cpu/hotplug: Add CPU state tracking and synchronization
[linux-2.6-microblaze.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44
45 #include "smpboot.h"
46
47 /**
48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
49  * @state:      The current cpu state
50  * @target:     The target state
51  * @fail:       Current CPU hotplug callback state
52  * @thread:     Pointer to the hotplug thread
53  * @should_run: Thread should execute
54  * @rollback:   Perform a rollback
55  * @single:     Single callback invocation
56  * @bringup:    Single callback bringup or teardown selector
57  * @cpu:        CPU number
58  * @node:       Remote CPU node; for multi-instance, do a
59  *              single entry callback for install/remove
60  * @last:       For multi-instance rollback, remember how far we got
61  * @cb_state:   The state for a single callback (install/uninstall)
62  * @result:     Result of the operation
63  * @ap_sync_state:      State for AP synchronization
64  * @done_up:    Signal completion to the issuer of the task for cpu-up
65  * @done_down:  Signal completion to the issuer of the task for cpu-down
66  */
67 struct cpuhp_cpu_state {
68         enum cpuhp_state        state;
69         enum cpuhp_state        target;
70         enum cpuhp_state        fail;
71 #ifdef CONFIG_SMP
72         struct task_struct      *thread;
73         bool                    should_run;
74         bool                    rollback;
75         bool                    single;
76         bool                    bringup;
77         struct hlist_node       *node;
78         struct hlist_node       *last;
79         enum cpuhp_state        cb_state;
80         int                     result;
81         atomic_t                ap_sync_state;
82         struct completion       done_up;
83         struct completion       done_down;
84 #endif
85 };
86
87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88         .fail = CPUHP_INVALID,
89 };
90
91 #ifdef CONFIG_SMP
92 cpumask_t cpus_booted_once_mask;
93 #endif
94
95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96 static struct lockdep_map cpuhp_state_up_map =
97         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98 static struct lockdep_map cpuhp_state_down_map =
99         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100
101
102 static inline void cpuhp_lock_acquire(bool bringup)
103 {
104         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105 }
106
107 static inline void cpuhp_lock_release(bool bringup)
108 {
109         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110 }
111 #else
112
113 static inline void cpuhp_lock_acquire(bool bringup) { }
114 static inline void cpuhp_lock_release(bool bringup) { }
115
116 #endif
117
118 /**
119  * struct cpuhp_step - Hotplug state machine step
120  * @name:       Name of the step
121  * @startup:    Startup function of the step
122  * @teardown:   Teardown function of the step
123  * @cant_stop:  Bringup/teardown can't be stopped at this step
124  * @multi_instance:     State has multiple instances which get added afterwards
125  */
126 struct cpuhp_step {
127         const char              *name;
128         union {
129                 int             (*single)(unsigned int cpu);
130                 int             (*multi)(unsigned int cpu,
131                                          struct hlist_node *node);
132         } startup;
133         union {
134                 int             (*single)(unsigned int cpu);
135                 int             (*multi)(unsigned int cpu,
136                                          struct hlist_node *node);
137         } teardown;
138         /* private: */
139         struct hlist_head       list;
140         /* public: */
141         bool                    cant_stop;
142         bool                    multi_instance;
143 };
144
145 static DEFINE_MUTEX(cpuhp_state_mutex);
146 static struct cpuhp_step cpuhp_hp_states[];
147
148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149 {
150         return cpuhp_hp_states + state;
151 }
152
153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154 {
155         return bringup ? !step->startup.single : !step->teardown.single;
156 }
157
158 /**
159  * cpuhp_invoke_callback - Invoke the callbacks for a given state
160  * @cpu:        The cpu for which the callback should be invoked
161  * @state:      The state to do callbacks for
162  * @bringup:    True if the bringup callback should be invoked
163  * @node:       For multi-instance, do a single entry callback for install/remove
164  * @lastp:      For multi-instance rollback, remember how far we got
165  *
166  * Called from cpu hotplug and from the state register machinery.
167  *
168  * Return: %0 on success or a negative errno code
169  */
170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171                                  bool bringup, struct hlist_node *node,
172                                  struct hlist_node **lastp)
173 {
174         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175         struct cpuhp_step *step = cpuhp_get_step(state);
176         int (*cbm)(unsigned int cpu, struct hlist_node *node);
177         int (*cb)(unsigned int cpu);
178         int ret, cnt;
179
180         if (st->fail == state) {
181                 st->fail = CPUHP_INVALID;
182                 return -EAGAIN;
183         }
184
185         if (cpuhp_step_empty(bringup, step)) {
186                 WARN_ON_ONCE(1);
187                 return 0;
188         }
189
190         if (!step->multi_instance) {
191                 WARN_ON_ONCE(lastp && *lastp);
192                 cb = bringup ? step->startup.single : step->teardown.single;
193
194                 trace_cpuhp_enter(cpu, st->target, state, cb);
195                 ret = cb(cpu);
196                 trace_cpuhp_exit(cpu, st->state, state, ret);
197                 return ret;
198         }
199         cbm = bringup ? step->startup.multi : step->teardown.multi;
200
201         /* Single invocation for instance add/remove */
202         if (node) {
203                 WARN_ON_ONCE(lastp && *lastp);
204                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205                 ret = cbm(cpu, node);
206                 trace_cpuhp_exit(cpu, st->state, state, ret);
207                 return ret;
208         }
209
210         /* State transition. Invoke on all instances */
211         cnt = 0;
212         hlist_for_each(node, &step->list) {
213                 if (lastp && node == *lastp)
214                         break;
215
216                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217                 ret = cbm(cpu, node);
218                 trace_cpuhp_exit(cpu, st->state, state, ret);
219                 if (ret) {
220                         if (!lastp)
221                                 goto err;
222
223                         *lastp = node;
224                         return ret;
225                 }
226                 cnt++;
227         }
228         if (lastp)
229                 *lastp = NULL;
230         return 0;
231 err:
232         /* Rollback the instances if one failed */
233         cbm = !bringup ? step->startup.multi : step->teardown.multi;
234         if (!cbm)
235                 return ret;
236
237         hlist_for_each(node, &step->list) {
238                 if (!cnt--)
239                         break;
240
241                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242                 ret = cbm(cpu, node);
243                 trace_cpuhp_exit(cpu, st->state, state, ret);
244                 /*
245                  * Rollback must not fail,
246                  */
247                 WARN_ON_ONCE(ret);
248         }
249         return ret;
250 }
251
252 #ifdef CONFIG_SMP
253 static bool cpuhp_is_ap_state(enum cpuhp_state state)
254 {
255         /*
256          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257          * purposes as that state is handled explicitly in cpu_down.
258          */
259         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
260 }
261
262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263 {
264         struct completion *done = bringup ? &st->done_up : &st->done_down;
265         wait_for_completion(done);
266 }
267
268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269 {
270         struct completion *done = bringup ? &st->done_up : &st->done_down;
271         complete(done);
272 }
273
274 /*
275  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276  */
277 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278 {
279         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
280 }
281
282 /* Synchronization state management */
283 enum cpuhp_sync_state {
284         SYNC_STATE_DEAD,
285         SYNC_STATE_KICKED,
286         SYNC_STATE_SHOULD_DIE,
287         SYNC_STATE_ALIVE,
288         SYNC_STATE_SHOULD_ONLINE,
289         SYNC_STATE_ONLINE,
290 };
291
292 #ifdef CONFIG_HOTPLUG_CORE_SYNC
293 /**
294  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295  * @state:      The synchronization state to set
296  *
297  * No synchronization point. Just update of the synchronization state, but implies
298  * a full barrier so that the AP changes are visible before the control CPU proceeds.
299  */
300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301 {
302         atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303
304         (void)atomic_xchg(st, state);
305 }
306
307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308
309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310                                       enum cpuhp_sync_state next_state)
311 {
312         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313         ktime_t now, end, start = ktime_get();
314         int sync;
315
316         end = start + 10ULL * NSEC_PER_SEC;
317
318         sync = atomic_read(st);
319         while (1) {
320                 if (sync == state) {
321                         if (!atomic_try_cmpxchg(st, &sync, next_state))
322                                 continue;
323                         return true;
324                 }
325
326                 now = ktime_get();
327                 if (now > end) {
328                         /* Timeout. Leave the state unchanged */
329                         return false;
330                 } else if (now - start < NSEC_PER_MSEC) {
331                         /* Poll for one millisecond */
332                         arch_cpuhp_sync_state_poll();
333                 } else {
334                         usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
335                 }
336                 sync = atomic_read(st);
337         }
338         return true;
339 }
340 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343
344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345 /**
346  * cpuhp_ap_report_dead - Update synchronization state to DEAD
347  *
348  * No synchronization point. Just update of the synchronization state.
349  */
350 void cpuhp_ap_report_dead(void)
351 {
352         cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353 }
354
355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356
357 /*
358  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359  * because the AP cannot issue complete() at this stage.
360  */
361 static void cpuhp_bp_sync_dead(unsigned int cpu)
362 {
363         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364         int sync = atomic_read(st);
365
366         do {
367                 /* CPU can have reported dead already. Don't overwrite that! */
368                 if (sync == SYNC_STATE_DEAD)
369                         break;
370         } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371
372         if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373                 /* CPU reached dead state. Invoke the cleanup function */
374                 arch_cpuhp_cleanup_dead_cpu(cpu);
375                 return;
376         }
377
378         /* No further action possible. Emit message and give up. */
379         pr_err("CPU%u failed to report dead state\n", cpu);
380 }
381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384
385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386 /**
387  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388  *
389  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390  * for the BP to release it.
391  */
392 void cpuhp_ap_sync_alive(void)
393 {
394         atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395
396         cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397
398         /* Wait for the control CPU to release it. */
399         while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400                 cpu_relax();
401 }
402
403 static bool cpuhp_can_boot_ap(unsigned int cpu)
404 {
405         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406         int sync = atomic_read(st);
407
408 again:
409         switch (sync) {
410         case SYNC_STATE_DEAD:
411                 /* CPU is properly dead */
412                 break;
413         case SYNC_STATE_KICKED:
414                 /* CPU did not come up in previous attempt */
415                 break;
416         case SYNC_STATE_ALIVE:
417                 /* CPU is stuck cpuhp_ap_sync_alive(). */
418                 break;
419         default:
420                 /* CPU failed to report online or dead and is in limbo state. */
421                 return false;
422         }
423
424         /* Prepare for booting */
425         if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426                 goto again;
427
428         return true;
429 }
430
431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432
433 /*
434  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435  * because the AP cannot issue complete() so early in the bringup.
436  */
437 static int cpuhp_bp_sync_alive(unsigned int cpu)
438 {
439         int ret = 0;
440
441         if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442                 return 0;
443
444         if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445                 pr_err("CPU%u failed to report alive state\n", cpu);
446                 ret = -EIO;
447         }
448
449         /* Let the architecture cleanup the kick alive mechanics. */
450         arch_cpuhp_cleanup_kick_cpu(cpu);
451         return ret;
452 }
453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457
458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
459 static DEFINE_MUTEX(cpu_add_remove_lock);
460 bool cpuhp_tasks_frozen;
461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462
463 /*
464  * The following two APIs (cpu_maps_update_begin/done) must be used when
465  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466  */
467 void cpu_maps_update_begin(void)
468 {
469         mutex_lock(&cpu_add_remove_lock);
470 }
471
472 void cpu_maps_update_done(void)
473 {
474         mutex_unlock(&cpu_add_remove_lock);
475 }
476
477 /*
478  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479  * Should always be manipulated under cpu_add_remove_lock
480  */
481 static int cpu_hotplug_disabled;
482
483 #ifdef CONFIG_HOTPLUG_CPU
484
485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486
487 void cpus_read_lock(void)
488 {
489         percpu_down_read(&cpu_hotplug_lock);
490 }
491 EXPORT_SYMBOL_GPL(cpus_read_lock);
492
493 int cpus_read_trylock(void)
494 {
495         return percpu_down_read_trylock(&cpu_hotplug_lock);
496 }
497 EXPORT_SYMBOL_GPL(cpus_read_trylock);
498
499 void cpus_read_unlock(void)
500 {
501         percpu_up_read(&cpu_hotplug_lock);
502 }
503 EXPORT_SYMBOL_GPL(cpus_read_unlock);
504
505 void cpus_write_lock(void)
506 {
507         percpu_down_write(&cpu_hotplug_lock);
508 }
509
510 void cpus_write_unlock(void)
511 {
512         percpu_up_write(&cpu_hotplug_lock);
513 }
514
515 void lockdep_assert_cpus_held(void)
516 {
517         /*
518          * We can't have hotplug operations before userspace starts running,
519          * and some init codepaths will knowingly not take the hotplug lock.
520          * This is all valid, so mute lockdep until it makes sense to report
521          * unheld locks.
522          */
523         if (system_state < SYSTEM_RUNNING)
524                 return;
525
526         percpu_rwsem_assert_held(&cpu_hotplug_lock);
527 }
528
529 #ifdef CONFIG_LOCKDEP
530 int lockdep_is_cpus_held(void)
531 {
532         return percpu_rwsem_is_held(&cpu_hotplug_lock);
533 }
534 #endif
535
536 static void lockdep_acquire_cpus_lock(void)
537 {
538         rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
539 }
540
541 static void lockdep_release_cpus_lock(void)
542 {
543         rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
544 }
545
546 /*
547  * Wait for currently running CPU hotplug operations to complete (if any) and
548  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
549  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
550  * hotplug path before performing hotplug operations. So acquiring that lock
551  * guarantees mutual exclusion from any currently running hotplug operations.
552  */
553 void cpu_hotplug_disable(void)
554 {
555         cpu_maps_update_begin();
556         cpu_hotplug_disabled++;
557         cpu_maps_update_done();
558 }
559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
560
561 static void __cpu_hotplug_enable(void)
562 {
563         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
564                 return;
565         cpu_hotplug_disabled--;
566 }
567
568 void cpu_hotplug_enable(void)
569 {
570         cpu_maps_update_begin();
571         __cpu_hotplug_enable();
572         cpu_maps_update_done();
573 }
574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
575
576 #else
577
578 static void lockdep_acquire_cpus_lock(void)
579 {
580 }
581
582 static void lockdep_release_cpus_lock(void)
583 {
584 }
585
586 #endif  /* CONFIG_HOTPLUG_CPU */
587
588 /*
589  * Architectures that need SMT-specific errata handling during SMT hotplug
590  * should override this.
591  */
592 void __weak arch_smt_update(void) { }
593
594 #ifdef CONFIG_HOTPLUG_SMT
595 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
596
597 void __init cpu_smt_disable(bool force)
598 {
599         if (!cpu_smt_possible())
600                 return;
601
602         if (force) {
603                 pr_info("SMT: Force disabled\n");
604                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
605         } else {
606                 pr_info("SMT: disabled\n");
607                 cpu_smt_control = CPU_SMT_DISABLED;
608         }
609 }
610
611 /*
612  * The decision whether SMT is supported can only be done after the full
613  * CPU identification. Called from architecture code.
614  */
615 void __init cpu_smt_check_topology(void)
616 {
617         if (!topology_smt_supported())
618                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
619 }
620
621 static int __init smt_cmdline_disable(char *str)
622 {
623         cpu_smt_disable(str && !strcmp(str, "force"));
624         return 0;
625 }
626 early_param("nosmt", smt_cmdline_disable);
627
628 static inline bool cpu_smt_allowed(unsigned int cpu)
629 {
630         if (cpu_smt_control == CPU_SMT_ENABLED)
631                 return true;
632
633         if (topology_is_primary_thread(cpu))
634                 return true;
635
636         /*
637          * On x86 it's required to boot all logical CPUs at least once so
638          * that the init code can get a chance to set CR4.MCE on each
639          * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
640          * core will shutdown the machine.
641          */
642         return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
643 }
644
645 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
646 bool cpu_smt_possible(void)
647 {
648         return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
649                 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
650 }
651 EXPORT_SYMBOL_GPL(cpu_smt_possible);
652 #else
653 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
654 #endif
655
656 static inline enum cpuhp_state
657 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
658 {
659         enum cpuhp_state prev_state = st->state;
660         bool bringup = st->state < target;
661
662         st->rollback = false;
663         st->last = NULL;
664
665         st->target = target;
666         st->single = false;
667         st->bringup = bringup;
668         if (cpu_dying(cpu) != !bringup)
669                 set_cpu_dying(cpu, !bringup);
670
671         return prev_state;
672 }
673
674 static inline void
675 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
676                   enum cpuhp_state prev_state)
677 {
678         bool bringup = !st->bringup;
679
680         st->target = prev_state;
681
682         /*
683          * Already rolling back. No need invert the bringup value or to change
684          * the current state.
685          */
686         if (st->rollback)
687                 return;
688
689         st->rollback = true;
690
691         /*
692          * If we have st->last we need to undo partial multi_instance of this
693          * state first. Otherwise start undo at the previous state.
694          */
695         if (!st->last) {
696                 if (st->bringup)
697                         st->state--;
698                 else
699                         st->state++;
700         }
701
702         st->bringup = bringup;
703         if (cpu_dying(cpu) != !bringup)
704                 set_cpu_dying(cpu, !bringup);
705 }
706
707 /* Regular hotplug invocation of the AP hotplug thread */
708 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
709 {
710         if (!st->single && st->state == st->target)
711                 return;
712
713         st->result = 0;
714         /*
715          * Make sure the above stores are visible before should_run becomes
716          * true. Paired with the mb() above in cpuhp_thread_fun()
717          */
718         smp_mb();
719         st->should_run = true;
720         wake_up_process(st->thread);
721         wait_for_ap_thread(st, st->bringup);
722 }
723
724 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
725                          enum cpuhp_state target)
726 {
727         enum cpuhp_state prev_state;
728         int ret;
729
730         prev_state = cpuhp_set_state(cpu, st, target);
731         __cpuhp_kick_ap(st);
732         if ((ret = st->result)) {
733                 cpuhp_reset_state(cpu, st, prev_state);
734                 __cpuhp_kick_ap(st);
735         }
736
737         return ret;
738 }
739
740 static int bringup_wait_for_ap_online(unsigned int cpu)
741 {
742         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
743
744         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
745         wait_for_ap_thread(st, true);
746         if (WARN_ON_ONCE((!cpu_online(cpu))))
747                 return -ECANCELED;
748
749         /* Unpark the hotplug thread of the target cpu */
750         kthread_unpark(st->thread);
751
752         /*
753          * SMT soft disabling on X86 requires to bring the CPU out of the
754          * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
755          * CPU marked itself as booted_once in notify_cpu_starting() so the
756          * cpu_smt_allowed() check will now return false if this is not the
757          * primary sibling.
758          */
759         if (!cpu_smt_allowed(cpu))
760                 return -ECANCELED;
761         return 0;
762 }
763
764 static int bringup_cpu(unsigned int cpu)
765 {
766         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
767         struct task_struct *idle = idle_thread_get(cpu);
768         int ret;
769
770         if (!cpuhp_can_boot_ap(cpu))
771                 return -EAGAIN;
772
773         /*
774          * Reset stale stack state from the last time this CPU was online.
775          */
776         scs_task_reset(idle);
777         kasan_unpoison_task_stack(idle);
778
779         /*
780          * Some architectures have to walk the irq descriptors to
781          * setup the vector space for the cpu which comes online.
782          *
783          * Prevent irq alloc/free across the bringup by acquiring the
784          * sparse irq lock. Hold it until the upcoming CPU completes the
785          * startup in cpuhp_online_idle() which allows to avoid
786          * intermediate synchronization points in the architecture code.
787          */
788         irq_lock_sparse();
789
790         /* Arch-specific enabling code. */
791         ret = __cpu_up(cpu, idle);
792         if (ret)
793                 goto out_unlock;
794
795         ret = cpuhp_bp_sync_alive(cpu);
796         if (ret)
797                 goto out_unlock;
798
799         ret = bringup_wait_for_ap_online(cpu);
800         if (ret)
801                 goto out_unlock;
802
803         irq_unlock_sparse();
804
805         if (st->target <= CPUHP_AP_ONLINE_IDLE)
806                 return 0;
807
808         return cpuhp_kick_ap(cpu, st, st->target);
809
810 out_unlock:
811         irq_unlock_sparse();
812         return ret;
813 }
814
815 static int finish_cpu(unsigned int cpu)
816 {
817         struct task_struct *idle = idle_thread_get(cpu);
818         struct mm_struct *mm = idle->active_mm;
819
820         /*
821          * idle_task_exit() will have switched to &init_mm, now
822          * clean up any remaining active_mm state.
823          */
824         if (mm != &init_mm)
825                 idle->active_mm = &init_mm;
826         mmdrop_lazy_tlb(mm);
827         return 0;
828 }
829
830 /*
831  * Hotplug state machine related functions
832  */
833
834 /*
835  * Get the next state to run. Empty ones will be skipped. Returns true if a
836  * state must be run.
837  *
838  * st->state will be modified ahead of time, to match state_to_run, as if it
839  * has already ran.
840  */
841 static bool cpuhp_next_state(bool bringup,
842                              enum cpuhp_state *state_to_run,
843                              struct cpuhp_cpu_state *st,
844                              enum cpuhp_state target)
845 {
846         do {
847                 if (bringup) {
848                         if (st->state >= target)
849                                 return false;
850
851                         *state_to_run = ++st->state;
852                 } else {
853                         if (st->state <= target)
854                                 return false;
855
856                         *state_to_run = st->state--;
857                 }
858
859                 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
860                         break;
861         } while (true);
862
863         return true;
864 }
865
866 static int __cpuhp_invoke_callback_range(bool bringup,
867                                          unsigned int cpu,
868                                          struct cpuhp_cpu_state *st,
869                                          enum cpuhp_state target,
870                                          bool nofail)
871 {
872         enum cpuhp_state state;
873         int ret = 0;
874
875         while (cpuhp_next_state(bringup, &state, st, target)) {
876                 int err;
877
878                 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
879                 if (!err)
880                         continue;
881
882                 if (nofail) {
883                         pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
884                                 cpu, bringup ? "UP" : "DOWN",
885                                 cpuhp_get_step(st->state)->name,
886                                 st->state, err);
887                         ret = -1;
888                 } else {
889                         ret = err;
890                         break;
891                 }
892         }
893
894         return ret;
895 }
896
897 static inline int cpuhp_invoke_callback_range(bool bringup,
898                                               unsigned int cpu,
899                                               struct cpuhp_cpu_state *st,
900                                               enum cpuhp_state target)
901 {
902         return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
903 }
904
905 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
906                                                       unsigned int cpu,
907                                                       struct cpuhp_cpu_state *st,
908                                                       enum cpuhp_state target)
909 {
910         __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
911 }
912
913 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
914 {
915         if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
916                 return true;
917         /*
918          * When CPU hotplug is disabled, then taking the CPU down is not
919          * possible because takedown_cpu() and the architecture and
920          * subsystem specific mechanisms are not available. So the CPU
921          * which would be completely unplugged again needs to stay around
922          * in the current state.
923          */
924         return st->state <= CPUHP_BRINGUP_CPU;
925 }
926
927 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
928                               enum cpuhp_state target)
929 {
930         enum cpuhp_state prev_state = st->state;
931         int ret = 0;
932
933         ret = cpuhp_invoke_callback_range(true, cpu, st, target);
934         if (ret) {
935                 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
936                          ret, cpu, cpuhp_get_step(st->state)->name,
937                          st->state);
938
939                 cpuhp_reset_state(cpu, st, prev_state);
940                 if (can_rollback_cpu(st))
941                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
942                                                             prev_state));
943         }
944         return ret;
945 }
946
947 /*
948  * The cpu hotplug threads manage the bringup and teardown of the cpus
949  */
950 static int cpuhp_should_run(unsigned int cpu)
951 {
952         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
953
954         return st->should_run;
955 }
956
957 /*
958  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
959  * callbacks when a state gets [un]installed at runtime.
960  *
961  * Each invocation of this function by the smpboot thread does a single AP
962  * state callback.
963  *
964  * It has 3 modes of operation:
965  *  - single: runs st->cb_state
966  *  - up:     runs ++st->state, while st->state < st->target
967  *  - down:   runs st->state--, while st->state > st->target
968  *
969  * When complete or on error, should_run is cleared and the completion is fired.
970  */
971 static void cpuhp_thread_fun(unsigned int cpu)
972 {
973         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
974         bool bringup = st->bringup;
975         enum cpuhp_state state;
976
977         if (WARN_ON_ONCE(!st->should_run))
978                 return;
979
980         /*
981          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
982          * that if we see ->should_run we also see the rest of the state.
983          */
984         smp_mb();
985
986         /*
987          * The BP holds the hotplug lock, but we're now running on the AP,
988          * ensure that anybody asserting the lock is held, will actually find
989          * it so.
990          */
991         lockdep_acquire_cpus_lock();
992         cpuhp_lock_acquire(bringup);
993
994         if (st->single) {
995                 state = st->cb_state;
996                 st->should_run = false;
997         } else {
998                 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
999                 if (!st->should_run)
1000                         goto end;
1001         }
1002
1003         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1004
1005         if (cpuhp_is_atomic_state(state)) {
1006                 local_irq_disable();
1007                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1008                 local_irq_enable();
1009
1010                 /*
1011                  * STARTING/DYING must not fail!
1012                  */
1013                 WARN_ON_ONCE(st->result);
1014         } else {
1015                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1016         }
1017
1018         if (st->result) {
1019                 /*
1020                  * If we fail on a rollback, we're up a creek without no
1021                  * paddle, no way forward, no way back. We loose, thanks for
1022                  * playing.
1023                  */
1024                 WARN_ON_ONCE(st->rollback);
1025                 st->should_run = false;
1026         }
1027
1028 end:
1029         cpuhp_lock_release(bringup);
1030         lockdep_release_cpus_lock();
1031
1032         if (!st->should_run)
1033                 complete_ap_thread(st, bringup);
1034 }
1035
1036 /* Invoke a single callback on a remote cpu */
1037 static int
1038 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1039                          struct hlist_node *node)
1040 {
1041         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1042         int ret;
1043
1044         if (!cpu_online(cpu))
1045                 return 0;
1046
1047         cpuhp_lock_acquire(false);
1048         cpuhp_lock_release(false);
1049
1050         cpuhp_lock_acquire(true);
1051         cpuhp_lock_release(true);
1052
1053         /*
1054          * If we are up and running, use the hotplug thread. For early calls
1055          * we invoke the thread function directly.
1056          */
1057         if (!st->thread)
1058                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1059
1060         st->rollback = false;
1061         st->last = NULL;
1062
1063         st->node = node;
1064         st->bringup = bringup;
1065         st->cb_state = state;
1066         st->single = true;
1067
1068         __cpuhp_kick_ap(st);
1069
1070         /*
1071          * If we failed and did a partial, do a rollback.
1072          */
1073         if ((ret = st->result) && st->last) {
1074                 st->rollback = true;
1075                 st->bringup = !bringup;
1076
1077                 __cpuhp_kick_ap(st);
1078         }
1079
1080         /*
1081          * Clean up the leftovers so the next hotplug operation wont use stale
1082          * data.
1083          */
1084         st->node = st->last = NULL;
1085         return ret;
1086 }
1087
1088 static int cpuhp_kick_ap_work(unsigned int cpu)
1089 {
1090         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1091         enum cpuhp_state prev_state = st->state;
1092         int ret;
1093
1094         cpuhp_lock_acquire(false);
1095         cpuhp_lock_release(false);
1096
1097         cpuhp_lock_acquire(true);
1098         cpuhp_lock_release(true);
1099
1100         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1101         ret = cpuhp_kick_ap(cpu, st, st->target);
1102         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1103
1104         return ret;
1105 }
1106
1107 static struct smp_hotplug_thread cpuhp_threads = {
1108         .store                  = &cpuhp_state.thread,
1109         .thread_should_run      = cpuhp_should_run,
1110         .thread_fn              = cpuhp_thread_fun,
1111         .thread_comm            = "cpuhp/%u",
1112         .selfparking            = true,
1113 };
1114
1115 static __init void cpuhp_init_state(void)
1116 {
1117         struct cpuhp_cpu_state *st;
1118         int cpu;
1119
1120         for_each_possible_cpu(cpu) {
1121                 st = per_cpu_ptr(&cpuhp_state, cpu);
1122                 init_completion(&st->done_up);
1123                 init_completion(&st->done_down);
1124         }
1125 }
1126
1127 void __init cpuhp_threads_init(void)
1128 {
1129         cpuhp_init_state();
1130         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1131         kthread_unpark(this_cpu_read(cpuhp_state.thread));
1132 }
1133
1134 /*
1135  *
1136  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1137  * protected region.
1138  *
1139  * The operation is still serialized against concurrent CPU hotplug via
1140  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
1141  * serialized against other hotplug related activity like adding or
1142  * removing of state callbacks and state instances, which invoke either the
1143  * startup or the teardown callback of the affected state.
1144  *
1145  * This is required for subsystems which are unfixable vs. CPU hotplug and
1146  * evade lock inversion problems by scheduling work which has to be
1147  * completed _before_ cpu_up()/_cpu_down() returns.
1148  *
1149  * Don't even think about adding anything to this for any new code or even
1150  * drivers. It's only purpose is to keep existing lock order trainwrecks
1151  * working.
1152  *
1153  * For cpu_down() there might be valid reasons to finish cleanups which are
1154  * not required to be done under cpu_hotplug_lock, but that's a different
1155  * story and would be not invoked via this.
1156  */
1157 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1158 {
1159         /*
1160          * cpusets delegate hotplug operations to a worker to "solve" the
1161          * lock order problems. Wait for the worker, but only if tasks are
1162          * _not_ frozen (suspend, hibernate) as that would wait forever.
1163          *
1164          * The wait is required because otherwise the hotplug operation
1165          * returns with inconsistent state, which could even be observed in
1166          * user space when a new CPU is brought up. The CPU plug uevent
1167          * would be delivered and user space reacting on it would fail to
1168          * move tasks to the newly plugged CPU up to the point where the
1169          * work has finished because up to that point the newly plugged CPU
1170          * is not assignable in cpusets/cgroups. On unplug that's not
1171          * necessarily a visible issue, but it is still inconsistent state,
1172          * which is the real problem which needs to be "fixed". This can't
1173          * prevent the transient state between scheduling the work and
1174          * returning from waiting for it.
1175          */
1176         if (!tasks_frozen)
1177                 cpuset_wait_for_hotplug();
1178 }
1179
1180 #ifdef CONFIG_HOTPLUG_CPU
1181 #ifndef arch_clear_mm_cpumask_cpu
1182 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1183 #endif
1184
1185 /**
1186  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1187  * @cpu: a CPU id
1188  *
1189  * This function walks all processes, finds a valid mm struct for each one and
1190  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1191  * trivial, there are various non-obvious corner cases, which this function
1192  * tries to solve in a safe manner.
1193  *
1194  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1195  * be called only for an already offlined CPU.
1196  */
1197 void clear_tasks_mm_cpumask(int cpu)
1198 {
1199         struct task_struct *p;
1200
1201         /*
1202          * This function is called after the cpu is taken down and marked
1203          * offline, so its not like new tasks will ever get this cpu set in
1204          * their mm mask. -- Peter Zijlstra
1205          * Thus, we may use rcu_read_lock() here, instead of grabbing
1206          * full-fledged tasklist_lock.
1207          */
1208         WARN_ON(cpu_online(cpu));
1209         rcu_read_lock();
1210         for_each_process(p) {
1211                 struct task_struct *t;
1212
1213                 /*
1214                  * Main thread might exit, but other threads may still have
1215                  * a valid mm. Find one.
1216                  */
1217                 t = find_lock_task_mm(p);
1218                 if (!t)
1219                         continue;
1220                 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1221                 task_unlock(t);
1222         }
1223         rcu_read_unlock();
1224 }
1225
1226 /* Take this CPU down. */
1227 static int take_cpu_down(void *_param)
1228 {
1229         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1230         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1231         int err, cpu = smp_processor_id();
1232
1233         /* Ensure this CPU doesn't handle any more interrupts. */
1234         err = __cpu_disable();
1235         if (err < 0)
1236                 return err;
1237
1238         /*
1239          * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1240          * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1241          */
1242         WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1243
1244         /*
1245          * Invoke the former CPU_DYING callbacks. DYING must not fail!
1246          */
1247         cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1248
1249         /* Give up timekeeping duties */
1250         tick_handover_do_timer();
1251         /* Remove CPU from timer broadcasting */
1252         tick_offline_cpu(cpu);
1253         /* Park the stopper thread */
1254         stop_machine_park(cpu);
1255         return 0;
1256 }
1257
1258 static int takedown_cpu(unsigned int cpu)
1259 {
1260         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1261         int err;
1262
1263         /* Park the smpboot threads */
1264         kthread_park(st->thread);
1265
1266         /*
1267          * Prevent irq alloc/free while the dying cpu reorganizes the
1268          * interrupt affinities.
1269          */
1270         irq_lock_sparse();
1271
1272         /*
1273          * So now all preempt/rcu users must observe !cpu_active().
1274          */
1275         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1276         if (err) {
1277                 /* CPU refused to die */
1278                 irq_unlock_sparse();
1279                 /* Unpark the hotplug thread so we can rollback there */
1280                 kthread_unpark(st->thread);
1281                 return err;
1282         }
1283         BUG_ON(cpu_online(cpu));
1284
1285         /*
1286          * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1287          * all runnable tasks from the CPU, there's only the idle task left now
1288          * that the migration thread is done doing the stop_machine thing.
1289          *
1290          * Wait for the stop thread to go away.
1291          */
1292         wait_for_ap_thread(st, false);
1293         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1294
1295         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1296         irq_unlock_sparse();
1297
1298         hotplug_cpu__broadcast_tick_pull(cpu);
1299         /* This actually kills the CPU. */
1300         __cpu_die(cpu);
1301
1302         cpuhp_bp_sync_dead(cpu);
1303
1304         tick_cleanup_dead_cpu(cpu);
1305         rcutree_migrate_callbacks(cpu);
1306         return 0;
1307 }
1308
1309 static void cpuhp_complete_idle_dead(void *arg)
1310 {
1311         struct cpuhp_cpu_state *st = arg;
1312
1313         complete_ap_thread(st, false);
1314 }
1315
1316 void cpuhp_report_idle_dead(void)
1317 {
1318         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1319
1320         BUG_ON(st->state != CPUHP_AP_OFFLINE);
1321         rcu_report_dead(smp_processor_id());
1322         st->state = CPUHP_AP_IDLE_DEAD;
1323         /*
1324          * We cannot call complete after rcu_report_dead() so we delegate it
1325          * to an online cpu.
1326          */
1327         smp_call_function_single(cpumask_first(cpu_online_mask),
1328                                  cpuhp_complete_idle_dead, st, 0);
1329 }
1330
1331 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1332                                 enum cpuhp_state target)
1333 {
1334         enum cpuhp_state prev_state = st->state;
1335         int ret = 0;
1336
1337         ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1338         if (ret) {
1339                 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1340                          ret, cpu, cpuhp_get_step(st->state)->name,
1341                          st->state);
1342
1343                 cpuhp_reset_state(cpu, st, prev_state);
1344
1345                 if (st->state < prev_state)
1346                         WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1347                                                             prev_state));
1348         }
1349
1350         return ret;
1351 }
1352
1353 /* Requires cpu_add_remove_lock to be held */
1354 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1355                            enum cpuhp_state target)
1356 {
1357         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1358         int prev_state, ret = 0;
1359
1360         if (num_online_cpus() == 1)
1361                 return -EBUSY;
1362
1363         if (!cpu_present(cpu))
1364                 return -EINVAL;
1365
1366         cpus_write_lock();
1367
1368         cpuhp_tasks_frozen = tasks_frozen;
1369
1370         prev_state = cpuhp_set_state(cpu, st, target);
1371         /*
1372          * If the current CPU state is in the range of the AP hotplug thread,
1373          * then we need to kick the thread.
1374          */
1375         if (st->state > CPUHP_TEARDOWN_CPU) {
1376                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1377                 ret = cpuhp_kick_ap_work(cpu);
1378                 /*
1379                  * The AP side has done the error rollback already. Just
1380                  * return the error code..
1381                  */
1382                 if (ret)
1383                         goto out;
1384
1385                 /*
1386                  * We might have stopped still in the range of the AP hotplug
1387                  * thread. Nothing to do anymore.
1388                  */
1389                 if (st->state > CPUHP_TEARDOWN_CPU)
1390                         goto out;
1391
1392                 st->target = target;
1393         }
1394         /*
1395          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1396          * to do the further cleanups.
1397          */
1398         ret = cpuhp_down_callbacks(cpu, st, target);
1399         if (ret && st->state < prev_state) {
1400                 if (st->state == CPUHP_TEARDOWN_CPU) {
1401                         cpuhp_reset_state(cpu, st, prev_state);
1402                         __cpuhp_kick_ap(st);
1403                 } else {
1404                         WARN(1, "DEAD callback error for CPU%d", cpu);
1405                 }
1406         }
1407
1408 out:
1409         cpus_write_unlock();
1410         /*
1411          * Do post unplug cleanup. This is still protected against
1412          * concurrent CPU hotplug via cpu_add_remove_lock.
1413          */
1414         lockup_detector_cleanup();
1415         arch_smt_update();
1416         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1417         return ret;
1418 }
1419
1420 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1421 {
1422         /*
1423          * If the platform does not support hotplug, report it explicitly to
1424          * differentiate it from a transient offlining failure.
1425          */
1426         if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1427                 return -EOPNOTSUPP;
1428         if (cpu_hotplug_disabled)
1429                 return -EBUSY;
1430         return _cpu_down(cpu, 0, target);
1431 }
1432
1433 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1434 {
1435         int err;
1436
1437         cpu_maps_update_begin();
1438         err = cpu_down_maps_locked(cpu, target);
1439         cpu_maps_update_done();
1440         return err;
1441 }
1442
1443 /**
1444  * cpu_device_down - Bring down a cpu device
1445  * @dev: Pointer to the cpu device to offline
1446  *
1447  * This function is meant to be used by device core cpu subsystem only.
1448  *
1449  * Other subsystems should use remove_cpu() instead.
1450  *
1451  * Return: %0 on success or a negative errno code
1452  */
1453 int cpu_device_down(struct device *dev)
1454 {
1455         return cpu_down(dev->id, CPUHP_OFFLINE);
1456 }
1457
1458 int remove_cpu(unsigned int cpu)
1459 {
1460         int ret;
1461
1462         lock_device_hotplug();
1463         ret = device_offline(get_cpu_device(cpu));
1464         unlock_device_hotplug();
1465
1466         return ret;
1467 }
1468 EXPORT_SYMBOL_GPL(remove_cpu);
1469
1470 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1471 {
1472         unsigned int cpu;
1473         int error;
1474
1475         cpu_maps_update_begin();
1476
1477         /*
1478          * Make certain the cpu I'm about to reboot on is online.
1479          *
1480          * This is inline to what migrate_to_reboot_cpu() already do.
1481          */
1482         if (!cpu_online(primary_cpu))
1483                 primary_cpu = cpumask_first(cpu_online_mask);
1484
1485         for_each_online_cpu(cpu) {
1486                 if (cpu == primary_cpu)
1487                         continue;
1488
1489                 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1490                 if (error) {
1491                         pr_err("Failed to offline CPU%d - error=%d",
1492                                 cpu, error);
1493                         break;
1494                 }
1495         }
1496
1497         /*
1498          * Ensure all but the reboot CPU are offline.
1499          */
1500         BUG_ON(num_online_cpus() > 1);
1501
1502         /*
1503          * Make sure the CPUs won't be enabled by someone else after this
1504          * point. Kexec will reboot to a new kernel shortly resetting
1505          * everything along the way.
1506          */
1507         cpu_hotplug_disabled++;
1508
1509         cpu_maps_update_done();
1510 }
1511
1512 #else
1513 #define takedown_cpu            NULL
1514 #endif /*CONFIG_HOTPLUG_CPU*/
1515
1516 /**
1517  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1518  * @cpu: cpu that just started
1519  *
1520  * It must be called by the arch code on the new cpu, before the new cpu
1521  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1522  */
1523 void notify_cpu_starting(unsigned int cpu)
1524 {
1525         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1526         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1527
1528         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
1529         cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1530
1531         /*
1532          * STARTING must not fail!
1533          */
1534         cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1535 }
1536
1537 /*
1538  * Called from the idle task. Wake up the controlling task which brings the
1539  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1540  * online bringup to the hotplug thread.
1541  */
1542 void cpuhp_online_idle(enum cpuhp_state state)
1543 {
1544         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1545
1546         /* Happens for the boot cpu */
1547         if (state != CPUHP_AP_ONLINE_IDLE)
1548                 return;
1549
1550         cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1551
1552         /*
1553          * Unpark the stopper thread before we start the idle loop (and start
1554          * scheduling); this ensures the stopper task is always available.
1555          */
1556         stop_machine_unpark(smp_processor_id());
1557
1558         st->state = CPUHP_AP_ONLINE_IDLE;
1559         complete_ap_thread(st, true);
1560 }
1561
1562 /* Requires cpu_add_remove_lock to be held */
1563 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1564 {
1565         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1566         struct task_struct *idle;
1567         int ret = 0;
1568
1569         cpus_write_lock();
1570
1571         if (!cpu_present(cpu)) {
1572                 ret = -EINVAL;
1573                 goto out;
1574         }
1575
1576         /*
1577          * The caller of cpu_up() might have raced with another
1578          * caller. Nothing to do.
1579          */
1580         if (st->state >= target)
1581                 goto out;
1582
1583         if (st->state == CPUHP_OFFLINE) {
1584                 /* Let it fail before we try to bring the cpu up */
1585                 idle = idle_thread_get(cpu);
1586                 if (IS_ERR(idle)) {
1587                         ret = PTR_ERR(idle);
1588                         goto out;
1589                 }
1590         }
1591
1592         cpuhp_tasks_frozen = tasks_frozen;
1593
1594         cpuhp_set_state(cpu, st, target);
1595         /*
1596          * If the current CPU state is in the range of the AP hotplug thread,
1597          * then we need to kick the thread once more.
1598          */
1599         if (st->state > CPUHP_BRINGUP_CPU) {
1600                 ret = cpuhp_kick_ap_work(cpu);
1601                 /*
1602                  * The AP side has done the error rollback already. Just
1603                  * return the error code..
1604                  */
1605                 if (ret)
1606                         goto out;
1607         }
1608
1609         /*
1610          * Try to reach the target state. We max out on the BP at
1611          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1612          * responsible for bringing it up to the target state.
1613          */
1614         target = min((int)target, CPUHP_BRINGUP_CPU);
1615         ret = cpuhp_up_callbacks(cpu, st, target);
1616 out:
1617         cpus_write_unlock();
1618         arch_smt_update();
1619         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1620         return ret;
1621 }
1622
1623 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1624 {
1625         int err = 0;
1626
1627         if (!cpu_possible(cpu)) {
1628                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1629                        cpu);
1630 #if defined(CONFIG_IA64)
1631                 pr_err("please check additional_cpus= boot parameter\n");
1632 #endif
1633                 return -EINVAL;
1634         }
1635
1636         err = try_online_node(cpu_to_node(cpu));
1637         if (err)
1638                 return err;
1639
1640         cpu_maps_update_begin();
1641
1642         if (cpu_hotplug_disabled) {
1643                 err = -EBUSY;
1644                 goto out;
1645         }
1646         if (!cpu_smt_allowed(cpu)) {
1647                 err = -EPERM;
1648                 goto out;
1649         }
1650
1651         err = _cpu_up(cpu, 0, target);
1652 out:
1653         cpu_maps_update_done();
1654         return err;
1655 }
1656
1657 /**
1658  * cpu_device_up - Bring up a cpu device
1659  * @dev: Pointer to the cpu device to online
1660  *
1661  * This function is meant to be used by device core cpu subsystem only.
1662  *
1663  * Other subsystems should use add_cpu() instead.
1664  *
1665  * Return: %0 on success or a negative errno code
1666  */
1667 int cpu_device_up(struct device *dev)
1668 {
1669         return cpu_up(dev->id, CPUHP_ONLINE);
1670 }
1671
1672 int add_cpu(unsigned int cpu)
1673 {
1674         int ret;
1675
1676         lock_device_hotplug();
1677         ret = device_online(get_cpu_device(cpu));
1678         unlock_device_hotplug();
1679
1680         return ret;
1681 }
1682 EXPORT_SYMBOL_GPL(add_cpu);
1683
1684 /**
1685  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1686  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1687  *
1688  * On some architectures like arm64, we can hibernate on any CPU, but on
1689  * wake up the CPU we hibernated on might be offline as a side effect of
1690  * using maxcpus= for example.
1691  *
1692  * Return: %0 on success or a negative errno code
1693  */
1694 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1695 {
1696         int ret;
1697
1698         if (!cpu_online(sleep_cpu)) {
1699                 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1700                 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1701                 if (ret) {
1702                         pr_err("Failed to bring hibernate-CPU up!\n");
1703                         return ret;
1704                 }
1705         }
1706         return 0;
1707 }
1708
1709 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1710 {
1711         unsigned int cpu;
1712
1713         for_each_present_cpu(cpu) {
1714                 if (num_online_cpus() >= setup_max_cpus)
1715                         break;
1716                 if (!cpu_online(cpu))
1717                         cpu_up(cpu, CPUHP_ONLINE);
1718         }
1719 }
1720
1721 #ifdef CONFIG_PM_SLEEP_SMP
1722 static cpumask_var_t frozen_cpus;
1723
1724 int freeze_secondary_cpus(int primary)
1725 {
1726         int cpu, error = 0;
1727
1728         cpu_maps_update_begin();
1729         if (primary == -1) {
1730                 primary = cpumask_first(cpu_online_mask);
1731                 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1732                         primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1733         } else {
1734                 if (!cpu_online(primary))
1735                         primary = cpumask_first(cpu_online_mask);
1736         }
1737
1738         /*
1739          * We take down all of the non-boot CPUs in one shot to avoid races
1740          * with the userspace trying to use the CPU hotplug at the same time
1741          */
1742         cpumask_clear(frozen_cpus);
1743
1744         pr_info("Disabling non-boot CPUs ...\n");
1745         for_each_online_cpu(cpu) {
1746                 if (cpu == primary)
1747                         continue;
1748
1749                 if (pm_wakeup_pending()) {
1750                         pr_info("Wakeup pending. Abort CPU freeze\n");
1751                         error = -EBUSY;
1752                         break;
1753                 }
1754
1755                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1756                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1757                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1758                 if (!error)
1759                         cpumask_set_cpu(cpu, frozen_cpus);
1760                 else {
1761                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1762                         break;
1763                 }
1764         }
1765
1766         if (!error)
1767                 BUG_ON(num_online_cpus() > 1);
1768         else
1769                 pr_err("Non-boot CPUs are not disabled\n");
1770
1771         /*
1772          * Make sure the CPUs won't be enabled by someone else. We need to do
1773          * this even in case of failure as all freeze_secondary_cpus() users are
1774          * supposed to do thaw_secondary_cpus() on the failure path.
1775          */
1776         cpu_hotplug_disabled++;
1777
1778         cpu_maps_update_done();
1779         return error;
1780 }
1781
1782 void __weak arch_thaw_secondary_cpus_begin(void)
1783 {
1784 }
1785
1786 void __weak arch_thaw_secondary_cpus_end(void)
1787 {
1788 }
1789
1790 void thaw_secondary_cpus(void)
1791 {
1792         int cpu, error;
1793
1794         /* Allow everyone to use the CPU hotplug again */
1795         cpu_maps_update_begin();
1796         __cpu_hotplug_enable();
1797         if (cpumask_empty(frozen_cpus))
1798                 goto out;
1799
1800         pr_info("Enabling non-boot CPUs ...\n");
1801
1802         arch_thaw_secondary_cpus_begin();
1803
1804         for_each_cpu(cpu, frozen_cpus) {
1805                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1806                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1807                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1808                 if (!error) {
1809                         pr_info("CPU%d is up\n", cpu);
1810                         continue;
1811                 }
1812                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1813         }
1814
1815         arch_thaw_secondary_cpus_end();
1816
1817         cpumask_clear(frozen_cpus);
1818 out:
1819         cpu_maps_update_done();
1820 }
1821
1822 static int __init alloc_frozen_cpus(void)
1823 {
1824         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1825                 return -ENOMEM;
1826         return 0;
1827 }
1828 core_initcall(alloc_frozen_cpus);
1829
1830 /*
1831  * When callbacks for CPU hotplug notifications are being executed, we must
1832  * ensure that the state of the system with respect to the tasks being frozen
1833  * or not, as reported by the notification, remains unchanged *throughout the
1834  * duration* of the execution of the callbacks.
1835  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1836  *
1837  * This synchronization is implemented by mutually excluding regular CPU
1838  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1839  * Hibernate notifications.
1840  */
1841 static int
1842 cpu_hotplug_pm_callback(struct notifier_block *nb,
1843                         unsigned long action, void *ptr)
1844 {
1845         switch (action) {
1846
1847         case PM_SUSPEND_PREPARE:
1848         case PM_HIBERNATION_PREPARE:
1849                 cpu_hotplug_disable();
1850                 break;
1851
1852         case PM_POST_SUSPEND:
1853         case PM_POST_HIBERNATION:
1854                 cpu_hotplug_enable();
1855                 break;
1856
1857         default:
1858                 return NOTIFY_DONE;
1859         }
1860
1861         return NOTIFY_OK;
1862 }
1863
1864
1865 static int __init cpu_hotplug_pm_sync_init(void)
1866 {
1867         /*
1868          * cpu_hotplug_pm_callback has higher priority than x86
1869          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1870          * to disable cpu hotplug to avoid cpu hotplug race.
1871          */
1872         pm_notifier(cpu_hotplug_pm_callback, 0);
1873         return 0;
1874 }
1875 core_initcall(cpu_hotplug_pm_sync_init);
1876
1877 #endif /* CONFIG_PM_SLEEP_SMP */
1878
1879 int __boot_cpu_id;
1880
1881 #endif /* CONFIG_SMP */
1882
1883 /* Boot processor state steps */
1884 static struct cpuhp_step cpuhp_hp_states[] = {
1885         [CPUHP_OFFLINE] = {
1886                 .name                   = "offline",
1887                 .startup.single         = NULL,
1888                 .teardown.single        = NULL,
1889         },
1890 #ifdef CONFIG_SMP
1891         [CPUHP_CREATE_THREADS]= {
1892                 .name                   = "threads:prepare",
1893                 .startup.single         = smpboot_create_threads,
1894                 .teardown.single        = NULL,
1895                 .cant_stop              = true,
1896         },
1897         [CPUHP_PERF_PREPARE] = {
1898                 .name                   = "perf:prepare",
1899                 .startup.single         = perf_event_init_cpu,
1900                 .teardown.single        = perf_event_exit_cpu,
1901         },
1902         [CPUHP_RANDOM_PREPARE] = {
1903                 .name                   = "random:prepare",
1904                 .startup.single         = random_prepare_cpu,
1905                 .teardown.single        = NULL,
1906         },
1907         [CPUHP_WORKQUEUE_PREP] = {
1908                 .name                   = "workqueue:prepare",
1909                 .startup.single         = workqueue_prepare_cpu,
1910                 .teardown.single        = NULL,
1911         },
1912         [CPUHP_HRTIMERS_PREPARE] = {
1913                 .name                   = "hrtimers:prepare",
1914                 .startup.single         = hrtimers_prepare_cpu,
1915                 .teardown.single        = hrtimers_dead_cpu,
1916         },
1917         [CPUHP_SMPCFD_PREPARE] = {
1918                 .name                   = "smpcfd:prepare",
1919                 .startup.single         = smpcfd_prepare_cpu,
1920                 .teardown.single        = smpcfd_dead_cpu,
1921         },
1922         [CPUHP_RELAY_PREPARE] = {
1923                 .name                   = "relay:prepare",
1924                 .startup.single         = relay_prepare_cpu,
1925                 .teardown.single        = NULL,
1926         },
1927         [CPUHP_SLAB_PREPARE] = {
1928                 .name                   = "slab:prepare",
1929                 .startup.single         = slab_prepare_cpu,
1930                 .teardown.single        = slab_dead_cpu,
1931         },
1932         [CPUHP_RCUTREE_PREP] = {
1933                 .name                   = "RCU/tree:prepare",
1934                 .startup.single         = rcutree_prepare_cpu,
1935                 .teardown.single        = rcutree_dead_cpu,
1936         },
1937         /*
1938          * On the tear-down path, timers_dead_cpu() must be invoked
1939          * before blk_mq_queue_reinit_notify() from notify_dead(),
1940          * otherwise a RCU stall occurs.
1941          */
1942         [CPUHP_TIMERS_PREPARE] = {
1943                 .name                   = "timers:prepare",
1944                 .startup.single         = timers_prepare_cpu,
1945                 .teardown.single        = timers_dead_cpu,
1946         },
1947         /* Kicks the plugged cpu into life */
1948         [CPUHP_BRINGUP_CPU] = {
1949                 .name                   = "cpu:bringup",
1950                 .startup.single         = bringup_cpu,
1951                 .teardown.single        = finish_cpu,
1952                 .cant_stop              = true,
1953         },
1954         /* Final state before CPU kills itself */
1955         [CPUHP_AP_IDLE_DEAD] = {
1956                 .name                   = "idle:dead",
1957         },
1958         /*
1959          * Last state before CPU enters the idle loop to die. Transient state
1960          * for synchronization.
1961          */
1962         [CPUHP_AP_OFFLINE] = {
1963                 .name                   = "ap:offline",
1964                 .cant_stop              = true,
1965         },
1966         /* First state is scheduler control. Interrupts are disabled */
1967         [CPUHP_AP_SCHED_STARTING] = {
1968                 .name                   = "sched:starting",
1969                 .startup.single         = sched_cpu_starting,
1970                 .teardown.single        = sched_cpu_dying,
1971         },
1972         [CPUHP_AP_RCUTREE_DYING] = {
1973                 .name                   = "RCU/tree:dying",
1974                 .startup.single         = NULL,
1975                 .teardown.single        = rcutree_dying_cpu,
1976         },
1977         [CPUHP_AP_SMPCFD_DYING] = {
1978                 .name                   = "smpcfd:dying",
1979                 .startup.single         = NULL,
1980                 .teardown.single        = smpcfd_dying_cpu,
1981         },
1982         /* Entry state on starting. Interrupts enabled from here on. Transient
1983          * state for synchronsization */
1984         [CPUHP_AP_ONLINE] = {
1985                 .name                   = "ap:online",
1986         },
1987         /*
1988          * Handled on control processor until the plugged processor manages
1989          * this itself.
1990          */
1991         [CPUHP_TEARDOWN_CPU] = {
1992                 .name                   = "cpu:teardown",
1993                 .startup.single         = NULL,
1994                 .teardown.single        = takedown_cpu,
1995                 .cant_stop              = true,
1996         },
1997
1998         [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1999                 .name                   = "sched:waitempty",
2000                 .startup.single         = NULL,
2001                 .teardown.single        = sched_cpu_wait_empty,
2002         },
2003
2004         /* Handle smpboot threads park/unpark */
2005         [CPUHP_AP_SMPBOOT_THREADS] = {
2006                 .name                   = "smpboot/threads:online",
2007                 .startup.single         = smpboot_unpark_threads,
2008                 .teardown.single        = smpboot_park_threads,
2009         },
2010         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2011                 .name                   = "irq/affinity:online",
2012                 .startup.single         = irq_affinity_online_cpu,
2013                 .teardown.single        = NULL,
2014         },
2015         [CPUHP_AP_PERF_ONLINE] = {
2016                 .name                   = "perf:online",
2017                 .startup.single         = perf_event_init_cpu,
2018                 .teardown.single        = perf_event_exit_cpu,
2019         },
2020         [CPUHP_AP_WATCHDOG_ONLINE] = {
2021                 .name                   = "lockup_detector:online",
2022                 .startup.single         = lockup_detector_online_cpu,
2023                 .teardown.single        = lockup_detector_offline_cpu,
2024         },
2025         [CPUHP_AP_WORKQUEUE_ONLINE] = {
2026                 .name                   = "workqueue:online",
2027                 .startup.single         = workqueue_online_cpu,
2028                 .teardown.single        = workqueue_offline_cpu,
2029         },
2030         [CPUHP_AP_RANDOM_ONLINE] = {
2031                 .name                   = "random:online",
2032                 .startup.single         = random_online_cpu,
2033                 .teardown.single        = NULL,
2034         },
2035         [CPUHP_AP_RCUTREE_ONLINE] = {
2036                 .name                   = "RCU/tree:online",
2037                 .startup.single         = rcutree_online_cpu,
2038                 .teardown.single        = rcutree_offline_cpu,
2039         },
2040 #endif
2041         /*
2042          * The dynamically registered state space is here
2043          */
2044
2045 #ifdef CONFIG_SMP
2046         /* Last state is scheduler control setting the cpu active */
2047         [CPUHP_AP_ACTIVE] = {
2048                 .name                   = "sched:active",
2049                 .startup.single         = sched_cpu_activate,
2050                 .teardown.single        = sched_cpu_deactivate,
2051         },
2052 #endif
2053
2054         /* CPU is fully up and running. */
2055         [CPUHP_ONLINE] = {
2056                 .name                   = "online",
2057                 .startup.single         = NULL,
2058                 .teardown.single        = NULL,
2059         },
2060 };
2061
2062 /* Sanity check for callbacks */
2063 static int cpuhp_cb_check(enum cpuhp_state state)
2064 {
2065         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2066                 return -EINVAL;
2067         return 0;
2068 }
2069
2070 /*
2071  * Returns a free for dynamic slot assignment of the Online state. The states
2072  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2073  * by having no name assigned.
2074  */
2075 static int cpuhp_reserve_state(enum cpuhp_state state)
2076 {
2077         enum cpuhp_state i, end;
2078         struct cpuhp_step *step;
2079
2080         switch (state) {
2081         case CPUHP_AP_ONLINE_DYN:
2082                 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2083                 end = CPUHP_AP_ONLINE_DYN_END;
2084                 break;
2085         case CPUHP_BP_PREPARE_DYN:
2086                 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2087                 end = CPUHP_BP_PREPARE_DYN_END;
2088                 break;
2089         default:
2090                 return -EINVAL;
2091         }
2092
2093         for (i = state; i <= end; i++, step++) {
2094                 if (!step->name)
2095                         return i;
2096         }
2097         WARN(1, "No more dynamic states available for CPU hotplug\n");
2098         return -ENOSPC;
2099 }
2100
2101 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2102                                  int (*startup)(unsigned int cpu),
2103                                  int (*teardown)(unsigned int cpu),
2104                                  bool multi_instance)
2105 {
2106         /* (Un)Install the callbacks for further cpu hotplug operations */
2107         struct cpuhp_step *sp;
2108         int ret = 0;
2109
2110         /*
2111          * If name is NULL, then the state gets removed.
2112          *
2113          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2114          * the first allocation from these dynamic ranges, so the removal
2115          * would trigger a new allocation and clear the wrong (already
2116          * empty) state, leaving the callbacks of the to be cleared state
2117          * dangling, which causes wreckage on the next hotplug operation.
2118          */
2119         if (name && (state == CPUHP_AP_ONLINE_DYN ||
2120                      state == CPUHP_BP_PREPARE_DYN)) {
2121                 ret = cpuhp_reserve_state(state);
2122                 if (ret < 0)
2123                         return ret;
2124                 state = ret;
2125         }
2126         sp = cpuhp_get_step(state);
2127         if (name && sp->name)
2128                 return -EBUSY;
2129
2130         sp->startup.single = startup;
2131         sp->teardown.single = teardown;
2132         sp->name = name;
2133         sp->multi_instance = multi_instance;
2134         INIT_HLIST_HEAD(&sp->list);
2135         return ret;
2136 }
2137
2138 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2139 {
2140         return cpuhp_get_step(state)->teardown.single;
2141 }
2142
2143 /*
2144  * Call the startup/teardown function for a step either on the AP or
2145  * on the current CPU.
2146  */
2147 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2148                             struct hlist_node *node)
2149 {
2150         struct cpuhp_step *sp = cpuhp_get_step(state);
2151         int ret;
2152
2153         /*
2154          * If there's nothing to do, we done.
2155          * Relies on the union for multi_instance.
2156          */
2157         if (cpuhp_step_empty(bringup, sp))
2158                 return 0;
2159         /*
2160          * The non AP bound callbacks can fail on bringup. On teardown
2161          * e.g. module removal we crash for now.
2162          */
2163 #ifdef CONFIG_SMP
2164         if (cpuhp_is_ap_state(state))
2165                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2166         else
2167                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2168 #else
2169         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2170 #endif
2171         BUG_ON(ret && !bringup);
2172         return ret;
2173 }
2174
2175 /*
2176  * Called from __cpuhp_setup_state on a recoverable failure.
2177  *
2178  * Note: The teardown callbacks for rollback are not allowed to fail!
2179  */
2180 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2181                                    struct hlist_node *node)
2182 {
2183         int cpu;
2184
2185         /* Roll back the already executed steps on the other cpus */
2186         for_each_present_cpu(cpu) {
2187                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2188                 int cpustate = st->state;
2189
2190                 if (cpu >= failedcpu)
2191                         break;
2192
2193                 /* Did we invoke the startup call on that cpu ? */
2194                 if (cpustate >= state)
2195                         cpuhp_issue_call(cpu, state, false, node);
2196         }
2197 }
2198
2199 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2200                                           struct hlist_node *node,
2201                                           bool invoke)
2202 {
2203         struct cpuhp_step *sp;
2204         int cpu;
2205         int ret;
2206
2207         lockdep_assert_cpus_held();
2208
2209         sp = cpuhp_get_step(state);
2210         if (sp->multi_instance == false)
2211                 return -EINVAL;
2212
2213         mutex_lock(&cpuhp_state_mutex);
2214
2215         if (!invoke || !sp->startup.multi)
2216                 goto add_node;
2217
2218         /*
2219          * Try to call the startup callback for each present cpu
2220          * depending on the hotplug state of the cpu.
2221          */
2222         for_each_present_cpu(cpu) {
2223                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2224                 int cpustate = st->state;
2225
2226                 if (cpustate < state)
2227                         continue;
2228
2229                 ret = cpuhp_issue_call(cpu, state, true, node);
2230                 if (ret) {
2231                         if (sp->teardown.multi)
2232                                 cpuhp_rollback_install(cpu, state, node);
2233                         goto unlock;
2234                 }
2235         }
2236 add_node:
2237         ret = 0;
2238         hlist_add_head(node, &sp->list);
2239 unlock:
2240         mutex_unlock(&cpuhp_state_mutex);
2241         return ret;
2242 }
2243
2244 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2245                                bool invoke)
2246 {
2247         int ret;
2248
2249         cpus_read_lock();
2250         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2251         cpus_read_unlock();
2252         return ret;
2253 }
2254 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2255
2256 /**
2257  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2258  * @state:              The state to setup
2259  * @name:               Name of the step
2260  * @invoke:             If true, the startup function is invoked for cpus where
2261  *                      cpu state >= @state
2262  * @startup:            startup callback function
2263  * @teardown:           teardown callback function
2264  * @multi_instance:     State is set up for multiple instances which get
2265  *                      added afterwards.
2266  *
2267  * The caller needs to hold cpus read locked while calling this function.
2268  * Return:
2269  *   On success:
2270  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2271  *      0 for all other states
2272  *   On failure: proper (negative) error code
2273  */
2274 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2275                                    const char *name, bool invoke,
2276                                    int (*startup)(unsigned int cpu),
2277                                    int (*teardown)(unsigned int cpu),
2278                                    bool multi_instance)
2279 {
2280         int cpu, ret = 0;
2281         bool dynstate;
2282
2283         lockdep_assert_cpus_held();
2284
2285         if (cpuhp_cb_check(state) || !name)
2286                 return -EINVAL;
2287
2288         mutex_lock(&cpuhp_state_mutex);
2289
2290         ret = cpuhp_store_callbacks(state, name, startup, teardown,
2291                                     multi_instance);
2292
2293         dynstate = state == CPUHP_AP_ONLINE_DYN;
2294         if (ret > 0 && dynstate) {
2295                 state = ret;
2296                 ret = 0;
2297         }
2298
2299         if (ret || !invoke || !startup)
2300                 goto out;
2301
2302         /*
2303          * Try to call the startup callback for each present cpu
2304          * depending on the hotplug state of the cpu.
2305          */
2306         for_each_present_cpu(cpu) {
2307                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2308                 int cpustate = st->state;
2309
2310                 if (cpustate < state)
2311                         continue;
2312
2313                 ret = cpuhp_issue_call(cpu, state, true, NULL);
2314                 if (ret) {
2315                         if (teardown)
2316                                 cpuhp_rollback_install(cpu, state, NULL);
2317                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2318                         goto out;
2319                 }
2320         }
2321 out:
2322         mutex_unlock(&cpuhp_state_mutex);
2323         /*
2324          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2325          * dynamically allocated state in case of success.
2326          */
2327         if (!ret && dynstate)
2328                 return state;
2329         return ret;
2330 }
2331 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2332
2333 int __cpuhp_setup_state(enum cpuhp_state state,
2334                         const char *name, bool invoke,
2335                         int (*startup)(unsigned int cpu),
2336                         int (*teardown)(unsigned int cpu),
2337                         bool multi_instance)
2338 {
2339         int ret;
2340
2341         cpus_read_lock();
2342         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2343                                              teardown, multi_instance);
2344         cpus_read_unlock();
2345         return ret;
2346 }
2347 EXPORT_SYMBOL(__cpuhp_setup_state);
2348
2349 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2350                                   struct hlist_node *node, bool invoke)
2351 {
2352         struct cpuhp_step *sp = cpuhp_get_step(state);
2353         int cpu;
2354
2355         BUG_ON(cpuhp_cb_check(state));
2356
2357         if (!sp->multi_instance)
2358                 return -EINVAL;
2359
2360         cpus_read_lock();
2361         mutex_lock(&cpuhp_state_mutex);
2362
2363         if (!invoke || !cpuhp_get_teardown_cb(state))
2364                 goto remove;
2365         /*
2366          * Call the teardown callback for each present cpu depending
2367          * on the hotplug state of the cpu. This function is not
2368          * allowed to fail currently!
2369          */
2370         for_each_present_cpu(cpu) {
2371                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2372                 int cpustate = st->state;
2373
2374                 if (cpustate >= state)
2375                         cpuhp_issue_call(cpu, state, false, node);
2376         }
2377
2378 remove:
2379         hlist_del(node);
2380         mutex_unlock(&cpuhp_state_mutex);
2381         cpus_read_unlock();
2382
2383         return 0;
2384 }
2385 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2386
2387 /**
2388  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2389  * @state:      The state to remove
2390  * @invoke:     If true, the teardown function is invoked for cpus where
2391  *              cpu state >= @state
2392  *
2393  * The caller needs to hold cpus read locked while calling this function.
2394  * The teardown callback is currently not allowed to fail. Think
2395  * about module removal!
2396  */
2397 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2398 {
2399         struct cpuhp_step *sp = cpuhp_get_step(state);
2400         int cpu;
2401
2402         BUG_ON(cpuhp_cb_check(state));
2403
2404         lockdep_assert_cpus_held();
2405
2406         mutex_lock(&cpuhp_state_mutex);
2407         if (sp->multi_instance) {
2408                 WARN(!hlist_empty(&sp->list),
2409                      "Error: Removing state %d which has instances left.\n",
2410                      state);
2411                 goto remove;
2412         }
2413
2414         if (!invoke || !cpuhp_get_teardown_cb(state))
2415                 goto remove;
2416
2417         /*
2418          * Call the teardown callback for each present cpu depending
2419          * on the hotplug state of the cpu. This function is not
2420          * allowed to fail currently!
2421          */
2422         for_each_present_cpu(cpu) {
2423                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2424                 int cpustate = st->state;
2425
2426                 if (cpustate >= state)
2427                         cpuhp_issue_call(cpu, state, false, NULL);
2428         }
2429 remove:
2430         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2431         mutex_unlock(&cpuhp_state_mutex);
2432 }
2433 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2434
2435 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2436 {
2437         cpus_read_lock();
2438         __cpuhp_remove_state_cpuslocked(state, invoke);
2439         cpus_read_unlock();
2440 }
2441 EXPORT_SYMBOL(__cpuhp_remove_state);
2442
2443 #ifdef CONFIG_HOTPLUG_SMT
2444 static void cpuhp_offline_cpu_device(unsigned int cpu)
2445 {
2446         struct device *dev = get_cpu_device(cpu);
2447
2448         dev->offline = true;
2449         /* Tell user space about the state change */
2450         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2451 }
2452
2453 static void cpuhp_online_cpu_device(unsigned int cpu)
2454 {
2455         struct device *dev = get_cpu_device(cpu);
2456
2457         dev->offline = false;
2458         /* Tell user space about the state change */
2459         kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2460 }
2461
2462 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2463 {
2464         int cpu, ret = 0;
2465
2466         cpu_maps_update_begin();
2467         for_each_online_cpu(cpu) {
2468                 if (topology_is_primary_thread(cpu))
2469                         continue;
2470                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2471                 if (ret)
2472                         break;
2473                 /*
2474                  * As this needs to hold the cpu maps lock it's impossible
2475                  * to call device_offline() because that ends up calling
2476                  * cpu_down() which takes cpu maps lock. cpu maps lock
2477                  * needs to be held as this might race against in kernel
2478                  * abusers of the hotplug machinery (thermal management).
2479                  *
2480                  * So nothing would update device:offline state. That would
2481                  * leave the sysfs entry stale and prevent onlining after
2482                  * smt control has been changed to 'off' again. This is
2483                  * called under the sysfs hotplug lock, so it is properly
2484                  * serialized against the regular offline usage.
2485                  */
2486                 cpuhp_offline_cpu_device(cpu);
2487         }
2488         if (!ret)
2489                 cpu_smt_control = ctrlval;
2490         cpu_maps_update_done();
2491         return ret;
2492 }
2493
2494 int cpuhp_smt_enable(void)
2495 {
2496         int cpu, ret = 0;
2497
2498         cpu_maps_update_begin();
2499         cpu_smt_control = CPU_SMT_ENABLED;
2500         for_each_present_cpu(cpu) {
2501                 /* Skip online CPUs and CPUs on offline nodes */
2502                 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2503                         continue;
2504                 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2505                 if (ret)
2506                         break;
2507                 /* See comment in cpuhp_smt_disable() */
2508                 cpuhp_online_cpu_device(cpu);
2509         }
2510         cpu_maps_update_done();
2511         return ret;
2512 }
2513 #endif
2514
2515 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2516 static ssize_t state_show(struct device *dev,
2517                           struct device_attribute *attr, char *buf)
2518 {
2519         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2520
2521         return sprintf(buf, "%d\n", st->state);
2522 }
2523 static DEVICE_ATTR_RO(state);
2524
2525 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2526                             const char *buf, size_t count)
2527 {
2528         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2529         struct cpuhp_step *sp;
2530         int target, ret;
2531
2532         ret = kstrtoint(buf, 10, &target);
2533         if (ret)
2534                 return ret;
2535
2536 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2537         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2538                 return -EINVAL;
2539 #else
2540         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2541                 return -EINVAL;
2542 #endif
2543
2544         ret = lock_device_hotplug_sysfs();
2545         if (ret)
2546                 return ret;
2547
2548         mutex_lock(&cpuhp_state_mutex);
2549         sp = cpuhp_get_step(target);
2550         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2551         mutex_unlock(&cpuhp_state_mutex);
2552         if (ret)
2553                 goto out;
2554
2555         if (st->state < target)
2556                 ret = cpu_up(dev->id, target);
2557         else if (st->state > target)
2558                 ret = cpu_down(dev->id, target);
2559         else if (WARN_ON(st->target != target))
2560                 st->target = target;
2561 out:
2562         unlock_device_hotplug();
2563         return ret ? ret : count;
2564 }
2565
2566 static ssize_t target_show(struct device *dev,
2567                            struct device_attribute *attr, char *buf)
2568 {
2569         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2570
2571         return sprintf(buf, "%d\n", st->target);
2572 }
2573 static DEVICE_ATTR_RW(target);
2574
2575 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2576                           const char *buf, size_t count)
2577 {
2578         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2579         struct cpuhp_step *sp;
2580         int fail, ret;
2581
2582         ret = kstrtoint(buf, 10, &fail);
2583         if (ret)
2584                 return ret;
2585
2586         if (fail == CPUHP_INVALID) {
2587                 st->fail = fail;
2588                 return count;
2589         }
2590
2591         if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2592                 return -EINVAL;
2593
2594         /*
2595          * Cannot fail STARTING/DYING callbacks.
2596          */
2597         if (cpuhp_is_atomic_state(fail))
2598                 return -EINVAL;
2599
2600         /*
2601          * DEAD callbacks cannot fail...
2602          * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2603          * triggering STARTING callbacks, a failure in this state would
2604          * hinder rollback.
2605          */
2606         if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2607                 return -EINVAL;
2608
2609         /*
2610          * Cannot fail anything that doesn't have callbacks.
2611          */
2612         mutex_lock(&cpuhp_state_mutex);
2613         sp = cpuhp_get_step(fail);
2614         if (!sp->startup.single && !sp->teardown.single)
2615                 ret = -EINVAL;
2616         mutex_unlock(&cpuhp_state_mutex);
2617         if (ret)
2618                 return ret;
2619
2620         st->fail = fail;
2621
2622         return count;
2623 }
2624
2625 static ssize_t fail_show(struct device *dev,
2626                          struct device_attribute *attr, char *buf)
2627 {
2628         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2629
2630         return sprintf(buf, "%d\n", st->fail);
2631 }
2632
2633 static DEVICE_ATTR_RW(fail);
2634
2635 static struct attribute *cpuhp_cpu_attrs[] = {
2636         &dev_attr_state.attr,
2637         &dev_attr_target.attr,
2638         &dev_attr_fail.attr,
2639         NULL
2640 };
2641
2642 static const struct attribute_group cpuhp_cpu_attr_group = {
2643         .attrs = cpuhp_cpu_attrs,
2644         .name = "hotplug",
2645         NULL
2646 };
2647
2648 static ssize_t states_show(struct device *dev,
2649                                  struct device_attribute *attr, char *buf)
2650 {
2651         ssize_t cur, res = 0;
2652         int i;
2653
2654         mutex_lock(&cpuhp_state_mutex);
2655         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2656                 struct cpuhp_step *sp = cpuhp_get_step(i);
2657
2658                 if (sp->name) {
2659                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2660                         buf += cur;
2661                         res += cur;
2662                 }
2663         }
2664         mutex_unlock(&cpuhp_state_mutex);
2665         return res;
2666 }
2667 static DEVICE_ATTR_RO(states);
2668
2669 static struct attribute *cpuhp_cpu_root_attrs[] = {
2670         &dev_attr_states.attr,
2671         NULL
2672 };
2673
2674 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2675         .attrs = cpuhp_cpu_root_attrs,
2676         .name = "hotplug",
2677         NULL
2678 };
2679
2680 #ifdef CONFIG_HOTPLUG_SMT
2681
2682 static ssize_t
2683 __store_smt_control(struct device *dev, struct device_attribute *attr,
2684                     const char *buf, size_t count)
2685 {
2686         int ctrlval, ret;
2687
2688         if (sysfs_streq(buf, "on"))
2689                 ctrlval = CPU_SMT_ENABLED;
2690         else if (sysfs_streq(buf, "off"))
2691                 ctrlval = CPU_SMT_DISABLED;
2692         else if (sysfs_streq(buf, "forceoff"))
2693                 ctrlval = CPU_SMT_FORCE_DISABLED;
2694         else
2695                 return -EINVAL;
2696
2697         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2698                 return -EPERM;
2699
2700         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2701                 return -ENODEV;
2702
2703         ret = lock_device_hotplug_sysfs();
2704         if (ret)
2705                 return ret;
2706
2707         if (ctrlval != cpu_smt_control) {
2708                 switch (ctrlval) {
2709                 case CPU_SMT_ENABLED:
2710                         ret = cpuhp_smt_enable();
2711                         break;
2712                 case CPU_SMT_DISABLED:
2713                 case CPU_SMT_FORCE_DISABLED:
2714                         ret = cpuhp_smt_disable(ctrlval);
2715                         break;
2716                 }
2717         }
2718
2719         unlock_device_hotplug();
2720         return ret ? ret : count;
2721 }
2722
2723 #else /* !CONFIG_HOTPLUG_SMT */
2724 static ssize_t
2725 __store_smt_control(struct device *dev, struct device_attribute *attr,
2726                     const char *buf, size_t count)
2727 {
2728         return -ENODEV;
2729 }
2730 #endif /* CONFIG_HOTPLUG_SMT */
2731
2732 static const char *smt_states[] = {
2733         [CPU_SMT_ENABLED]               = "on",
2734         [CPU_SMT_DISABLED]              = "off",
2735         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2736         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2737         [CPU_SMT_NOT_IMPLEMENTED]       = "notimplemented",
2738 };
2739
2740 static ssize_t control_show(struct device *dev,
2741                             struct device_attribute *attr, char *buf)
2742 {
2743         const char *state = smt_states[cpu_smt_control];
2744
2745         return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2746 }
2747
2748 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2749                              const char *buf, size_t count)
2750 {
2751         return __store_smt_control(dev, attr, buf, count);
2752 }
2753 static DEVICE_ATTR_RW(control);
2754
2755 static ssize_t active_show(struct device *dev,
2756                            struct device_attribute *attr, char *buf)
2757 {
2758         return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2759 }
2760 static DEVICE_ATTR_RO(active);
2761
2762 static struct attribute *cpuhp_smt_attrs[] = {
2763         &dev_attr_control.attr,
2764         &dev_attr_active.attr,
2765         NULL
2766 };
2767
2768 static const struct attribute_group cpuhp_smt_attr_group = {
2769         .attrs = cpuhp_smt_attrs,
2770         .name = "smt",
2771         NULL
2772 };
2773
2774 static int __init cpu_smt_sysfs_init(void)
2775 {
2776         struct device *dev_root;
2777         int ret = -ENODEV;
2778
2779         dev_root = bus_get_dev_root(&cpu_subsys);
2780         if (dev_root) {
2781                 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
2782                 put_device(dev_root);
2783         }
2784         return ret;
2785 }
2786
2787 static int __init cpuhp_sysfs_init(void)
2788 {
2789         struct device *dev_root;
2790         int cpu, ret;
2791
2792         ret = cpu_smt_sysfs_init();
2793         if (ret)
2794                 return ret;
2795
2796         dev_root = bus_get_dev_root(&cpu_subsys);
2797         if (dev_root) {
2798                 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
2799                 put_device(dev_root);
2800                 if (ret)
2801                         return ret;
2802         }
2803
2804         for_each_possible_cpu(cpu) {
2805                 struct device *dev = get_cpu_device(cpu);
2806
2807                 if (!dev)
2808                         continue;
2809                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2810                 if (ret)
2811                         return ret;
2812         }
2813         return 0;
2814 }
2815 device_initcall(cpuhp_sysfs_init);
2816 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2817
2818 /*
2819  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2820  * represents all NR_CPUS bits binary values of 1<<nr.
2821  *
2822  * It is used by cpumask_of() to get a constant address to a CPU
2823  * mask value that has a single bit set only.
2824  */
2825
2826 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2827 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
2828 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2829 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2830 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2831
2832 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2833
2834         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
2835         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
2836 #if BITS_PER_LONG > 32
2837         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
2838         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
2839 #endif
2840 };
2841 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2842
2843 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2844 EXPORT_SYMBOL(cpu_all_bits);
2845
2846 #ifdef CONFIG_INIT_ALL_POSSIBLE
2847 struct cpumask __cpu_possible_mask __read_mostly
2848         = {CPU_BITS_ALL};
2849 #else
2850 struct cpumask __cpu_possible_mask __read_mostly;
2851 #endif
2852 EXPORT_SYMBOL(__cpu_possible_mask);
2853
2854 struct cpumask __cpu_online_mask __read_mostly;
2855 EXPORT_SYMBOL(__cpu_online_mask);
2856
2857 struct cpumask __cpu_present_mask __read_mostly;
2858 EXPORT_SYMBOL(__cpu_present_mask);
2859
2860 struct cpumask __cpu_active_mask __read_mostly;
2861 EXPORT_SYMBOL(__cpu_active_mask);
2862
2863 struct cpumask __cpu_dying_mask __read_mostly;
2864 EXPORT_SYMBOL(__cpu_dying_mask);
2865
2866 atomic_t __num_online_cpus __read_mostly;
2867 EXPORT_SYMBOL(__num_online_cpus);
2868
2869 void init_cpu_present(const struct cpumask *src)
2870 {
2871         cpumask_copy(&__cpu_present_mask, src);
2872 }
2873
2874 void init_cpu_possible(const struct cpumask *src)
2875 {
2876         cpumask_copy(&__cpu_possible_mask, src);
2877 }
2878
2879 void init_cpu_online(const struct cpumask *src)
2880 {
2881         cpumask_copy(&__cpu_online_mask, src);
2882 }
2883
2884 void set_cpu_online(unsigned int cpu, bool online)
2885 {
2886         /*
2887          * atomic_inc/dec() is required to handle the horrid abuse of this
2888          * function by the reboot and kexec code which invoke it from
2889          * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2890          * regular CPU hotplug is properly serialized.
2891          *
2892          * Note, that the fact that __num_online_cpus is of type atomic_t
2893          * does not protect readers which are not serialized against
2894          * concurrent hotplug operations.
2895          */
2896         if (online) {
2897                 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2898                         atomic_inc(&__num_online_cpus);
2899         } else {
2900                 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2901                         atomic_dec(&__num_online_cpus);
2902         }
2903 }
2904
2905 /*
2906  * Activate the first processor.
2907  */
2908 void __init boot_cpu_init(void)
2909 {
2910         int cpu = smp_processor_id();
2911
2912         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2913         set_cpu_online(cpu, true);
2914         set_cpu_active(cpu, true);
2915         set_cpu_present(cpu, true);
2916         set_cpu_possible(cpu, true);
2917
2918 #ifdef CONFIG_SMP
2919         __boot_cpu_id = cpu;
2920 #endif
2921 }
2922
2923 /*
2924  * Must be called _AFTER_ setting up the per_cpu areas
2925  */
2926 void __init boot_cpu_hotplug_init(void)
2927 {
2928 #ifdef CONFIG_SMP
2929         cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2930         atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
2931 #endif
2932         this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2933         this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
2934 }
2935
2936 /*
2937  * These are used for a global "mitigations=" cmdline option for toggling
2938  * optional CPU mitigations.
2939  */
2940 enum cpu_mitigations {
2941         CPU_MITIGATIONS_OFF,
2942         CPU_MITIGATIONS_AUTO,
2943         CPU_MITIGATIONS_AUTO_NOSMT,
2944 };
2945
2946 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2947         CPU_MITIGATIONS_AUTO;
2948
2949 static int __init mitigations_parse_cmdline(char *arg)
2950 {
2951         if (!strcmp(arg, "off"))
2952                 cpu_mitigations = CPU_MITIGATIONS_OFF;
2953         else if (!strcmp(arg, "auto"))
2954                 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2955         else if (!strcmp(arg, "auto,nosmt"))
2956                 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2957         else
2958                 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2959                         arg);
2960
2961         return 0;
2962 }
2963 early_param("mitigations", mitigations_parse_cmdline);
2964
2965 /* mitigations=off */
2966 bool cpu_mitigations_off(void)
2967 {
2968         return cpu_mitigations == CPU_MITIGATIONS_OFF;
2969 }
2970 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2971
2972 /* mitigations=auto,nosmt */
2973 bool cpu_mitigations_auto_nosmt(void)
2974 {
2975         return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2976 }
2977 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);