries to solve in a safe manner.
804  *
805  * Also note that the function uses a somewhat relaxed locking scheme, so it may
806  * be called only for an already offlined CPU.
807  */
808 void clear_tasks_mm_cpumask(int cpu)
809 {
810         struct task_struct *p;
811
812         /*
813          * This function is called after the cpu is taken down and marked
814          * offline, so its not like new tasks will ever get this cpu set in
815          * their mm mask. -- Peter Zijlstra
816          * Thus, we may use rcu_read_lock() here, instead of grabbing
817          * full-fledged tasklist_lock.
818          */
819         WARN_ON(cpu_online(cpu));
820         rcu_read_lock();
821         for_each_process(p) {
822                 struct task_struct *t;
823
824                 /*
825                  * Main thread might exit, but other threads may still have
826                  * a valid mm. Find one.
827                  */
828                 t = find_lock_task_mm(p);
829                 if (!t)
830                         continue;
831                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
832                 task_unlock(t);
833         }
834         rcu_read_unlock();
835 }
836
837 /* Take this CPU down. */
838 static int take_cpu_down(void *_param)
839 {
840         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
841         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
842         int err, cpu = smp_processor_id();
843         int ret;
844
845         /* Ensure this CPU doesn't handle any more interrupts. */
846         err = __cpu_disable();
847         if (err < 0)
848                 return err;
849
850         /*
851          * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
852          * do this step again.
853          */
854         WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
855         st->state--;
856         /* Invoke the former CPU_DYING callbacks */
857         for (; st->state > target; st->state--) {
858                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
859                 /*
860                  * DYING must not fail!
861                  */
862                 WARN_ON_ONCE(ret);
863         }
864
865         /* Give up timekeeping duties */
866         tick_handover_do_timer();
867         /* Remove CPU from timer broadcasting */
868         tick_offline_cpu(cpu);
869         /* Park the stopper thread */
870         stop_machine_park(cpu);
871         return 0;
872 }
873
874 static int takedown_cpu(unsigned int cpu)
875 {
876         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
877         int err;
878
879         /* Park the smpboot threads */
880         kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
881
882         /*
883          * Prevent irq alloc/free while the dying cpu reorganizes the
884          * interrupt affinities.
885          */
886         irq_lock_sparse();
887
888         /*
889          * So now all preempt/rcu users must observe !cpu_active().
890          */
891         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
892         if (err) {
893                 /* CPU refused to die */
894                 irq_unlock_sparse();
895                 /* Unpark the hotplug thread so we can rollback there */
896                 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
897                 return err;
898         }
899         BUG_ON(cpu_online(cpu));
900
901         /*
902          * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
903          * all runnable tasks from the CPU, there's only the idle task left now
904          * that the migration thread is done doing the stop_machine thing.
905          *
906          * Wait for the stop thread to go away.
907          */
908         wait_for_ap_thread(st, false);
909         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
910
911         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
912         irq_unlock_sparse();
913
914         hotplug_cpu__broadcast_tick_pull(cpu);
915         /* This actually kills the CPU. */
916         __cpu_die(cpu);
917
918         tick_cleanup_dead_cpu(cpu);
919         rcutree_migrate_callbacks(cpu);
920         return 0;
921 }
922
923 static void cpuhp_complete_idle_dead(void *arg)
924 {
925         struct cpuhp_cpu_state *st = arg;
926
927         complete_ap_thread(st, false);
928 }
929
930 void cpuhp_report_idle_dead(void)
931 {
932         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
933
934         BUG_ON(st->state != CPUHP_AP_OFFLINE);
935         rcu_report_dead(smp_processor_id());
936         st->state = CPUHP_AP_IDLE_DEAD;
937         /*
938          * We cannot call complete after rcu_report_dead() so we delegate it
939          * to an online cpu.
940          */
941         smp_call_function_single(cpumask_first(cpu_online_mask),
942                                  cpuhp_complete_idle_dead, st, 0);
943 }
944
945 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
946 {
947         for (st->state++; st->state < st->target; st->state++)
948                 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
949 }
950
951 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
952                                 enum cpuhp_state target)
953 {
954         enum cpuhp_state prev_state = st->state;
955         int ret = 0;
956
957         for (; st->state > target; st->state--) {
958                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
959                 if (ret) {
960                         st->target = prev_state;
961                         if (st->state < prev_state)
962                                 undo_cpu_down(cpu, st);
963                         break;
964                 }
965         }
966         return ret;
967 }
968
969 /* Requires cpu_add_remove_lock to be held */
970 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
971                            enum cpuhp_state target)
972 {
973         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
974         int prev_state, ret = 0;
975
976         if (num_online_cpus() == 1)
977                 return -EBUSY;
978
979         if (!cpu_present(cpu))
980                 return -EINVAL;
981
982         cpus_write_lock();
983
984         cpuhp_tasks_frozen = tasks_frozen;
985
986         prev_state = cpuhp_set_state(st, target);
987         /*
988          * If the current CPU state is in the range of the AP hotplug thread,
989          * then we need to kick the thread.
990          */
991         if (st->state > CPUHP_TEARDOWN_CPU) {
992                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
993                 ret = cpuhp_kick_ap_work(cpu);
994                 /*
995                  * The AP side has done the error rollback already. Just
996                  * return the error code..
997                  */
998                 if (ret)
999                         goto out;
1000
1001                 /*
1002                  * We might have stopped still in the range of the AP hotplug
1003                  * thread. Nothing to do anymore.
1004                  */
1005                 if (st->state > CPUHP_TEARDOWN_CPU)
1006                         goto out;
1007
1008                 st->target = target;
1009         }
1010         /*
1011          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1012          * to do the further cleanups.
1013          */
1014         ret = cpuhp_down_callbacks(cpu, st, target);
1015         if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1016                 cpuhp_reset_state(st, prev_state);
1017                 __cpuhp_kick_ap(st);
1018         }
1019
1020 out:
1021         cpus_write_unlock();
1022         /*
1023          * Do post unplug cleanup. This is still protected against
1024          * concurrent CPU hotplug via cpu_add_remove_lock.
1025          */
1026         lockup_detector_cleanup();
1027         arch_smt_update();
1028         return ret;
1029 }
1030
1031 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1032 {
1033         if (cpu_hotplug_disabled)
1034                 return -EBUSY;
1035         return _cpu_down(cpu, 0, target);
1036 }
1037
1038 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1039 {
1040         int err;
1041
1042         cpu_maps_update_begin();
1043         err = cpu_down_maps_locked(cpu, target);
1044         cpu_maps_update_done();
1045         return err;
1046 }
1047
1048 int cpu_down(unsigned int cpu)
1049 {
1050         return do_cpu_down(cpu, CPUHP_OFFLINE);
1051 }
1052 EXPORT_SYMBOL(cpu_down);
1053
1054 #else
1055 #define takedown_cpu            NULL
1056 #endif /*CONFIG_HOTPLUG_CPU*/
1057
1058 /**
1059  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1060  * @cpu: cpu that just started
1061  *
1062  * It must be called by the arch code on the new cpu, before the new cpu
1063  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1064  */
1065 void notify_cpu_starting(unsigned int cpu)
1066 {
1067         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1068         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1069         int ret;
1070
1071         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
1072         cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1073         while (st->state < target) {
1074                 st->state++;
1075                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1076                 /*
1077                  * STARTING must not fail!
1078                  */
1079                 WARN_ON_ONCE(ret);
1080         }
1081 }
1082
1083 /*
1084  * Called from the idle task. Wake up the controlling task which brings the
1085  * stopper and the hotplug thread of the upcoming CPU up and then delegates
1086  * the rest of the online bringup to the hotplug thread.
1087  */
1088 void cpuhp_online_idle(enum cpuhp_state state)
1089 {
1090         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1091
1092         /* Happens for the boot cpu */
1093         if (state != CPUHP_AP_ONLINE_IDLE)
1094                 return;
1095
1096         st->state = CPUHP_AP_ONLINE_IDLE;
1097         complete_ap_thread(st, true);
1098 }
1099
1100 /* Requires cpu_add_remove_lock to be held */
1101 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1102 {
1103         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1104         struct task_struct *idle;
1105         int ret = 0;
1106
1107         cpus_write_lock();
1108
1109         if (!cpu_present(cpu)) {
1110                 ret = -EINVAL;
1111                 goto out;
1112         }
1113
1114         /*
1115          * The caller of do_cpu_up might have raced with another
1116          * caller. Ignore it for now.
1117          */
1118         if (st->state >= target)
1119                 goto out;
1120
1121         if (st->state == CPUHP_OFFLINE) {
1122                 /* Let it fail before we try to bring the cpu up */
1123                 idle = idle_thread_get(cpu);
1124                 if (IS_ERR(idle)) {
1125                         ret = PTR_ERR(idle);
1126                         goto out;
1127                 }
1128         }
1129
1130         cpuhp_tasks_frozen = tasks_frozen;
1131
1132         cpuhp_set_state(st, target);
1133         /*
1134          * If the current CPU state is in the range of the AP hotplug thread,
1135          * then we need to kick the thread once more.
1136          */
1137         if (st->state > CPUHP_BRINGUP_CPU) {
1138                 ret = cpuhp_kick_ap_work(cpu);
1139                 /*
1140                  * The AP side has done the error rollback already. Just
1141                  * return the error code..
1142                  */
1143                 if (ret)
1144                         goto out;
1145         }
1146
1147         /*
1148          * Try to reach the target state. We max out on the BP at
1149          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1150          * responsible for bringing it up to the target state.
1151          */
1152         target = min((int)target, CPUHP_BRINGUP_CPU);
1153         ret = cpuhp_up_callbacks(cpu, st, target);
1154 out:
1155         cpus_write_unlock();
1156         arch_smt_update();
1157         return ret;
1158 }
1159
1160 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1161 {
1162         int err = 0;
1163
1164         if (!cpu_possible(cpu)) {
1165                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1166                        cpu);
1167 #if defined(CONFIG_IA64)
1168                 pr_err("please check additional_cpus= boot parameter\n");
1169 #endif
1170                 return -EINVAL;
1171         }
1172
1173         err = try_online_node(cpu_to_node(cpu));
1174         if (err)
1175                 return err;
1176
1177         cpu_maps_update_begin();
1178
1179         if (cpu_hotplug_disabled) {
1180                 err = -EBUSY;
1181                 goto out;
1182         }
1183         if (!cpu_smt_allowed(cpu)) {
1184                 err = -EPERM;
1185                 goto out;
1186         }
1187
1188         err = _cpu_up(cpu, 0, target);
1189 out:
1190         cpu_maps_update_done();
1191         return err;
1192 }
1193
1194 int cpu_up(unsigned int cpu)
1195 {
1196         return do_cpu_up(cpu, CPUHP_ONLINE);
1197 }
1198 EXPORT_SYMBOL_GPL(cpu_up);
1199
1200 #ifdef CONFIG_PM_SLEEP_SMP
1201 static cpumask_var_t frozen_cpus;
1202
1203 int freeze_secondary_cpus(int primary)
1204 {
1205         int cpu, error = 0;
1206
1207         cpu_maps_update_begin();
1208         if (primary == -1) {
1209                 primary = cpumask_first(cpu_online_mask);
1210                 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1211                         primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1212         } else {
1213                 if (!cpu_online(primary))
1214                         primary = cpumask_first(cpu_online_mask);
1215         }
1216
1217         /*
1218          * We take down all of the non-boot CPUs in one shot to avoid races
1219          * with the userspace trying to use the CPU hotplug at the same time
1220          */
1221         cpumask_clear(frozen_cpus);
1222
1223         pr_info("Disabling non-boot CPUs ...\n");
1224         for_each_online_cpu(cpu) {
1225                 if (cpu == primary)
1226                         continue;
1227
1228                 if (pm_wakeup_pending()) {
1229                         pr_info("Wakeup pending. Abort CPU freeze\n");
1230                         error = -EBUSY;
1231                         break;
1232                 }
1233
1234                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1235                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1236                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1237                 if (!error)
1238                         cpumask_set_cpu(cpu, frozen_cpus);
1239                 else {
1240                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1241                         break;
1242                 }
1243         }
1244
1245         if (!error)
1246                 BUG_ON(num_online_cpus() > 1);
1247         else
1248                 pr_err("Non-boot CPUs are not disabled\n");
1249
1250         /*
1251          * Make sure the CPUs won't be enabled by someone else. We need to do
1252          * this even in case of failure as all disable_nonboot_cpus() users are
1253          * supposed to do enable_nonboot_cpus() on the failure path.
1254          */
1255         cpu_hotplug_disabled++;
1256
1257         cpu_maps_update_done();
1258         return error;
1259 }
1260
1261 void __weak arch_enable_nonboot_cpus_begin(void)
1262 {
1263 }
1264
1265 void __weak arch_enable_nonboot_cpus_end(void)
1266 {
1267 }
1268
1269 void enable_nonboot_cpus(void)
1270 {
1271         int cpu, error;
1272
1273         /* Allow everyone to use the CPU hotplug again */
1274         cpu_maps_update_begin();
1275         __cpu_hotplug_enable();
1276         if (cpumask_empty(frozen_cpus))
1277                 goto out;
1278
1279         pr_info("Enabling non-boot CPUs ...\n");
1280
1281         arch_enable_nonboot_cpus_begin();
1282
1283         for_each_cpu(cpu, frozen_cpus) {
1284                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1285                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1286                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1287                 if (!error) {
1288                         pr_info("CPU%d is up\n", cpu);
1289                         continue;
1290                 }
1291                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1292         }
1293
1294         arch_enable_nonboot_cpus_end();
1295
1296         cpumask_clear(frozen_cpus);
1297 out:
1298         cpu_maps_update_done();
1299 }
1300
1301 static int __init alloc_frozen_cpus(void)
1302 {
1303         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1304                 return -ENOMEM;
1305         return 0;
1306 }
1307 core_initcall(alloc_frozen_cpus);
1308
1309 /*
1310  * When callbacks for CPU hotplug notifications are being executed, we must
1311  * ensure that the state of the system with respect to the tasks being frozen
1312  * or not, as reported by the notification, remains unchanged *throughout the
1313  * duration* of the execution of the callbacks.
1314  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1315  *
1316  * This synchronization is implemented by mutually excluding regular CPU
1317  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1318  * Hibernate notifications.
1319  */
1320 static int
1321 cpu_hotplug_pm_callback(struct notifier_block *nb,
1322                         unsigned long action, void *ptr)
1323 {
1324         switch (action) {
1325
1326         case PM_SUSPEND_PREPARE:
1327         case PM_HIBERNATION_PREPARE:
1328                 cpu_hotplug_disable();
1329                 break;
1330
1331         case PM_POST_SUSPEND:
1332         case PM_POST_HIBERNATION:
1333                 cpu_hotplug_enable();
1334                 break;
1335
1336         default:
1337                 return NOTIFY_DONE;
1338         }
1339
1340         return NOTIFY_OK;
1341 }
1342
1343
1344 static int __init cpu_hotplug_pm_sync_init(void)
1345 {
1346         /*
1347          * cpu_hotplug_pm_callback has higher priority than x86
1348          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1349          * to disable cpu hotplug to avoid cpu hotplug race.
1350          */
1351         pm_notifier(cpu_hotplug_pm_callback, 0);
1352         return 0;
1353 }
1354 core_initcall(cpu_hotplug_pm_sync_init);
1355
1356 #endif /* CONFIG_PM_SLEEP_SMP */
1357
1358 int __boot_cpu_id;
1359
1360 #endif /* CONFIG_SMP */
1361
1362 /* Boot processor state steps */
1363 static struct cpuhp_step cpuhp_hp_states[] = {
1364         [CPUHP_OFFLINE] = {
1365                 .name                   = "offline",
1366                 .startup.single         = NULL,
1367                 .teardown.single        = NULL,
1368         },
1369 #ifdef CONFIG_SMP
1370         [CPUHP_CREATE_THREADS]= {
1371                 .name                   = "threads:prepare",
1372                 .startup.single         = smpboot_create_threads,
1373                 .teardown.single        = NULL,
1374                 .cant_stop              = true,
1375         },
1376         [CPUHP_PERF_PREPARE] = {
1377                 .name                   = "perf:prepare",
1378                 .startup.single         = perf_event_init_cpu,
1379                 .teardown.single        = perf_event_exit_cpu,
1380         },
1381         [CPUHP_WORKQUEUE_PREP] = {
1382                 .name                   = "workqueue:prepare",
1383                 .startup.single         = workqueue_prepare_cpu,
1384                 .teardown.single        = NULL,
1385         },
1386         [CPUHP_HRTIMERS_PREPARE] = {
1387                 .name                   = "hrtimers:prepare",
1388                 .startup.single         = hrtimers_prepare_cpu,
1389                 .teardown.single        = hrtimers_dead_cpu,
1390         },
1391         [CPUHP_SMPCFD_PREPARE] = {
1392                 .name                   = "smpcfd:prepare",
1393                 .startup.single         = smpcfd_prepare_cpu,
1394                 .teardown.single        = smpcfd_dead_cpu,
1395         },
1396         [CPUHP_RELAY_PREPARE] = {
1397                 .name                   = "relay:prepare",
1398                 .startup.single         = relay_prepare_cpu,
1399                 .teardown.single        = NULL,
1400         },
1401         [CPUHP_SLAB_PREPARE] = {
1402                 .name                   = "slab:prepare",
1403                 .startup.single         = slab_prepare_cpu,
1404                 .teardown.single        = slab_dead_cpu,
1405         },
1406         [CPUHP_RCUTREE_PREP] = {
1407                 .name                   = "RCU/tree:prepare",
1408                 .startup.single         = rcutree_prepare_cpu,
1409                 .teardown.single        = rcutree_dead_cpu,
1410         },
1411         /*
1412          * On the tear-down path, timers_dead_cpu() must be invoked
1413          * before blk_mq_queue_reinit_notify() from notify_dead(),
1414          * otherwise a RCU stall occurs.
1415          */
1416         [CPUHP_TIMERS_PREPARE] = {
1417                 .name                   = "timers:prepare",
1418                 .startup.single         = timers_prepare_cpu,
1419                 .teardown.single        = timers_dead_cpu,
1420         },
1421         /* Kicks the plugged cpu into life */
1422         [CPUHP_BRINGUP_CPU] = {
1423                 .name                   = "cpu:bringup",
1424                 .startup.single         = bringup_cpu,
1425                 .teardown.single        = NULL,
1426                 .cant_stop              = true,
1427         },
1428         /* Final state before CPU kills itself */
1429         [CPUHP_AP_IDLE_DEAD] = {
1430                 .name                   = "idle:dead",
1431         },
1432         /*
1433          * Last state before CPU enters the idle loop to die. Transient state
1434          * for synchronization.
1435          */
1436         [CPUHP_AP_OFFLINE] = {
1437                 .name                   = "ap:offline",
1438                 .cant_stop              = true,
1439         },
1440         /* First state is scheduler control. Interrupts are disabled */
1441         [CPUHP_AP_SCHED_STARTING] = {
1442                 .name                   = "sched:starting",
1443                 .startup.single         = sched_cpu_starting,
1444                 .teardown.single        = sched_cpu_dying,
1445         },
1446         [CPUHP_AP_RCUTREE_DYING] = {
1447                 .name                   = "RCU/tree:dying",
1448                 .startup.single         = NULL,
1449                 .teardown.single        = rcutree_dying_cpu,
1450         },
1451         [CPUHP_AP_SMPCFD_DYING] = {
1452                 .name                   = "smpcfd:dying",
1453                 .startup.single         = NULL,
1454                 .teardown.single        = smpcfd_dying_cpu,
1455         },
1456         /* Entry state on starting. Interrupts enabled from here on. Transient
1457          * state for synchronsization */
1458         [CPUHP_AP_ONLINE] = {
1459                 .name                   = "ap:online",
1460         },
1461         /*
1462          * Handled on controll processor until the plugged processor manages
1463          * this itself.
1464          */
1465         [CPUHP_TEARDOWN_CPU] = {
1466                 .name                   = "cpu:teardown",
1467                 .startup.single         = NULL,
1468                 .teardown.single        = takedown_cpu,
1469                 .cant_stop              = true,
1470         },
1471         /* Handle smpboot threads park/unpark */
1472         [CPUHP_AP_SMPBOOT_THREADS] = {
1473                 .name                   = "smpboot/threads:online",
1474                 .startup.single         = smpboot_unpark_threads,
1475                 .teardown.single        = smpboot_park_threads,
1476         },
1477         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1478                 .name                   = "irq/affinity:online",
1479                 .startup.single         = irq_affinity_online_cpu,
1480                 .teardown.single        = NULL,
1481         },
1482         [CPUHP_AP_PERF_ONLINE] = {
1483                 .name                   = "perf:online",
1484                 .startup.single         = perf_event_init_cpu,
1485                 .teardown.single        = perf_event_exit_cpu,
1486         },
1487         [CPUHP_AP_WATCHDOG_ONLINE] = {
1488                 .name                   = "lockup_detector:online",
1489                 .startup.single         = lockup_detector_online_cpu,
1490                 .teardown.single        = lockup_detector_offline_cpu,
1491         },
1492         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1493                 .name                   = "workqueue:online",
1494                 .startup.single         = workqueue_online_cpu,
1495                 .teardown.single        = workqueue_offline_cpu,
1496         },
1497         [CPUHP_AP_RCUTREE_ONLINE] = {
1498                 .name                   = "RCU/tree:online",
1499                 .startup.single         = rcutree_online_cpu,
1500                 .teardown.single        = rcutree_offline_cpu,
1501         },
1502 #endif
1503         /*
1504          * The dynamically registered state space is here
1505          */
1506
1507 #ifdef CONFIG_SMP
1508         /* Last state is scheduler control setting the cpu active */
1509         [CPUHP_AP_ACTIVE] = {
1510                 .name                   = "sched:active",
1511                 .startup.single         = sched_cpu_activate,
1512                 .teardown.single        = sched_cpu_deactivate,
1513         },
1514 #endif
1515
1516         /* CPU is fully up and running. */
1517         [CPUHP_ONLINE] = {
1518                 .name                   = "online",
1519                 .startup.single         = NULL,
1520                 .teardown.single        = NULL,
1521         },
1522 };
1523
1524 /* Sanity check for callbacks */
1525 static int cpuhp_cb_check(enum cpuhp_state state)
1526 {
1527         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1528                 return -EINVAL;
1529         return 0;
1530 }
1531
1532 /*
1533  * Returns a free for dynamic slot assignment of the Online state. The states
1534  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1535  * by having no name assigned.
1536  */
1537 static int cpuhp_reserve_state(enum cpuhp_state state)
1538 {
1539         enum cpuhp_state i, end;
1540         struct cpuhp_step *step;
1541
1542         switch (state) {
1543         case CPUHP_AP_ONLINE_DYN:
1544                 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1545                 end = CPUHP_AP_ONLINE_DYN_END;
1546                 break;
1547         case CPUHP_BP_PREPARE_DYN:
1548                 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1549                 end = CPUHP_BP_PREPARE_DYN_END;
1550                 break;
1551         default:
1552                 return -EINVAL;
1553         }
1554
1555         for (i = state; i <= end; i++, step++) {
1556                 if (!step->name)
1557                         return i;
1558         }
1559         WARN(1, "No more dynamic states available for CPU hotplug\n");
1560         return -ENOSPC;
1561 }
1562
1563 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1564                                  int (*startup)(unsigned int cpu),
1565                                  int (*teardown)(unsigned int cpu),
1566                                  bool multi_instance)
1567 {
1568         /* (Un)Install the callbacks for further cpu hotplug operations */
1569         struct cpuhp_step *sp;
1570         int ret = 0;
1571
1572         /*
1573          * If name is NULL, then the state gets removed.
1574          *
1575          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1576          * the first allocation from these dynamic ranges, so the removal
1577          * would trigger a new allocation and clear the wrong (already
1578          * empty) state, leaving the callbacks of the to be cleared state
1579          * dangling, which causes wreckage on the next hotplug operation.
1580          */
1581         if (name && (state == CPUHP_AP_ONLINE_DYN ||
1582                      state == CPUHP_BP_PREPARE_DYN)) {
1583                 ret = cpuhp_reserve_state(state);
1584                 if (ret < 0)
1585                         return ret;
1586                 state = ret;
1587         }
1588         sp = cpuhp_get_step(state);
1589         if (name && sp->name)
1590                 return -EBUSY;
1591
1592         sp->startup.single = startup;
1593         sp->teardown.single = teardown;
1594         sp->name = name;
1595         sp->multi_instance = multi_instance;
1596         INIT_HLIST_HEAD(&sp->list);
1597         return ret;
1598 }
1599
1600 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1601 {
1602         return cpuhp_get_step(state)->teardown.single;
1603 }
1604
1605 /*
1606  * Call the startup/teardown function for a step either on the AP or
1607  * on the current CPU.
1608  */
1609 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1610                             struct hlist_node *node)
1611 {
1612         struct cpuhp_step *sp = cpuhp_get_step(state);
1613         int ret;
1614
1615         /*
1616          * If there's nothing to do, we done.
1617          * Relies on the union for multi_instance.
1618          */
1619         if ((bringup && !sp->startup.single) ||
1620             (!bringup && !sp->teardown.single))
1621                 return 0;
1622         /*
1623          * The non AP bound callbacks can fail on bringup. On teardown
1624          * e.g. module removal we crash for now.
1625          */
1626 #ifdef CONFIG_SMP
1627         if (cpuhp_is_ap_state(state))
1628                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1629         else
1630                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1631 #else
1632         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1633 #endif
1634         BUG_ON(ret && !bringup);
1635         return ret;
1636 }
1637
1638 /*
1639  * Called from __cpuhp_setup_state on a recoverable failure.
1640  *
1641  * Note: The teardown callbacks for rollback are not allowed to fail!
1642  */
1643 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1644                                    struct hlist_node *node)
1645 {
1646         int cpu;
1647
1648         /* Roll back the already executed steps on the other cpus */
1649         for_each_present_cpu(cpu) {
1650                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1651                 int cpustate = st->state;
1652
1653                 if (cpu >= failedcpu)
1654                         break;
1655
1656                 /* Did we invoke the startup call on that cpu ? */
1657                 if (cpustate >= state)
1658                         cpuhp_issue_call(cpu, state, false, node);
1659         }
1660 }
1661
1662 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1663                                           struct hlist_node *node,
1664                                           bool invoke)
1665 {
1666         struct cpuhp_step *sp;
1667         int cpu;
1668         int ret;
1669
1670         lockdep_assert_cpus_held();
1671
1672         sp = cpuhp_get_step(state);
1673         if (sp->multi_instance == false)
1674                 return -EINVAL;
1675
1676         mutex_lock(&cpuhp_state_mutex);
1677
1678         if (!invoke || !sp->startup.multi)
1679                 goto add_node;
1680
1681         /*
1682          * Try to call the startup callback for each present cpu
1683          * depending on the hotplug state of the cpu.
1684          */
1685         for_each_present_cpu(cpu) {
1686                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1687                 int cpustate = st->state;
1688
1689                 if (cpustate < state)
1690                         continue;
1691
1692                 ret = cpuhp_issue_call(cpu, state, true, node);
1693                 if (ret) {
1694                         if (sp->teardown.multi)
1695                                 cpuhp_rollback_install(cpu, state, node);
1696                         goto unlock;
1697                 }
1698         }
1699 add_node:
1700         ret = 0;
1701         hlist_add_head(node, &sp->list);
1702 unlock:
1703         mutex_unlock(&cpuhp_state_mutex);
1704         return ret;
1705 }
1706
1707 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1708                                bool invoke)
1709 {
1710         int ret;
1711
1712         cpus_read_lock();
1713         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1714         cpus_read_unlock();
1715         return ret;
1716 }
1717 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1718
1719 /**
1720  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1721  * @state:              The state to setup
1722  * @invoke:             If true, the startup function is invoked for cpus where
1723  *                      cpu state >= @state
1724  * @startup:            startup callback function
1725  * @teardown:           teardown callback function
1726  * @multi_instance:     State is set up for multiple instances which get
1727  *                      added afterwards.
1728  *
1729  * The caller needs to hold cpus read locked while calling this function.
1730  * Returns:
1731  *   On success:
1732  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1733  *      0 for all other states
1734  *   On failure: proper (negative) error code
1735  */
1736 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1737                                    const char *name, bool invoke,
1738                                    int (*startup)(unsigned int cpu),
1739                                    int (*teardown)(unsigned int cpu),
1740                                    bool multi_instance)
1741 {
1742         int cpu, ret = 0;
1743         bool dynstate;
1744
1745         lockdep_assert_cpus_held();
1746
1747         if (cpuhp_cb_check(state) || !name)
1748                 return -EINVAL;
1749
1750         mutex_lock(&cpuhp_state_mutex);
1751
1752         ret = cpuhp_store_callbacks(state, name, startup, teardown,
1753                                     multi_instance);
1754
1755         dynstate = state == CPUHP_AP_ONLINE_DYN;
1756         if (ret > 0 && dynstate) {
1757                 state = ret;
1758                 ret = 0;
1759         }
1760
1761         if (ret || !invoke || !startup)
1762                 goto out;
1763
1764         /*
1765          * Try to call the startup callback for each present cpu
1766          * depending on the hotplug state of the cpu.
1767          */
1768         for_each_present_cpu(cpu) {
1769                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1770                 int cpustate = st->state;
1771
1772                 if (cpustate < state)
1773                         continue;
1774
1775                 ret = cpuhp_issue_call(cpu, state, true, NULL);
1776                 if (ret) {
1777                         if (teardown)
1778                                 cpuhp_rollback_install(cpu, state, NULL);
1779                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1780                         goto out;
1781                 }
1782         }
1783 out:
1784         mutex_unlock(&cpuhp_state_mutex);
1785         /*
1786          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1787          * dynamically allocated state in case of success.
1788          */
1789         if (!ret && dynstate)
1790                 return state;
1791         return ret;
1792 }
1793 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1794
1795 int __cpuhp_setup_state(enum cpuhp_state state,
1796                         const char *name, bool invoke,
1797                         int (*startup)(unsigned int cpu),
1798                         int (*teardown)(unsigned int cpu),
1799                         bool multi_instance)
1800 {
1801         int ret;
1802
1803         cpus_read_lock();
1804         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1805                                              teardown, multi_instance);
1806         cpus_read_unlock();
1807         return ret;
1808 }
1809 EXPORT_SYMBOL(__cpuhp_setup_state);
1810
1811 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1812                                   struct hlist_node *node, bool invoke)
1813 {
1814         struct cpuhp_step *sp = cpuhp_get_step(state);
1815         int cpu;
1816
1817         BUG_ON(cpuhp_cb_check(state));
1818
1819         if (!sp->multi_instance)
1820                 return -EINVAL;
1821
1822         cpus_read_lock();
1823         mutex_lock(&cpuhp_state_mutex);
1824
1825         if (!invoke || !cpuhp_get_teardown_cb(state))
1826                 goto remove;
1827         /*
1828          * Call the teardown callback for each present cpu depending
1829          * on the hotplug state of the cpu. This function is not
1830          * allowed to fail currently!
1831          */
1832         for_each_present_cpu(cpu) {
1833                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1834                 int cpustate = st->state;
1835
1836                 if (cpustate >= state)
1837                         cpuhp_issue_call(cpu, state, false, node);
1838         }
1839
1840 remove:
1841         hlist_del(node);
1842         mutex_unlock(&cpuhp_state_mutex);
1843         cpus_read_unlock();
1844
1845         return 0;
1846 }
1847 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1848
1849 /**
1850  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1851  * @state:      The state to remove
1852  * @invoke:     If true, the teardown function is invoked for cpus where
1853  *              cpu state >= @state
1854  *
1855  * The caller needs to hold cpus read locked while calling this function.
1856  * The teardown callback is currently not allowed to fail. Think
1857  * about module removal!
1858  */
1859 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1860 {
1861         struct cpuhp_step *sp = cpuhp_get_step(state);
1862         int cpu;
1863
1864         BUG_ON(cpuhp_cb_check(state));
1865
1866         lockdep_assert_cpus_held();
1867
1868         mutex_lock(&cpuhp_state_mutex);
1869         if (sp->multi_instance) {
1870                 WARN(!hlist_empty(&sp->list),
1871                      "Error: Removing state %d which has instances left.\n",
1872                      state);
1873                 goto remove;
1874         }
1875
1876         if (!invoke || !cpuhp_get_teardown_cb(state))
1877                 goto remove;
1878
1879         /*
1880          * Call the teardown callback for each present cpu depending
1881          * on the hotplug state of the cpu. This function is not
1882          * allowed to fail currently!
1883          */
1884         for_each_present_cpu(cpu) {
1885                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1886                 int cpustate = st->state;
1887
1888                 if (cpustate >= state)
1889                         cpuhp_issue_call(cpu, state, false, NULL);
1890         }
1891 remove:
1892         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1893         mutex_unlock(&cpuhp_state_mutex);
1894 }
1895 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1896
1897 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1898 {
1899         cpus_read_lock();
1900         __cpuhp_remove_state_cpuslocked(state, invoke);
1901         cpus_read_unlock();
1902 }
1903 EXPORT_SYMBOL(__cpuhp_remove_state);
1904
1905 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1906 static ssize_t show_cpuhp_state(struct device *dev,
1907                                 struct device_attribute *attr, char *buf)
1908 {
1909         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1910
1911         return sprintf(buf, "%d\n", st->state);
1912 }
1913 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1914
1915 static ssize_t write_cpuhp_target(struct device *dev,
1916                                   struct device_attribute *attr,
1917                                   const char *buf, size_t count)
1918 {
1919         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1920         struct cpuhp_step *sp;
1921         int target, ret;
1922
1923         ret = kstrtoint(buf, 10, &target);
1924         if (ret)
1925                 return ret;
1926
1927 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1928         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1929                 return -EINVAL;
1930 #else
1931         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1932                 return -EINVAL;
1933 #endif
1934
1935         ret = lock_device_hotplug_sysfs();
1936         if (ret)
1937                 return ret;
1938
1939         mutex_lock(&cpuhp_state_mutex);
1940         sp = cpuhp_get_step(target);
1941         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1942         mutex_unlock(&cpuhp_state_mutex);
1943         if (ret)
1944                 goto out;
1945
1946         if (st->state < target)
1947                 ret = do_cpu_up(dev->id, target);
1948         else
1949                 ret = do_cpu_down(dev->id, target);
1950 out:
1951         unlock_device_hotplug();
1952         return ret ? ret : count;
1953 }
1954
1955 static ssize_t show_cpuhp_target(struct device *dev,
1956                                  struct device_attribute *attr, char *buf)
1957 {
1958         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1959
1960         return sprintf(buf, "%d\n", st->target);
1961 }
1962 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1963
1964
1965 static ssize_t write_cpuhp_fail(struct device *dev,
1966                                 struct device_attribute *attr,
1967                                 const char *buf, size_t count)
1968 {
1969         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1970         struct cpuhp_step *sp;
1971         int fail, ret;
1972
1973         ret = kstrtoint(buf, 10, &fail);
1974         if (ret)
1975                 return ret;
1976
1977         if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
1978                 return -EINVAL;
1979
1980         /*
1981          * Cannot fail STARTING/DYING callbacks.
1982          */
1983         if (cpuhp_is_atomic_state(fail))
1984                 return -EINVAL;
1985
1986         /*
1987          * Cannot fail anything that doesn't have callbacks.
1988          */
1989         mutex_lock(&cpuhp_state_mutex);
1990         sp = cpuhp_get_step(fail);
1991         if (!sp->startup.single && !sp->teardown.single)
1992                 ret = -EINVAL;
1993         mutex_unlock(&cpuhp_state_mutex);
1994         if (ret)
1995                 return ret;
1996
1997         st->fail = fail;
1998
1999         return count;
2000 }
2001
2002 static ssize_t show_cpuhp_fail(struct device *dev,
2003                                struct device_attribute *attr, char *buf)
2004 {
2005         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2006
2007         return sprintf(buf, "%d\n", st->fail);
2008 }
2009
2010 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2011
2012 static struct attribute *cpuhp_cpu_attrs[] = {
2013         &dev_attr_state.attr,
2014         &dev_attr_target.attr,
2015         &dev_attr_fail.attr,
2016         NULL
2017 };
2018
2019 static const struct attribute_group cpuhp_cpu_attr_group = {
2020         .attrs = cpuhp_cpu_attrs,
2021         .name = "hotplug",
2022         NULL
2023 };
2024
2025 static ssize_t show_cpuhp_states(struct device *dev,
2026                                  struct device_attribute *attr, char *buf)
2027 {
2028         ssize_t cur, res = 0;
2029         int i;
2030
2031         mutex_lock(&cpuhp_state_mutex);
2032         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2033                 struct cpuhp_step *sp = cpuhp_get_step(i);
2034
2035                 if (sp->name) {
2036                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2037                         buf += cur;
2038                         res += cur;
2039                 }
2040         }
2041         mutex_unlock(&cpuhp_state_mutex);
2042         return res;
2043 }
2044 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2045
2046 static struct attribute *cpuhp_cpu_root_attrs[] = {
2047         &dev_attr_states.attr,
2048         NULL
2049 };
2050
2051 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2052         .attrs = cpuhp_cpu_root_attrs,
2053         .name = "hotplug",
2054         NULL
2055 };
2056
2057 #ifdef CONFIG_HOTPLUG_SMT
2058
2059 static void cpuhp_offline_cpu_device(unsigned int cpu)
2060 {
2061         struct device *dev = get_cpu_device(cpu);
2062
2063         dev->offline = true;
2064         /* Tell user space about the state change */
2065         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2066 }
2067
2068 static void cpuhp_online_cpu_device(unsigned int cpu)
2069 {
2070         struct device *dev = get_cpu_device(cpu);
2071
2072         dev->offline = false;
2073         /* Tell user space about the state change */
2074         kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2075 }
2076
2077 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2078 {
2079         int cpu, ret = 0;
2080
2081         cpu_maps_update_begin();
2082         for_each_online_cpu(cpu) {
2083                 if (topology_is_primary_thread(cpu))
2084                         continue;
2085                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2086                 if (ret)
2087                         break;
2088                 /*
2089                  * As this needs to hold the cpu maps lock it's impossible
2090                  * to call device_offline() because that ends up calling
2091                  * cpu_down() which takes cpu maps lock. cpu maps lock
2092                  * needs to be held as this might race against in kernel
2093                  * abusers of the hotplug machinery (thermal management).
2094                  *
2095                  * So nothing would update device:offline state. That would
2096                  * leave the sysfs entry stale and prevent onlining after
2097                  * smt control has been changed to 'off' again. This is
2098                  * called under the sysfs hotplug lock, so it is properly
2099                  * serialized against the regular offline usage.
2100                  */
2101                 cpuhp_offline_cpu_device(cpu);
2102         }
2103         if (!ret)
2104                 cpu_smt_control = ctrlval;
2105         cpu_maps_update_done();
2106         return ret;
2107 }
2108
2109 int cpuhp_smt_enable(void)
2110 {
2111         int cpu, ret = 0;
2112
2113         cpu_maps_update_begin();
2114         cpu_smt_control = CPU_SMT_ENABLED;
2115         for_each_present_cpu(cpu) {
2116                 /* Skip online CPUs and CPUs on offline nodes */
2117                 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2118                         continue;
2119                 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2120                 if (ret)
2121                         break;
2122                 /* See comment in cpuhp_smt_disable() */
2123                 cpuhp_online_cpu_device(cpu);
2124         }
2125         cpu_maps_update_done();
2126         return ret;
2127 }
2128
2129
2130 static ssize_t
2131 __store_smt_control(struct device *dev, struct device_attribute *attr,
2132                     const char *buf, size_t count)
2133 {
2134         int ctrlval, ret;
2135
2136         if (sysfs_streq(buf, "on"))
2137                 ctrlval = CPU_SMT_ENABLED;
2138         else if (sysfs_streq(buf, "off"))
2139                 ctrlval = CPU_SMT_DISABLED;
2140         else if (sysfs_streq(buf, "forceoff"))
2141                 ctrlval = CPU_SMT_FORCE_DISABLED;
2142         else
2143                 return -EINVAL;
2144
2145         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2146                 return -EPERM;
2147
2148         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2149                 return -ENODEV;
2150
2151         ret = lock_device_hotplug_sysfs();
2152         if (ret)
2153                 return ret;
2154
2155         if (ctrlval != cpu_smt_control) {
2156                 switch (ctrlval) {
2157                 case CPU_SMT_ENABLED:
2158                         ret = cpuhp_smt_enable();
2159                         break;
2160                 case CPU_SMT_DISABLED:
2161                 case CPU_SMT_FORCE_DISABLED:
2162                         ret = cpuhp_smt_disable(ctrlval);
2163                         break;
2164                 }
2165         }
2166
2167         unlock_device_hotplug();
2168         return ret ? ret : count;
2169 }
2170
2171 #else /* !CONFIG_HOTPLUG_SMT */
2172 static ssize_t
2173 __store_smt_control(struct device *dev, struct device_attribute *attr,
2174                     const char *buf, size_t count)
2175 {
2176         return -ENODEV;
2177 }
2178 #endif /* CONFIG_HOTPLUG_SMT */
2179
2180 static const char *smt_states[] = {
2181         [CPU_SMT_ENABLED]               = "on",
2182         [CPU_SMT_DISABLED]              = "off",
2183         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2184         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2185         [CPU_SMT_NOT_IMPLEMENTED]       = "notimplemented",
2186 };
2187
2188 static ssize_t
2189 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2190 {
2191         const char *state = smt_states[cpu_smt_control];
2192
2193         return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2194 }
2195
2196 static ssize_t
2197 store_smt_control(struct device *dev, struct device_attribute *attr,
2198                   const char *buf, size_t count)
2199 {
2200         return __store_smt_control(dev, attr, buf, count);
2201 }
2202 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2203
2204 static ssize_t
2205 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2206 {
2207         return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2208 }
2209 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2210
2211 static struct attribute *cpuhp_smt_attrs[] = {
2212         &dev_attr_control.attr,
2213         &dev_attr_active.attr,
2214         NULL
2215 };
2216
2217 static const struct attribute_group cpuhp_smt_attr_group = {
2218         .attrs = cpuhp_smt_attrs,
2219         .name = "smt",
2220         NULL
2221 };
2222
2223 static int __init cpu_smt_sysfs_init(void)
2224 {
2225         return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2226                                   &cpuhp_smt_attr_group);
2227 }
2228
2229 static int __init cpuhp_sysfs_init(void)
2230 {
2231         int cpu, ret;
2232
2233         ret = cpu_smt_sysfs_init();
2234         if (ret)
2235                 return ret;
2236
2237         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2238                                  &cpuhp_cpu_root_attr_group);
2239         if (ret)
2240                 return ret;
2241
2242         for_each_possible_cpu(cpu) {
2243                 struct device *dev = get_cpu_device(cpu);
2244
2245                 if (!dev)
2246                         continue;
2247                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2248                 if (ret)
2249                         return ret;
2250         }
2251         return 0;
2252 }
2253 device_initcall(cpuhp_sysfs_init);
2254 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2255
2256 /*
2257  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2258  * represents all NR_CPUS bits binary values of 1<<nr.
2259  *
2260  * It is used by cpumask_of() to get a constant address to a CPU
2261  * mask value that has a single bit set only.
2262  */
2263
2264 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2265 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
2266 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2267 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2268 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2269
2270 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2271
2272         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
2273         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
2274 #if BITS_PER_LONG > 32
2275         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
2276         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
2277 #endif
2278 };
2279 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2280
2281 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2282 EXPORT_SYMBOL(cpu_all_bits);
2283
2284 #ifdef CONFIG_INIT_ALL_POSSIBLE
2285 struct cpumask __cpu_possible_mask __read_mostly
2286         = {CPU_BITS_ALL};
2287 #else
2288 struct cpumask __cpu_possible_mask __read_mostly;
2289 #endif
2290 EXPORT_SYMBOL(__cpu_possible_mask);
2291
2292 struct cpumask __cpu_online_mask __read_mostly;
2293 EXPORT_SYMBOL(__cpu_online_mask);
2294
2295 struct cpumask __cpu_present_mask __read_mostly;
2296 EXPORT_SYMBOL(__cpu_present_mask);
2297
2298 struct cpumask __cpu_active_mask __read_mostly;
2299 EXPORT_SYMBOL(__cpu_active_mask);
2300
2301 atomic_t __num_online_cpus __read_mostly;
2302 EXPORT_SYMBOL(__num_online_cpus);
2303
2304 void init_cpu_present(const struct cpumask *src)
2305 {
2306         cpumask_copy(&__cpu_present_mask, src);
2307 }
2308
2309 void init_cpu_possible(const struct cpumask *src)
2310 {
2311         cpumask_copy(&__cpu_possible_mask, src);
2312 }
2313
2314 void init_cpu_online(const struct cpumask *src)
2315 {
2316         cpumask_copy(&__cpu_online_mask, src);
2317 }
2318
2319 void set_cpu_online(unsigned int cpu, bool online)
2320 {
2321         /*
2322          * atomic_inc/dec() is required to handle the horrid abuse of this
2323          * function by the reboot and kexec code which invoke it from
2324          * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2325          * regular CPU hotplug is properly serialized.
2326          *
2327          * Note, that the fact that __num_online_cpus is of type atomic_t
2328          * does not protect readers which are not serialized against
2329          * concurrent hotplug operations.
2330          */
2331         if (online) {
2332                 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2333                         atomic_inc(&__num_online_cpus);
2334         } else {
2335                 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2336                         atomic_dec(&__num_online_cpus);
2337         }
2338 }
2339
2340 /*
2341  * Activate the first processor.
2342  */
2343 void __init boot_cpu_init(void)
2344 {
2345         int cpu = smp_processor_id();
2346
2347         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2348         set_cpu_online(cpu, true);
2349         set_cpu_active(cpu, true);
2350         set_cpu_present(cpu, true);
2351         set_cpu_possible(cpu, true);
2352
2353 #ifdef CONFIG_SMP
2354         __boot_cpu_id = cpu;
2355 #endif
2356 }
2357
2358 /*
2359  * Must be called _AFTER_ setting up the per_cpu areas
2360  */
2361 void __init boot_cpu_hotplug_init(void)
2362 {
2363 #ifdef CONFIG_SMP
2364         cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2365 #endif
2366         this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2367 }
2368
2369 enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
2370
2371 static int __init mitigations_parse_cmdline(char *arg)
2372 {
2373         if (!strcmp(arg, "off"))
2374                 cpu_mitigations = CPU_MITIGATIONS_OFF;
2375         else if (!strcmp(arg, "auto"))
2376                 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2377         else if (!strcmp(arg, "auto,nosmt"))
2378                 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2379         else
2380                 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2381                         arg);
2382
2383         return 0;
2384 }
2385 early_param("mitigations", mitigations_parse_cmdline);