Merge tag 'dma-mapping-4.20' of git://git.infradead.org/users/hch/dma-mapping
[linux-2.6-microblaze.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
32
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
36
37 #include "smpboot.h"
38
39 /**
40  * cpuhp_cpu_state - Per cpu hotplug state storage
41  * @state:      The current cpu state
42  * @target:     The target state
43  * @thread:     Pointer to the hotplug thread
44  * @should_run: Thread should execute
45  * @rollback:   Perform a rollback
46  * @single:     Single callback invocation
47  * @bringup:    Single callback bringup or teardown selector
48  * @cb_state:   The state for a single callback (install/uninstall)
49  * @result:     Result of the operation
50  * @done_up:    Signal completion to the issuer of the task for cpu-up
51  * @done_down:  Signal completion to the issuer of the task for cpu-down
52  */
53 struct cpuhp_cpu_state {
54         enum cpuhp_state        state;
55         enum cpuhp_state        target;
56         enum cpuhp_state        fail;
57 #ifdef CONFIG_SMP
58         struct task_struct      *thread;
59         bool                    should_run;
60         bool                    rollback;
61         bool                    single;
62         bool                    bringup;
63         bool                    booted_once;
64         struct hlist_node       *node;
65         struct hlist_node       *last;
66         enum cpuhp_state        cb_state;
67         int                     result;
68         struct completion       done_up;
69         struct completion       done_down;
70 #endif
71 };
72
73 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
74         .fail = CPUHP_INVALID,
75 };
76
77 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
78 static struct lockdep_map cpuhp_state_up_map =
79         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
80 static struct lockdep_map cpuhp_state_down_map =
81         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
82
83
84 static inline void cpuhp_lock_acquire(bool bringup)
85 {
86         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
87 }
88
89 static inline void cpuhp_lock_release(bool bringup)
90 {
91         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
92 }
93 #else
94
95 static inline void cpuhp_lock_acquire(bool bringup) { }
96 static inline void cpuhp_lock_release(bool bringup) { }
97
98 #endif
99
100 /**
101  * cpuhp_step - Hotplug state machine step
102  * @name:       Name of the step
103  * @startup:    Startup function of the step
104  * @teardown:   Teardown function of the step
105  * @cant_stop:  Bringup/teardown can't be stopped at this step
106  */
107 struct cpuhp_step {
108         const char              *name;
109         union {
110                 int             (*single)(unsigned int cpu);
111                 int             (*multi)(unsigned int cpu,
112                                          struct hlist_node *node);
113         } startup;
114         union {
115                 int             (*single)(unsigned int cpu);
116                 int             (*multi)(unsigned int cpu,
117                                          struct hlist_node *node);
118         } teardown;
119         struct hlist_head       list;
120         bool                    cant_stop;
121         bool                    multi_instance;
122 };
123
124 static DEFINE_MUTEX(cpuhp_state_mutex);
125 static struct cpuhp_step cpuhp_hp_states[];
126
127 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
128 {
129         return cpuhp_hp_states + state;
130 }
131
132 /**
133  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
134  * @cpu:        The cpu for which the callback should be invoked
135  * @state:      The state to do callbacks for
136  * @bringup:    True if the bringup callback should be invoked
137  * @node:       For multi-instance, do a single entry callback for install/remove
138  * @lastp:      For multi-instance rollback, remember how far we got
139  *
140  * Called from cpu hotplug and from the state register machinery.
141  */
142 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
143                                  bool bringup, struct hlist_node *node,
144                                  struct hlist_node **lastp)
145 {
146         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
147         struct cpuhp_step *step = cpuhp_get_step(state);
148         int (*cbm)(unsigned int cpu, struct hlist_node *node);
149         int (*cb)(unsigned int cpu);
150         int ret, cnt;
151
152         if (st->fail == state) {
153                 st->fail = CPUHP_INVALID;
154
155                 if (!(bringup ? step->startup.single : step->teardown.single))
156                         return 0;
157
158                 return -EAGAIN;
159         }
160
161         if (!step->multi_instance) {
162                 WARN_ON_ONCE(lastp && *lastp);
163                 cb = bringup ? step->startup.single : step->teardown.single;
164                 if (!cb)
165                         return 0;
166                 trace_cpuhp_enter(cpu, st->target, state, cb);
167                 ret = cb(cpu);
168                 trace_cpuhp_exit(cpu, st->state, state, ret);
169                 return ret;
170         }
171         cbm = bringup ? step->startup.multi : step->teardown.multi;
172         if (!cbm)
173                 return 0;
174
175         /* Single invocation for instance add/remove */
176         if (node) {
177                 WARN_ON_ONCE(lastp && *lastp);
178                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
179                 ret = cbm(cpu, node);
180                 trace_cpuhp_exit(cpu, st->state, state, ret);
181                 return ret;
182         }
183
184         /* State transition. Invoke on all instances */
185         cnt = 0;
186         hlist_for_each(node, &step->list) {
187                 if (lastp && node == *lastp)
188                         break;
189
190                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
191                 ret = cbm(cpu, node);
192                 trace_cpuhp_exit(cpu, st->state, state, ret);
193                 if (ret) {
194                         if (!lastp)
195                                 goto err;
196
197                         *lastp = node;
198                         return ret;
199                 }
200                 cnt++;
201         }
202         if (lastp)
203                 *lastp = NULL;
204         return 0;
205 err:
206         /* Rollback the instances if one failed */
207         cbm = !bringup ? step->startup.multi : step->teardown.multi;
208         if (!cbm)
209                 return ret;
210
211         hlist_for_each(node, &step->list) {
212                 if (!cnt--)
213                         break;
214
215                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216                 ret = cbm(cpu, node);
217                 trace_cpuhp_exit(cpu, st->state, state, ret);
218                 /*
219                  * Rollback must not fail,
220                  */
221                 WARN_ON_ONCE(ret);
222         }
223         return ret;
224 }
225
226 #ifdef CONFIG_SMP
227 static bool cpuhp_is_ap_state(enum cpuhp_state state)
228 {
229         /*
230          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
231          * purposes as that state is handled explicitly in cpu_down.
232          */
233         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
234 }
235
236 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
237 {
238         struct completion *done = bringup ? &st->done_up : &st->done_down;
239         wait_for_completion(done);
240 }
241
242 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244         struct completion *done = bringup ? &st->done_up : &st->done_down;
245         complete(done);
246 }
247
248 /*
249  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
250  */
251 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
252 {
253         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
254 }
255
256 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
257 static DEFINE_MUTEX(cpu_add_remove_lock);
258 bool cpuhp_tasks_frozen;
259 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
260
261 /*
262  * The following two APIs (cpu_maps_update_begin/done) must be used when
263  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
264  */
265 void cpu_maps_update_begin(void)
266 {
267         mutex_lock(&cpu_add_remove_lock);
268 }
269
270 void cpu_maps_update_done(void)
271 {
272         mutex_unlock(&cpu_add_remove_lock);
273 }
274
275 /*
276  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
277  * Should always be manipulated under cpu_add_remove_lock
278  */
279 static int cpu_hotplug_disabled;
280
281 #ifdef CONFIG_HOTPLUG_CPU
282
283 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
284
285 void cpus_read_lock(void)
286 {
287         percpu_down_read(&cpu_hotplug_lock);
288 }
289 EXPORT_SYMBOL_GPL(cpus_read_lock);
290
291 int cpus_read_trylock(void)
292 {
293         return percpu_down_read_trylock(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_trylock);
296
297 void cpus_read_unlock(void)
298 {
299         percpu_up_read(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_unlock);
302
303 void cpus_write_lock(void)
304 {
305         percpu_down_write(&cpu_hotplug_lock);
306 }
307
308 void cpus_write_unlock(void)
309 {
310         percpu_up_write(&cpu_hotplug_lock);
311 }
312
313 void lockdep_assert_cpus_held(void)
314 {
315         percpu_rwsem_assert_held(&cpu_hotplug_lock);
316 }
317
318 /*
319  * Wait for currently running CPU hotplug operations to complete (if any) and
320  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
321  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
322  * hotplug path before performing hotplug operations. So acquiring that lock
323  * guarantees mutual exclusion from any currently running hotplug operations.
324  */
325 void cpu_hotplug_disable(void)
326 {
327         cpu_maps_update_begin();
328         cpu_hotplug_disabled++;
329         cpu_maps_update_done();
330 }
331 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
332
333 static void __cpu_hotplug_enable(void)
334 {
335         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
336                 return;
337         cpu_hotplug_disabled--;
338 }
339
340 void cpu_hotplug_enable(void)
341 {
342         cpu_maps_update_begin();
343         __cpu_hotplug_enable();
344         cpu_maps_update_done();
345 }
346 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
347 #endif  /* CONFIG_HOTPLUG_CPU */
348
349 #ifdef CONFIG_HOTPLUG_SMT
350 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
351 EXPORT_SYMBOL_GPL(cpu_smt_control);
352
353 static bool cpu_smt_available __read_mostly;
354
355 void __init cpu_smt_disable(bool force)
356 {
357         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
358                 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
359                 return;
360
361         if (force) {
362                 pr_info("SMT: Force disabled\n");
363                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
364         } else {
365                 cpu_smt_control = CPU_SMT_DISABLED;
366         }
367 }
368
369 /*
370  * The decision whether SMT is supported can only be done after the full
371  * CPU identification. Called from architecture code before non boot CPUs
372  * are brought up.
373  */
374 void __init cpu_smt_check_topology_early(void)
375 {
376         if (!topology_smt_supported())
377                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
378 }
379
380 /*
381  * If SMT was disabled by BIOS, detect it here, after the CPUs have been
382  * brought online. This ensures the smt/l1tf sysfs entries are consistent
383  * with reality. cpu_smt_available is set to true during the bringup of non
384  * boot CPUs when a SMT sibling is detected. Note, this may overwrite
385  * cpu_smt_control's previous setting.
386  */
387 void __init cpu_smt_check_topology(void)
388 {
389         if (!cpu_smt_available)
390                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
391 }
392
393 static int __init smt_cmdline_disable(char *str)
394 {
395         cpu_smt_disable(str && !strcmp(str, "force"));
396         return 0;
397 }
398 early_param("nosmt", smt_cmdline_disable);
399
400 static inline bool cpu_smt_allowed(unsigned int cpu)
401 {
402         if (topology_is_primary_thread(cpu))
403                 return true;
404
405         /*
406          * If the CPU is not a 'primary' thread and the booted_once bit is
407          * set then the processor has SMT support. Store this information
408          * for the late check of SMT support in cpu_smt_check_topology().
409          */
410         if (per_cpu(cpuhp_state, cpu).booted_once)
411                 cpu_smt_available = true;
412
413         if (cpu_smt_control == CPU_SMT_ENABLED)
414                 return true;
415
416         /*
417          * On x86 it's required to boot all logical CPUs at least once so
418          * that the init code can get a chance to set CR4.MCE on each
419          * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
420          * core will shutdown the machine.
421          */
422         return !per_cpu(cpuhp_state, cpu).booted_once;
423 }
424 #else
425 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
426 #endif
427
428 static inline enum cpuhp_state
429 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
430 {
431         enum cpuhp_state prev_state = st->state;
432
433         st->rollback = false;
434         st->last = NULL;
435
436         st->target = target;
437         st->single = false;
438         st->bringup = st->state < target;
439
440         return prev_state;
441 }
442
443 static inline void
444 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
445 {
446         st->rollback = true;
447
448         /*
449          * If we have st->last we need to undo partial multi_instance of this
450          * state first. Otherwise start undo at the previous state.
451          */
452         if (!st->last) {
453                 if (st->bringup)
454                         st->state--;
455                 else
456                         st->state++;
457         }
458
459         st->target = prev_state;
460         st->bringup = !st->bringup;
461 }
462
463 /* Regular hotplug invocation of the AP hotplug thread */
464 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
465 {
466         if (!st->single && st->state == st->target)
467                 return;
468
469         st->result = 0;
470         /*
471          * Make sure the above stores are visible before should_run becomes
472          * true. Paired with the mb() above in cpuhp_thread_fun()
473          */
474         smp_mb();
475         st->should_run = true;
476         wake_up_process(st->thread);
477         wait_for_ap_thread(st, st->bringup);
478 }
479
480 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
481 {
482         enum cpuhp_state prev_state;
483         int ret;
484
485         prev_state = cpuhp_set_state(st, target);
486         __cpuhp_kick_ap(st);
487         if ((ret = st->result)) {
488                 cpuhp_reset_state(st, prev_state);
489                 __cpuhp_kick_ap(st);
490         }
491
492         return ret;
493 }
494
495 static int bringup_wait_for_ap(unsigned int cpu)
496 {
497         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
498
499         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
500         wait_for_ap_thread(st, true);
501         if (WARN_ON_ONCE((!cpu_online(cpu))))
502                 return -ECANCELED;
503
504         /* Unpark the stopper thread and the hotplug thread of the target cpu */
505         stop_machine_unpark(cpu);
506         kthread_unpark(st->thread);
507
508         /*
509          * SMT soft disabling on X86 requires to bring the CPU out of the
510          * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
511          * CPU marked itself as booted_once in cpu_notify_starting() so the
512          * cpu_smt_allowed() check will now return false if this is not the
513          * primary sibling.
514          */
515         if (!cpu_smt_allowed(cpu))
516                 return -ECANCELED;
517
518         if (st->target <= CPUHP_AP_ONLINE_IDLE)
519                 return 0;
520
521         return cpuhp_kick_ap(st, st->target);
522 }
523
524 static int bringup_cpu(unsigned int cpu)
525 {
526         struct task_struct *idle = idle_thread_get(cpu);
527         int ret;
528
529         /*
530          * Some architectures have to walk the irq descriptors to
531          * setup the vector space for the cpu which comes online.
532          * Prevent irq alloc/free across the bringup.
533          */
534         irq_lock_sparse();
535
536         /* Arch-specific enabling code. */
537         ret = __cpu_up(cpu, idle);
538         irq_unlock_sparse();
539         if (ret)
540                 return ret;
541         return bringup_wait_for_ap(cpu);
542 }
543
544 /*
545  * Hotplug state machine related functions
546  */
547
548 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
549 {
550         for (st->state--; st->state > st->target; st->state--)
551                 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
552 }
553
554 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
555                               enum cpuhp_state target)
556 {
557         enum cpuhp_state prev_state = st->state;
558         int ret = 0;
559
560         while (st->state < target) {
561                 st->state++;
562                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
563                 if (ret) {
564                         st->target = prev_state;
565                         undo_cpu_up(cpu, st);
566                         break;
567                 }
568         }
569         return ret;
570 }
571
572 /*
573  * The cpu hotplug threads manage the bringup and teardown of the cpus
574  */
575 static void cpuhp_create(unsigned int cpu)
576 {
577         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
578
579         init_completion(&st->done_up);
580         init_completion(&st->done_down);
581 }
582
583 static int cpuhp_should_run(unsigned int cpu)
584 {
585         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
586
587         return st->should_run;
588 }
589
590 /*
591  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
592  * callbacks when a state gets [un]installed at runtime.
593  *
594  * Each invocation of this function by the smpboot thread does a single AP
595  * state callback.
596  *
597  * It has 3 modes of operation:
598  *  - single: runs st->cb_state
599  *  - up:     runs ++st->state, while st->state < st->target
600  *  - down:   runs st->state--, while st->state > st->target
601  *
602  * When complete or on error, should_run is cleared and the completion is fired.
603  */
604 static void cpuhp_thread_fun(unsigned int cpu)
605 {
606         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
607         bool bringup = st->bringup;
608         enum cpuhp_state state;
609
610         if (WARN_ON_ONCE(!st->should_run))
611                 return;
612
613         /*
614          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
615          * that if we see ->should_run we also see the rest of the state.
616          */
617         smp_mb();
618
619         cpuhp_lock_acquire(bringup);
620
621         if (st->single) {
622                 state = st->cb_state;
623                 st->should_run = false;
624         } else {
625                 if (bringup) {
626                         st->state++;
627                         state = st->state;
628                         st->should_run = (st->state < st->target);
629                         WARN_ON_ONCE(st->state > st->target);
630                 } else {
631                         state = st->state;
632                         st->state--;
633                         st->should_run = (st->state > st->target);
634                         WARN_ON_ONCE(st->state < st->target);
635                 }
636         }
637
638         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
639
640         if (cpuhp_is_atomic_state(state)) {
641                 local_irq_disable();
642                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
643                 local_irq_enable();
644
645                 /*
646                  * STARTING/DYING must not fail!
647                  */
648                 WARN_ON_ONCE(st->result);
649         } else {
650                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
651         }
652
653         if (st->result) {
654                 /*
655                  * If we fail on a rollback, we're up a creek without no
656                  * paddle, no way forward, no way back. We loose, thanks for
657                  * playing.
658                  */
659                 WARN_ON_ONCE(st->rollback);
660                 st->should_run = false;
661         }
662
663         cpuhp_lock_release(bringup);
664
665         if (!st->should_run)
666                 complete_ap_thread(st, bringup);
667 }
668
669 /* Invoke a single callback on a remote cpu */
670 static int
671 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
672                          struct hlist_node *node)
673 {
674         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
675         int ret;
676
677         if (!cpu_online(cpu))
678                 return 0;
679
680         cpuhp_lock_acquire(false);
681         cpuhp_lock_release(false);
682
683         cpuhp_lock_acquire(true);
684         cpuhp_lock_release(true);
685
686         /*
687          * If we are up and running, use the hotplug thread. For early calls
688          * we invoke the thread function directly.
689          */
690         if (!st->thread)
691                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
692
693         st->rollback = false;
694         st->last = NULL;
695
696         st->node = node;
697         st->bringup = bringup;
698         st->cb_state = state;
699         st->single = true;
700
701         __cpuhp_kick_ap(st);
702
703         /*
704          * If we failed and did a partial, do a rollback.
705          */
706         if ((ret = st->result) && st->last) {
707                 st->rollback = true;
708                 st->bringup = !bringup;
709
710                 __cpuhp_kick_ap(st);
711         }
712
713         /*
714          * Clean up the leftovers so the next hotplug operation wont use stale
715          * data.
716          */
717         st->node = st->last = NULL;
718         return ret;
719 }
720
721 static int cpuhp_kick_ap_work(unsigned int cpu)
722 {
723         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
724         enum cpuhp_state prev_state = st->state;
725         int ret;
726
727         cpuhp_lock_acquire(false);
728         cpuhp_lock_release(false);
729
730         cpuhp_lock_acquire(true);
731         cpuhp_lock_release(true);
732
733         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
734         ret = cpuhp_kick_ap(st, st->target);
735         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
736
737         return ret;
738 }
739
740 static struct smp_hotplug_thread cpuhp_threads = {
741         .store                  = &cpuhp_state.thread,
742         .create                 = &cpuhp_create,
743         .thread_should_run      = cpuhp_should_run,
744         .thread_fn              = cpuhp_thread_fun,
745         .thread_comm            = "cpuhp/%u",
746         .selfparking            = true,
747 };
748
749 void __init cpuhp_threads_init(void)
750 {
751         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
752         kthread_unpark(this_cpu_read(cpuhp_state.thread));
753 }
754
755 #ifdef CONFIG_HOTPLUG_CPU
756 /**
757  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
758  * @cpu: a CPU id
759  *
760  * This function walks all processes, finds a valid mm struct for each one and
761  * then clears a corresponding bit in mm's cpumask.  While this all sounds
762  * trivial, there are various non-obvious corner cases, which this function
763  * tries to solve in a safe manner.
764  *
765  * Also note that the function uses a somewhat relaxed locking scheme, so it may
766  * be called only for an already offlined CPU.
767  */
768 void clear_tasks_mm_cpumask(int cpu)
769 {
770         struct task_struct *p;
771
772         /*
773          * This function is called after the cpu is taken down and marked
774          * offline, so its not like new tasks will ever get this cpu set in
775          * their mm mask. -- Peter Zijlstra
776          * Thus, we may use rcu_read_lock() here, instead of grabbing
777          * full-fledged tasklist_lock.
778          */
779         WARN_ON(cpu_online(cpu));
780         rcu_read_lock();
781         for_each_process(p) {
782                 struct task_struct *t;
783
784                 /*
785                  * Main thread might exit, but other threads may still have
786                  * a valid mm. Find one.
787                  */
788                 t = find_lock_task_mm(p);
789                 if (!t)
790                         continue;
791                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
792                 task_unlock(t);
793         }
794         rcu_read_unlock();
795 }
796
797 /* Take this CPU down. */
798 static int take_cpu_down(void *_param)
799 {
800         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
801         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
802         int err, cpu = smp_processor_id();
803         int ret;
804
805         /* Ensure this CPU doesn't handle any more interrupts. */
806         err = __cpu_disable();
807         if (err < 0)
808                 return err;
809
810         /*
811          * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
812          * do this step again.
813          */
814         WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
815         st->state--;
816         /* Invoke the former CPU_DYING callbacks */
817         for (; st->state > target; st->state--) {
818                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
819                 /*
820                  * DYING must not fail!
821                  */
822                 WARN_ON_ONCE(ret);
823         }
824
825         /* Give up timekeeping duties */
826         tick_handover_do_timer();
827         /* Park the stopper thread */
828         stop_machine_park(cpu);
829         return 0;
830 }
831
832 static int takedown_cpu(unsigned int cpu)
833 {
834         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
835         int err;
836
837         /* Park the smpboot threads */
838         kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
839
840         /*
841          * Prevent irq alloc/free while the dying cpu reorganizes the
842          * interrupt affinities.
843          */
844         irq_lock_sparse();
845
846         /*
847          * So now all preempt/rcu users must observe !cpu_active().
848          */
849         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
850         if (err) {
851                 /* CPU refused to die */
852                 irq_unlock_sparse();
853                 /* Unpark the hotplug thread so we can rollback there */
854                 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
855                 return err;
856         }
857         BUG_ON(cpu_online(cpu));
858
859         /*
860          * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
861          * all runnable tasks from the CPU, there's only the idle task left now
862          * that the migration thread is done doing the stop_machine thing.
863          *
864          * Wait for the stop thread to go away.
865          */
866         wait_for_ap_thread(st, false);
867         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
868
869         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
870         irq_unlock_sparse();
871
872         hotplug_cpu__broadcast_tick_pull(cpu);
873         /* This actually kills the CPU. */
874         __cpu_die(cpu);
875
876         tick_cleanup_dead_cpu(cpu);
877         rcutree_migrate_callbacks(cpu);
878         return 0;
879 }
880
881 static void cpuhp_complete_idle_dead(void *arg)
882 {
883         struct cpuhp_cpu_state *st = arg;
884
885         complete_ap_thread(st, false);
886 }
887
888 void cpuhp_report_idle_dead(void)
889 {
890         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
891
892         BUG_ON(st->state != CPUHP_AP_OFFLINE);
893         rcu_report_dead(smp_processor_id());
894         st->state = CPUHP_AP_IDLE_DEAD;
895         /*
896          * We cannot call complete after rcu_report_dead() so we delegate it
897          * to an online cpu.
898          */
899         smp_call_function_single(cpumask_first(cpu_online_mask),
900                                  cpuhp_complete_idle_dead, st, 0);
901 }
902
903 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
904 {
905         for (st->state++; st->state < st->target; st->state++)
906                 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
907 }
908
909 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
910                                 enum cpuhp_state target)
911 {
912         enum cpuhp_state prev_state = st->state;
913         int ret = 0;
914
915         for (; st->state > target; st->state--) {
916                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
917                 if (ret) {
918                         st->target = prev_state;
919                         if (st->state < prev_state)
920                                 undo_cpu_down(cpu, st);
921                         break;
922                 }
923         }
924         return ret;
925 }
926
927 /* Requires cpu_add_remove_lock to be held */
928 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
929                            enum cpuhp_state target)
930 {
931         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
932         int prev_state, ret = 0;
933
934         if (num_online_cpus() == 1)
935                 return -EBUSY;
936
937         if (!cpu_present(cpu))
938                 return -EINVAL;
939
940         cpus_write_lock();
941
942         cpuhp_tasks_frozen = tasks_frozen;
943
944         prev_state = cpuhp_set_state(st, target);
945         /*
946          * If the current CPU state is in the range of the AP hotplug thread,
947          * then we need to kick the thread.
948          */
949         if (st->state > CPUHP_TEARDOWN_CPU) {
950                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
951                 ret = cpuhp_kick_ap_work(cpu);
952                 /*
953                  * The AP side has done the error rollback already. Just
954                  * return the error code..
955                  */
956                 if (ret)
957                         goto out;
958
959                 /*
960                  * We might have stopped still in the range of the AP hotplug
961                  * thread. Nothing to do anymore.
962                  */
963                 if (st->state > CPUHP_TEARDOWN_CPU)
964                         goto out;
965
966                 st->target = target;
967         }
968         /*
969          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
970          * to do the further cleanups.
971          */
972         ret = cpuhp_down_callbacks(cpu, st, target);
973         if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
974                 cpuhp_reset_state(st, prev_state);
975                 __cpuhp_kick_ap(st);
976         }
977
978 out:
979         cpus_write_unlock();
980         /*
981          * Do post unplug cleanup. This is still protected against
982          * concurrent CPU hotplug via cpu_add_remove_lock.
983          */
984         lockup_detector_cleanup();
985         return ret;
986 }
987
988 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
989 {
990         if (cpu_hotplug_disabled)
991                 return -EBUSY;
992         return _cpu_down(cpu, 0, target);
993 }
994
995 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
996 {
997         int err;
998
999         cpu_maps_update_begin();
1000         err = cpu_down_maps_locked(cpu, target);
1001         cpu_maps_update_done();
1002         return err;
1003 }
1004
1005 int cpu_down(unsigned int cpu)
1006 {
1007         return do_cpu_down(cpu, CPUHP_OFFLINE);
1008 }
1009 EXPORT_SYMBOL(cpu_down);
1010
1011 #else
1012 #define takedown_cpu            NULL
1013 #endif /*CONFIG_HOTPLUG_CPU*/
1014
1015 /**
1016  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1017  * @cpu: cpu that just started
1018  *
1019  * It must be called by the arch code on the new cpu, before the new cpu
1020  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1021  */
1022 void notify_cpu_starting(unsigned int cpu)
1023 {
1024         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1025         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1026         int ret;
1027
1028         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
1029         st->booted_once = true;
1030         while (st->state < target) {
1031                 st->state++;
1032                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1033                 /*
1034                  * STARTING must not fail!
1035                  */
1036                 WARN_ON_ONCE(ret);
1037         }
1038 }
1039
1040 /*
1041  * Called from the idle task. Wake up the controlling task which brings the
1042  * stopper and the hotplug thread of the upcoming CPU up and then delegates
1043  * the rest of the online bringup to the hotplug thread.
1044  */
1045 void cpuhp_online_idle(enum cpuhp_state state)
1046 {
1047         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1048
1049         /* Happens for the boot cpu */
1050         if (state != CPUHP_AP_ONLINE_IDLE)
1051                 return;
1052
1053         st->state = CPUHP_AP_ONLINE_IDLE;
1054         complete_ap_thread(st, true);
1055 }
1056
1057 /* Requires cpu_add_remove_lock to be held */
1058 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1059 {
1060         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1061         struct task_struct *idle;
1062         int ret = 0;
1063
1064         cpus_write_lock();
1065
1066         if (!cpu_present(cpu)) {
1067                 ret = -EINVAL;
1068                 goto out;
1069         }
1070
1071         /*
1072          * The caller of do_cpu_up might have raced with another
1073          * caller. Ignore it for now.
1074          */
1075         if (st->state >= target)
1076                 goto out;
1077
1078         if (st->state == CPUHP_OFFLINE) {
1079                 /* Let it fail before we try to bring the cpu up */
1080                 idle = idle_thread_get(cpu);
1081                 if (IS_ERR(idle)) {
1082                         ret = PTR_ERR(idle);
1083                         goto out;
1084                 }
1085         }
1086
1087         cpuhp_tasks_frozen = tasks_frozen;
1088
1089         cpuhp_set_state(st, target);
1090         /*
1091          * If the current CPU state is in the range of the AP hotplug thread,
1092          * then we need to kick the thread once more.
1093          */
1094         if (st->state > CPUHP_BRINGUP_CPU) {
1095                 ret = cpuhp_kick_ap_work(cpu);
1096                 /*
1097                  * The AP side has done the error rollback already. Just
1098                  * return the error code..
1099                  */
1100                 if (ret)
1101                         goto out;
1102         }
1103
1104         /*
1105          * Try to reach the target state. We max out on the BP at
1106          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1107          * responsible for bringing it up to the target state.
1108          */
1109         target = min((int)target, CPUHP_BRINGUP_CPU);
1110         ret = cpuhp_up_callbacks(cpu, st, target);
1111 out:
1112         cpus_write_unlock();
1113         return ret;
1114 }
1115
1116 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1117 {
1118         int err = 0;
1119
1120         if (!cpu_possible(cpu)) {
1121                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1122                        cpu);
1123 #if defined(CONFIG_IA64)
1124                 pr_err("please check additional_cpus= boot parameter\n");
1125 #endif
1126                 return -EINVAL;
1127         }
1128
1129         err = try_online_node(cpu_to_node(cpu));
1130         if (err)
1131                 return err;
1132
1133         cpu_maps_update_begin();
1134
1135         if (cpu_hotplug_disabled) {
1136                 err = -EBUSY;
1137                 goto out;
1138         }
1139         if (!cpu_smt_allowed(cpu)) {
1140                 err = -EPERM;
1141                 goto out;
1142         }
1143
1144         err = _cpu_up(cpu, 0, target);
1145 out:
1146         cpu_maps_update_done();
1147         return err;
1148 }
1149
1150 int cpu_up(unsigned int cpu)
1151 {
1152         return do_cpu_up(cpu, CPUHP_ONLINE);
1153 }
1154 EXPORT_SYMBOL_GPL(cpu_up);
1155
1156 #ifdef CONFIG_PM_SLEEP_SMP
1157 static cpumask_var_t frozen_cpus;
1158
1159 int freeze_secondary_cpus(int primary)
1160 {
1161         int cpu, error = 0;
1162
1163         cpu_maps_update_begin();
1164         if (!cpu_online(primary))
1165                 primary = cpumask_first(cpu_online_mask);
1166         /*
1167          * We take down all of the non-boot CPUs in one shot to avoid races
1168          * with the userspace trying to use the CPU hotplug at the same time
1169          */
1170         cpumask_clear(frozen_cpus);
1171
1172         pr_info("Disabling non-boot CPUs ...\n");
1173         for_each_online_cpu(cpu) {
1174                 if (cpu == primary)
1175                         continue;
1176                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1177                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1178                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1179                 if (!error)
1180                         cpumask_set_cpu(cpu, frozen_cpus);
1181                 else {
1182                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1183                         break;
1184                 }
1185         }
1186
1187         if (!error)
1188                 BUG_ON(num_online_cpus() > 1);
1189         else
1190                 pr_err("Non-boot CPUs are not disabled\n");
1191
1192         /*
1193          * Make sure the CPUs won't be enabled by someone else. We need to do
1194          * this even in case of failure as all disable_nonboot_cpus() users are
1195          * supposed to do enable_nonboot_cpus() on the failure path.
1196          */
1197         cpu_hotplug_disabled++;
1198
1199         cpu_maps_update_done();
1200         return error;
1201 }
1202
1203 void __weak arch_enable_nonboot_cpus_begin(void)
1204 {
1205 }
1206
1207 void __weak arch_enable_nonboot_cpus_end(void)
1208 {
1209 }
1210
1211 void enable_nonboot_cpus(void)
1212 {
1213         int cpu, error;
1214
1215         /* Allow everyone to use the CPU hotplug again */
1216         cpu_maps_update_begin();
1217         __cpu_hotplug_enable();
1218         if (cpumask_empty(frozen_cpus))
1219                 goto out;
1220
1221         pr_info("Enabling non-boot CPUs ...\n");
1222
1223         arch_enable_nonboot_cpus_begin();
1224
1225         for_each_cpu(cpu, frozen_cpus) {
1226                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1227                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1228                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1229                 if (!error) {
1230                         pr_info("CPU%d is up\n", cpu);
1231                         continue;
1232                 }
1233                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1234         }
1235
1236         arch_enable_nonboot_cpus_end();
1237
1238         cpumask_clear(frozen_cpus);
1239 out:
1240         cpu_maps_update_done();
1241 }
1242
1243 static int __init alloc_frozen_cpus(void)
1244 {
1245         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1246                 return -ENOMEM;
1247         return 0;
1248 }
1249 core_initcall(alloc_frozen_cpus);
1250
1251 /*
1252  * When callbacks for CPU hotplug notifications are being executed, we must
1253  * ensure that the state of the system with respect to the tasks being frozen
1254  * or not, as reported by the notification, remains unchanged *throughout the
1255  * duration* of the execution of the callbacks.
1256  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1257  *
1258  * This synchronization is implemented by mutually excluding regular CPU
1259  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1260  * Hibernate notifications.
1261  */
1262 static int
1263 cpu_hotplug_pm_callback(struct notifier_block *nb,
1264                         unsigned long action, void *ptr)
1265 {
1266         switch (action) {
1267
1268         case PM_SUSPEND_PREPARE:
1269         case PM_HIBERNATION_PREPARE:
1270                 cpu_hotplug_disable();
1271                 break;
1272
1273         case PM_POST_SUSPEND:
1274         case PM_POST_HIBERNATION:
1275                 cpu_hotplug_enable();
1276                 break;
1277
1278         default:
1279                 return NOTIFY_DONE;
1280         }
1281
1282         return NOTIFY_OK;
1283 }
1284
1285
1286 static int __init cpu_hotplug_pm_sync_init(void)
1287 {
1288         /*
1289          * cpu_hotplug_pm_callback has higher priority than x86
1290          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1291          * to disable cpu hotplug to avoid cpu hotplug race.
1292          */
1293         pm_notifier(cpu_hotplug_pm_callback, 0);
1294         return 0;
1295 }
1296 core_initcall(cpu_hotplug_pm_sync_init);
1297
1298 #endif /* CONFIG_PM_SLEEP_SMP */
1299
1300 int __boot_cpu_id;
1301
1302 #endif /* CONFIG_SMP */
1303
1304 /* Boot processor state steps */
1305 static struct cpuhp_step cpuhp_hp_states[] = {
1306         [CPUHP_OFFLINE] = {
1307                 .name                   = "offline",
1308                 .startup.single         = NULL,
1309                 .teardown.single        = NULL,
1310         },
1311 #ifdef CONFIG_SMP
1312         [CPUHP_CREATE_THREADS]= {
1313                 .name                   = "threads:prepare",
1314                 .startup.single         = smpboot_create_threads,
1315                 .teardown.single        = NULL,
1316                 .cant_stop              = true,
1317         },
1318         [CPUHP_PERF_PREPARE] = {
1319                 .name                   = "perf:prepare",
1320                 .startup.single         = perf_event_init_cpu,
1321                 .teardown.single        = perf_event_exit_cpu,
1322         },
1323         [CPUHP_WORKQUEUE_PREP] = {
1324                 .name                   = "workqueue:prepare",
1325                 .startup.single         = workqueue_prepare_cpu,
1326                 .teardown.single        = NULL,
1327         },
1328         [CPUHP_HRTIMERS_PREPARE] = {
1329                 .name                   = "hrtimers:prepare",
1330                 .startup.single         = hrtimers_prepare_cpu,
1331                 .teardown.single        = hrtimers_dead_cpu,
1332         },
1333         [CPUHP_SMPCFD_PREPARE] = {
1334                 .name                   = "smpcfd:prepare",
1335                 .startup.single         = smpcfd_prepare_cpu,
1336                 .teardown.single        = smpcfd_dead_cpu,
1337         },
1338         [CPUHP_RELAY_PREPARE] = {
1339                 .name                   = "relay:prepare",
1340                 .startup.single         = relay_prepare_cpu,
1341                 .teardown.single        = NULL,
1342         },
1343         [CPUHP_SLAB_PREPARE] = {
1344                 .name                   = "slab:prepare",
1345                 .startup.single         = slab_prepare_cpu,
1346                 .teardown.single        = slab_dead_cpu,
1347         },
1348         [CPUHP_RCUTREE_PREP] = {
1349                 .name                   = "RCU/tree:prepare",
1350                 .startup.single         = rcutree_prepare_cpu,
1351                 .teardown.single        = rcutree_dead_cpu,
1352         },
1353         /*
1354          * On the tear-down path, timers_dead_cpu() must be invoked
1355          * before blk_mq_queue_reinit_notify() from notify_dead(),
1356          * otherwise a RCU stall occurs.
1357          */
1358         [CPUHP_TIMERS_PREPARE] = {
1359                 .name                   = "timers:prepare",
1360                 .startup.single         = timers_prepare_cpu,
1361                 .teardown.single        = timers_dead_cpu,
1362         },
1363         /* Kicks the plugged cpu into life */
1364         [CPUHP_BRINGUP_CPU] = {
1365                 .name                   = "cpu:bringup",
1366                 .startup.single         = bringup_cpu,
1367                 .teardown.single        = NULL,
1368                 .cant_stop              = true,
1369         },
1370         /* Final state before CPU kills itself */
1371         [CPUHP_AP_IDLE_DEAD] = {
1372                 .name                   = "idle:dead",
1373         },
1374         /*
1375          * Last state before CPU enters the idle loop to die. Transient state
1376          * for synchronization.
1377          */
1378         [CPUHP_AP_OFFLINE] = {
1379                 .name                   = "ap:offline",
1380                 .cant_stop              = true,
1381         },
1382         /* First state is scheduler control. Interrupts are disabled */
1383         [CPUHP_AP_SCHED_STARTING] = {
1384                 .name                   = "sched:starting",
1385                 .startup.single         = sched_cpu_starting,
1386                 .teardown.single        = sched_cpu_dying,
1387         },
1388         [CPUHP_AP_RCUTREE_DYING] = {
1389                 .name                   = "RCU/tree:dying",
1390                 .startup.single         = NULL,
1391                 .teardown.single        = rcutree_dying_cpu,
1392         },
1393         [CPUHP_AP_SMPCFD_DYING] = {
1394                 .name                   = "smpcfd:dying",
1395                 .startup.single         = NULL,
1396                 .teardown.single        = smpcfd_dying_cpu,
1397         },
1398         /* Entry state on starting. Interrupts enabled from here on. Transient
1399          * state for synchronsization */
1400         [CPUHP_AP_ONLINE] = {
1401                 .name                   = "ap:online",
1402         },
1403         /*
1404          * Handled on controll processor until the plugged processor manages
1405          * this itself.
1406          */
1407         [CPUHP_TEARDOWN_CPU] = {
1408                 .name                   = "cpu:teardown",
1409                 .startup.single         = NULL,
1410                 .teardown.single        = takedown_cpu,
1411                 .cant_stop              = true,
1412         },
1413         /* Handle smpboot threads park/unpark */
1414         [CPUHP_AP_SMPBOOT_THREADS] = {
1415                 .name                   = "smpboot/threads:online",
1416                 .startup.single         = smpboot_unpark_threads,
1417                 .teardown.single        = smpboot_park_threads,
1418         },
1419         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1420                 .name                   = "irq/affinity:online",
1421                 .startup.single         = irq_affinity_online_cpu,
1422                 .teardown.single        = NULL,
1423         },
1424         [CPUHP_AP_PERF_ONLINE] = {
1425                 .name                   = "perf:online",
1426                 .startup.single         = perf_event_init_cpu,
1427                 .teardown.single        = perf_event_exit_cpu,
1428         },
1429         [CPUHP_AP_WATCHDOG_ONLINE] = {
1430                 .name                   = "lockup_detector:online",
1431                 .startup.single         = lockup_detector_online_cpu,
1432                 .teardown.single        = lockup_detector_offline_cpu,
1433         },
1434         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1435                 .name                   = "workqueue:online",
1436                 .startup.single         = workqueue_online_cpu,
1437                 .teardown.single        = workqueue_offline_cpu,
1438         },
1439         [CPUHP_AP_RCUTREE_ONLINE] = {
1440                 .name                   = "RCU/tree:online",
1441                 .startup.single         = rcutree_online_cpu,
1442                 .teardown.single        = rcutree_offline_cpu,
1443         },
1444 #endif
1445         /*
1446          * The dynamically registered state space is here
1447          */
1448
1449 #ifdef CONFIG_SMP
1450         /* Last state is scheduler control setting the cpu active */
1451         [CPUHP_AP_ACTIVE] = {
1452                 .name                   = "sched:active",
1453                 .startup.single         = sched_cpu_activate,
1454                 .teardown.single        = sched_cpu_deactivate,
1455         },
1456 #endif
1457
1458         /* CPU is fully up and running. */
1459         [CPUHP_ONLINE] = {
1460                 .name                   = "online",
1461                 .startup.single         = NULL,
1462                 .teardown.single        = NULL,
1463         },
1464 };
1465
1466 /* Sanity check for callbacks */
1467 static int cpuhp_cb_check(enum cpuhp_state state)
1468 {
1469         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1470                 return -EINVAL;
1471         return 0;
1472 }
1473
1474 /*
1475  * Returns a free for dynamic slot assignment of the Online state. The states
1476  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1477  * by having no name assigned.
1478  */
1479 static int cpuhp_reserve_state(enum cpuhp_state state)
1480 {
1481         enum cpuhp_state i, end;
1482         struct cpuhp_step *step;
1483
1484         switch (state) {
1485         case CPUHP_AP_ONLINE_DYN:
1486                 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1487                 end = CPUHP_AP_ONLINE_DYN_END;
1488                 break;
1489         case CPUHP_BP_PREPARE_DYN:
1490                 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1491                 end = CPUHP_BP_PREPARE_DYN_END;
1492                 break;
1493         default:
1494                 return -EINVAL;
1495         }
1496
1497         for (i = state; i <= end; i++, step++) {
1498                 if (!step->name)
1499                         return i;
1500         }
1501         WARN(1, "No more dynamic states available for CPU hotplug\n");
1502         return -ENOSPC;
1503 }
1504
1505 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1506                                  int (*startup)(unsigned int cpu),
1507                                  int (*teardown)(unsigned int cpu),
1508                                  bool multi_instance)
1509 {
1510         /* (Un)Install the callbacks for further cpu hotplug operations */
1511         struct cpuhp_step *sp;
1512         int ret = 0;
1513
1514         /*
1515          * If name is NULL, then the state gets removed.
1516          *
1517          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1518          * the first allocation from these dynamic ranges, so the removal
1519          * would trigger a new allocation and clear the wrong (already
1520          * empty) state, leaving the callbacks of the to be cleared state
1521          * dangling, which causes wreckage on the next hotplug operation.
1522          */
1523         if (name && (state == CPUHP_AP_ONLINE_DYN ||
1524                      state == CPUHP_BP_PREPARE_DYN)) {
1525                 ret = cpuhp_reserve_state(state);
1526                 if (ret < 0)
1527                         return ret;
1528                 state = ret;
1529         }
1530         sp = cpuhp_get_step(state);
1531         if (name && sp->name)
1532                 return -EBUSY;
1533
1534         sp->startup.single = startup;
1535         sp->teardown.single = teardown;
1536         sp->name = name;
1537         sp->multi_instance = multi_instance;
1538         INIT_HLIST_HEAD(&sp->list);
1539         return ret;
1540 }
1541
1542 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1543 {
1544         return cpuhp_get_step(state)->teardown.single;
1545 }
1546
1547 /*
1548  * Call the startup/teardown function for a step either on the AP or
1549  * on the current CPU.
1550  */
1551 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1552                             struct hlist_node *node)
1553 {
1554         struct cpuhp_step *sp = cpuhp_get_step(state);
1555         int ret;
1556
1557         /*
1558          * If there's nothing to do, we done.
1559          * Relies on the union for multi_instance.
1560          */
1561         if ((bringup && !sp->startup.single) ||
1562             (!bringup && !sp->teardown.single))
1563                 return 0;
1564         /*
1565          * The non AP bound callbacks can fail on bringup. On teardown
1566          * e.g. module removal we crash for now.
1567          */
1568 #ifdef CONFIG_SMP
1569         if (cpuhp_is_ap_state(state))
1570                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1571         else
1572                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1573 #else
1574         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1575 #endif
1576         BUG_ON(ret && !bringup);
1577         return ret;
1578 }
1579
1580 /*
1581  * Called from __cpuhp_setup_state on a recoverable failure.
1582  *
1583  * Note: The teardown callbacks for rollback are not allowed to fail!
1584  */
1585 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1586                                    struct hlist_node *node)
1587 {
1588         int cpu;
1589
1590         /* Roll back the already executed steps on the other cpus */
1591         for_each_present_cpu(cpu) {
1592                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1593                 int cpustate = st->state;
1594
1595                 if (cpu >= failedcpu)
1596                         break;
1597
1598                 /* Did we invoke the startup call on that cpu ? */
1599                 if (cpustate >= state)
1600                         cpuhp_issue_call(cpu, state, false, node);
1601         }
1602 }
1603
1604 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1605                                           struct hlist_node *node,
1606                                           bool invoke)
1607 {
1608         struct cpuhp_step *sp;
1609         int cpu;
1610         int ret;
1611
1612         lockdep_assert_cpus_held();
1613
1614         sp = cpuhp_get_step(state);
1615         if (sp->multi_instance == false)
1616                 return -EINVAL;
1617
1618         mutex_lock(&cpuhp_state_mutex);
1619
1620         if (!invoke || !sp->startup.multi)
1621                 goto add_node;
1622
1623         /*
1624          * Try to call the startup callback for each present cpu
1625          * depending on the hotplug state of the cpu.
1626          */
1627         for_each_present_cpu(cpu) {
1628                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1629                 int cpustate = st->state;
1630
1631                 if (cpustate < state)
1632                         continue;
1633
1634                 ret = cpuhp_issue_call(cpu, state, true, node);
1635                 if (ret) {
1636                         if (sp->teardown.multi)
1637                                 cpuhp_rollback_install(cpu, state, node);
1638                         goto unlock;
1639                 }
1640         }
1641 add_node:
1642         ret = 0;
1643         hlist_add_head(node, &sp->list);
1644 unlock:
1645         mutex_unlock(&cpuhp_state_mutex);
1646         return ret;
1647 }
1648
1649 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1650                                bool invoke)
1651 {
1652         int ret;
1653
1654         cpus_read_lock();
1655         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1656         cpus_read_unlock();
1657         return ret;
1658 }
1659 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1660
1661 /**
1662  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1663  * @state:              The state to setup
1664  * @invoke:             If true, the startup function is invoked for cpus where
1665  *                      cpu state >= @state
1666  * @startup:            startup callback function
1667  * @teardown:           teardown callback function
1668  * @multi_instance:     State is set up for multiple instances which get
1669  *                      added afterwards.
1670  *
1671  * The caller needs to hold cpus read locked while calling this function.
1672  * Returns:
1673  *   On success:
1674  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1675  *      0 for all other states
1676  *   On failure: proper (negative) error code
1677  */
1678 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1679                                    const char *name, bool invoke,
1680                                    int (*startup)(unsigned int cpu),
1681                                    int (*teardown)(unsigned int cpu),
1682                                    bool multi_instance)
1683 {
1684         int cpu, ret = 0;
1685         bool dynstate;
1686
1687         lockdep_assert_cpus_held();
1688
1689         if (cpuhp_cb_check(state) || !name)
1690                 return -EINVAL;
1691
1692         mutex_lock(&cpuhp_state_mutex);
1693
1694         ret = cpuhp_store_callbacks(state, name, startup, teardown,
1695                                     multi_instance);
1696
1697         dynstate = state == CPUHP_AP_ONLINE_DYN;
1698         if (ret > 0 && dynstate) {
1699                 state = ret;
1700                 ret = 0;
1701         }
1702
1703         if (ret || !invoke || !startup)
1704                 goto out;
1705
1706         /*
1707          * Try to call the startup callback for each present cpu
1708          * depending on the hotplug state of the cpu.
1709          */
1710         for_each_present_cpu(cpu) {
1711                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1712                 int cpustate = st->state;
1713
1714                 if (cpustate < state)
1715                         continue;
1716
1717                 ret = cpuhp_issue_call(cpu, state, true, NULL);
1718                 if (ret) {
1719                         if (teardown)
1720                                 cpuhp_rollback_install(cpu, state, NULL);
1721                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1722                         goto out;
1723                 }
1724         }
1725 out:
1726         mutex_unlock(&cpuhp_state_mutex);
1727         /*
1728          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1729          * dynamically allocated state in case of success.
1730          */
1731         if (!ret && dynstate)
1732                 return state;
1733         return ret;
1734 }
1735 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1736
1737 int __cpuhp_setup_state(enum cpuhp_state state,
1738                         const char *name, bool invoke,
1739                         int (*startup)(unsigned int cpu),
1740                         int (*teardown)(unsigned int cpu),
1741                         bool multi_instance)
1742 {
1743         int ret;
1744
1745         cpus_read_lock();
1746         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1747                                              teardown, multi_instance);
1748         cpus_read_unlock();
1749         return ret;
1750 }
1751 EXPORT_SYMBOL(__cpuhp_setup_state);
1752
1753 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1754                                   struct hlist_node *node, bool invoke)
1755 {
1756         struct cpuhp_step *sp = cpuhp_get_step(state);
1757         int cpu;
1758
1759         BUG_ON(cpuhp_cb_check(state));
1760
1761         if (!sp->multi_instance)
1762                 return -EINVAL;
1763
1764         cpus_read_lock();
1765         mutex_lock(&cpuhp_state_mutex);
1766
1767         if (!invoke || !cpuhp_get_teardown_cb(state))
1768                 goto remove;
1769         /*
1770          * Call the teardown callback for each present cpu depending
1771          * on the hotplug state of the cpu. This function is not
1772          * allowed to fail currently!
1773          */
1774         for_each_present_cpu(cpu) {
1775                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1776                 int cpustate = st->state;
1777
1778                 if (cpustate >= state)
1779                         cpuhp_issue_call(cpu, state, false, node);
1780         }
1781
1782 remove:
1783         hlist_del(node);
1784         mutex_unlock(&cpuhp_state_mutex);
1785         cpus_read_unlock();
1786
1787         return 0;
1788 }
1789 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1790
1791 /**
1792  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1793  * @state:      The state to remove
1794  * @invoke:     If true, the teardown function is invoked for cpus where
1795  *              cpu state >= @state
1796  *
1797  * The caller needs to hold cpus read locked while calling this function.
1798  * The teardown callback is currently not allowed to fail. Think
1799  * about module removal!
1800  */
1801 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1802 {
1803         struct cpuhp_step *sp = cpuhp_get_step(state);
1804         int cpu;
1805
1806         BUG_ON(cpuhp_cb_check(state));
1807
1808         lockdep_assert_cpus_held();
1809
1810         mutex_lock(&cpuhp_state_mutex);
1811         if (sp->multi_instance) {
1812                 WARN(!hlist_empty(&sp->list),
1813                      "Error: Removing state %d which has instances left.\n",
1814                      state);
1815                 goto remove;
1816         }
1817
1818         if (!invoke || !cpuhp_get_teardown_cb(state))
1819                 goto remove;
1820
1821         /*
1822          * Call the teardown callback for each present cpu depending
1823          * on the hotplug state of the cpu. This function is not
1824          * allowed to fail currently!
1825          */
1826         for_each_present_cpu(cpu) {
1827                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1828                 int cpustate = st->state;
1829
1830                 if (cpustate >= state)
1831                         cpuhp_issue_call(cpu, state, false, NULL);
1832         }
1833 remove:
1834         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1835         mutex_unlock(&cpuhp_state_mutex);
1836 }
1837 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1838
1839 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1840 {
1841         cpus_read_lock();
1842         __cpuhp_remove_state_cpuslocked(state, invoke);
1843         cpus_read_unlock();
1844 }
1845 EXPORT_SYMBOL(__cpuhp_remove_state);
1846
1847 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1848 static ssize_t show_cpuhp_state(struct device *dev,
1849                                 struct device_attribute *attr, char *buf)
1850 {
1851         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1852
1853         return sprintf(buf, "%d\n", st->state);
1854 }
1855 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1856
1857 static ssize_t write_cpuhp_target(struct device *dev,
1858                                   struct device_attribute *attr,
1859                                   const char *buf, size_t count)
1860 {
1861         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1862         struct cpuhp_step *sp;
1863         int target, ret;
1864
1865         ret = kstrtoint(buf, 10, &target);
1866         if (ret)
1867                 return ret;
1868
1869 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1870         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1871                 return -EINVAL;
1872 #else
1873         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1874                 return -EINVAL;
1875 #endif
1876
1877         ret = lock_device_hotplug_sysfs();
1878         if (ret)
1879                 return ret;
1880
1881         mutex_lock(&cpuhp_state_mutex);
1882         sp = cpuhp_get_step(target);
1883         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1884         mutex_unlock(&cpuhp_state_mutex);
1885         if (ret)
1886                 goto out;
1887
1888         if (st->state < target)
1889                 ret = do_cpu_up(dev->id, target);
1890         else
1891                 ret = do_cpu_down(dev->id, target);
1892 out:
1893         unlock_device_hotplug();
1894         return ret ? ret : count;
1895 }
1896
1897 static ssize_t show_cpuhp_target(struct device *dev,
1898                                  struct device_attribute *attr, char *buf)
1899 {
1900         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1901
1902         return sprintf(buf, "%d\n", st->target);
1903 }
1904 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1905
1906
1907 static ssize_t write_cpuhp_fail(struct device *dev,
1908                                 struct device_attribute *attr,
1909                                 const char *buf, size_t count)
1910 {
1911         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1912         struct cpuhp_step *sp;
1913         int fail, ret;
1914
1915         ret = kstrtoint(buf, 10, &fail);
1916         if (ret)
1917                 return ret;
1918
1919         /*
1920          * Cannot fail STARTING/DYING callbacks.
1921          */
1922         if (cpuhp_is_atomic_state(fail))
1923                 return -EINVAL;
1924
1925         /*
1926          * Cannot fail anything that doesn't have callbacks.
1927          */
1928         mutex_lock(&cpuhp_state_mutex);
1929         sp = cpuhp_get_step(fail);
1930         if (!sp->startup.single && !sp->teardown.single)
1931                 ret = -EINVAL;
1932         mutex_unlock(&cpuhp_state_mutex);
1933         if (ret)
1934                 return ret;
1935
1936         st->fail = fail;
1937
1938         return count;
1939 }
1940
1941 static ssize_t show_cpuhp_fail(struct device *dev,
1942                                struct device_attribute *attr, char *buf)
1943 {
1944         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1945
1946         return sprintf(buf, "%d\n", st->fail);
1947 }
1948
1949 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1950
1951 static struct attribute *cpuhp_cpu_attrs[] = {
1952         &dev_attr_state.attr,
1953         &dev_attr_target.attr,
1954         &dev_attr_fail.attr,
1955         NULL
1956 };
1957
1958 static const struct attribute_group cpuhp_cpu_attr_group = {
1959         .attrs = cpuhp_cpu_attrs,
1960         .name = "hotplug",
1961         NULL
1962 };
1963
1964 static ssize_t show_cpuhp_states(struct device *dev,
1965                                  struct device_attribute *attr, char *buf)
1966 {
1967         ssize_t cur, res = 0;
1968         int i;
1969
1970         mutex_lock(&cpuhp_state_mutex);
1971         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1972                 struct cpuhp_step *sp = cpuhp_get_step(i);
1973
1974                 if (sp->name) {
1975                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1976                         buf += cur;
1977                         res += cur;
1978                 }
1979         }
1980         mutex_unlock(&cpuhp_state_mutex);
1981         return res;
1982 }
1983 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1984
1985 static struct attribute *cpuhp_cpu_root_attrs[] = {
1986         &dev_attr_states.attr,
1987         NULL
1988 };
1989
1990 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1991         .attrs = cpuhp_cpu_root_attrs,
1992         .name = "hotplug",
1993         NULL
1994 };
1995
1996 #ifdef CONFIG_HOTPLUG_SMT
1997
1998 static const char *smt_states[] = {
1999         [CPU_SMT_ENABLED]               = "on",
2000         [CPU_SMT_DISABLED]              = "off",
2001         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2002         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2003 };
2004
2005 static ssize_t
2006 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2007 {
2008         return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2009 }
2010
2011 static void cpuhp_offline_cpu_device(unsigned int cpu)
2012 {
2013         struct device *dev = get_cpu_device(cpu);
2014
2015         dev->offline = true;
2016         /* Tell user space about the state change */
2017         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2018 }
2019
2020 static void cpuhp_online_cpu_device(unsigned int cpu)
2021 {
2022         struct device *dev = get_cpu_device(cpu);
2023
2024         dev->offline = false;
2025         /* Tell user space about the state change */
2026         kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2027 }
2028
2029 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2030 {
2031         int cpu, ret = 0;
2032
2033         cpu_maps_update_begin();
2034         for_each_online_cpu(cpu) {
2035                 if (topology_is_primary_thread(cpu))
2036                         continue;
2037                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2038                 if (ret)
2039                         break;
2040                 /*
2041                  * As this needs to hold the cpu maps lock it's impossible
2042                  * to call device_offline() because that ends up calling
2043                  * cpu_down() which takes cpu maps lock. cpu maps lock
2044                  * needs to be held as this might race against in kernel
2045                  * abusers of the hotplug machinery (thermal management).
2046                  *
2047                  * So nothing would update device:offline state. That would
2048                  * leave the sysfs entry stale and prevent onlining after
2049                  * smt control has been changed to 'off' again. This is
2050                  * called under the sysfs hotplug lock, so it is properly
2051                  * serialized against the regular offline usage.
2052                  */
2053                 cpuhp_offline_cpu_device(cpu);
2054         }
2055         if (!ret)
2056                 cpu_smt_control = ctrlval;
2057         cpu_maps_update_done();
2058         return ret;
2059 }
2060
2061 static int cpuhp_smt_enable(void)
2062 {
2063         int cpu, ret = 0;
2064
2065         cpu_maps_update_begin();
2066         cpu_smt_control = CPU_SMT_ENABLED;
2067         for_each_present_cpu(cpu) {
2068                 /* Skip online CPUs and CPUs on offline nodes */
2069                 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2070                         continue;
2071                 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2072                 if (ret)
2073                         break;
2074                 /* See comment in cpuhp_smt_disable() */
2075                 cpuhp_online_cpu_device(cpu);
2076         }
2077         cpu_maps_update_done();
2078         return ret;
2079 }
2080
2081 static ssize_t
2082 store_smt_control(struct device *dev, struct device_attribute *attr,
2083                   const char *buf, size_t count)
2084 {
2085         int ctrlval, ret;
2086
2087         if (sysfs_streq(buf, "on"))
2088                 ctrlval = CPU_SMT_ENABLED;
2089         else if (sysfs_streq(buf, "off"))
2090                 ctrlval = CPU_SMT_DISABLED;
2091         else if (sysfs_streq(buf, "forceoff"))
2092                 ctrlval = CPU_SMT_FORCE_DISABLED;
2093         else
2094                 return -EINVAL;
2095
2096         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2097                 return -EPERM;
2098
2099         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2100                 return -ENODEV;
2101
2102         ret = lock_device_hotplug_sysfs();
2103         if (ret)
2104                 return ret;
2105
2106         if (ctrlval != cpu_smt_control) {
2107                 switch (ctrlval) {
2108                 case CPU_SMT_ENABLED:
2109                         ret = cpuhp_smt_enable();
2110                         break;
2111                 case CPU_SMT_DISABLED:
2112                 case CPU_SMT_FORCE_DISABLED:
2113                         ret = cpuhp_smt_disable(ctrlval);
2114                         break;
2115                 }
2116         }
2117
2118         unlock_device_hotplug();
2119         return ret ? ret : count;
2120 }
2121 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2122
2123 static ssize_t
2124 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2125 {
2126         bool active = topology_max_smt_threads() > 1;
2127
2128         return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2129 }
2130 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2131
2132 static struct attribute *cpuhp_smt_attrs[] = {
2133         &dev_attr_control.attr,
2134         &dev_attr_active.attr,
2135         NULL
2136 };
2137
2138 static const struct attribute_group cpuhp_smt_attr_group = {
2139         .attrs = cpuhp_smt_attrs,
2140         .name = "smt",
2141         NULL
2142 };
2143
2144 static int __init cpu_smt_state_init(void)
2145 {
2146         return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2147                                   &cpuhp_smt_attr_group);
2148 }
2149
2150 #else
2151 static inline int cpu_smt_state_init(void) { return 0; }
2152 #endif
2153
2154 static int __init cpuhp_sysfs_init(void)
2155 {
2156         int cpu, ret;
2157
2158         ret = cpu_smt_state_init();
2159         if (ret)
2160                 return ret;
2161
2162         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2163                                  &cpuhp_cpu_root_attr_group);
2164         if (ret)
2165                 return ret;
2166
2167         for_each_possible_cpu(cpu) {
2168                 struct device *dev = get_cpu_device(cpu);
2169
2170                 if (!dev)
2171                         continue;
2172                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2173                 if (ret)
2174                         return ret;
2175         }
2176         return 0;
2177 }
2178 device_initcall(cpuhp_sysfs_init);
2179 #endif
2180
2181 /*
2182  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2183  * represents all NR_CPUS bits binary values of 1<<nr.
2184  *
2185  * It is used by cpumask_of() to get a constant address to a CPU
2186  * mask value that has a single bit set only.
2187  */
2188
2189 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2190 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
2191 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2192 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2193 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2194
2195 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2196
2197         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
2198         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
2199 #if BITS_PER_LONG > 32
2200         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
2201         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
2202 #endif
2203 };
2204 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2205
2206 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2207 EXPORT_SYMBOL(cpu_all_bits);
2208
2209 #ifdef CONFIG_INIT_ALL_POSSIBLE
2210 struct cpumask __cpu_possible_mask __read_mostly
2211         = {CPU_BITS_ALL};
2212 #else
2213 struct cpumask __cpu_possible_mask __read_mostly;
2214 #endif
2215 EXPORT_SYMBOL(__cpu_possible_mask);
2216
2217 struct cpumask __cpu_online_mask __read_mostly;
2218 EXPORT_SYMBOL(__cpu_online_mask);
2219
2220 struct cpumask __cpu_present_mask __read_mostly;
2221 EXPORT_SYMBOL(__cpu_present_mask);
2222
2223 struct cpumask __cpu_active_mask __read_mostly;
2224 EXPORT_SYMBOL(__cpu_active_mask);
2225
2226 void init_cpu_present(const struct cpumask *src)
2227 {
2228         cpumask_copy(&__cpu_present_mask, src);
2229 }
2230
2231 void init_cpu_possible(const struct cpumask *src)
2232 {
2233         cpumask_copy(&__cpu_possible_mask, src);
2234 }
2235
2236 void init_cpu_online(const struct cpumask *src)
2237 {
2238         cpumask_copy(&__cpu_online_mask, src);
2239 }
2240
2241 /*
2242  * Activate the first processor.
2243  */
2244 void __init boot_cpu_init(void)
2245 {
2246         int cpu = smp_processor_id();
2247
2248         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2249         set_cpu_online(cpu, true);
2250         set_cpu_active(cpu, true);
2251         set_cpu_present(cpu, true);
2252         set_cpu_possible(cpu, true);
2253
2254 #ifdef CONFIG_SMP
2255         __boot_cpu_id = cpu;
2256 #endif
2257 }
2258
2259 /*
2260  * Must be called _AFTER_ setting up the per_cpu areas
2261  */
2262 void __init boot_cpu_hotplug_init(void)
2263 {
2264 #ifdef CONFIG_SMP
2265         this_cpu_write(cpuhp_state.booted_once, true);
2266 #endif
2267         this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2268 }