btrfs: drop private_data parameter from extent_io_tree_init
[linux-2.6-microblaze.git] / fs / btrfs / relocation.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38
39 /*
40  * Relocation overview
41  *
42  * [What does relocation do]
43  *
44  * The objective of relocation is to relocate all extents of the target block
45  * group to other block groups.
46  * This is utilized by resize (shrink only), profile converting, compacting
47  * space, or balance routine to spread chunks over devices.
48  *
49  *              Before          |               After
50  * ------------------------------------------------------------------
51  *  BG A: 10 data extents       | BG A: deleted
52  *  BG B:  2 data extents       | BG B: 10 data extents (2 old + 8 relocated)
53  *  BG C:  1 extents            | BG C:  3 data extents (1 old + 2 relocated)
54  *
55  * [How does relocation work]
56  *
57  * 1.   Mark the target block group read-only
58  *      New extents won't be allocated from the target block group.
59  *
60  * 2.1  Record each extent in the target block group
61  *      To build a proper map of extents to be relocated.
62  *
63  * 2.2  Build data reloc tree and reloc trees
64  *      Data reloc tree will contain an inode, recording all newly relocated
65  *      data extents.
66  *      There will be only one data reloc tree for one data block group.
67  *
68  *      Reloc tree will be a special snapshot of its source tree, containing
69  *      relocated tree blocks.
70  *      Each tree referring to a tree block in target block group will get its
71  *      reloc tree built.
72  *
73  * 2.3  Swap source tree with its corresponding reloc tree
74  *      Each involved tree only refers to new extents after swap.
75  *
76  * 3.   Cleanup reloc trees and data reloc tree.
77  *      As old extents in the target block group are still referenced by reloc
78  *      trees, we need to clean them up before really freeing the target block
79  *      group.
80  *
81  * The main complexity is in steps 2.2 and 2.3.
82  *
83  * The entry point of relocation is relocate_block_group() function.
84  */
85
86 #define RELOCATION_RESERVED_NODES       256
87 /*
88  * map address of tree root to tree
89  */
90 struct mapping_node {
91         struct {
92                 struct rb_node rb_node;
93                 u64 bytenr;
94         }; /* Use rb_simle_node for search/insert */
95         void *data;
96 };
97
98 struct mapping_tree {
99         struct rb_root rb_root;
100         spinlock_t lock;
101 };
102
103 /*
104  * present a tree block to process
105  */
106 struct tree_block {
107         struct {
108                 struct rb_node rb_node;
109                 u64 bytenr;
110         }; /* Use rb_simple_node for search/insert */
111         u64 owner;
112         struct btrfs_key key;
113         unsigned int level:8;
114         unsigned int key_ready:1;
115 };
116
117 #define MAX_EXTENTS 128
118
119 struct file_extent_cluster {
120         u64 start;
121         u64 end;
122         u64 boundary[MAX_EXTENTS];
123         unsigned int nr;
124 };
125
126 struct reloc_control {
127         /* block group to relocate */
128         struct btrfs_block_group *block_group;
129         /* extent tree */
130         struct btrfs_root *extent_root;
131         /* inode for moving data */
132         struct inode *data_inode;
133
134         struct btrfs_block_rsv *block_rsv;
135
136         struct btrfs_backref_cache backref_cache;
137
138         struct file_extent_cluster cluster;
139         /* tree blocks have been processed */
140         struct extent_io_tree processed_blocks;
141         /* map start of tree root to corresponding reloc tree */
142         struct mapping_tree reloc_root_tree;
143         /* list of reloc trees */
144         struct list_head reloc_roots;
145         /* list of subvolume trees that get relocated */
146         struct list_head dirty_subvol_roots;
147         /* size of metadata reservation for merging reloc trees */
148         u64 merging_rsv_size;
149         /* size of relocated tree nodes */
150         u64 nodes_relocated;
151         /* reserved size for block group relocation*/
152         u64 reserved_bytes;
153
154         u64 search_start;
155         u64 extents_found;
156
157         unsigned int stage:8;
158         unsigned int create_reloc_tree:1;
159         unsigned int merge_reloc_tree:1;
160         unsigned int found_file_extent:1;
161 };
162
163 /* stages of data relocation */
164 #define MOVE_DATA_EXTENTS       0
165 #define UPDATE_DATA_PTRS        1
166
167 static void mark_block_processed(struct reloc_control *rc,
168                                  struct btrfs_backref_node *node)
169 {
170         u32 blocksize;
171
172         if (node->level == 0 ||
173             in_range(node->bytenr, rc->block_group->start,
174                      rc->block_group->length)) {
175                 blocksize = rc->extent_root->fs_info->nodesize;
176                 set_extent_bits(&rc->processed_blocks, node->bytenr,
177                                 node->bytenr + blocksize - 1, EXTENT_DIRTY);
178         }
179         node->processed = 1;
180 }
181
182
183 static void mapping_tree_init(struct mapping_tree *tree)
184 {
185         tree->rb_root = RB_ROOT;
186         spin_lock_init(&tree->lock);
187 }
188
189 /*
190  * walk up backref nodes until reach node presents tree root
191  */
192 static struct btrfs_backref_node *walk_up_backref(
193                 struct btrfs_backref_node *node,
194                 struct btrfs_backref_edge *edges[], int *index)
195 {
196         struct btrfs_backref_edge *edge;
197         int idx = *index;
198
199         while (!list_empty(&node->upper)) {
200                 edge = list_entry(node->upper.next,
201                                   struct btrfs_backref_edge, list[LOWER]);
202                 edges[idx++] = edge;
203                 node = edge->node[UPPER];
204         }
205         BUG_ON(node->detached);
206         *index = idx;
207         return node;
208 }
209
210 /*
211  * walk down backref nodes to find start of next reference path
212  */
213 static struct btrfs_backref_node *walk_down_backref(
214                 struct btrfs_backref_edge *edges[], int *index)
215 {
216         struct btrfs_backref_edge *edge;
217         struct btrfs_backref_node *lower;
218         int idx = *index;
219
220         while (idx > 0) {
221                 edge = edges[idx - 1];
222                 lower = edge->node[LOWER];
223                 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
224                         idx--;
225                         continue;
226                 }
227                 edge = list_entry(edge->list[LOWER].next,
228                                   struct btrfs_backref_edge, list[LOWER]);
229                 edges[idx - 1] = edge;
230                 *index = idx;
231                 return edge->node[UPPER];
232         }
233         *index = 0;
234         return NULL;
235 }
236
237 static void update_backref_node(struct btrfs_backref_cache *cache,
238                                 struct btrfs_backref_node *node, u64 bytenr)
239 {
240         struct rb_node *rb_node;
241         rb_erase(&node->rb_node, &cache->rb_root);
242         node->bytenr = bytenr;
243         rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
244         if (rb_node)
245                 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
246 }
247
248 /*
249  * update backref cache after a transaction commit
250  */
251 static int update_backref_cache(struct btrfs_trans_handle *trans,
252                                 struct btrfs_backref_cache *cache)
253 {
254         struct btrfs_backref_node *node;
255         int level = 0;
256
257         if (cache->last_trans == 0) {
258                 cache->last_trans = trans->transid;
259                 return 0;
260         }
261
262         if (cache->last_trans == trans->transid)
263                 return 0;
264
265         /*
266          * detached nodes are used to avoid unnecessary backref
267          * lookup. transaction commit changes the extent tree.
268          * so the detached nodes are no longer useful.
269          */
270         while (!list_empty(&cache->detached)) {
271                 node = list_entry(cache->detached.next,
272                                   struct btrfs_backref_node, list);
273                 btrfs_backref_cleanup_node(cache, node);
274         }
275
276         while (!list_empty(&cache->changed)) {
277                 node = list_entry(cache->changed.next,
278                                   struct btrfs_backref_node, list);
279                 list_del_init(&node->list);
280                 BUG_ON(node->pending);
281                 update_backref_node(cache, node, node->new_bytenr);
282         }
283
284         /*
285          * some nodes can be left in the pending list if there were
286          * errors during processing the pending nodes.
287          */
288         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
289                 list_for_each_entry(node, &cache->pending[level], list) {
290                         BUG_ON(!node->pending);
291                         if (node->bytenr == node->new_bytenr)
292                                 continue;
293                         update_backref_node(cache, node, node->new_bytenr);
294                 }
295         }
296
297         cache->last_trans = 0;
298         return 1;
299 }
300
301 static bool reloc_root_is_dead(struct btrfs_root *root)
302 {
303         /*
304          * Pair with set_bit/clear_bit in clean_dirty_subvols and
305          * btrfs_update_reloc_root. We need to see the updated bit before
306          * trying to access reloc_root
307          */
308         smp_rmb();
309         if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
310                 return true;
311         return false;
312 }
313
314 /*
315  * Check if this subvolume tree has valid reloc tree.
316  *
317  * Reloc tree after swap is considered dead, thus not considered as valid.
318  * This is enough for most callers, as they don't distinguish dead reloc root
319  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
320  * special case.
321  */
322 static bool have_reloc_root(struct btrfs_root *root)
323 {
324         if (reloc_root_is_dead(root))
325                 return false;
326         if (!root->reloc_root)
327                 return false;
328         return true;
329 }
330
331 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
332 {
333         struct btrfs_root *reloc_root;
334
335         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
336                 return 0;
337
338         /* This root has been merged with its reloc tree, we can ignore it */
339         if (reloc_root_is_dead(root))
340                 return 1;
341
342         reloc_root = root->reloc_root;
343         if (!reloc_root)
344                 return 0;
345
346         if (btrfs_header_generation(reloc_root->commit_root) ==
347             root->fs_info->running_transaction->transid)
348                 return 0;
349         /*
350          * if there is reloc tree and it was created in previous
351          * transaction backref lookup can find the reloc tree,
352          * so backref node for the fs tree root is useless for
353          * relocation.
354          */
355         return 1;
356 }
357
358 /*
359  * find reloc tree by address of tree root
360  */
361 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
362 {
363         struct reloc_control *rc = fs_info->reloc_ctl;
364         struct rb_node *rb_node;
365         struct mapping_node *node;
366         struct btrfs_root *root = NULL;
367
368         ASSERT(rc);
369         spin_lock(&rc->reloc_root_tree.lock);
370         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
371         if (rb_node) {
372                 node = rb_entry(rb_node, struct mapping_node, rb_node);
373                 root = node->data;
374         }
375         spin_unlock(&rc->reloc_root_tree.lock);
376         return btrfs_grab_root(root);
377 }
378
379 /*
380  * For useless nodes, do two major clean ups:
381  *
382  * - Cleanup the children edges and nodes
383  *   If child node is also orphan (no parent) during cleanup, then the child
384  *   node will also be cleaned up.
385  *
386  * - Freeing up leaves (level 0), keeps nodes detached
387  *   For nodes, the node is still cached as "detached"
388  *
389  * Return false if @node is not in the @useless_nodes list.
390  * Return true if @node is in the @useless_nodes list.
391  */
392 static bool handle_useless_nodes(struct reloc_control *rc,
393                                  struct btrfs_backref_node *node)
394 {
395         struct btrfs_backref_cache *cache = &rc->backref_cache;
396         struct list_head *useless_node = &cache->useless_node;
397         bool ret = false;
398
399         while (!list_empty(useless_node)) {
400                 struct btrfs_backref_node *cur;
401
402                 cur = list_first_entry(useless_node, struct btrfs_backref_node,
403                                  list);
404                 list_del_init(&cur->list);
405
406                 /* Only tree root nodes can be added to @useless_nodes */
407                 ASSERT(list_empty(&cur->upper));
408
409                 if (cur == node)
410                         ret = true;
411
412                 /* The node is the lowest node */
413                 if (cur->lowest) {
414                         list_del_init(&cur->lower);
415                         cur->lowest = 0;
416                 }
417
418                 /* Cleanup the lower edges */
419                 while (!list_empty(&cur->lower)) {
420                         struct btrfs_backref_edge *edge;
421                         struct btrfs_backref_node *lower;
422
423                         edge = list_entry(cur->lower.next,
424                                         struct btrfs_backref_edge, list[UPPER]);
425                         list_del(&edge->list[UPPER]);
426                         list_del(&edge->list[LOWER]);
427                         lower = edge->node[LOWER];
428                         btrfs_backref_free_edge(cache, edge);
429
430                         /* Child node is also orphan, queue for cleanup */
431                         if (list_empty(&lower->upper))
432                                 list_add(&lower->list, useless_node);
433                 }
434                 /* Mark this block processed for relocation */
435                 mark_block_processed(rc, cur);
436
437                 /*
438                  * Backref nodes for tree leaves are deleted from the cache.
439                  * Backref nodes for upper level tree blocks are left in the
440                  * cache to avoid unnecessary backref lookup.
441                  */
442                 if (cur->level > 0) {
443                         list_add(&cur->list, &cache->detached);
444                         cur->detached = 1;
445                 } else {
446                         rb_erase(&cur->rb_node, &cache->rb_root);
447                         btrfs_backref_free_node(cache, cur);
448                 }
449         }
450         return ret;
451 }
452
453 /*
454  * Build backref tree for a given tree block. Root of the backref tree
455  * corresponds the tree block, leaves of the backref tree correspond roots of
456  * b-trees that reference the tree block.
457  *
458  * The basic idea of this function is check backrefs of a given block to find
459  * upper level blocks that reference the block, and then check backrefs of
460  * these upper level blocks recursively. The recursion stops when tree root is
461  * reached or backrefs for the block is cached.
462  *
463  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
464  * all upper level blocks that directly/indirectly reference the block are also
465  * cached.
466  */
467 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
468                         struct reloc_control *rc, struct btrfs_key *node_key,
469                         int level, u64 bytenr)
470 {
471         struct btrfs_backref_iter *iter;
472         struct btrfs_backref_cache *cache = &rc->backref_cache;
473         /* For searching parent of TREE_BLOCK_REF */
474         struct btrfs_path *path;
475         struct btrfs_backref_node *cur;
476         struct btrfs_backref_node *node = NULL;
477         struct btrfs_backref_edge *edge;
478         int ret;
479         int err = 0;
480
481         iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
482         if (!iter)
483                 return ERR_PTR(-ENOMEM);
484         path = btrfs_alloc_path();
485         if (!path) {
486                 err = -ENOMEM;
487                 goto out;
488         }
489
490         node = btrfs_backref_alloc_node(cache, bytenr, level);
491         if (!node) {
492                 err = -ENOMEM;
493                 goto out;
494         }
495
496         node->lowest = 1;
497         cur = node;
498
499         /* Breadth-first search to build backref cache */
500         do {
501                 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
502                                                   cur);
503                 if (ret < 0) {
504                         err = ret;
505                         goto out;
506                 }
507                 edge = list_first_entry_or_null(&cache->pending_edge,
508                                 struct btrfs_backref_edge, list[UPPER]);
509                 /*
510                  * The pending list isn't empty, take the first block to
511                  * process
512                  */
513                 if (edge) {
514                         list_del_init(&edge->list[UPPER]);
515                         cur = edge->node[UPPER];
516                 }
517         } while (edge);
518
519         /* Finish the upper linkage of newly added edges/nodes */
520         ret = btrfs_backref_finish_upper_links(cache, node);
521         if (ret < 0) {
522                 err = ret;
523                 goto out;
524         }
525
526         if (handle_useless_nodes(rc, node))
527                 node = NULL;
528 out:
529         btrfs_backref_iter_free(iter);
530         btrfs_free_path(path);
531         if (err) {
532                 btrfs_backref_error_cleanup(cache, node);
533                 return ERR_PTR(err);
534         }
535         ASSERT(!node || !node->detached);
536         ASSERT(list_empty(&cache->useless_node) &&
537                list_empty(&cache->pending_edge));
538         return node;
539 }
540
541 /*
542  * helper to add backref node for the newly created snapshot.
543  * the backref node is created by cloning backref node that
544  * corresponds to root of source tree
545  */
546 static int clone_backref_node(struct btrfs_trans_handle *trans,
547                               struct reloc_control *rc,
548                               struct btrfs_root *src,
549                               struct btrfs_root *dest)
550 {
551         struct btrfs_root *reloc_root = src->reloc_root;
552         struct btrfs_backref_cache *cache = &rc->backref_cache;
553         struct btrfs_backref_node *node = NULL;
554         struct btrfs_backref_node *new_node;
555         struct btrfs_backref_edge *edge;
556         struct btrfs_backref_edge *new_edge;
557         struct rb_node *rb_node;
558
559         if (cache->last_trans > 0)
560                 update_backref_cache(trans, cache);
561
562         rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
563         if (rb_node) {
564                 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
565                 if (node->detached)
566                         node = NULL;
567                 else
568                         BUG_ON(node->new_bytenr != reloc_root->node->start);
569         }
570
571         if (!node) {
572                 rb_node = rb_simple_search(&cache->rb_root,
573                                            reloc_root->commit_root->start);
574                 if (rb_node) {
575                         node = rb_entry(rb_node, struct btrfs_backref_node,
576                                         rb_node);
577                         BUG_ON(node->detached);
578                 }
579         }
580
581         if (!node)
582                 return 0;
583
584         new_node = btrfs_backref_alloc_node(cache, dest->node->start,
585                                             node->level);
586         if (!new_node)
587                 return -ENOMEM;
588
589         new_node->lowest = node->lowest;
590         new_node->checked = 1;
591         new_node->root = btrfs_grab_root(dest);
592         ASSERT(new_node->root);
593
594         if (!node->lowest) {
595                 list_for_each_entry(edge, &node->lower, list[UPPER]) {
596                         new_edge = btrfs_backref_alloc_edge(cache);
597                         if (!new_edge)
598                                 goto fail;
599
600                         btrfs_backref_link_edge(new_edge, edge->node[LOWER],
601                                                 new_node, LINK_UPPER);
602                 }
603         } else {
604                 list_add_tail(&new_node->lower, &cache->leaves);
605         }
606
607         rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
608                                    &new_node->rb_node);
609         if (rb_node)
610                 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
611
612         if (!new_node->lowest) {
613                 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
614                         list_add_tail(&new_edge->list[LOWER],
615                                       &new_edge->node[LOWER]->upper);
616                 }
617         }
618         return 0;
619 fail:
620         while (!list_empty(&new_node->lower)) {
621                 new_edge = list_entry(new_node->lower.next,
622                                       struct btrfs_backref_edge, list[UPPER]);
623                 list_del(&new_edge->list[UPPER]);
624                 btrfs_backref_free_edge(cache, new_edge);
625         }
626         btrfs_backref_free_node(cache, new_node);
627         return -ENOMEM;
628 }
629
630 /*
631  * helper to add 'address of tree root -> reloc tree' mapping
632  */
633 static int __must_check __add_reloc_root(struct btrfs_root *root)
634 {
635         struct btrfs_fs_info *fs_info = root->fs_info;
636         struct rb_node *rb_node;
637         struct mapping_node *node;
638         struct reloc_control *rc = fs_info->reloc_ctl;
639
640         node = kmalloc(sizeof(*node), GFP_NOFS);
641         if (!node)
642                 return -ENOMEM;
643
644         node->bytenr = root->commit_root->start;
645         node->data = root;
646
647         spin_lock(&rc->reloc_root_tree.lock);
648         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
649                                    node->bytenr, &node->rb_node);
650         spin_unlock(&rc->reloc_root_tree.lock);
651         if (rb_node) {
652                 btrfs_err(fs_info,
653                             "Duplicate root found for start=%llu while inserting into relocation tree",
654                             node->bytenr);
655                 return -EEXIST;
656         }
657
658         list_add_tail(&root->root_list, &rc->reloc_roots);
659         return 0;
660 }
661
662 /*
663  * helper to delete the 'address of tree root -> reloc tree'
664  * mapping
665  */
666 static void __del_reloc_root(struct btrfs_root *root)
667 {
668         struct btrfs_fs_info *fs_info = root->fs_info;
669         struct rb_node *rb_node;
670         struct mapping_node *node = NULL;
671         struct reloc_control *rc = fs_info->reloc_ctl;
672         bool put_ref = false;
673
674         if (rc && root->node) {
675                 spin_lock(&rc->reloc_root_tree.lock);
676                 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
677                                            root->commit_root->start);
678                 if (rb_node) {
679                         node = rb_entry(rb_node, struct mapping_node, rb_node);
680                         rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
681                         RB_CLEAR_NODE(&node->rb_node);
682                 }
683                 spin_unlock(&rc->reloc_root_tree.lock);
684                 ASSERT(!node || (struct btrfs_root *)node->data == root);
685         }
686
687         /*
688          * We only put the reloc root here if it's on the list.  There's a lot
689          * of places where the pattern is to splice the rc->reloc_roots, process
690          * the reloc roots, and then add the reloc root back onto
691          * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
692          * list we don't want the reference being dropped, because the guy
693          * messing with the list is in charge of the reference.
694          */
695         spin_lock(&fs_info->trans_lock);
696         if (!list_empty(&root->root_list)) {
697                 put_ref = true;
698                 list_del_init(&root->root_list);
699         }
700         spin_unlock(&fs_info->trans_lock);
701         if (put_ref)
702                 btrfs_put_root(root);
703         kfree(node);
704 }
705
706 /*
707  * helper to update the 'address of tree root -> reloc tree'
708  * mapping
709  */
710 static int __update_reloc_root(struct btrfs_root *root)
711 {
712         struct btrfs_fs_info *fs_info = root->fs_info;
713         struct rb_node *rb_node;
714         struct mapping_node *node = NULL;
715         struct reloc_control *rc = fs_info->reloc_ctl;
716
717         spin_lock(&rc->reloc_root_tree.lock);
718         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
719                                    root->commit_root->start);
720         if (rb_node) {
721                 node = rb_entry(rb_node, struct mapping_node, rb_node);
722                 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
723         }
724         spin_unlock(&rc->reloc_root_tree.lock);
725
726         if (!node)
727                 return 0;
728         BUG_ON((struct btrfs_root *)node->data != root);
729
730         spin_lock(&rc->reloc_root_tree.lock);
731         node->bytenr = root->node->start;
732         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
733                                    node->bytenr, &node->rb_node);
734         spin_unlock(&rc->reloc_root_tree.lock);
735         if (rb_node)
736                 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
737         return 0;
738 }
739
740 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
741                                         struct btrfs_root *root, u64 objectid)
742 {
743         struct btrfs_fs_info *fs_info = root->fs_info;
744         struct btrfs_root *reloc_root;
745         struct extent_buffer *eb;
746         struct btrfs_root_item *root_item;
747         struct btrfs_key root_key;
748         int ret = 0;
749         bool must_abort = false;
750
751         root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
752         if (!root_item)
753                 return ERR_PTR(-ENOMEM);
754
755         root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
756         root_key.type = BTRFS_ROOT_ITEM_KEY;
757         root_key.offset = objectid;
758
759         if (root->root_key.objectid == objectid) {
760                 u64 commit_root_gen;
761
762                 /* called by btrfs_init_reloc_root */
763                 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
764                                       BTRFS_TREE_RELOC_OBJECTID);
765                 if (ret)
766                         goto fail;
767
768                 /*
769                  * Set the last_snapshot field to the generation of the commit
770                  * root - like this ctree.c:btrfs_block_can_be_shared() behaves
771                  * correctly (returns true) when the relocation root is created
772                  * either inside the critical section of a transaction commit
773                  * (through transaction.c:qgroup_account_snapshot()) and when
774                  * it's created before the transaction commit is started.
775                  */
776                 commit_root_gen = btrfs_header_generation(root->commit_root);
777                 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
778         } else {
779                 /*
780                  * called by btrfs_reloc_post_snapshot_hook.
781                  * the source tree is a reloc tree, all tree blocks
782                  * modified after it was created have RELOC flag
783                  * set in their headers. so it's OK to not update
784                  * the 'last_snapshot'.
785                  */
786                 ret = btrfs_copy_root(trans, root, root->node, &eb,
787                                       BTRFS_TREE_RELOC_OBJECTID);
788                 if (ret)
789                         goto fail;
790         }
791
792         /*
793          * We have changed references at this point, we must abort the
794          * transaction if anything fails.
795          */
796         must_abort = true;
797
798         memcpy(root_item, &root->root_item, sizeof(*root_item));
799         btrfs_set_root_bytenr(root_item, eb->start);
800         btrfs_set_root_level(root_item, btrfs_header_level(eb));
801         btrfs_set_root_generation(root_item, trans->transid);
802
803         if (root->root_key.objectid == objectid) {
804                 btrfs_set_root_refs(root_item, 0);
805                 memset(&root_item->drop_progress, 0,
806                        sizeof(struct btrfs_disk_key));
807                 btrfs_set_root_drop_level(root_item, 0);
808         }
809
810         btrfs_tree_unlock(eb);
811         free_extent_buffer(eb);
812
813         ret = btrfs_insert_root(trans, fs_info->tree_root,
814                                 &root_key, root_item);
815         if (ret)
816                 goto fail;
817
818         kfree(root_item);
819
820         reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
821         if (IS_ERR(reloc_root)) {
822                 ret = PTR_ERR(reloc_root);
823                 goto abort;
824         }
825         set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
826         reloc_root->last_trans = trans->transid;
827         return reloc_root;
828 fail:
829         kfree(root_item);
830 abort:
831         if (must_abort)
832                 btrfs_abort_transaction(trans, ret);
833         return ERR_PTR(ret);
834 }
835
836 /*
837  * create reloc tree for a given fs tree. reloc tree is just a
838  * snapshot of the fs tree with special root objectid.
839  *
840  * The reloc_root comes out of here with two references, one for
841  * root->reloc_root, and another for being on the rc->reloc_roots list.
842  */
843 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
844                           struct btrfs_root *root)
845 {
846         struct btrfs_fs_info *fs_info = root->fs_info;
847         struct btrfs_root *reloc_root;
848         struct reloc_control *rc = fs_info->reloc_ctl;
849         struct btrfs_block_rsv *rsv;
850         int clear_rsv = 0;
851         int ret;
852
853         if (!rc)
854                 return 0;
855
856         /*
857          * The subvolume has reloc tree but the swap is finished, no need to
858          * create/update the dead reloc tree
859          */
860         if (reloc_root_is_dead(root))
861                 return 0;
862
863         /*
864          * This is subtle but important.  We do not do
865          * record_root_in_transaction for reloc roots, instead we record their
866          * corresponding fs root, and then here we update the last trans for the
867          * reloc root.  This means that we have to do this for the entire life
868          * of the reloc root, regardless of which stage of the relocation we are
869          * in.
870          */
871         if (root->reloc_root) {
872                 reloc_root = root->reloc_root;
873                 reloc_root->last_trans = trans->transid;
874                 return 0;
875         }
876
877         /*
878          * We are merging reloc roots, we do not need new reloc trees.  Also
879          * reloc trees never need their own reloc tree.
880          */
881         if (!rc->create_reloc_tree ||
882             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
883                 return 0;
884
885         if (!trans->reloc_reserved) {
886                 rsv = trans->block_rsv;
887                 trans->block_rsv = rc->block_rsv;
888                 clear_rsv = 1;
889         }
890         reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
891         if (clear_rsv)
892                 trans->block_rsv = rsv;
893         if (IS_ERR(reloc_root))
894                 return PTR_ERR(reloc_root);
895
896         ret = __add_reloc_root(reloc_root);
897         ASSERT(ret != -EEXIST);
898         if (ret) {
899                 /* Pairs with create_reloc_root */
900                 btrfs_put_root(reloc_root);
901                 return ret;
902         }
903         root->reloc_root = btrfs_grab_root(reloc_root);
904         return 0;
905 }
906
907 /*
908  * update root item of reloc tree
909  */
910 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
911                             struct btrfs_root *root)
912 {
913         struct btrfs_fs_info *fs_info = root->fs_info;
914         struct btrfs_root *reloc_root;
915         struct btrfs_root_item *root_item;
916         int ret;
917
918         if (!have_reloc_root(root))
919                 return 0;
920
921         reloc_root = root->reloc_root;
922         root_item = &reloc_root->root_item;
923
924         /*
925          * We are probably ok here, but __del_reloc_root() will drop its ref of
926          * the root.  We have the ref for root->reloc_root, but just in case
927          * hold it while we update the reloc root.
928          */
929         btrfs_grab_root(reloc_root);
930
931         /* root->reloc_root will stay until current relocation finished */
932         if (fs_info->reloc_ctl->merge_reloc_tree &&
933             btrfs_root_refs(root_item) == 0) {
934                 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
935                 /*
936                  * Mark the tree as dead before we change reloc_root so
937                  * have_reloc_root will not touch it from now on.
938                  */
939                 smp_wmb();
940                 __del_reloc_root(reloc_root);
941         }
942
943         if (reloc_root->commit_root != reloc_root->node) {
944                 __update_reloc_root(reloc_root);
945                 btrfs_set_root_node(root_item, reloc_root->node);
946                 free_extent_buffer(reloc_root->commit_root);
947                 reloc_root->commit_root = btrfs_root_node(reloc_root);
948         }
949
950         ret = btrfs_update_root(trans, fs_info->tree_root,
951                                 &reloc_root->root_key, root_item);
952         btrfs_put_root(reloc_root);
953         return ret;
954 }
955
956 /*
957  * helper to find first cached inode with inode number >= objectid
958  * in a subvolume
959  */
960 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
961 {
962         struct rb_node *node;
963         struct rb_node *prev;
964         struct btrfs_inode *entry;
965         struct inode *inode;
966
967         spin_lock(&root->inode_lock);
968 again:
969         node = root->inode_tree.rb_node;
970         prev = NULL;
971         while (node) {
972                 prev = node;
973                 entry = rb_entry(node, struct btrfs_inode, rb_node);
974
975                 if (objectid < btrfs_ino(entry))
976                         node = node->rb_left;
977                 else if (objectid > btrfs_ino(entry))
978                         node = node->rb_right;
979                 else
980                         break;
981         }
982         if (!node) {
983                 while (prev) {
984                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
985                         if (objectid <= btrfs_ino(entry)) {
986                                 node = prev;
987                                 break;
988                         }
989                         prev = rb_next(prev);
990                 }
991         }
992         while (node) {
993                 entry = rb_entry(node, struct btrfs_inode, rb_node);
994                 inode = igrab(&entry->vfs_inode);
995                 if (inode) {
996                         spin_unlock(&root->inode_lock);
997                         return inode;
998                 }
999
1000                 objectid = btrfs_ino(entry) + 1;
1001                 if (cond_resched_lock(&root->inode_lock))
1002                         goto again;
1003
1004                 node = rb_next(node);
1005         }
1006         spin_unlock(&root->inode_lock);
1007         return NULL;
1008 }
1009
1010 /*
1011  * get new location of data
1012  */
1013 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1014                             u64 bytenr, u64 num_bytes)
1015 {
1016         struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1017         struct btrfs_path *path;
1018         struct btrfs_file_extent_item *fi;
1019         struct extent_buffer *leaf;
1020         int ret;
1021
1022         path = btrfs_alloc_path();
1023         if (!path)
1024                 return -ENOMEM;
1025
1026         bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1027         ret = btrfs_lookup_file_extent(NULL, root, path,
1028                         btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1029         if (ret < 0)
1030                 goto out;
1031         if (ret > 0) {
1032                 ret = -ENOENT;
1033                 goto out;
1034         }
1035
1036         leaf = path->nodes[0];
1037         fi = btrfs_item_ptr(leaf, path->slots[0],
1038                             struct btrfs_file_extent_item);
1039
1040         BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1041                btrfs_file_extent_compression(leaf, fi) ||
1042                btrfs_file_extent_encryption(leaf, fi) ||
1043                btrfs_file_extent_other_encoding(leaf, fi));
1044
1045         if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1046                 ret = -EINVAL;
1047                 goto out;
1048         }
1049
1050         *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1051         ret = 0;
1052 out:
1053         btrfs_free_path(path);
1054         return ret;
1055 }
1056
1057 /*
1058  * update file extent items in the tree leaf to point to
1059  * the new locations.
1060  */
1061 static noinline_for_stack
1062 int replace_file_extents(struct btrfs_trans_handle *trans,
1063                          struct reloc_control *rc,
1064                          struct btrfs_root *root,
1065                          struct extent_buffer *leaf)
1066 {
1067         struct btrfs_fs_info *fs_info = root->fs_info;
1068         struct btrfs_key key;
1069         struct btrfs_file_extent_item *fi;
1070         struct inode *inode = NULL;
1071         u64 parent;
1072         u64 bytenr;
1073         u64 new_bytenr = 0;
1074         u64 num_bytes;
1075         u64 end;
1076         u32 nritems;
1077         u32 i;
1078         int ret = 0;
1079         int first = 1;
1080         int dirty = 0;
1081
1082         if (rc->stage != UPDATE_DATA_PTRS)
1083                 return 0;
1084
1085         /* reloc trees always use full backref */
1086         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1087                 parent = leaf->start;
1088         else
1089                 parent = 0;
1090
1091         nritems = btrfs_header_nritems(leaf);
1092         for (i = 0; i < nritems; i++) {
1093                 struct btrfs_ref ref = { 0 };
1094
1095                 cond_resched();
1096                 btrfs_item_key_to_cpu(leaf, &key, i);
1097                 if (key.type != BTRFS_EXTENT_DATA_KEY)
1098                         continue;
1099                 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1100                 if (btrfs_file_extent_type(leaf, fi) ==
1101                     BTRFS_FILE_EXTENT_INLINE)
1102                         continue;
1103                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1104                 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1105                 if (bytenr == 0)
1106                         continue;
1107                 if (!in_range(bytenr, rc->block_group->start,
1108                               rc->block_group->length))
1109                         continue;
1110
1111                 /*
1112                  * if we are modifying block in fs tree, wait for read_folio
1113                  * to complete and drop the extent cache
1114                  */
1115                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1116                         if (first) {
1117                                 inode = find_next_inode(root, key.objectid);
1118                                 first = 0;
1119                         } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1120                                 btrfs_add_delayed_iput(inode);
1121                                 inode = find_next_inode(root, key.objectid);
1122                         }
1123                         if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1124                                 struct extent_state *cached_state = NULL;
1125
1126                                 end = key.offset +
1127                                       btrfs_file_extent_num_bytes(leaf, fi);
1128                                 WARN_ON(!IS_ALIGNED(key.offset,
1129                                                     fs_info->sectorsize));
1130                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1131                                 end--;
1132                                 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1133                                                       key.offset, end,
1134                                                       &cached_state);
1135                                 if (!ret)
1136                                         continue;
1137
1138                                 btrfs_drop_extent_map_range(BTRFS_I(inode),
1139                                                             key.offset, end, true);
1140                                 unlock_extent(&BTRFS_I(inode)->io_tree,
1141                                               key.offset, end, &cached_state);
1142                         }
1143                 }
1144
1145                 ret = get_new_location(rc->data_inode, &new_bytenr,
1146                                        bytenr, num_bytes);
1147                 if (ret) {
1148                         /*
1149                          * Don't have to abort since we've not changed anything
1150                          * in the file extent yet.
1151                          */
1152                         break;
1153                 }
1154
1155                 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1156                 dirty = 1;
1157
1158                 key.offset -= btrfs_file_extent_offset(leaf, fi);
1159                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1160                                        num_bytes, parent);
1161                 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1162                                     key.objectid, key.offset,
1163                                     root->root_key.objectid, false);
1164                 ret = btrfs_inc_extent_ref(trans, &ref);
1165                 if (ret) {
1166                         btrfs_abort_transaction(trans, ret);
1167                         break;
1168                 }
1169
1170                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1171                                        num_bytes, parent);
1172                 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1173                                     key.objectid, key.offset,
1174                                     root->root_key.objectid, false);
1175                 ret = btrfs_free_extent(trans, &ref);
1176                 if (ret) {
1177                         btrfs_abort_transaction(trans, ret);
1178                         break;
1179                 }
1180         }
1181         if (dirty)
1182                 btrfs_mark_buffer_dirty(leaf);
1183         if (inode)
1184                 btrfs_add_delayed_iput(inode);
1185         return ret;
1186 }
1187
1188 static noinline_for_stack
1189 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1190                      struct btrfs_path *path, int level)
1191 {
1192         struct btrfs_disk_key key1;
1193         struct btrfs_disk_key key2;
1194         btrfs_node_key(eb, &key1, slot);
1195         btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1196         return memcmp(&key1, &key2, sizeof(key1));
1197 }
1198
1199 /*
1200  * try to replace tree blocks in fs tree with the new blocks
1201  * in reloc tree. tree blocks haven't been modified since the
1202  * reloc tree was create can be replaced.
1203  *
1204  * if a block was replaced, level of the block + 1 is returned.
1205  * if no block got replaced, 0 is returned. if there are other
1206  * errors, a negative error number is returned.
1207  */
1208 static noinline_for_stack
1209 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1210                  struct btrfs_root *dest, struct btrfs_root *src,
1211                  struct btrfs_path *path, struct btrfs_key *next_key,
1212                  int lowest_level, int max_level)
1213 {
1214         struct btrfs_fs_info *fs_info = dest->fs_info;
1215         struct extent_buffer *eb;
1216         struct extent_buffer *parent;
1217         struct btrfs_ref ref = { 0 };
1218         struct btrfs_key key;
1219         u64 old_bytenr;
1220         u64 new_bytenr;
1221         u64 old_ptr_gen;
1222         u64 new_ptr_gen;
1223         u64 last_snapshot;
1224         u32 blocksize;
1225         int cow = 0;
1226         int level;
1227         int ret;
1228         int slot;
1229
1230         ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1231         ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1232
1233         last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1234 again:
1235         slot = path->slots[lowest_level];
1236         btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1237
1238         eb = btrfs_lock_root_node(dest);
1239         level = btrfs_header_level(eb);
1240
1241         if (level < lowest_level) {
1242                 btrfs_tree_unlock(eb);
1243                 free_extent_buffer(eb);
1244                 return 0;
1245         }
1246
1247         if (cow) {
1248                 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1249                                       BTRFS_NESTING_COW);
1250                 if (ret) {
1251                         btrfs_tree_unlock(eb);
1252                         free_extent_buffer(eb);
1253                         return ret;
1254                 }
1255         }
1256
1257         if (next_key) {
1258                 next_key->objectid = (u64)-1;
1259                 next_key->type = (u8)-1;
1260                 next_key->offset = (u64)-1;
1261         }
1262
1263         parent = eb;
1264         while (1) {
1265                 level = btrfs_header_level(parent);
1266                 ASSERT(level >= lowest_level);
1267
1268                 ret = btrfs_bin_search(parent, &key, &slot);
1269                 if (ret < 0)
1270                         break;
1271                 if (ret && slot > 0)
1272                         slot--;
1273
1274                 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1275                         btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1276
1277                 old_bytenr = btrfs_node_blockptr(parent, slot);
1278                 blocksize = fs_info->nodesize;
1279                 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1280
1281                 if (level <= max_level) {
1282                         eb = path->nodes[level];
1283                         new_bytenr = btrfs_node_blockptr(eb,
1284                                                         path->slots[level]);
1285                         new_ptr_gen = btrfs_node_ptr_generation(eb,
1286                                                         path->slots[level]);
1287                 } else {
1288                         new_bytenr = 0;
1289                         new_ptr_gen = 0;
1290                 }
1291
1292                 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1293                         ret = level;
1294                         break;
1295                 }
1296
1297                 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1298                     memcmp_node_keys(parent, slot, path, level)) {
1299                         if (level <= lowest_level) {
1300                                 ret = 0;
1301                                 break;
1302                         }
1303
1304                         eb = btrfs_read_node_slot(parent, slot);
1305                         if (IS_ERR(eb)) {
1306                                 ret = PTR_ERR(eb);
1307                                 break;
1308                         }
1309                         btrfs_tree_lock(eb);
1310                         if (cow) {
1311                                 ret = btrfs_cow_block(trans, dest, eb, parent,
1312                                                       slot, &eb,
1313                                                       BTRFS_NESTING_COW);
1314                                 if (ret) {
1315                                         btrfs_tree_unlock(eb);
1316                                         free_extent_buffer(eb);
1317                                         break;
1318                                 }
1319                         }
1320
1321                         btrfs_tree_unlock(parent);
1322                         free_extent_buffer(parent);
1323
1324                         parent = eb;
1325                         continue;
1326                 }
1327
1328                 if (!cow) {
1329                         btrfs_tree_unlock(parent);
1330                         free_extent_buffer(parent);
1331                         cow = 1;
1332                         goto again;
1333                 }
1334
1335                 btrfs_node_key_to_cpu(path->nodes[level], &key,
1336                                       path->slots[level]);
1337                 btrfs_release_path(path);
1338
1339                 path->lowest_level = level;
1340                 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1341                 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1342                 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1343                 path->lowest_level = 0;
1344                 if (ret) {
1345                         if (ret > 0)
1346                                 ret = -ENOENT;
1347                         break;
1348                 }
1349
1350                 /*
1351                  * Info qgroup to trace both subtrees.
1352                  *
1353                  * We must trace both trees.
1354                  * 1) Tree reloc subtree
1355                  *    If not traced, we will leak data numbers
1356                  * 2) Fs subtree
1357                  *    If not traced, we will double count old data
1358                  *
1359                  * We don't scan the subtree right now, but only record
1360                  * the swapped tree blocks.
1361                  * The real subtree rescan is delayed until we have new
1362                  * CoW on the subtree root node before transaction commit.
1363                  */
1364                 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1365                                 rc->block_group, parent, slot,
1366                                 path->nodes[level], path->slots[level],
1367                                 last_snapshot);
1368                 if (ret < 0)
1369                         break;
1370                 /*
1371                  * swap blocks in fs tree and reloc tree.
1372                  */
1373                 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1374                 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1375                 btrfs_mark_buffer_dirty(parent);
1376
1377                 btrfs_set_node_blockptr(path->nodes[level],
1378                                         path->slots[level], old_bytenr);
1379                 btrfs_set_node_ptr_generation(path->nodes[level],
1380                                               path->slots[level], old_ptr_gen);
1381                 btrfs_mark_buffer_dirty(path->nodes[level]);
1382
1383                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1384                                        blocksize, path->nodes[level]->start);
1385                 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1386                                     0, true);
1387                 ret = btrfs_inc_extent_ref(trans, &ref);
1388                 if (ret) {
1389                         btrfs_abort_transaction(trans, ret);
1390                         break;
1391                 }
1392                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1393                                        blocksize, 0);
1394                 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1395                                     true);
1396                 ret = btrfs_inc_extent_ref(trans, &ref);
1397                 if (ret) {
1398                         btrfs_abort_transaction(trans, ret);
1399                         break;
1400                 }
1401
1402                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1403                                        blocksize, path->nodes[level]->start);
1404                 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1405                                     0, true);
1406                 ret = btrfs_free_extent(trans, &ref);
1407                 if (ret) {
1408                         btrfs_abort_transaction(trans, ret);
1409                         break;
1410                 }
1411
1412                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1413                                        blocksize, 0);
1414                 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1415                                     0, true);
1416                 ret = btrfs_free_extent(trans, &ref);
1417                 if (ret) {
1418                         btrfs_abort_transaction(trans, ret);
1419                         break;
1420                 }
1421
1422                 btrfs_unlock_up_safe(path, 0);
1423
1424                 ret = level;
1425                 break;
1426         }
1427         btrfs_tree_unlock(parent);
1428         free_extent_buffer(parent);
1429         return ret;
1430 }
1431
1432 /*
1433  * helper to find next relocated block in reloc tree
1434  */
1435 static noinline_for_stack
1436 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1437                        int *level)
1438 {
1439         struct extent_buffer *eb;
1440         int i;
1441         u64 last_snapshot;
1442         u32 nritems;
1443
1444         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1445
1446         for (i = 0; i < *level; i++) {
1447                 free_extent_buffer(path->nodes[i]);
1448                 path->nodes[i] = NULL;
1449         }
1450
1451         for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1452                 eb = path->nodes[i];
1453                 nritems = btrfs_header_nritems(eb);
1454                 while (path->slots[i] + 1 < nritems) {
1455                         path->slots[i]++;
1456                         if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1457                             last_snapshot)
1458                                 continue;
1459
1460                         *level = i;
1461                         return 0;
1462                 }
1463                 free_extent_buffer(path->nodes[i]);
1464                 path->nodes[i] = NULL;
1465         }
1466         return 1;
1467 }
1468
1469 /*
1470  * walk down reloc tree to find relocated block of lowest level
1471  */
1472 static noinline_for_stack
1473 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1474                          int *level)
1475 {
1476         struct extent_buffer *eb = NULL;
1477         int i;
1478         u64 ptr_gen = 0;
1479         u64 last_snapshot;
1480         u32 nritems;
1481
1482         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1483
1484         for (i = *level; i > 0; i--) {
1485                 eb = path->nodes[i];
1486                 nritems = btrfs_header_nritems(eb);
1487                 while (path->slots[i] < nritems) {
1488                         ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1489                         if (ptr_gen > last_snapshot)
1490                                 break;
1491                         path->slots[i]++;
1492                 }
1493                 if (path->slots[i] >= nritems) {
1494                         if (i == *level)
1495                                 break;
1496                         *level = i + 1;
1497                         return 0;
1498                 }
1499                 if (i == 1) {
1500                         *level = i;
1501                         return 0;
1502                 }
1503
1504                 eb = btrfs_read_node_slot(eb, path->slots[i]);
1505                 if (IS_ERR(eb))
1506                         return PTR_ERR(eb);
1507                 BUG_ON(btrfs_header_level(eb) != i - 1);
1508                 path->nodes[i - 1] = eb;
1509                 path->slots[i - 1] = 0;
1510         }
1511         return 1;
1512 }
1513
1514 /*
1515  * invalidate extent cache for file extents whose key in range of
1516  * [min_key, max_key)
1517  */
1518 static int invalidate_extent_cache(struct btrfs_root *root,
1519                                    struct btrfs_key *min_key,
1520                                    struct btrfs_key *max_key)
1521 {
1522         struct btrfs_fs_info *fs_info = root->fs_info;
1523         struct inode *inode = NULL;
1524         u64 objectid;
1525         u64 start, end;
1526         u64 ino;
1527
1528         objectid = min_key->objectid;
1529         while (1) {
1530                 struct extent_state *cached_state = NULL;
1531
1532                 cond_resched();
1533                 iput(inode);
1534
1535                 if (objectid > max_key->objectid)
1536                         break;
1537
1538                 inode = find_next_inode(root, objectid);
1539                 if (!inode)
1540                         break;
1541                 ino = btrfs_ino(BTRFS_I(inode));
1542
1543                 if (ino > max_key->objectid) {
1544                         iput(inode);
1545                         break;
1546                 }
1547
1548                 objectid = ino + 1;
1549                 if (!S_ISREG(inode->i_mode))
1550                         continue;
1551
1552                 if (unlikely(min_key->objectid == ino)) {
1553                         if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1554                                 continue;
1555                         if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1556                                 start = 0;
1557                         else {
1558                                 start = min_key->offset;
1559                                 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1560                         }
1561                 } else {
1562                         start = 0;
1563                 }
1564
1565                 if (unlikely(max_key->objectid == ino)) {
1566                         if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1567                                 continue;
1568                         if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1569                                 end = (u64)-1;
1570                         } else {
1571                                 if (max_key->offset == 0)
1572                                         continue;
1573                                 end = max_key->offset;
1574                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1575                                 end--;
1576                         }
1577                 } else {
1578                         end = (u64)-1;
1579                 }
1580
1581                 /* the lock_extent waits for read_folio to complete */
1582                 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1583                 btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1584                 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1585         }
1586         return 0;
1587 }
1588
1589 static int find_next_key(struct btrfs_path *path, int level,
1590                          struct btrfs_key *key)
1591
1592 {
1593         while (level < BTRFS_MAX_LEVEL) {
1594                 if (!path->nodes[level])
1595                         break;
1596                 if (path->slots[level] + 1 <
1597                     btrfs_header_nritems(path->nodes[level])) {
1598                         btrfs_node_key_to_cpu(path->nodes[level], key,
1599                                               path->slots[level] + 1);
1600                         return 0;
1601                 }
1602                 level++;
1603         }
1604         return 1;
1605 }
1606
1607 /*
1608  * Insert current subvolume into reloc_control::dirty_subvol_roots
1609  */
1610 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1611                                struct reloc_control *rc,
1612                                struct btrfs_root *root)
1613 {
1614         struct btrfs_root *reloc_root = root->reloc_root;
1615         struct btrfs_root_item *reloc_root_item;
1616         int ret;
1617
1618         /* @root must be a subvolume tree root with a valid reloc tree */
1619         ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1620         ASSERT(reloc_root);
1621
1622         reloc_root_item = &reloc_root->root_item;
1623         memset(&reloc_root_item->drop_progress, 0,
1624                 sizeof(reloc_root_item->drop_progress));
1625         btrfs_set_root_drop_level(reloc_root_item, 0);
1626         btrfs_set_root_refs(reloc_root_item, 0);
1627         ret = btrfs_update_reloc_root(trans, root);
1628         if (ret)
1629                 return ret;
1630
1631         if (list_empty(&root->reloc_dirty_list)) {
1632                 btrfs_grab_root(root);
1633                 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1634         }
1635
1636         return 0;
1637 }
1638
1639 static int clean_dirty_subvols(struct reloc_control *rc)
1640 {
1641         struct btrfs_root *root;
1642         struct btrfs_root *next;
1643         int ret = 0;
1644         int ret2;
1645
1646         list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1647                                  reloc_dirty_list) {
1648                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1649                         /* Merged subvolume, cleanup its reloc root */
1650                         struct btrfs_root *reloc_root = root->reloc_root;
1651
1652                         list_del_init(&root->reloc_dirty_list);
1653                         root->reloc_root = NULL;
1654                         /*
1655                          * Need barrier to ensure clear_bit() only happens after
1656                          * root->reloc_root = NULL. Pairs with have_reloc_root.
1657                          */
1658                         smp_wmb();
1659                         clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1660                         if (reloc_root) {
1661                                 /*
1662                                  * btrfs_drop_snapshot drops our ref we hold for
1663                                  * ->reloc_root.  If it fails however we must
1664                                  * drop the ref ourselves.
1665                                  */
1666                                 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1667                                 if (ret2 < 0) {
1668                                         btrfs_put_root(reloc_root);
1669                                         if (!ret)
1670                                                 ret = ret2;
1671                                 }
1672                         }
1673                         btrfs_put_root(root);
1674                 } else {
1675                         /* Orphan reloc tree, just clean it up */
1676                         ret2 = btrfs_drop_snapshot(root, 0, 1);
1677                         if (ret2 < 0) {
1678                                 btrfs_put_root(root);
1679                                 if (!ret)
1680                                         ret = ret2;
1681                         }
1682                 }
1683         }
1684         return ret;
1685 }
1686
1687 /*
1688  * merge the relocated tree blocks in reloc tree with corresponding
1689  * fs tree.
1690  */
1691 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1692                                                struct btrfs_root *root)
1693 {
1694         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1695         struct btrfs_key key;
1696         struct btrfs_key next_key;
1697         struct btrfs_trans_handle *trans = NULL;
1698         struct btrfs_root *reloc_root;
1699         struct btrfs_root_item *root_item;
1700         struct btrfs_path *path;
1701         struct extent_buffer *leaf;
1702         int reserve_level;
1703         int level;
1704         int max_level;
1705         int replaced = 0;
1706         int ret = 0;
1707         u32 min_reserved;
1708
1709         path = btrfs_alloc_path();
1710         if (!path)
1711                 return -ENOMEM;
1712         path->reada = READA_FORWARD;
1713
1714         reloc_root = root->reloc_root;
1715         root_item = &reloc_root->root_item;
1716
1717         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1718                 level = btrfs_root_level(root_item);
1719                 atomic_inc(&reloc_root->node->refs);
1720                 path->nodes[level] = reloc_root->node;
1721                 path->slots[level] = 0;
1722         } else {
1723                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1724
1725                 level = btrfs_root_drop_level(root_item);
1726                 BUG_ON(level == 0);
1727                 path->lowest_level = level;
1728                 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1729                 path->lowest_level = 0;
1730                 if (ret < 0) {
1731                         btrfs_free_path(path);
1732                         return ret;
1733                 }
1734
1735                 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1736                                       path->slots[level]);
1737                 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1738
1739                 btrfs_unlock_up_safe(path, 0);
1740         }
1741
1742         /*
1743          * In merge_reloc_root(), we modify the upper level pointer to swap the
1744          * tree blocks between reloc tree and subvolume tree.  Thus for tree
1745          * block COW, we COW at most from level 1 to root level for each tree.
1746          *
1747          * Thus the needed metadata size is at most root_level * nodesize,
1748          * and * 2 since we have two trees to COW.
1749          */
1750         reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1751         min_reserved = fs_info->nodesize * reserve_level * 2;
1752         memset(&next_key, 0, sizeof(next_key));
1753
1754         while (1) {
1755                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1756                                              min_reserved,
1757                                              BTRFS_RESERVE_FLUSH_LIMIT);
1758                 if (ret)
1759                         goto out;
1760                 trans = btrfs_start_transaction(root, 0);
1761                 if (IS_ERR(trans)) {
1762                         ret = PTR_ERR(trans);
1763                         trans = NULL;
1764                         goto out;
1765                 }
1766
1767                 /*
1768                  * At this point we no longer have a reloc_control, so we can't
1769                  * depend on btrfs_init_reloc_root to update our last_trans.
1770                  *
1771                  * But that's ok, we started the trans handle on our
1772                  * corresponding fs_root, which means it's been added to the
1773                  * dirty list.  At commit time we'll still call
1774                  * btrfs_update_reloc_root() and update our root item
1775                  * appropriately.
1776                  */
1777                 reloc_root->last_trans = trans->transid;
1778                 trans->block_rsv = rc->block_rsv;
1779
1780                 replaced = 0;
1781                 max_level = level;
1782
1783                 ret = walk_down_reloc_tree(reloc_root, path, &level);
1784                 if (ret < 0)
1785                         goto out;
1786                 if (ret > 0)
1787                         break;
1788
1789                 if (!find_next_key(path, level, &key) &&
1790                     btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1791                         ret = 0;
1792                 } else {
1793                         ret = replace_path(trans, rc, root, reloc_root, path,
1794                                            &next_key, level, max_level);
1795                 }
1796                 if (ret < 0)
1797                         goto out;
1798                 if (ret > 0) {
1799                         level = ret;
1800                         btrfs_node_key_to_cpu(path->nodes[level], &key,
1801                                               path->slots[level]);
1802                         replaced = 1;
1803                 }
1804
1805                 ret = walk_up_reloc_tree(reloc_root, path, &level);
1806                 if (ret > 0)
1807                         break;
1808
1809                 BUG_ON(level == 0);
1810                 /*
1811                  * save the merging progress in the drop_progress.
1812                  * this is OK since root refs == 1 in this case.
1813                  */
1814                 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1815                                path->slots[level]);
1816                 btrfs_set_root_drop_level(root_item, level);
1817
1818                 btrfs_end_transaction_throttle(trans);
1819                 trans = NULL;
1820
1821                 btrfs_btree_balance_dirty(fs_info);
1822
1823                 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1824                         invalidate_extent_cache(root, &key, &next_key);
1825         }
1826
1827         /*
1828          * handle the case only one block in the fs tree need to be
1829          * relocated and the block is tree root.
1830          */
1831         leaf = btrfs_lock_root_node(root);
1832         ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1833                               BTRFS_NESTING_COW);
1834         btrfs_tree_unlock(leaf);
1835         free_extent_buffer(leaf);
1836 out:
1837         btrfs_free_path(path);
1838
1839         if (ret == 0) {
1840                 ret = insert_dirty_subvol(trans, rc, root);
1841                 if (ret)
1842                         btrfs_abort_transaction(trans, ret);
1843         }
1844
1845         if (trans)
1846                 btrfs_end_transaction_throttle(trans);
1847
1848         btrfs_btree_balance_dirty(fs_info);
1849
1850         if (replaced && rc->stage == UPDATE_DATA_PTRS)
1851                 invalidate_extent_cache(root, &key, &next_key);
1852
1853         return ret;
1854 }
1855
1856 static noinline_for_stack
1857 int prepare_to_merge(struct reloc_control *rc, int err)
1858 {
1859         struct btrfs_root *root = rc->extent_root;
1860         struct btrfs_fs_info *fs_info = root->fs_info;
1861         struct btrfs_root *reloc_root;
1862         struct btrfs_trans_handle *trans;
1863         LIST_HEAD(reloc_roots);
1864         u64 num_bytes = 0;
1865         int ret;
1866
1867         mutex_lock(&fs_info->reloc_mutex);
1868         rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1869         rc->merging_rsv_size += rc->nodes_relocated * 2;
1870         mutex_unlock(&fs_info->reloc_mutex);
1871
1872 again:
1873         if (!err) {
1874                 num_bytes = rc->merging_rsv_size;
1875                 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1876                                           BTRFS_RESERVE_FLUSH_ALL);
1877                 if (ret)
1878                         err = ret;
1879         }
1880
1881         trans = btrfs_join_transaction(rc->extent_root);
1882         if (IS_ERR(trans)) {
1883                 if (!err)
1884                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1885                                                 num_bytes, NULL);
1886                 return PTR_ERR(trans);
1887         }
1888
1889         if (!err) {
1890                 if (num_bytes != rc->merging_rsv_size) {
1891                         btrfs_end_transaction(trans);
1892                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1893                                                 num_bytes, NULL);
1894                         goto again;
1895                 }
1896         }
1897
1898         rc->merge_reloc_tree = 1;
1899
1900         while (!list_empty(&rc->reloc_roots)) {
1901                 reloc_root = list_entry(rc->reloc_roots.next,
1902                                         struct btrfs_root, root_list);
1903                 list_del_init(&reloc_root->root_list);
1904
1905                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1906                                 false);
1907                 if (IS_ERR(root)) {
1908                         /*
1909                          * Even if we have an error we need this reloc root
1910                          * back on our list so we can clean up properly.
1911                          */
1912                         list_add(&reloc_root->root_list, &reloc_roots);
1913                         btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1914                         if (!err)
1915                                 err = PTR_ERR(root);
1916                         break;
1917                 }
1918                 ASSERT(root->reloc_root == reloc_root);
1919
1920                 /*
1921                  * set reference count to 1, so btrfs_recover_relocation
1922                  * knows it should resumes merging
1923                  */
1924                 if (!err)
1925                         btrfs_set_root_refs(&reloc_root->root_item, 1);
1926                 ret = btrfs_update_reloc_root(trans, root);
1927
1928                 /*
1929                  * Even if we have an error we need this reloc root back on our
1930                  * list so we can clean up properly.
1931                  */
1932                 list_add(&reloc_root->root_list, &reloc_roots);
1933                 btrfs_put_root(root);
1934
1935                 if (ret) {
1936                         btrfs_abort_transaction(trans, ret);
1937                         if (!err)
1938                                 err = ret;
1939                         break;
1940                 }
1941         }
1942
1943         list_splice(&reloc_roots, &rc->reloc_roots);
1944
1945         if (!err)
1946                 err = btrfs_commit_transaction(trans);
1947         else
1948                 btrfs_end_transaction(trans);
1949         return err;
1950 }
1951
1952 static noinline_for_stack
1953 void free_reloc_roots(struct list_head *list)
1954 {
1955         struct btrfs_root *reloc_root, *tmp;
1956
1957         list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1958                 __del_reloc_root(reloc_root);
1959 }
1960
1961 static noinline_for_stack
1962 void merge_reloc_roots(struct reloc_control *rc)
1963 {
1964         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1965         struct btrfs_root *root;
1966         struct btrfs_root *reloc_root;
1967         LIST_HEAD(reloc_roots);
1968         int found = 0;
1969         int ret = 0;
1970 again:
1971         root = rc->extent_root;
1972
1973         /*
1974          * this serializes us with btrfs_record_root_in_transaction,
1975          * we have to make sure nobody is in the middle of
1976          * adding their roots to the list while we are
1977          * doing this splice
1978          */
1979         mutex_lock(&fs_info->reloc_mutex);
1980         list_splice_init(&rc->reloc_roots, &reloc_roots);
1981         mutex_unlock(&fs_info->reloc_mutex);
1982
1983         while (!list_empty(&reloc_roots)) {
1984                 found = 1;
1985                 reloc_root = list_entry(reloc_roots.next,
1986                                         struct btrfs_root, root_list);
1987
1988                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1989                                          false);
1990                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1991                         if (IS_ERR(root)) {
1992                                 /*
1993                                  * For recovery we read the fs roots on mount,
1994                                  * and if we didn't find the root then we marked
1995                                  * the reloc root as a garbage root.  For normal
1996                                  * relocation obviously the root should exist in
1997                                  * memory.  However there's no reason we can't
1998                                  * handle the error properly here just in case.
1999                                  */
2000                                 ASSERT(0);
2001                                 ret = PTR_ERR(root);
2002                                 goto out;
2003                         }
2004                         if (root->reloc_root != reloc_root) {
2005                                 /*
2006                                  * This is actually impossible without something
2007                                  * going really wrong (like weird race condition
2008                                  * or cosmic rays).
2009                                  */
2010                                 ASSERT(0);
2011                                 ret = -EINVAL;
2012                                 goto out;
2013                         }
2014                         ret = merge_reloc_root(rc, root);
2015                         btrfs_put_root(root);
2016                         if (ret) {
2017                                 if (list_empty(&reloc_root->root_list))
2018                                         list_add_tail(&reloc_root->root_list,
2019                                                       &reloc_roots);
2020                                 goto out;
2021                         }
2022                 } else {
2023                         if (!IS_ERR(root)) {
2024                                 if (root->reloc_root == reloc_root) {
2025                                         root->reloc_root = NULL;
2026                                         btrfs_put_root(reloc_root);
2027                                 }
2028                                 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2029                                           &root->state);
2030                                 btrfs_put_root(root);
2031                         }
2032
2033                         list_del_init(&reloc_root->root_list);
2034                         /* Don't forget to queue this reloc root for cleanup */
2035                         list_add_tail(&reloc_root->reloc_dirty_list,
2036                                       &rc->dirty_subvol_roots);
2037                 }
2038         }
2039
2040         if (found) {
2041                 found = 0;
2042                 goto again;
2043         }
2044 out:
2045         if (ret) {
2046                 btrfs_handle_fs_error(fs_info, ret, NULL);
2047                 free_reloc_roots(&reloc_roots);
2048
2049                 /* new reloc root may be added */
2050                 mutex_lock(&fs_info->reloc_mutex);
2051                 list_splice_init(&rc->reloc_roots, &reloc_roots);
2052                 mutex_unlock(&fs_info->reloc_mutex);
2053                 free_reloc_roots(&reloc_roots);
2054         }
2055
2056         /*
2057          * We used to have
2058          *
2059          * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2060          *
2061          * here, but it's wrong.  If we fail to start the transaction in
2062          * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2063          * have actually been removed from the reloc_root_tree rb tree.  This is
2064          * fine because we're bailing here, and we hold a reference on the root
2065          * for the list that holds it, so these roots will be cleaned up when we
2066          * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2067          * will be cleaned up on unmount.
2068          *
2069          * The remaining nodes will be cleaned up by free_reloc_control.
2070          */
2071 }
2072
2073 static void free_block_list(struct rb_root *blocks)
2074 {
2075         struct tree_block *block;
2076         struct rb_node *rb_node;
2077         while ((rb_node = rb_first(blocks))) {
2078                 block = rb_entry(rb_node, struct tree_block, rb_node);
2079                 rb_erase(rb_node, blocks);
2080                 kfree(block);
2081         }
2082 }
2083
2084 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2085                                       struct btrfs_root *reloc_root)
2086 {
2087         struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2088         struct btrfs_root *root;
2089         int ret;
2090
2091         if (reloc_root->last_trans == trans->transid)
2092                 return 0;
2093
2094         root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2095
2096         /*
2097          * This should succeed, since we can't have a reloc root without having
2098          * already looked up the actual root and created the reloc root for this
2099          * root.
2100          *
2101          * However if there's some sort of corruption where we have a ref to a
2102          * reloc root without a corresponding root this could return ENOENT.
2103          */
2104         if (IS_ERR(root)) {
2105                 ASSERT(0);
2106                 return PTR_ERR(root);
2107         }
2108         if (root->reloc_root != reloc_root) {
2109                 ASSERT(0);
2110                 btrfs_err(fs_info,
2111                           "root %llu has two reloc roots associated with it",
2112                           reloc_root->root_key.offset);
2113                 btrfs_put_root(root);
2114                 return -EUCLEAN;
2115         }
2116         ret = btrfs_record_root_in_trans(trans, root);
2117         btrfs_put_root(root);
2118
2119         return ret;
2120 }
2121
2122 static noinline_for_stack
2123 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2124                                      struct reloc_control *rc,
2125                                      struct btrfs_backref_node *node,
2126                                      struct btrfs_backref_edge *edges[])
2127 {
2128         struct btrfs_backref_node *next;
2129         struct btrfs_root *root;
2130         int index = 0;
2131         int ret;
2132
2133         next = node;
2134         while (1) {
2135                 cond_resched();
2136                 next = walk_up_backref(next, edges, &index);
2137                 root = next->root;
2138
2139                 /*
2140                  * If there is no root, then our references for this block are
2141                  * incomplete, as we should be able to walk all the way up to a
2142                  * block that is owned by a root.
2143                  *
2144                  * This path is only for SHAREABLE roots, so if we come upon a
2145                  * non-SHAREABLE root then we have backrefs that resolve
2146                  * improperly.
2147                  *
2148                  * Both of these cases indicate file system corruption, or a bug
2149                  * in the backref walking code.
2150                  */
2151                 if (!root) {
2152                         ASSERT(0);
2153                         btrfs_err(trans->fs_info,
2154                 "bytenr %llu doesn't have a backref path ending in a root",
2155                                   node->bytenr);
2156                         return ERR_PTR(-EUCLEAN);
2157                 }
2158                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2159                         ASSERT(0);
2160                         btrfs_err(trans->fs_info,
2161         "bytenr %llu has multiple refs with one ending in a non-shareable root",
2162                                   node->bytenr);
2163                         return ERR_PTR(-EUCLEAN);
2164                 }
2165
2166                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2167                         ret = record_reloc_root_in_trans(trans, root);
2168                         if (ret)
2169                                 return ERR_PTR(ret);
2170                         break;
2171                 }
2172
2173                 ret = btrfs_record_root_in_trans(trans, root);
2174                 if (ret)
2175                         return ERR_PTR(ret);
2176                 root = root->reloc_root;
2177
2178                 /*
2179                  * We could have raced with another thread which failed, so
2180                  * root->reloc_root may not be set, return ENOENT in this case.
2181                  */
2182                 if (!root)
2183                         return ERR_PTR(-ENOENT);
2184
2185                 if (next->new_bytenr != root->node->start) {
2186                         /*
2187                          * We just created the reloc root, so we shouldn't have
2188                          * ->new_bytenr set and this shouldn't be in the changed
2189                          *  list.  If it is then we have multiple roots pointing
2190                          *  at the same bytenr which indicates corruption, or
2191                          *  we've made a mistake in the backref walking code.
2192                          */
2193                         ASSERT(next->new_bytenr == 0);
2194                         ASSERT(list_empty(&next->list));
2195                         if (next->new_bytenr || !list_empty(&next->list)) {
2196                                 btrfs_err(trans->fs_info,
2197         "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2198                                           node->bytenr, next->bytenr);
2199                                 return ERR_PTR(-EUCLEAN);
2200                         }
2201
2202                         next->new_bytenr = root->node->start;
2203                         btrfs_put_root(next->root);
2204                         next->root = btrfs_grab_root(root);
2205                         ASSERT(next->root);
2206                         list_add_tail(&next->list,
2207                                       &rc->backref_cache.changed);
2208                         mark_block_processed(rc, next);
2209                         break;
2210                 }
2211
2212                 WARN_ON(1);
2213                 root = NULL;
2214                 next = walk_down_backref(edges, &index);
2215                 if (!next || next->level <= node->level)
2216                         break;
2217         }
2218         if (!root) {
2219                 /*
2220                  * This can happen if there's fs corruption or if there's a bug
2221                  * in the backref lookup code.
2222                  */
2223                 ASSERT(0);
2224                 return ERR_PTR(-ENOENT);
2225         }
2226
2227         next = node;
2228         /* setup backref node path for btrfs_reloc_cow_block */
2229         while (1) {
2230                 rc->backref_cache.path[next->level] = next;
2231                 if (--index < 0)
2232                         break;
2233                 next = edges[index]->node[UPPER];
2234         }
2235         return root;
2236 }
2237
2238 /*
2239  * Select a tree root for relocation.
2240  *
2241  * Return NULL if the block is not shareable. We should use do_relocation() in
2242  * this case.
2243  *
2244  * Return a tree root pointer if the block is shareable.
2245  * Return -ENOENT if the block is root of reloc tree.
2246  */
2247 static noinline_for_stack
2248 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2249 {
2250         struct btrfs_backref_node *next;
2251         struct btrfs_root *root;
2252         struct btrfs_root *fs_root = NULL;
2253         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2254         int index = 0;
2255
2256         next = node;
2257         while (1) {
2258                 cond_resched();
2259                 next = walk_up_backref(next, edges, &index);
2260                 root = next->root;
2261
2262                 /*
2263                  * This can occur if we have incomplete extent refs leading all
2264                  * the way up a particular path, in this case return -EUCLEAN.
2265                  */
2266                 if (!root)
2267                         return ERR_PTR(-EUCLEAN);
2268
2269                 /* No other choice for non-shareable tree */
2270                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2271                         return root;
2272
2273                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2274                         fs_root = root;
2275
2276                 if (next != node)
2277                         return NULL;
2278
2279                 next = walk_down_backref(edges, &index);
2280                 if (!next || next->level <= node->level)
2281                         break;
2282         }
2283
2284         if (!fs_root)
2285                 return ERR_PTR(-ENOENT);
2286         return fs_root;
2287 }
2288
2289 static noinline_for_stack
2290 u64 calcu_metadata_size(struct reloc_control *rc,
2291                         struct btrfs_backref_node *node, int reserve)
2292 {
2293         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2294         struct btrfs_backref_node *next = node;
2295         struct btrfs_backref_edge *edge;
2296         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2297         u64 num_bytes = 0;
2298         int index = 0;
2299
2300         BUG_ON(reserve && node->processed);
2301
2302         while (next) {
2303                 cond_resched();
2304                 while (1) {
2305                         if (next->processed && (reserve || next != node))
2306                                 break;
2307
2308                         num_bytes += fs_info->nodesize;
2309
2310                         if (list_empty(&next->upper))
2311                                 break;
2312
2313                         edge = list_entry(next->upper.next,
2314                                         struct btrfs_backref_edge, list[LOWER]);
2315                         edges[index++] = edge;
2316                         next = edge->node[UPPER];
2317                 }
2318                 next = walk_down_backref(edges, &index);
2319         }
2320         return num_bytes;
2321 }
2322
2323 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2324                                   struct reloc_control *rc,
2325                                   struct btrfs_backref_node *node)
2326 {
2327         struct btrfs_root *root = rc->extent_root;
2328         struct btrfs_fs_info *fs_info = root->fs_info;
2329         u64 num_bytes;
2330         int ret;
2331         u64 tmp;
2332
2333         num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2334
2335         trans->block_rsv = rc->block_rsv;
2336         rc->reserved_bytes += num_bytes;
2337
2338         /*
2339          * We are under a transaction here so we can only do limited flushing.
2340          * If we get an enospc just kick back -EAGAIN so we know to drop the
2341          * transaction and try to refill when we can flush all the things.
2342          */
2343         ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2344                                      BTRFS_RESERVE_FLUSH_LIMIT);
2345         if (ret) {
2346                 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2347                 while (tmp <= rc->reserved_bytes)
2348                         tmp <<= 1;
2349                 /*
2350                  * only one thread can access block_rsv at this point,
2351                  * so we don't need hold lock to protect block_rsv.
2352                  * we expand more reservation size here to allow enough
2353                  * space for relocation and we will return earlier in
2354                  * enospc case.
2355                  */
2356                 rc->block_rsv->size = tmp + fs_info->nodesize *
2357                                       RELOCATION_RESERVED_NODES;
2358                 return -EAGAIN;
2359         }
2360
2361         return 0;
2362 }
2363
2364 /*
2365  * relocate a block tree, and then update pointers in upper level
2366  * blocks that reference the block to point to the new location.
2367  *
2368  * if called by link_to_upper, the block has already been relocated.
2369  * in that case this function just updates pointers.
2370  */
2371 static int do_relocation(struct btrfs_trans_handle *trans,
2372                          struct reloc_control *rc,
2373                          struct btrfs_backref_node *node,
2374                          struct btrfs_key *key,
2375                          struct btrfs_path *path, int lowest)
2376 {
2377         struct btrfs_backref_node *upper;
2378         struct btrfs_backref_edge *edge;
2379         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2380         struct btrfs_root *root;
2381         struct extent_buffer *eb;
2382         u32 blocksize;
2383         u64 bytenr;
2384         int slot;
2385         int ret = 0;
2386
2387         /*
2388          * If we are lowest then this is the first time we're processing this
2389          * block, and thus shouldn't have an eb associated with it yet.
2390          */
2391         ASSERT(!lowest || !node->eb);
2392
2393         path->lowest_level = node->level + 1;
2394         rc->backref_cache.path[node->level] = node;
2395         list_for_each_entry(edge, &node->upper, list[LOWER]) {
2396                 struct btrfs_ref ref = { 0 };
2397
2398                 cond_resched();
2399
2400                 upper = edge->node[UPPER];
2401                 root = select_reloc_root(trans, rc, upper, edges);
2402                 if (IS_ERR(root)) {
2403                         ret = PTR_ERR(root);
2404                         goto next;
2405                 }
2406
2407                 if (upper->eb && !upper->locked) {
2408                         if (!lowest) {
2409                                 ret = btrfs_bin_search(upper->eb, key, &slot);
2410                                 if (ret < 0)
2411                                         goto next;
2412                                 BUG_ON(ret);
2413                                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2414                                 if (node->eb->start == bytenr)
2415                                         goto next;
2416                         }
2417                         btrfs_backref_drop_node_buffer(upper);
2418                 }
2419
2420                 if (!upper->eb) {
2421                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2422                         if (ret) {
2423                                 if (ret > 0)
2424                                         ret = -ENOENT;
2425
2426                                 btrfs_release_path(path);
2427                                 break;
2428                         }
2429
2430                         if (!upper->eb) {
2431                                 upper->eb = path->nodes[upper->level];
2432                                 path->nodes[upper->level] = NULL;
2433                         } else {
2434                                 BUG_ON(upper->eb != path->nodes[upper->level]);
2435                         }
2436
2437                         upper->locked = 1;
2438                         path->locks[upper->level] = 0;
2439
2440                         slot = path->slots[upper->level];
2441                         btrfs_release_path(path);
2442                 } else {
2443                         ret = btrfs_bin_search(upper->eb, key, &slot);
2444                         if (ret < 0)
2445                                 goto next;
2446                         BUG_ON(ret);
2447                 }
2448
2449                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2450                 if (lowest) {
2451                         if (bytenr != node->bytenr) {
2452                                 btrfs_err(root->fs_info,
2453                 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2454                                           bytenr, node->bytenr, slot,
2455                                           upper->eb->start);
2456                                 ret = -EIO;
2457                                 goto next;
2458                         }
2459                 } else {
2460                         if (node->eb->start == bytenr)
2461                                 goto next;
2462                 }
2463
2464                 blocksize = root->fs_info->nodesize;
2465                 eb = btrfs_read_node_slot(upper->eb, slot);
2466                 if (IS_ERR(eb)) {
2467                         ret = PTR_ERR(eb);
2468                         goto next;
2469                 }
2470                 btrfs_tree_lock(eb);
2471
2472                 if (!node->eb) {
2473                         ret = btrfs_cow_block(trans, root, eb, upper->eb,
2474                                               slot, &eb, BTRFS_NESTING_COW);
2475                         btrfs_tree_unlock(eb);
2476                         free_extent_buffer(eb);
2477                         if (ret < 0)
2478                                 goto next;
2479                         /*
2480                          * We've just COWed this block, it should have updated
2481                          * the correct backref node entry.
2482                          */
2483                         ASSERT(node->eb == eb);
2484                 } else {
2485                         btrfs_set_node_blockptr(upper->eb, slot,
2486                                                 node->eb->start);
2487                         btrfs_set_node_ptr_generation(upper->eb, slot,
2488                                                       trans->transid);
2489                         btrfs_mark_buffer_dirty(upper->eb);
2490
2491                         btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2492                                                node->eb->start, blocksize,
2493                                                upper->eb->start);
2494                         btrfs_init_tree_ref(&ref, node->level,
2495                                             btrfs_header_owner(upper->eb),
2496                                             root->root_key.objectid, false);
2497                         ret = btrfs_inc_extent_ref(trans, &ref);
2498                         if (!ret)
2499                                 ret = btrfs_drop_subtree(trans, root, eb,
2500                                                          upper->eb);
2501                         if (ret)
2502                                 btrfs_abort_transaction(trans, ret);
2503                 }
2504 next:
2505                 if (!upper->pending)
2506                         btrfs_backref_drop_node_buffer(upper);
2507                 else
2508                         btrfs_backref_unlock_node_buffer(upper);
2509                 if (ret)
2510                         break;
2511         }
2512
2513         if (!ret && node->pending) {
2514                 btrfs_backref_drop_node_buffer(node);
2515                 list_move_tail(&node->list, &rc->backref_cache.changed);
2516                 node->pending = 0;
2517         }
2518
2519         path->lowest_level = 0;
2520
2521         /*
2522          * We should have allocated all of our space in the block rsv and thus
2523          * shouldn't ENOSPC.
2524          */
2525         ASSERT(ret != -ENOSPC);
2526         return ret;
2527 }
2528
2529 static int link_to_upper(struct btrfs_trans_handle *trans,
2530                          struct reloc_control *rc,
2531                          struct btrfs_backref_node *node,
2532                          struct btrfs_path *path)
2533 {
2534         struct btrfs_key key;
2535
2536         btrfs_node_key_to_cpu(node->eb, &key, 0);
2537         return do_relocation(trans, rc, node, &key, path, 0);
2538 }
2539
2540 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2541                                 struct reloc_control *rc,
2542                                 struct btrfs_path *path, int err)
2543 {
2544         LIST_HEAD(list);
2545         struct btrfs_backref_cache *cache = &rc->backref_cache;
2546         struct btrfs_backref_node *node;
2547         int level;
2548         int ret;
2549
2550         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2551                 while (!list_empty(&cache->pending[level])) {
2552                         node = list_entry(cache->pending[level].next,
2553                                           struct btrfs_backref_node, list);
2554                         list_move_tail(&node->list, &list);
2555                         BUG_ON(!node->pending);
2556
2557                         if (!err) {
2558                                 ret = link_to_upper(trans, rc, node, path);
2559                                 if (ret < 0)
2560                                         err = ret;
2561                         }
2562                 }
2563                 list_splice_init(&list, &cache->pending[level]);
2564         }
2565         return err;
2566 }
2567
2568 /*
2569  * mark a block and all blocks directly/indirectly reference the block
2570  * as processed.
2571  */
2572 static void update_processed_blocks(struct reloc_control *rc,
2573                                     struct btrfs_backref_node *node)
2574 {
2575         struct btrfs_backref_node *next = node;
2576         struct btrfs_backref_edge *edge;
2577         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2578         int index = 0;
2579
2580         while (next) {
2581                 cond_resched();
2582                 while (1) {
2583                         if (next->processed)
2584                                 break;
2585
2586                         mark_block_processed(rc, next);
2587
2588                         if (list_empty(&next->upper))
2589                                 break;
2590
2591                         edge = list_entry(next->upper.next,
2592                                         struct btrfs_backref_edge, list[LOWER]);
2593                         edges[index++] = edge;
2594                         next = edge->node[UPPER];
2595                 }
2596                 next = walk_down_backref(edges, &index);
2597         }
2598 }
2599
2600 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2601 {
2602         u32 blocksize = rc->extent_root->fs_info->nodesize;
2603
2604         if (test_range_bit(&rc->processed_blocks, bytenr,
2605                            bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2606                 return 1;
2607         return 0;
2608 }
2609
2610 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2611                               struct tree_block *block)
2612 {
2613         struct extent_buffer *eb;
2614
2615         eb = read_tree_block(fs_info, block->bytenr, block->owner,
2616                              block->key.offset, block->level, NULL);
2617         if (IS_ERR(eb))
2618                 return PTR_ERR(eb);
2619         if (!extent_buffer_uptodate(eb)) {
2620                 free_extent_buffer(eb);
2621                 return -EIO;
2622         }
2623         if (block->level == 0)
2624                 btrfs_item_key_to_cpu(eb, &block->key, 0);
2625         else
2626                 btrfs_node_key_to_cpu(eb, &block->key, 0);
2627         free_extent_buffer(eb);
2628         block->key_ready = 1;
2629         return 0;
2630 }
2631
2632 /*
2633  * helper function to relocate a tree block
2634  */
2635 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2636                                 struct reloc_control *rc,
2637                                 struct btrfs_backref_node *node,
2638                                 struct btrfs_key *key,
2639                                 struct btrfs_path *path)
2640 {
2641         struct btrfs_root *root;
2642         int ret = 0;
2643
2644         if (!node)
2645                 return 0;
2646
2647         /*
2648          * If we fail here we want to drop our backref_node because we are going
2649          * to start over and regenerate the tree for it.
2650          */
2651         ret = reserve_metadata_space(trans, rc, node);
2652         if (ret)
2653                 goto out;
2654
2655         BUG_ON(node->processed);
2656         root = select_one_root(node);
2657         if (IS_ERR(root)) {
2658                 ret = PTR_ERR(root);
2659
2660                 /* See explanation in select_one_root for the -EUCLEAN case. */
2661                 ASSERT(ret == -ENOENT);
2662                 if (ret == -ENOENT) {
2663                         ret = 0;
2664                         update_processed_blocks(rc, node);
2665                 }
2666                 goto out;
2667         }
2668
2669         if (root) {
2670                 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2671                         /*
2672                          * This block was the root block of a root, and this is
2673                          * the first time we're processing the block and thus it
2674                          * should not have had the ->new_bytenr modified and
2675                          * should have not been included on the changed list.
2676                          *
2677                          * However in the case of corruption we could have
2678                          * multiple refs pointing to the same block improperly,
2679                          * and thus we would trip over these checks.  ASSERT()
2680                          * for the developer case, because it could indicate a
2681                          * bug in the backref code, however error out for a
2682                          * normal user in the case of corruption.
2683                          */
2684                         ASSERT(node->new_bytenr == 0);
2685                         ASSERT(list_empty(&node->list));
2686                         if (node->new_bytenr || !list_empty(&node->list)) {
2687                                 btrfs_err(root->fs_info,
2688                                   "bytenr %llu has improper references to it",
2689                                           node->bytenr);
2690                                 ret = -EUCLEAN;
2691                                 goto out;
2692                         }
2693                         ret = btrfs_record_root_in_trans(trans, root);
2694                         if (ret)
2695                                 goto out;
2696                         /*
2697                          * Another thread could have failed, need to check if we
2698                          * have reloc_root actually set.
2699                          */
2700                         if (!root->reloc_root) {
2701                                 ret = -ENOENT;
2702                                 goto out;
2703                         }
2704                         root = root->reloc_root;
2705                         node->new_bytenr = root->node->start;
2706                         btrfs_put_root(node->root);
2707                         node->root = btrfs_grab_root(root);
2708                         ASSERT(node->root);
2709                         list_add_tail(&node->list, &rc->backref_cache.changed);
2710                 } else {
2711                         path->lowest_level = node->level;
2712                         if (root == root->fs_info->chunk_root)
2713                                 btrfs_reserve_chunk_metadata(trans, false);
2714                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2715                         btrfs_release_path(path);
2716                         if (root == root->fs_info->chunk_root)
2717                                 btrfs_trans_release_chunk_metadata(trans);
2718                         if (ret > 0)
2719                                 ret = 0;
2720                 }
2721                 if (!ret)
2722                         update_processed_blocks(rc, node);
2723         } else {
2724                 ret = do_relocation(trans, rc, node, key, path, 1);
2725         }
2726 out:
2727         if (ret || node->level == 0 || node->cowonly)
2728                 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2729         return ret;
2730 }
2731
2732 /*
2733  * relocate a list of blocks
2734  */
2735 static noinline_for_stack
2736 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2737                          struct reloc_control *rc, struct rb_root *blocks)
2738 {
2739         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2740         struct btrfs_backref_node *node;
2741         struct btrfs_path *path;
2742         struct tree_block *block;
2743         struct tree_block *next;
2744         int ret;
2745         int err = 0;
2746
2747         path = btrfs_alloc_path();
2748         if (!path) {
2749                 err = -ENOMEM;
2750                 goto out_free_blocks;
2751         }
2752
2753         /* Kick in readahead for tree blocks with missing keys */
2754         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2755                 if (!block->key_ready)
2756                         btrfs_readahead_tree_block(fs_info, block->bytenr,
2757                                                    block->owner, 0,
2758                                                    block->level);
2759         }
2760
2761         /* Get first keys */
2762         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2763                 if (!block->key_ready) {
2764                         err = get_tree_block_key(fs_info, block);
2765                         if (err)
2766                                 goto out_free_path;
2767                 }
2768         }
2769
2770         /* Do tree relocation */
2771         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2772                 node = build_backref_tree(rc, &block->key,
2773                                           block->level, block->bytenr);
2774                 if (IS_ERR(node)) {
2775                         err = PTR_ERR(node);
2776                         goto out;
2777                 }
2778
2779                 ret = relocate_tree_block(trans, rc, node, &block->key,
2780                                           path);
2781                 if (ret < 0) {
2782                         err = ret;
2783                         break;
2784                 }
2785         }
2786 out:
2787         err = finish_pending_nodes(trans, rc, path, err);
2788
2789 out_free_path:
2790         btrfs_free_path(path);
2791 out_free_blocks:
2792         free_block_list(blocks);
2793         return err;
2794 }
2795
2796 static noinline_for_stack int prealloc_file_extent_cluster(
2797                                 struct btrfs_inode *inode,
2798                                 struct file_extent_cluster *cluster)
2799 {
2800         u64 alloc_hint = 0;
2801         u64 start;
2802         u64 end;
2803         u64 offset = inode->index_cnt;
2804         u64 num_bytes;
2805         int nr;
2806         int ret = 0;
2807         u64 i_size = i_size_read(&inode->vfs_inode);
2808         u64 prealloc_start = cluster->start - offset;
2809         u64 prealloc_end = cluster->end - offset;
2810         u64 cur_offset = prealloc_start;
2811
2812         /*
2813          * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2814          * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2815          * btrfs_do_readpage() call of previously relocated file cluster.
2816          *
2817          * If the current cluster starts in the above range, btrfs_do_readpage()
2818          * will skip the read, and relocate_one_page() will later writeback
2819          * the padding zeros as new data, causing data corruption.
2820          *
2821          * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2822          */
2823         if (!IS_ALIGNED(i_size, PAGE_SIZE)) {
2824                 struct address_space *mapping = inode->vfs_inode.i_mapping;
2825                 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2826                 const u32 sectorsize = fs_info->sectorsize;
2827                 struct page *page;
2828
2829                 ASSERT(sectorsize < PAGE_SIZE);
2830                 ASSERT(IS_ALIGNED(i_size, sectorsize));
2831
2832                 /*
2833                  * Subpage can't handle page with DIRTY but without UPTODATE
2834                  * bit as it can lead to the following deadlock:
2835                  *
2836                  * btrfs_read_folio()
2837                  * | Page already *locked*
2838                  * |- btrfs_lock_and_flush_ordered_range()
2839                  *    |- btrfs_start_ordered_extent()
2840                  *       |- extent_write_cache_pages()
2841                  *          |- lock_page()
2842                  *             We try to lock the page we already hold.
2843                  *
2844                  * Here we just writeback the whole data reloc inode, so that
2845                  * we will be ensured to have no dirty range in the page, and
2846                  * are safe to clear the uptodate bits.
2847                  *
2848                  * This shouldn't cause too much overhead, as we need to write
2849                  * the data back anyway.
2850                  */
2851                 ret = filemap_write_and_wait(mapping);
2852                 if (ret < 0)
2853                         return ret;
2854
2855                 clear_extent_bits(&inode->io_tree, i_size,
2856                                   round_up(i_size, PAGE_SIZE) - 1,
2857                                   EXTENT_UPTODATE);
2858                 page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2859                 /*
2860                  * If page is freed we don't need to do anything then, as we
2861                  * will re-read the whole page anyway.
2862                  */
2863                 if (page) {
2864                         btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2865                                         round_up(i_size, PAGE_SIZE) - i_size);
2866                         unlock_page(page);
2867                         put_page(page);
2868                 }
2869         }
2870
2871         BUG_ON(cluster->start != cluster->boundary[0]);
2872         ret = btrfs_alloc_data_chunk_ondemand(inode,
2873                                               prealloc_end + 1 - prealloc_start);
2874         if (ret)
2875                 return ret;
2876
2877         btrfs_inode_lock(inode, 0);
2878         for (nr = 0; nr < cluster->nr; nr++) {
2879                 struct extent_state *cached_state = NULL;
2880
2881                 start = cluster->boundary[nr] - offset;
2882                 if (nr + 1 < cluster->nr)
2883                         end = cluster->boundary[nr + 1] - 1 - offset;
2884                 else
2885                         end = cluster->end - offset;
2886
2887                 lock_extent(&inode->io_tree, start, end, &cached_state);
2888                 num_bytes = end + 1 - start;
2889                 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2890                                                 num_bytes, num_bytes,
2891                                                 end + 1, &alloc_hint);
2892                 cur_offset = end + 1;
2893                 unlock_extent(&inode->io_tree, start, end, &cached_state);
2894                 if (ret)
2895                         break;
2896         }
2897         btrfs_inode_unlock(inode, 0);
2898
2899         if (cur_offset < prealloc_end)
2900                 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2901                                                prealloc_end + 1 - cur_offset);
2902         return ret;
2903 }
2904
2905 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2906                                 u64 start, u64 end, u64 block_start)
2907 {
2908         struct extent_map *em;
2909         struct extent_state *cached_state = NULL;
2910         int ret = 0;
2911
2912         em = alloc_extent_map();
2913         if (!em)
2914                 return -ENOMEM;
2915
2916         em->start = start;
2917         em->len = end + 1 - start;
2918         em->block_len = em->len;
2919         em->block_start = block_start;
2920         set_bit(EXTENT_FLAG_PINNED, &em->flags);
2921
2922         lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2923         ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2924         unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2925         free_extent_map(em);
2926
2927         return ret;
2928 }
2929
2930 /*
2931  * Allow error injection to test balance/relocation cancellation
2932  */
2933 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2934 {
2935         return atomic_read(&fs_info->balance_cancel_req) ||
2936                 atomic_read(&fs_info->reloc_cancel_req) ||
2937                 fatal_signal_pending(current);
2938 }
2939 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2940
2941 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2942                                     int cluster_nr)
2943 {
2944         /* Last extent, use cluster end directly */
2945         if (cluster_nr >= cluster->nr - 1)
2946                 return cluster->end;
2947
2948         /* Use next boundary start*/
2949         return cluster->boundary[cluster_nr + 1] - 1;
2950 }
2951
2952 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2953                              struct file_extent_cluster *cluster,
2954                              int *cluster_nr, unsigned long page_index)
2955 {
2956         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2957         u64 offset = BTRFS_I(inode)->index_cnt;
2958         const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2959         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2960         struct page *page;
2961         u64 page_start;
2962         u64 page_end;
2963         u64 cur;
2964         int ret;
2965
2966         ASSERT(page_index <= last_index);
2967         page = find_lock_page(inode->i_mapping, page_index);
2968         if (!page) {
2969                 page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2970                                 page_index, last_index + 1 - page_index);
2971                 page = find_or_create_page(inode->i_mapping, page_index, mask);
2972                 if (!page)
2973                         return -ENOMEM;
2974         }
2975         ret = set_page_extent_mapped(page);
2976         if (ret < 0)
2977                 goto release_page;
2978
2979         if (PageReadahead(page))
2980                 page_cache_async_readahead(inode->i_mapping, ra, NULL,
2981                                 page_folio(page), page_index,
2982                                 last_index + 1 - page_index);
2983
2984         if (!PageUptodate(page)) {
2985                 btrfs_read_folio(NULL, page_folio(page));
2986                 lock_page(page);
2987                 if (!PageUptodate(page)) {
2988                         ret = -EIO;
2989                         goto release_page;
2990                 }
2991         }
2992
2993         page_start = page_offset(page);
2994         page_end = page_start + PAGE_SIZE - 1;
2995
2996         /*
2997          * Start from the cluster, as for subpage case, the cluster can start
2998          * inside the page.
2999          */
3000         cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3001         while (cur <= page_end) {
3002                 struct extent_state *cached_state = NULL;
3003                 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3004                 u64 extent_end = get_cluster_boundary_end(cluster,
3005                                                 *cluster_nr) - offset;
3006                 u64 clamped_start = max(page_start, extent_start);
3007                 u64 clamped_end = min(page_end, extent_end);
3008                 u32 clamped_len = clamped_end + 1 - clamped_start;
3009
3010                 /* Reserve metadata for this range */
3011                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3012                                                       clamped_len, clamped_len,
3013                                                       false);
3014                 if (ret)
3015                         goto release_page;
3016
3017                 /* Mark the range delalloc and dirty for later writeback */
3018                 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3019                             &cached_state);
3020                 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3021                                                 clamped_end, 0, &cached_state);
3022                 if (ret) {
3023                         clear_extent_bit(&BTRFS_I(inode)->io_tree,
3024                                          clamped_start, clamped_end,
3025                                          EXTENT_LOCKED | EXTENT_BOUNDARY,
3026                                          &cached_state);
3027                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
3028                                                         clamped_len, true);
3029                         btrfs_delalloc_release_extents(BTRFS_I(inode),
3030                                                        clamped_len);
3031                         goto release_page;
3032                 }
3033                 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3034
3035                 /*
3036                  * Set the boundary if it's inside the page.
3037                  * Data relocation requires the destination extents to have the
3038                  * same size as the source.
3039                  * EXTENT_BOUNDARY bit prevents current extent from being merged
3040                  * with previous extent.
3041                  */
3042                 if (in_range(cluster->boundary[*cluster_nr] - offset,
3043                              page_start, PAGE_SIZE)) {
3044                         u64 boundary_start = cluster->boundary[*cluster_nr] -
3045                                                 offset;
3046                         u64 boundary_end = boundary_start +
3047                                            fs_info->sectorsize - 1;
3048
3049                         set_extent_bits(&BTRFS_I(inode)->io_tree,
3050                                         boundary_start, boundary_end,
3051                                         EXTENT_BOUNDARY);
3052                 }
3053                 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3054                               &cached_state);
3055                 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3056                 cur += clamped_len;
3057
3058                 /* Crossed extent end, go to next extent */
3059                 if (cur >= extent_end) {
3060                         (*cluster_nr)++;
3061                         /* Just finished the last extent of the cluster, exit. */
3062                         if (*cluster_nr >= cluster->nr)
3063                                 break;
3064                 }
3065         }
3066         unlock_page(page);
3067         put_page(page);
3068
3069         balance_dirty_pages_ratelimited(inode->i_mapping);
3070         btrfs_throttle(fs_info);
3071         if (btrfs_should_cancel_balance(fs_info))
3072                 ret = -ECANCELED;
3073         return ret;
3074
3075 release_page:
3076         unlock_page(page);
3077         put_page(page);
3078         return ret;
3079 }
3080
3081 static int relocate_file_extent_cluster(struct inode *inode,
3082                                         struct file_extent_cluster *cluster)
3083 {
3084         u64 offset = BTRFS_I(inode)->index_cnt;
3085         unsigned long index;
3086         unsigned long last_index;
3087         struct file_ra_state *ra;
3088         int cluster_nr = 0;
3089         int ret = 0;
3090
3091         if (!cluster->nr)
3092                 return 0;
3093
3094         ra = kzalloc(sizeof(*ra), GFP_NOFS);
3095         if (!ra)
3096                 return -ENOMEM;
3097
3098         ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3099         if (ret)
3100                 goto out;
3101
3102         file_ra_state_init(ra, inode->i_mapping);
3103
3104         ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3105                                    cluster->end - offset, cluster->start);
3106         if (ret)
3107                 goto out;
3108
3109         last_index = (cluster->end - offset) >> PAGE_SHIFT;
3110         for (index = (cluster->start - offset) >> PAGE_SHIFT;
3111              index <= last_index && !ret; index++)
3112                 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3113         if (ret == 0)
3114                 WARN_ON(cluster_nr != cluster->nr);
3115 out:
3116         kfree(ra);
3117         return ret;
3118 }
3119
3120 static noinline_for_stack
3121 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3122                          struct file_extent_cluster *cluster)
3123 {
3124         int ret;
3125
3126         if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3127                 ret = relocate_file_extent_cluster(inode, cluster);
3128                 if (ret)
3129                         return ret;
3130                 cluster->nr = 0;
3131         }
3132
3133         if (!cluster->nr)
3134                 cluster->start = extent_key->objectid;
3135         else
3136                 BUG_ON(cluster->nr >= MAX_EXTENTS);
3137         cluster->end = extent_key->objectid + extent_key->offset - 1;
3138         cluster->boundary[cluster->nr] = extent_key->objectid;
3139         cluster->nr++;
3140
3141         if (cluster->nr >= MAX_EXTENTS) {
3142                 ret = relocate_file_extent_cluster(inode, cluster);
3143                 if (ret)
3144                         return ret;
3145                 cluster->nr = 0;
3146         }
3147         return 0;
3148 }
3149
3150 /*
3151  * helper to add a tree block to the list.
3152  * the major work is getting the generation and level of the block
3153  */
3154 static int add_tree_block(struct reloc_control *rc,
3155                           struct btrfs_key *extent_key,
3156                           struct btrfs_path *path,
3157                           struct rb_root *blocks)
3158 {
3159         struct extent_buffer *eb;
3160         struct btrfs_extent_item *ei;
3161         struct btrfs_tree_block_info *bi;
3162         struct tree_block *block;
3163         struct rb_node *rb_node;
3164         u32 item_size;
3165         int level = -1;
3166         u64 generation;
3167         u64 owner = 0;
3168
3169         eb =  path->nodes[0];
3170         item_size = btrfs_item_size(eb, path->slots[0]);
3171
3172         if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3173             item_size >= sizeof(*ei) + sizeof(*bi)) {
3174                 unsigned long ptr = 0, end;
3175
3176                 ei = btrfs_item_ptr(eb, path->slots[0],
3177                                 struct btrfs_extent_item);
3178                 end = (unsigned long)ei + item_size;
3179                 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3180                         bi = (struct btrfs_tree_block_info *)(ei + 1);
3181                         level = btrfs_tree_block_level(eb, bi);
3182                         ptr = (unsigned long)(bi + 1);
3183                 } else {
3184                         level = (int)extent_key->offset;
3185                         ptr = (unsigned long)(ei + 1);
3186                 }
3187                 generation = btrfs_extent_generation(eb, ei);
3188
3189                 /*
3190                  * We're reading random blocks without knowing their owner ahead
3191                  * of time.  This is ok most of the time, as all reloc roots and
3192                  * fs roots have the same lock type.  However normal trees do
3193                  * not, and the only way to know ahead of time is to read the
3194                  * inline ref offset.  We know it's an fs root if
3195                  *
3196                  * 1. There's more than one ref.
3197                  * 2. There's a SHARED_DATA_REF_KEY set.
3198                  * 3. FULL_BACKREF is set on the flags.
3199                  *
3200                  * Otherwise it's safe to assume that the ref offset == the
3201                  * owner of this block, so we can use that when calling
3202                  * read_tree_block.
3203                  */
3204                 if (btrfs_extent_refs(eb, ei) == 1 &&
3205                     !(btrfs_extent_flags(eb, ei) &
3206                       BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3207                     ptr < end) {
3208                         struct btrfs_extent_inline_ref *iref;
3209                         int type;
3210
3211                         iref = (struct btrfs_extent_inline_ref *)ptr;
3212                         type = btrfs_get_extent_inline_ref_type(eb, iref,
3213                                                         BTRFS_REF_TYPE_BLOCK);
3214                         if (type == BTRFS_REF_TYPE_INVALID)
3215                                 return -EINVAL;
3216                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
3217                                 owner = btrfs_extent_inline_ref_offset(eb, iref);
3218                 }
3219         } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3220                 btrfs_print_v0_err(eb->fs_info);
3221                 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3222                 return -EINVAL;
3223         } else {
3224                 BUG();
3225         }
3226
3227         btrfs_release_path(path);
3228
3229         BUG_ON(level == -1);
3230
3231         block = kmalloc(sizeof(*block), GFP_NOFS);
3232         if (!block)
3233                 return -ENOMEM;
3234
3235         block->bytenr = extent_key->objectid;
3236         block->key.objectid = rc->extent_root->fs_info->nodesize;
3237         block->key.offset = generation;
3238         block->level = level;
3239         block->key_ready = 0;
3240         block->owner = owner;
3241
3242         rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3243         if (rb_node)
3244                 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3245                                     -EEXIST);
3246
3247         return 0;
3248 }
3249
3250 /*
3251  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3252  */
3253 static int __add_tree_block(struct reloc_control *rc,
3254                             u64 bytenr, u32 blocksize,
3255                             struct rb_root *blocks)
3256 {
3257         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3258         struct btrfs_path *path;
3259         struct btrfs_key key;
3260         int ret;
3261         bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3262
3263         if (tree_block_processed(bytenr, rc))
3264                 return 0;
3265
3266         if (rb_simple_search(blocks, bytenr))
3267                 return 0;
3268
3269         path = btrfs_alloc_path();
3270         if (!path)
3271                 return -ENOMEM;
3272 again:
3273         key.objectid = bytenr;
3274         if (skinny) {
3275                 key.type = BTRFS_METADATA_ITEM_KEY;
3276                 key.offset = (u64)-1;
3277         } else {
3278                 key.type = BTRFS_EXTENT_ITEM_KEY;
3279                 key.offset = blocksize;
3280         }
3281
3282         path->search_commit_root = 1;
3283         path->skip_locking = 1;
3284         ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3285         if (ret < 0)
3286                 goto out;
3287
3288         if (ret > 0 && skinny) {
3289                 if (path->slots[0]) {
3290                         path->slots[0]--;
3291                         btrfs_item_key_to_cpu(path->nodes[0], &key,
3292                                               path->slots[0]);
3293                         if (key.objectid == bytenr &&
3294                             (key.type == BTRFS_METADATA_ITEM_KEY ||
3295                              (key.type == BTRFS_EXTENT_ITEM_KEY &&
3296                               key.offset == blocksize)))
3297                                 ret = 0;
3298                 }
3299
3300                 if (ret) {
3301                         skinny = false;
3302                         btrfs_release_path(path);
3303                         goto again;
3304                 }
3305         }
3306         if (ret) {
3307                 ASSERT(ret == 1);
3308                 btrfs_print_leaf(path->nodes[0]);
3309                 btrfs_err(fs_info,
3310              "tree block extent item (%llu) is not found in extent tree",
3311                      bytenr);
3312                 WARN_ON(1);
3313                 ret = -EINVAL;
3314                 goto out;
3315         }
3316
3317         ret = add_tree_block(rc, &key, path, blocks);
3318 out:
3319         btrfs_free_path(path);
3320         return ret;
3321 }
3322
3323 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3324                                     struct btrfs_block_group *block_group,
3325                                     struct inode *inode,
3326                                     u64 ino)
3327 {
3328         struct btrfs_root *root = fs_info->tree_root;
3329         struct btrfs_trans_handle *trans;
3330         int ret = 0;
3331
3332         if (inode)
3333                 goto truncate;
3334
3335         inode = btrfs_iget(fs_info->sb, ino, root);
3336         if (IS_ERR(inode))
3337                 return -ENOENT;
3338
3339 truncate:
3340         ret = btrfs_check_trunc_cache_free_space(fs_info,
3341                                                  &fs_info->global_block_rsv);
3342         if (ret)
3343                 goto out;
3344
3345         trans = btrfs_join_transaction(root);
3346         if (IS_ERR(trans)) {
3347                 ret = PTR_ERR(trans);
3348                 goto out;
3349         }
3350
3351         ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3352
3353         btrfs_end_transaction(trans);
3354         btrfs_btree_balance_dirty(fs_info);
3355 out:
3356         iput(inode);
3357         return ret;
3358 }
3359
3360 /*
3361  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3362  * cache inode, to avoid free space cache data extent blocking data relocation.
3363  */
3364 static int delete_v1_space_cache(struct extent_buffer *leaf,
3365                                  struct btrfs_block_group *block_group,
3366                                  u64 data_bytenr)
3367 {
3368         u64 space_cache_ino;
3369         struct btrfs_file_extent_item *ei;
3370         struct btrfs_key key;
3371         bool found = false;
3372         int i;
3373         int ret;
3374
3375         if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3376                 return 0;
3377
3378         for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3379                 u8 type;
3380
3381                 btrfs_item_key_to_cpu(leaf, &key, i);
3382                 if (key.type != BTRFS_EXTENT_DATA_KEY)
3383                         continue;
3384                 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3385                 type = btrfs_file_extent_type(leaf, ei);
3386
3387                 if ((type == BTRFS_FILE_EXTENT_REG ||
3388                      type == BTRFS_FILE_EXTENT_PREALLOC) &&
3389                     btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3390                         found = true;
3391                         space_cache_ino = key.objectid;
3392                         break;
3393                 }
3394         }
3395         if (!found)
3396                 return -ENOENT;
3397         ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3398                                         space_cache_ino);
3399         return ret;
3400 }
3401
3402 /*
3403  * helper to find all tree blocks that reference a given data extent
3404  */
3405 static noinline_for_stack
3406 int add_data_references(struct reloc_control *rc,
3407                         struct btrfs_key *extent_key,
3408                         struct btrfs_path *path,
3409                         struct rb_root *blocks)
3410 {
3411         struct btrfs_backref_walk_ctx ctx = { 0 };
3412         struct ulist_iterator leaf_uiter;
3413         struct ulist_node *ref_node = NULL;
3414         const u32 blocksize = rc->extent_root->fs_info->nodesize;
3415         int ret = 0;
3416
3417         btrfs_release_path(path);
3418
3419         ctx.bytenr = extent_key->objectid;
3420         ctx.ignore_extent_item_pos = true;
3421         ctx.fs_info = rc->extent_root->fs_info;
3422
3423         ret = btrfs_find_all_leafs(&ctx);
3424         if (ret < 0)
3425                 return ret;
3426
3427         ULIST_ITER_INIT(&leaf_uiter);
3428         while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3429                 struct extent_buffer *eb;
3430
3431                 eb = read_tree_block(ctx.fs_info, ref_node->val, 0, 0, 0, NULL);
3432                 if (IS_ERR(eb)) {
3433                         ret = PTR_ERR(eb);
3434                         break;
3435                 }
3436                 ret = delete_v1_space_cache(eb, rc->block_group,
3437                                             extent_key->objectid);
3438                 free_extent_buffer(eb);
3439                 if (ret < 0)
3440                         break;
3441                 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3442                 if (ret < 0)
3443                         break;
3444         }
3445         if (ret < 0)
3446                 free_block_list(blocks);
3447         ulist_free(ctx.refs);
3448         return ret;
3449 }
3450
3451 /*
3452  * helper to find next unprocessed extent
3453  */
3454 static noinline_for_stack
3455 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3456                      struct btrfs_key *extent_key)
3457 {
3458         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3459         struct btrfs_key key;
3460         struct extent_buffer *leaf;
3461         u64 start, end, last;
3462         int ret;
3463
3464         last = rc->block_group->start + rc->block_group->length;
3465         while (1) {
3466                 cond_resched();
3467                 if (rc->search_start >= last) {
3468                         ret = 1;
3469                         break;
3470                 }
3471
3472                 key.objectid = rc->search_start;
3473                 key.type = BTRFS_EXTENT_ITEM_KEY;
3474                 key.offset = 0;
3475
3476                 path->search_commit_root = 1;
3477                 path->skip_locking = 1;
3478                 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3479                                         0, 0);
3480                 if (ret < 0)
3481                         break;
3482 next:
3483                 leaf = path->nodes[0];
3484                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3485                         ret = btrfs_next_leaf(rc->extent_root, path);
3486                         if (ret != 0)
3487                                 break;
3488                         leaf = path->nodes[0];
3489                 }
3490
3491                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3492                 if (key.objectid >= last) {
3493                         ret = 1;
3494                         break;
3495                 }
3496
3497                 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3498                     key.type != BTRFS_METADATA_ITEM_KEY) {
3499                         path->slots[0]++;
3500                         goto next;
3501                 }
3502
3503                 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3504                     key.objectid + key.offset <= rc->search_start) {
3505                         path->slots[0]++;
3506                         goto next;
3507                 }
3508
3509                 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3510                     key.objectid + fs_info->nodesize <=
3511                     rc->search_start) {
3512                         path->slots[0]++;
3513                         goto next;
3514                 }
3515
3516                 ret = find_first_extent_bit(&rc->processed_blocks,
3517                                             key.objectid, &start, &end,
3518                                             EXTENT_DIRTY, NULL);
3519
3520                 if (ret == 0 && start <= key.objectid) {
3521                         btrfs_release_path(path);
3522                         rc->search_start = end + 1;
3523                 } else {
3524                         if (key.type == BTRFS_EXTENT_ITEM_KEY)
3525                                 rc->search_start = key.objectid + key.offset;
3526                         else
3527                                 rc->search_start = key.objectid +
3528                                         fs_info->nodesize;
3529                         memcpy(extent_key, &key, sizeof(key));
3530                         return 0;
3531                 }
3532         }
3533         btrfs_release_path(path);
3534         return ret;
3535 }
3536
3537 static void set_reloc_control(struct reloc_control *rc)
3538 {
3539         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3540
3541         mutex_lock(&fs_info->reloc_mutex);
3542         fs_info->reloc_ctl = rc;
3543         mutex_unlock(&fs_info->reloc_mutex);
3544 }
3545
3546 static void unset_reloc_control(struct reloc_control *rc)
3547 {
3548         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3549
3550         mutex_lock(&fs_info->reloc_mutex);
3551         fs_info->reloc_ctl = NULL;
3552         mutex_unlock(&fs_info->reloc_mutex);
3553 }
3554
3555 static noinline_for_stack
3556 int prepare_to_relocate(struct reloc_control *rc)
3557 {
3558         struct btrfs_trans_handle *trans;
3559         int ret;
3560
3561         rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3562                                               BTRFS_BLOCK_RSV_TEMP);
3563         if (!rc->block_rsv)
3564                 return -ENOMEM;
3565
3566         memset(&rc->cluster, 0, sizeof(rc->cluster));
3567         rc->search_start = rc->block_group->start;
3568         rc->extents_found = 0;
3569         rc->nodes_relocated = 0;
3570         rc->merging_rsv_size = 0;
3571         rc->reserved_bytes = 0;
3572         rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3573                               RELOCATION_RESERVED_NODES;
3574         ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3575                                      rc->block_rsv, rc->block_rsv->size,
3576                                      BTRFS_RESERVE_FLUSH_ALL);
3577         if (ret)
3578                 return ret;
3579
3580         rc->create_reloc_tree = 1;
3581         set_reloc_control(rc);
3582
3583         trans = btrfs_join_transaction(rc->extent_root);
3584         if (IS_ERR(trans)) {
3585                 unset_reloc_control(rc);
3586                 /*
3587                  * extent tree is not a ref_cow tree and has no reloc_root to
3588                  * cleanup.  And callers are responsible to free the above
3589                  * block rsv.
3590                  */
3591                 return PTR_ERR(trans);
3592         }
3593
3594         ret = btrfs_commit_transaction(trans);
3595         if (ret)
3596                 unset_reloc_control(rc);
3597
3598         return ret;
3599 }
3600
3601 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3602 {
3603         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3604         struct rb_root blocks = RB_ROOT;
3605         struct btrfs_key key;
3606         struct btrfs_trans_handle *trans = NULL;
3607         struct btrfs_path *path;
3608         struct btrfs_extent_item *ei;
3609         u64 flags;
3610         int ret;
3611         int err = 0;
3612         int progress = 0;
3613
3614         path = btrfs_alloc_path();
3615         if (!path)
3616                 return -ENOMEM;
3617         path->reada = READA_FORWARD;
3618
3619         ret = prepare_to_relocate(rc);
3620         if (ret) {
3621                 err = ret;
3622                 goto out_free;
3623         }
3624
3625         while (1) {
3626                 rc->reserved_bytes = 0;
3627                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3628                                              rc->block_rsv->size,
3629                                              BTRFS_RESERVE_FLUSH_ALL);
3630                 if (ret) {
3631                         err = ret;
3632                         break;
3633                 }
3634                 progress++;
3635                 trans = btrfs_start_transaction(rc->extent_root, 0);
3636                 if (IS_ERR(trans)) {
3637                         err = PTR_ERR(trans);
3638                         trans = NULL;
3639                         break;
3640                 }
3641 restart:
3642                 if (update_backref_cache(trans, &rc->backref_cache)) {
3643                         btrfs_end_transaction(trans);
3644                         trans = NULL;
3645                         continue;
3646                 }
3647
3648                 ret = find_next_extent(rc, path, &key);
3649                 if (ret < 0)
3650                         err = ret;
3651                 if (ret != 0)
3652                         break;
3653
3654                 rc->extents_found++;
3655
3656                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3657                                     struct btrfs_extent_item);
3658                 flags = btrfs_extent_flags(path->nodes[0], ei);
3659
3660                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3661                         ret = add_tree_block(rc, &key, path, &blocks);
3662                 } else if (rc->stage == UPDATE_DATA_PTRS &&
3663                            (flags & BTRFS_EXTENT_FLAG_DATA)) {
3664                         ret = add_data_references(rc, &key, path, &blocks);
3665                 } else {
3666                         btrfs_release_path(path);
3667                         ret = 0;
3668                 }
3669                 if (ret < 0) {
3670                         err = ret;
3671                         break;
3672                 }
3673
3674                 if (!RB_EMPTY_ROOT(&blocks)) {
3675                         ret = relocate_tree_blocks(trans, rc, &blocks);
3676                         if (ret < 0) {
3677                                 if (ret != -EAGAIN) {
3678                                         err = ret;
3679                                         break;
3680                                 }
3681                                 rc->extents_found--;
3682                                 rc->search_start = key.objectid;
3683                         }
3684                 }
3685
3686                 btrfs_end_transaction_throttle(trans);
3687                 btrfs_btree_balance_dirty(fs_info);
3688                 trans = NULL;
3689
3690                 if (rc->stage == MOVE_DATA_EXTENTS &&
3691                     (flags & BTRFS_EXTENT_FLAG_DATA)) {
3692                         rc->found_file_extent = 1;
3693                         ret = relocate_data_extent(rc->data_inode,
3694                                                    &key, &rc->cluster);
3695                         if (ret < 0) {
3696                                 err = ret;
3697                                 break;
3698                         }
3699                 }
3700                 if (btrfs_should_cancel_balance(fs_info)) {
3701                         err = -ECANCELED;
3702                         break;
3703                 }
3704         }
3705         if (trans && progress && err == -ENOSPC) {
3706                 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3707                 if (ret == 1) {
3708                         err = 0;
3709                         progress = 0;
3710                         goto restart;
3711                 }
3712         }
3713
3714         btrfs_release_path(path);
3715         clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3716
3717         if (trans) {
3718                 btrfs_end_transaction_throttle(trans);
3719                 btrfs_btree_balance_dirty(fs_info);
3720         }
3721
3722         if (!err) {
3723                 ret = relocate_file_extent_cluster(rc->data_inode,
3724                                                    &rc->cluster);
3725                 if (ret < 0)
3726                         err = ret;
3727         }
3728
3729         rc->create_reloc_tree = 0;
3730         set_reloc_control(rc);
3731
3732         btrfs_backref_release_cache(&rc->backref_cache);
3733         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3734
3735         /*
3736          * Even in the case when the relocation is cancelled, we should all go
3737          * through prepare_to_merge() and merge_reloc_roots().
3738          *
3739          * For error (including cancelled balance), prepare_to_merge() will
3740          * mark all reloc trees orphan, then queue them for cleanup in
3741          * merge_reloc_roots()
3742          */
3743         err = prepare_to_merge(rc, err);
3744
3745         merge_reloc_roots(rc);
3746
3747         rc->merge_reloc_tree = 0;
3748         unset_reloc_control(rc);
3749         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3750
3751         /* get rid of pinned extents */
3752         trans = btrfs_join_transaction(rc->extent_root);
3753         if (IS_ERR(trans)) {
3754                 err = PTR_ERR(trans);
3755                 goto out_free;
3756         }
3757         ret = btrfs_commit_transaction(trans);
3758         if (ret && !err)
3759                 err = ret;
3760 out_free:
3761         ret = clean_dirty_subvols(rc);
3762         if (ret < 0 && !err)
3763                 err = ret;
3764         btrfs_free_block_rsv(fs_info, rc->block_rsv);
3765         btrfs_free_path(path);
3766         return err;
3767 }
3768
3769 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3770                                  struct btrfs_root *root, u64 objectid)
3771 {
3772         struct btrfs_path *path;
3773         struct btrfs_inode_item *item;
3774         struct extent_buffer *leaf;
3775         int ret;
3776
3777         path = btrfs_alloc_path();
3778         if (!path)
3779                 return -ENOMEM;
3780
3781         ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3782         if (ret)
3783                 goto out;
3784
3785         leaf = path->nodes[0];
3786         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3787         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3788         btrfs_set_inode_generation(leaf, item, 1);
3789         btrfs_set_inode_size(leaf, item, 0);
3790         btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3791         btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3792                                           BTRFS_INODE_PREALLOC);
3793         btrfs_mark_buffer_dirty(leaf);
3794 out:
3795         btrfs_free_path(path);
3796         return ret;
3797 }
3798
3799 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3800                                 struct btrfs_root *root, u64 objectid)
3801 {
3802         struct btrfs_path *path;
3803         struct btrfs_key key;
3804         int ret = 0;
3805
3806         path = btrfs_alloc_path();
3807         if (!path) {
3808                 ret = -ENOMEM;
3809                 goto out;
3810         }
3811
3812         key.objectid = objectid;
3813         key.type = BTRFS_INODE_ITEM_KEY;
3814         key.offset = 0;
3815         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3816         if (ret) {
3817                 if (ret > 0)
3818                         ret = -ENOENT;
3819                 goto out;
3820         }
3821         ret = btrfs_del_item(trans, root, path);
3822 out:
3823         if (ret)
3824                 btrfs_abort_transaction(trans, ret);
3825         btrfs_free_path(path);
3826 }
3827
3828 /*
3829  * helper to create inode for data relocation.
3830  * the inode is in data relocation tree and its link count is 0
3831  */
3832 static noinline_for_stack
3833 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3834                                  struct btrfs_block_group *group)
3835 {
3836         struct inode *inode = NULL;
3837         struct btrfs_trans_handle *trans;
3838         struct btrfs_root *root;
3839         u64 objectid;
3840         int err = 0;
3841
3842         root = btrfs_grab_root(fs_info->data_reloc_root);
3843         trans = btrfs_start_transaction(root, 6);
3844         if (IS_ERR(trans)) {
3845                 btrfs_put_root(root);
3846                 return ERR_CAST(trans);
3847         }
3848
3849         err = btrfs_get_free_objectid(root, &objectid);
3850         if (err)
3851                 goto out;
3852
3853         err = __insert_orphan_inode(trans, root, objectid);
3854         if (err)
3855                 goto out;
3856
3857         inode = btrfs_iget(fs_info->sb, objectid, root);
3858         if (IS_ERR(inode)) {
3859                 delete_orphan_inode(trans, root, objectid);
3860                 err = PTR_ERR(inode);
3861                 inode = NULL;
3862                 goto out;
3863         }
3864         BTRFS_I(inode)->index_cnt = group->start;
3865
3866         err = btrfs_orphan_add(trans, BTRFS_I(inode));
3867 out:
3868         btrfs_put_root(root);
3869         btrfs_end_transaction(trans);
3870         btrfs_btree_balance_dirty(fs_info);
3871         if (err) {
3872                 iput(inode);
3873                 inode = ERR_PTR(err);
3874         }
3875         return inode;
3876 }
3877
3878 /*
3879  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3880  * has been requested meanwhile and don't start in that case.
3881  *
3882  * Return:
3883  *   0             success
3884  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3885  *   -ECANCELED    cancellation request was set before the operation started
3886  */
3887 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3888 {
3889         if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3890                 /* This should not happen */
3891                 btrfs_err(fs_info, "reloc already running, cannot start");
3892                 return -EINPROGRESS;
3893         }
3894
3895         if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3896                 btrfs_info(fs_info, "chunk relocation canceled on start");
3897                 /*
3898                  * On cancel, clear all requests but let the caller mark
3899                  * the end after cleanup operations.
3900                  */
3901                 atomic_set(&fs_info->reloc_cancel_req, 0);
3902                 return -ECANCELED;
3903         }
3904         return 0;
3905 }
3906
3907 /*
3908  * Mark end of chunk relocation that is cancellable and wake any waiters.
3909  */
3910 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3911 {
3912         /* Requested after start, clear bit first so any waiters can continue */
3913         if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3914                 btrfs_info(fs_info, "chunk relocation canceled during operation");
3915         clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3916         atomic_set(&fs_info->reloc_cancel_req, 0);
3917 }
3918
3919 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3920 {
3921         struct reloc_control *rc;
3922
3923         rc = kzalloc(sizeof(*rc), GFP_NOFS);
3924         if (!rc)
3925                 return NULL;
3926
3927         INIT_LIST_HEAD(&rc->reloc_roots);
3928         INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3929         btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3930         mapping_tree_init(&rc->reloc_root_tree);
3931         extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3932         return rc;
3933 }
3934
3935 static void free_reloc_control(struct reloc_control *rc)
3936 {
3937         struct mapping_node *node, *tmp;
3938
3939         free_reloc_roots(&rc->reloc_roots);
3940         rbtree_postorder_for_each_entry_safe(node, tmp,
3941                         &rc->reloc_root_tree.rb_root, rb_node)
3942                 kfree(node);
3943
3944         kfree(rc);
3945 }
3946
3947 /*
3948  * Print the block group being relocated
3949  */
3950 static void describe_relocation(struct btrfs_fs_info *fs_info,
3951                                 struct btrfs_block_group *block_group)
3952 {
3953         char buf[128] = {'\0'};
3954
3955         btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3956
3957         btrfs_info(fs_info,
3958                    "relocating block group %llu flags %s",
3959                    block_group->start, buf);
3960 }
3961
3962 static const char *stage_to_string(int stage)
3963 {
3964         if (stage == MOVE_DATA_EXTENTS)
3965                 return "move data extents";
3966         if (stage == UPDATE_DATA_PTRS)
3967                 return "update data pointers";
3968         return "unknown";
3969 }
3970
3971 /*
3972  * function to relocate all extents in a block group.
3973  */
3974 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3975 {
3976         struct btrfs_block_group *bg;
3977         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3978         struct reloc_control *rc;
3979         struct inode *inode;
3980         struct btrfs_path *path;
3981         int ret;
3982         int rw = 0;
3983         int err = 0;
3984
3985         /*
3986          * This only gets set if we had a half-deleted snapshot on mount.  We
3987          * cannot allow relocation to start while we're still trying to clean up
3988          * these pending deletions.
3989          */
3990         ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3991         if (ret)
3992                 return ret;
3993
3994         /* We may have been woken up by close_ctree, so bail if we're closing. */
3995         if (btrfs_fs_closing(fs_info))
3996                 return -EINTR;
3997
3998         bg = btrfs_lookup_block_group(fs_info, group_start);
3999         if (!bg)
4000                 return -ENOENT;
4001
4002         /*
4003          * Relocation of a data block group creates ordered extents.  Without
4004          * sb_start_write(), we can freeze the filesystem while unfinished
4005          * ordered extents are left. Such ordered extents can cause a deadlock
4006          * e.g. when syncfs() is waiting for their completion but they can't
4007          * finish because they block when joining a transaction, due to the
4008          * fact that the freeze locks are being held in write mode.
4009          */
4010         if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4011                 ASSERT(sb_write_started(fs_info->sb));
4012
4013         if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4014                 btrfs_put_block_group(bg);
4015                 return -ETXTBSY;
4016         }
4017
4018         rc = alloc_reloc_control(fs_info);
4019         if (!rc) {
4020                 btrfs_put_block_group(bg);
4021                 return -ENOMEM;
4022         }
4023
4024         ret = reloc_chunk_start(fs_info);
4025         if (ret < 0) {
4026                 err = ret;
4027                 goto out_put_bg;
4028         }
4029
4030         rc->extent_root = extent_root;
4031         rc->block_group = bg;
4032
4033         ret = btrfs_inc_block_group_ro(rc->block_group, true);
4034         if (ret) {
4035                 err = ret;
4036                 goto out;
4037         }
4038         rw = 1;
4039
4040         path = btrfs_alloc_path();
4041         if (!path) {
4042                 err = -ENOMEM;
4043                 goto out;
4044         }
4045
4046         inode = lookup_free_space_inode(rc->block_group, path);
4047         btrfs_free_path(path);
4048
4049         if (!IS_ERR(inode))
4050                 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4051         else
4052                 ret = PTR_ERR(inode);
4053
4054         if (ret && ret != -ENOENT) {
4055                 err = ret;
4056                 goto out;
4057         }
4058
4059         rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4060         if (IS_ERR(rc->data_inode)) {
4061                 err = PTR_ERR(rc->data_inode);
4062                 rc->data_inode = NULL;
4063                 goto out;
4064         }
4065
4066         describe_relocation(fs_info, rc->block_group);
4067
4068         btrfs_wait_block_group_reservations(rc->block_group);
4069         btrfs_wait_nocow_writers(rc->block_group);
4070         btrfs_wait_ordered_roots(fs_info, U64_MAX,
4071                                  rc->block_group->start,
4072                                  rc->block_group->length);
4073
4074         ret = btrfs_zone_finish(rc->block_group);
4075         WARN_ON(ret && ret != -EAGAIN);
4076
4077         while (1) {
4078                 int finishes_stage;
4079
4080                 mutex_lock(&fs_info->cleaner_mutex);
4081                 ret = relocate_block_group(rc);
4082                 mutex_unlock(&fs_info->cleaner_mutex);
4083                 if (ret < 0)
4084                         err = ret;
4085
4086                 finishes_stage = rc->stage;
4087                 /*
4088                  * We may have gotten ENOSPC after we already dirtied some
4089                  * extents.  If writeout happens while we're relocating a
4090                  * different block group we could end up hitting the
4091                  * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4092                  * btrfs_reloc_cow_block.  Make sure we write everything out
4093                  * properly so we don't trip over this problem, and then break
4094                  * out of the loop if we hit an error.
4095                  */
4096                 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4097                         ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4098                                                        (u64)-1);
4099                         if (ret)
4100                                 err = ret;
4101                         invalidate_mapping_pages(rc->data_inode->i_mapping,
4102                                                  0, -1);
4103                         rc->stage = UPDATE_DATA_PTRS;
4104                 }
4105
4106                 if (err < 0)
4107                         goto out;
4108
4109                 if (rc->extents_found == 0)
4110                         break;
4111
4112                 btrfs_info(fs_info, "found %llu extents, stage: %s",
4113                            rc->extents_found, stage_to_string(finishes_stage));
4114         }
4115
4116         WARN_ON(rc->block_group->pinned > 0);
4117         WARN_ON(rc->block_group->reserved > 0);
4118         WARN_ON(rc->block_group->used > 0);
4119 out:
4120         if (err && rw)
4121                 btrfs_dec_block_group_ro(rc->block_group);
4122         iput(rc->data_inode);
4123 out_put_bg:
4124         btrfs_put_block_group(bg);
4125         reloc_chunk_end(fs_info);
4126         free_reloc_control(rc);
4127         return err;
4128 }
4129
4130 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4131 {
4132         struct btrfs_fs_info *fs_info = root->fs_info;
4133         struct btrfs_trans_handle *trans;
4134         int ret, err;
4135
4136         trans = btrfs_start_transaction(fs_info->tree_root, 0);
4137         if (IS_ERR(trans))
4138                 return PTR_ERR(trans);
4139
4140         memset(&root->root_item.drop_progress, 0,
4141                 sizeof(root->root_item.drop_progress));
4142         btrfs_set_root_drop_level(&root->root_item, 0);
4143         btrfs_set_root_refs(&root->root_item, 0);
4144         ret = btrfs_update_root(trans, fs_info->tree_root,
4145                                 &root->root_key, &root->root_item);
4146
4147         err = btrfs_end_transaction(trans);
4148         if (err)
4149                 return err;
4150         return ret;
4151 }
4152
4153 /*
4154  * recover relocation interrupted by system crash.
4155  *
4156  * this function resumes merging reloc trees with corresponding fs trees.
4157  * this is important for keeping the sharing of tree blocks
4158  */
4159 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4160 {
4161         LIST_HEAD(reloc_roots);
4162         struct btrfs_key key;
4163         struct btrfs_root *fs_root;
4164         struct btrfs_root *reloc_root;
4165         struct btrfs_path *path;
4166         struct extent_buffer *leaf;
4167         struct reloc_control *rc = NULL;
4168         struct btrfs_trans_handle *trans;
4169         int ret;
4170         int err = 0;
4171
4172         path = btrfs_alloc_path();
4173         if (!path)
4174                 return -ENOMEM;
4175         path->reada = READA_BACK;
4176
4177         key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4178         key.type = BTRFS_ROOT_ITEM_KEY;
4179         key.offset = (u64)-1;
4180
4181         while (1) {
4182                 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4183                                         path, 0, 0);
4184                 if (ret < 0) {
4185                         err = ret;
4186                         goto out;
4187                 }
4188                 if (ret > 0) {
4189                         if (path->slots[0] == 0)
4190                                 break;
4191                         path->slots[0]--;
4192                 }
4193                 leaf = path->nodes[0];
4194                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4195                 btrfs_release_path(path);
4196
4197                 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4198                     key.type != BTRFS_ROOT_ITEM_KEY)
4199                         break;
4200
4201                 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4202                 if (IS_ERR(reloc_root)) {
4203                         err = PTR_ERR(reloc_root);
4204                         goto out;
4205                 }
4206
4207                 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4208                 list_add(&reloc_root->root_list, &reloc_roots);
4209
4210                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4211                         fs_root = btrfs_get_fs_root(fs_info,
4212                                         reloc_root->root_key.offset, false);
4213                         if (IS_ERR(fs_root)) {
4214                                 ret = PTR_ERR(fs_root);
4215                                 if (ret != -ENOENT) {
4216                                         err = ret;
4217                                         goto out;
4218                                 }
4219                                 ret = mark_garbage_root(reloc_root);
4220                                 if (ret < 0) {
4221                                         err = ret;
4222                                         goto out;
4223                                 }
4224                         } else {
4225                                 btrfs_put_root(fs_root);
4226                         }
4227                 }
4228
4229                 if (key.offset == 0)
4230                         break;
4231
4232                 key.offset--;
4233         }
4234         btrfs_release_path(path);
4235
4236         if (list_empty(&reloc_roots))
4237                 goto out;
4238
4239         rc = alloc_reloc_control(fs_info);
4240         if (!rc) {
4241                 err = -ENOMEM;
4242                 goto out;
4243         }
4244
4245         ret = reloc_chunk_start(fs_info);
4246         if (ret < 0) {
4247                 err = ret;
4248                 goto out_end;
4249         }
4250
4251         rc->extent_root = btrfs_extent_root(fs_info, 0);
4252
4253         set_reloc_control(rc);
4254
4255         trans = btrfs_join_transaction(rc->extent_root);
4256         if (IS_ERR(trans)) {
4257                 err = PTR_ERR(trans);
4258                 goto out_unset;
4259         }
4260
4261         rc->merge_reloc_tree = 1;
4262
4263         while (!list_empty(&reloc_roots)) {
4264                 reloc_root = list_entry(reloc_roots.next,
4265                                         struct btrfs_root, root_list);
4266                 list_del(&reloc_root->root_list);
4267
4268                 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4269                         list_add_tail(&reloc_root->root_list,
4270                                       &rc->reloc_roots);
4271                         continue;
4272                 }
4273
4274                 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4275                                             false);
4276                 if (IS_ERR(fs_root)) {
4277                         err = PTR_ERR(fs_root);
4278                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4279                         btrfs_end_transaction(trans);
4280                         goto out_unset;
4281                 }
4282
4283                 err = __add_reloc_root(reloc_root);
4284                 ASSERT(err != -EEXIST);
4285                 if (err) {
4286                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4287                         btrfs_put_root(fs_root);
4288                         btrfs_end_transaction(trans);
4289                         goto out_unset;
4290                 }
4291                 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4292                 btrfs_put_root(fs_root);
4293         }
4294
4295         err = btrfs_commit_transaction(trans);
4296         if (err)
4297                 goto out_unset;
4298
4299         merge_reloc_roots(rc);
4300
4301         unset_reloc_control(rc);
4302
4303         trans = btrfs_join_transaction(rc->extent_root);
4304         if (IS_ERR(trans)) {
4305                 err = PTR_ERR(trans);
4306                 goto out_clean;
4307         }
4308         err = btrfs_commit_transaction(trans);
4309 out_clean:
4310         ret = clean_dirty_subvols(rc);
4311         if (ret < 0 && !err)
4312                 err = ret;
4313 out_unset:
4314         unset_reloc_control(rc);
4315 out_end:
4316         reloc_chunk_end(fs_info);
4317         free_reloc_control(rc);
4318 out:
4319         free_reloc_roots(&reloc_roots);
4320
4321         btrfs_free_path(path);
4322
4323         if (err == 0) {
4324                 /* cleanup orphan inode in data relocation tree */
4325                 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4326                 ASSERT(fs_root);
4327                 err = btrfs_orphan_cleanup(fs_root);
4328                 btrfs_put_root(fs_root);
4329         }
4330         return err;
4331 }
4332
4333 /*
4334  * helper to add ordered checksum for data relocation.
4335  *
4336  * cloning checksum properly handles the nodatasum extents.
4337  * it also saves CPU time to re-calculate the checksum.
4338  */
4339 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4340 {
4341         struct btrfs_fs_info *fs_info = inode->root->fs_info;
4342         struct btrfs_root *csum_root;
4343         struct btrfs_ordered_sum *sums;
4344         struct btrfs_ordered_extent *ordered;
4345         int ret;
4346         u64 disk_bytenr;
4347         u64 new_bytenr;
4348         LIST_HEAD(list);
4349
4350         ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4351         BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4352
4353         disk_bytenr = file_pos + inode->index_cnt;
4354         csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4355         ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4356                                        disk_bytenr + len - 1, &list, 0, false);
4357         if (ret)
4358                 goto out;
4359
4360         while (!list_empty(&list)) {
4361                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4362                 list_del_init(&sums->list);
4363
4364                 /*
4365                  * We need to offset the new_bytenr based on where the csum is.
4366                  * We need to do this because we will read in entire prealloc
4367                  * extents but we may have written to say the middle of the
4368                  * prealloc extent, so we need to make sure the csum goes with
4369                  * the right disk offset.
4370                  *
4371                  * We can do this because the data reloc inode refers strictly
4372                  * to the on disk bytes, so we don't have to worry about
4373                  * disk_len vs real len like with real inodes since it's all
4374                  * disk length.
4375                  */
4376                 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4377                 sums->bytenr = new_bytenr;
4378
4379                 btrfs_add_ordered_sum(ordered, sums);
4380         }
4381 out:
4382         btrfs_put_ordered_extent(ordered);
4383         return ret;
4384 }
4385
4386 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4387                           struct btrfs_root *root, struct extent_buffer *buf,
4388                           struct extent_buffer *cow)
4389 {
4390         struct btrfs_fs_info *fs_info = root->fs_info;
4391         struct reloc_control *rc;
4392         struct btrfs_backref_node *node;
4393         int first_cow = 0;
4394         int level;
4395         int ret = 0;
4396
4397         rc = fs_info->reloc_ctl;
4398         if (!rc)
4399                 return 0;
4400
4401         BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4402
4403         level = btrfs_header_level(buf);
4404         if (btrfs_header_generation(buf) <=
4405             btrfs_root_last_snapshot(&root->root_item))
4406                 first_cow = 1;
4407
4408         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4409             rc->create_reloc_tree) {
4410                 WARN_ON(!first_cow && level == 0);
4411
4412                 node = rc->backref_cache.path[level];
4413                 BUG_ON(node->bytenr != buf->start &&
4414                        node->new_bytenr != buf->start);
4415
4416                 btrfs_backref_drop_node_buffer(node);
4417                 atomic_inc(&cow->refs);
4418                 node->eb = cow;
4419                 node->new_bytenr = cow->start;
4420
4421                 if (!node->pending) {
4422                         list_move_tail(&node->list,
4423                                        &rc->backref_cache.pending[level]);
4424                         node->pending = 1;
4425                 }
4426
4427                 if (first_cow)
4428                         mark_block_processed(rc, node);
4429
4430                 if (first_cow && level > 0)
4431                         rc->nodes_relocated += buf->len;
4432         }
4433
4434         if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4435                 ret = replace_file_extents(trans, rc, root, cow);
4436         return ret;
4437 }
4438
4439 /*
4440  * called before creating snapshot. it calculates metadata reservation
4441  * required for relocating tree blocks in the snapshot
4442  */
4443 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4444                               u64 *bytes_to_reserve)
4445 {
4446         struct btrfs_root *root = pending->root;
4447         struct reloc_control *rc = root->fs_info->reloc_ctl;
4448
4449         if (!rc || !have_reloc_root(root))
4450                 return;
4451
4452         if (!rc->merge_reloc_tree)
4453                 return;
4454
4455         root = root->reloc_root;
4456         BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4457         /*
4458          * relocation is in the stage of merging trees. the space
4459          * used by merging a reloc tree is twice the size of
4460          * relocated tree nodes in the worst case. half for cowing
4461          * the reloc tree, half for cowing the fs tree. the space
4462          * used by cowing the reloc tree will be freed after the
4463          * tree is dropped. if we create snapshot, cowing the fs
4464          * tree may use more space than it frees. so we need
4465          * reserve extra space.
4466          */
4467         *bytes_to_reserve += rc->nodes_relocated;
4468 }
4469
4470 /*
4471  * called after snapshot is created. migrate block reservation
4472  * and create reloc root for the newly created snapshot
4473  *
4474  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4475  * references held on the reloc_root, one for root->reloc_root and one for
4476  * rc->reloc_roots.
4477  */
4478 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4479                                struct btrfs_pending_snapshot *pending)
4480 {
4481         struct btrfs_root *root = pending->root;
4482         struct btrfs_root *reloc_root;
4483         struct btrfs_root *new_root;
4484         struct reloc_control *rc = root->fs_info->reloc_ctl;
4485         int ret;
4486
4487         if (!rc || !have_reloc_root(root))
4488                 return 0;
4489
4490         rc = root->fs_info->reloc_ctl;
4491         rc->merging_rsv_size += rc->nodes_relocated;
4492
4493         if (rc->merge_reloc_tree) {
4494                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4495                                               rc->block_rsv,
4496                                               rc->nodes_relocated, true);
4497                 if (ret)
4498                         return ret;
4499         }
4500
4501         new_root = pending->snap;
4502         reloc_root = create_reloc_root(trans, root->reloc_root,
4503                                        new_root->root_key.objectid);
4504         if (IS_ERR(reloc_root))
4505                 return PTR_ERR(reloc_root);
4506
4507         ret = __add_reloc_root(reloc_root);
4508         ASSERT(ret != -EEXIST);
4509         if (ret) {
4510                 /* Pairs with create_reloc_root */
4511                 btrfs_put_root(reloc_root);
4512                 return ret;
4513         }
4514         new_root->reloc_root = btrfs_grab_root(reloc_root);
4515
4516         if (rc->create_reloc_tree)
4517                 ret = clone_backref_node(trans, rc, root, reloc_root);
4518         return ret;
4519 }