Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf-next
[linux-2.6-microblaze.git] / fs / btrfs / relocation.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27
28 /*
29  * Relocation overview
30  *
31  * [What does relocation do]
32  *
33  * The objective of relocation is to relocate all extents of the target block
34  * group to other block groups.
35  * This is utilized by resize (shrink only), profile converting, compacting
36  * space, or balance routine to spread chunks over devices.
37  *
38  *              Before          |               After
39  * ------------------------------------------------------------------
40  *  BG A: 10 data extents       | BG A: deleted
41  *  BG B:  2 data extents       | BG B: 10 data extents (2 old + 8 relocated)
42  *  BG C:  1 extents            | BG C:  3 data extents (1 old + 2 relocated)
43  *
44  * [How does relocation work]
45  *
46  * 1.   Mark the target block group read-only
47  *      New extents won't be allocated from the target block group.
48  *
49  * 2.1  Record each extent in the target block group
50  *      To build a proper map of extents to be relocated.
51  *
52  * 2.2  Build data reloc tree and reloc trees
53  *      Data reloc tree will contain an inode, recording all newly relocated
54  *      data extents.
55  *      There will be only one data reloc tree for one data block group.
56  *
57  *      Reloc tree will be a special snapshot of its source tree, containing
58  *      relocated tree blocks.
59  *      Each tree referring to a tree block in target block group will get its
60  *      reloc tree built.
61  *
62  * 2.3  Swap source tree with its corresponding reloc tree
63  *      Each involved tree only refers to new extents after swap.
64  *
65  * 3.   Cleanup reloc trees and data reloc tree.
66  *      As old extents in the target block group are still referenced by reloc
67  *      trees, we need to clean them up before really freeing the target block
68  *      group.
69  *
70  * The main complexity is in steps 2.2 and 2.3.
71  *
72  * The entry point of relocation is relocate_block_group() function.
73  */
74
75 #define RELOCATION_RESERVED_NODES       256
76 /*
77  * map address of tree root to tree
78  */
79 struct mapping_node {
80         struct {
81                 struct rb_node rb_node;
82                 u64 bytenr;
83         }; /* Use rb_simle_node for search/insert */
84         void *data;
85 };
86
87 struct mapping_tree {
88         struct rb_root rb_root;
89         spinlock_t lock;
90 };
91
92 /*
93  * present a tree block to process
94  */
95 struct tree_block {
96         struct {
97                 struct rb_node rb_node;
98                 u64 bytenr;
99         }; /* Use rb_simple_node for search/insert */
100         u64 owner;
101         struct btrfs_key key;
102         unsigned int level:8;
103         unsigned int key_ready:1;
104 };
105
106 #define MAX_EXTENTS 128
107
108 struct file_extent_cluster {
109         u64 start;
110         u64 end;
111         u64 boundary[MAX_EXTENTS];
112         unsigned int nr;
113 };
114
115 struct reloc_control {
116         /* block group to relocate */
117         struct btrfs_block_group *block_group;
118         /* extent tree */
119         struct btrfs_root *extent_root;
120         /* inode for moving data */
121         struct inode *data_inode;
122
123         struct btrfs_block_rsv *block_rsv;
124
125         struct btrfs_backref_cache backref_cache;
126
127         struct file_extent_cluster cluster;
128         /* tree blocks have been processed */
129         struct extent_io_tree processed_blocks;
130         /* map start of tree root to corresponding reloc tree */
131         struct mapping_tree reloc_root_tree;
132         /* list of reloc trees */
133         struct list_head reloc_roots;
134         /* list of subvolume trees that get relocated */
135         struct list_head dirty_subvol_roots;
136         /* size of metadata reservation for merging reloc trees */
137         u64 merging_rsv_size;
138         /* size of relocated tree nodes */
139         u64 nodes_relocated;
140         /* reserved size for block group relocation*/
141         u64 reserved_bytes;
142
143         u64 search_start;
144         u64 extents_found;
145
146         unsigned int stage:8;
147         unsigned int create_reloc_tree:1;
148         unsigned int merge_reloc_tree:1;
149         unsigned int found_file_extent:1;
150 };
151
152 /* stages of data relocation */
153 #define MOVE_DATA_EXTENTS       0
154 #define UPDATE_DATA_PTRS        1
155
156 static void mark_block_processed(struct reloc_control *rc,
157                                  struct btrfs_backref_node *node)
158 {
159         u32 blocksize;
160
161         if (node->level == 0 ||
162             in_range(node->bytenr, rc->block_group->start,
163                      rc->block_group->length)) {
164                 blocksize = rc->extent_root->fs_info->nodesize;
165                 set_extent_bits(&rc->processed_blocks, node->bytenr,
166                                 node->bytenr + blocksize - 1, EXTENT_DIRTY);
167         }
168         node->processed = 1;
169 }
170
171
172 static void mapping_tree_init(struct mapping_tree *tree)
173 {
174         tree->rb_root = RB_ROOT;
175         spin_lock_init(&tree->lock);
176 }
177
178 /*
179  * walk up backref nodes until reach node presents tree root
180  */
181 static struct btrfs_backref_node *walk_up_backref(
182                 struct btrfs_backref_node *node,
183                 struct btrfs_backref_edge *edges[], int *index)
184 {
185         struct btrfs_backref_edge *edge;
186         int idx = *index;
187
188         while (!list_empty(&node->upper)) {
189                 edge = list_entry(node->upper.next,
190                                   struct btrfs_backref_edge, list[LOWER]);
191                 edges[idx++] = edge;
192                 node = edge->node[UPPER];
193         }
194         BUG_ON(node->detached);
195         *index = idx;
196         return node;
197 }
198
199 /*
200  * walk down backref nodes to find start of next reference path
201  */
202 static struct btrfs_backref_node *walk_down_backref(
203                 struct btrfs_backref_edge *edges[], int *index)
204 {
205         struct btrfs_backref_edge *edge;
206         struct btrfs_backref_node *lower;
207         int idx = *index;
208
209         while (idx > 0) {
210                 edge = edges[idx - 1];
211                 lower = edge->node[LOWER];
212                 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
213                         idx--;
214                         continue;
215                 }
216                 edge = list_entry(edge->list[LOWER].next,
217                                   struct btrfs_backref_edge, list[LOWER]);
218                 edges[idx - 1] = edge;
219                 *index = idx;
220                 return edge->node[UPPER];
221         }
222         *index = 0;
223         return NULL;
224 }
225
226 static void update_backref_node(struct btrfs_backref_cache *cache,
227                                 struct btrfs_backref_node *node, u64 bytenr)
228 {
229         struct rb_node *rb_node;
230         rb_erase(&node->rb_node, &cache->rb_root);
231         node->bytenr = bytenr;
232         rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
233         if (rb_node)
234                 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
235 }
236
237 /*
238  * update backref cache after a transaction commit
239  */
240 static int update_backref_cache(struct btrfs_trans_handle *trans,
241                                 struct btrfs_backref_cache *cache)
242 {
243         struct btrfs_backref_node *node;
244         int level = 0;
245
246         if (cache->last_trans == 0) {
247                 cache->last_trans = trans->transid;
248                 return 0;
249         }
250
251         if (cache->last_trans == trans->transid)
252                 return 0;
253
254         /*
255          * detached nodes are used to avoid unnecessary backref
256          * lookup. transaction commit changes the extent tree.
257          * so the detached nodes are no longer useful.
258          */
259         while (!list_empty(&cache->detached)) {
260                 node = list_entry(cache->detached.next,
261                                   struct btrfs_backref_node, list);
262                 btrfs_backref_cleanup_node(cache, node);
263         }
264
265         while (!list_empty(&cache->changed)) {
266                 node = list_entry(cache->changed.next,
267                                   struct btrfs_backref_node, list);
268                 list_del_init(&node->list);
269                 BUG_ON(node->pending);
270                 update_backref_node(cache, node, node->new_bytenr);
271         }
272
273         /*
274          * some nodes can be left in the pending list if there were
275          * errors during processing the pending nodes.
276          */
277         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
278                 list_for_each_entry(node, &cache->pending[level], list) {
279                         BUG_ON(!node->pending);
280                         if (node->bytenr == node->new_bytenr)
281                                 continue;
282                         update_backref_node(cache, node, node->new_bytenr);
283                 }
284         }
285
286         cache->last_trans = 0;
287         return 1;
288 }
289
290 static bool reloc_root_is_dead(struct btrfs_root *root)
291 {
292         /*
293          * Pair with set_bit/clear_bit in clean_dirty_subvols and
294          * btrfs_update_reloc_root. We need to see the updated bit before
295          * trying to access reloc_root
296          */
297         smp_rmb();
298         if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
299                 return true;
300         return false;
301 }
302
303 /*
304  * Check if this subvolume tree has valid reloc tree.
305  *
306  * Reloc tree after swap is considered dead, thus not considered as valid.
307  * This is enough for most callers, as they don't distinguish dead reloc root
308  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
309  * special case.
310  */
311 static bool have_reloc_root(struct btrfs_root *root)
312 {
313         if (reloc_root_is_dead(root))
314                 return false;
315         if (!root->reloc_root)
316                 return false;
317         return true;
318 }
319
320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
321 {
322         struct btrfs_root *reloc_root;
323
324         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
325                 return 0;
326
327         /* This root has been merged with its reloc tree, we can ignore it */
328         if (reloc_root_is_dead(root))
329                 return 1;
330
331         reloc_root = root->reloc_root;
332         if (!reloc_root)
333                 return 0;
334
335         if (btrfs_header_generation(reloc_root->commit_root) ==
336             root->fs_info->running_transaction->transid)
337                 return 0;
338         /*
339          * if there is reloc tree and it was created in previous
340          * transaction backref lookup can find the reloc tree,
341          * so backref node for the fs tree root is useless for
342          * relocation.
343          */
344         return 1;
345 }
346
347 /*
348  * find reloc tree by address of tree root
349  */
350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
351 {
352         struct reloc_control *rc = fs_info->reloc_ctl;
353         struct rb_node *rb_node;
354         struct mapping_node *node;
355         struct btrfs_root *root = NULL;
356
357         ASSERT(rc);
358         spin_lock(&rc->reloc_root_tree.lock);
359         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
360         if (rb_node) {
361                 node = rb_entry(rb_node, struct mapping_node, rb_node);
362                 root = (struct btrfs_root *)node->data;
363         }
364         spin_unlock(&rc->reloc_root_tree.lock);
365         return btrfs_grab_root(root);
366 }
367
368 /*
369  * For useless nodes, do two major clean ups:
370  *
371  * - Cleanup the children edges and nodes
372  *   If child node is also orphan (no parent) during cleanup, then the child
373  *   node will also be cleaned up.
374  *
375  * - Freeing up leaves (level 0), keeps nodes detached
376  *   For nodes, the node is still cached as "detached"
377  *
378  * Return false if @node is not in the @useless_nodes list.
379  * Return true if @node is in the @useless_nodes list.
380  */
381 static bool handle_useless_nodes(struct reloc_control *rc,
382                                  struct btrfs_backref_node *node)
383 {
384         struct btrfs_backref_cache *cache = &rc->backref_cache;
385         struct list_head *useless_node = &cache->useless_node;
386         bool ret = false;
387
388         while (!list_empty(useless_node)) {
389                 struct btrfs_backref_node *cur;
390
391                 cur = list_first_entry(useless_node, struct btrfs_backref_node,
392                                  list);
393                 list_del_init(&cur->list);
394
395                 /* Only tree root nodes can be added to @useless_nodes */
396                 ASSERT(list_empty(&cur->upper));
397
398                 if (cur == node)
399                         ret = true;
400
401                 /* The node is the lowest node */
402                 if (cur->lowest) {
403                         list_del_init(&cur->lower);
404                         cur->lowest = 0;
405                 }
406
407                 /* Cleanup the lower edges */
408                 while (!list_empty(&cur->lower)) {
409                         struct btrfs_backref_edge *edge;
410                         struct btrfs_backref_node *lower;
411
412                         edge = list_entry(cur->lower.next,
413                                         struct btrfs_backref_edge, list[UPPER]);
414                         list_del(&edge->list[UPPER]);
415                         list_del(&edge->list[LOWER]);
416                         lower = edge->node[LOWER];
417                         btrfs_backref_free_edge(cache, edge);
418
419                         /* Child node is also orphan, queue for cleanup */
420                         if (list_empty(&lower->upper))
421                                 list_add(&lower->list, useless_node);
422                 }
423                 /* Mark this block processed for relocation */
424                 mark_block_processed(rc, cur);
425
426                 /*
427                  * Backref nodes for tree leaves are deleted from the cache.
428                  * Backref nodes for upper level tree blocks are left in the
429                  * cache to avoid unnecessary backref lookup.
430                  */
431                 if (cur->level > 0) {
432                         list_add(&cur->list, &cache->detached);
433                         cur->detached = 1;
434                 } else {
435                         rb_erase(&cur->rb_node, &cache->rb_root);
436                         btrfs_backref_free_node(cache, cur);
437                 }
438         }
439         return ret;
440 }
441
442 /*
443  * Build backref tree for a given tree block. Root of the backref tree
444  * corresponds the tree block, leaves of the backref tree correspond roots of
445  * b-trees that reference the tree block.
446  *
447  * The basic idea of this function is check backrefs of a given block to find
448  * upper level blocks that reference the block, and then check backrefs of
449  * these upper level blocks recursively. The recursion stops when tree root is
450  * reached or backrefs for the block is cached.
451  *
452  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
453  * all upper level blocks that directly/indirectly reference the block are also
454  * cached.
455  */
456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
457                         struct reloc_control *rc, struct btrfs_key *node_key,
458                         int level, u64 bytenr)
459 {
460         struct btrfs_backref_iter *iter;
461         struct btrfs_backref_cache *cache = &rc->backref_cache;
462         /* For searching parent of TREE_BLOCK_REF */
463         struct btrfs_path *path;
464         struct btrfs_backref_node *cur;
465         struct btrfs_backref_node *node = NULL;
466         struct btrfs_backref_edge *edge;
467         int ret;
468         int err = 0;
469
470         iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
471         if (!iter)
472                 return ERR_PTR(-ENOMEM);
473         path = btrfs_alloc_path();
474         if (!path) {
475                 err = -ENOMEM;
476                 goto out;
477         }
478
479         node = btrfs_backref_alloc_node(cache, bytenr, level);
480         if (!node) {
481                 err = -ENOMEM;
482                 goto out;
483         }
484
485         node->lowest = 1;
486         cur = node;
487
488         /* Breadth-first search to build backref cache */
489         do {
490                 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
491                                                   cur);
492                 if (ret < 0) {
493                         err = ret;
494                         goto out;
495                 }
496                 edge = list_first_entry_or_null(&cache->pending_edge,
497                                 struct btrfs_backref_edge, list[UPPER]);
498                 /*
499                  * The pending list isn't empty, take the first block to
500                  * process
501                  */
502                 if (edge) {
503                         list_del_init(&edge->list[UPPER]);
504                         cur = edge->node[UPPER];
505                 }
506         } while (edge);
507
508         /* Finish the upper linkage of newly added edges/nodes */
509         ret = btrfs_backref_finish_upper_links(cache, node);
510         if (ret < 0) {
511                 err = ret;
512                 goto out;
513         }
514
515         if (handle_useless_nodes(rc, node))
516                 node = NULL;
517 out:
518         btrfs_backref_iter_free(iter);
519         btrfs_free_path(path);
520         if (err) {
521                 btrfs_backref_error_cleanup(cache, node);
522                 return ERR_PTR(err);
523         }
524         ASSERT(!node || !node->detached);
525         ASSERT(list_empty(&cache->useless_node) &&
526                list_empty(&cache->pending_edge));
527         return node;
528 }
529
530 /*
531  * helper to add backref node for the newly created snapshot.
532  * the backref node is created by cloning backref node that
533  * corresponds to root of source tree
534  */
535 static int clone_backref_node(struct btrfs_trans_handle *trans,
536                               struct reloc_control *rc,
537                               struct btrfs_root *src,
538                               struct btrfs_root *dest)
539 {
540         struct btrfs_root *reloc_root = src->reloc_root;
541         struct btrfs_backref_cache *cache = &rc->backref_cache;
542         struct btrfs_backref_node *node = NULL;
543         struct btrfs_backref_node *new_node;
544         struct btrfs_backref_edge *edge;
545         struct btrfs_backref_edge *new_edge;
546         struct rb_node *rb_node;
547
548         if (cache->last_trans > 0)
549                 update_backref_cache(trans, cache);
550
551         rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
552         if (rb_node) {
553                 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
554                 if (node->detached)
555                         node = NULL;
556                 else
557                         BUG_ON(node->new_bytenr != reloc_root->node->start);
558         }
559
560         if (!node) {
561                 rb_node = rb_simple_search(&cache->rb_root,
562                                            reloc_root->commit_root->start);
563                 if (rb_node) {
564                         node = rb_entry(rb_node, struct btrfs_backref_node,
565                                         rb_node);
566                         BUG_ON(node->detached);
567                 }
568         }
569
570         if (!node)
571                 return 0;
572
573         new_node = btrfs_backref_alloc_node(cache, dest->node->start,
574                                             node->level);
575         if (!new_node)
576                 return -ENOMEM;
577
578         new_node->lowest = node->lowest;
579         new_node->checked = 1;
580         new_node->root = btrfs_grab_root(dest);
581         ASSERT(new_node->root);
582
583         if (!node->lowest) {
584                 list_for_each_entry(edge, &node->lower, list[UPPER]) {
585                         new_edge = btrfs_backref_alloc_edge(cache);
586                         if (!new_edge)
587                                 goto fail;
588
589                         btrfs_backref_link_edge(new_edge, edge->node[LOWER],
590                                                 new_node, LINK_UPPER);
591                 }
592         } else {
593                 list_add_tail(&new_node->lower, &cache->leaves);
594         }
595
596         rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
597                                    &new_node->rb_node);
598         if (rb_node)
599                 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
600
601         if (!new_node->lowest) {
602                 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
603                         list_add_tail(&new_edge->list[LOWER],
604                                       &new_edge->node[LOWER]->upper);
605                 }
606         }
607         return 0;
608 fail:
609         while (!list_empty(&new_node->lower)) {
610                 new_edge = list_entry(new_node->lower.next,
611                                       struct btrfs_backref_edge, list[UPPER]);
612                 list_del(&new_edge->list[UPPER]);
613                 btrfs_backref_free_edge(cache, new_edge);
614         }
615         btrfs_backref_free_node(cache, new_node);
616         return -ENOMEM;
617 }
618
619 /*
620  * helper to add 'address of tree root -> reloc tree' mapping
621  */
622 static int __must_check __add_reloc_root(struct btrfs_root *root)
623 {
624         struct btrfs_fs_info *fs_info = root->fs_info;
625         struct rb_node *rb_node;
626         struct mapping_node *node;
627         struct reloc_control *rc = fs_info->reloc_ctl;
628
629         node = kmalloc(sizeof(*node), GFP_NOFS);
630         if (!node)
631                 return -ENOMEM;
632
633         node->bytenr = root->commit_root->start;
634         node->data = root;
635
636         spin_lock(&rc->reloc_root_tree.lock);
637         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
638                                    node->bytenr, &node->rb_node);
639         spin_unlock(&rc->reloc_root_tree.lock);
640         if (rb_node) {
641                 btrfs_err(fs_info,
642                             "Duplicate root found for start=%llu while inserting into relocation tree",
643                             node->bytenr);
644                 return -EEXIST;
645         }
646
647         list_add_tail(&root->root_list, &rc->reloc_roots);
648         return 0;
649 }
650
651 /*
652  * helper to delete the 'address of tree root -> reloc tree'
653  * mapping
654  */
655 static void __del_reloc_root(struct btrfs_root *root)
656 {
657         struct btrfs_fs_info *fs_info = root->fs_info;
658         struct rb_node *rb_node;
659         struct mapping_node *node = NULL;
660         struct reloc_control *rc = fs_info->reloc_ctl;
661         bool put_ref = false;
662
663         if (rc && root->node) {
664                 spin_lock(&rc->reloc_root_tree.lock);
665                 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
666                                            root->commit_root->start);
667                 if (rb_node) {
668                         node = rb_entry(rb_node, struct mapping_node, rb_node);
669                         rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
670                         RB_CLEAR_NODE(&node->rb_node);
671                 }
672                 spin_unlock(&rc->reloc_root_tree.lock);
673                 ASSERT(!node || (struct btrfs_root *)node->data == root);
674         }
675
676         /*
677          * We only put the reloc root here if it's on the list.  There's a lot
678          * of places where the pattern is to splice the rc->reloc_roots, process
679          * the reloc roots, and then add the reloc root back onto
680          * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
681          * list we don't want the reference being dropped, because the guy
682          * messing with the list is in charge of the reference.
683          */
684         spin_lock(&fs_info->trans_lock);
685         if (!list_empty(&root->root_list)) {
686                 put_ref = true;
687                 list_del_init(&root->root_list);
688         }
689         spin_unlock(&fs_info->trans_lock);
690         if (put_ref)
691                 btrfs_put_root(root);
692         kfree(node);
693 }
694
695 /*
696  * helper to update the 'address of tree root -> reloc tree'
697  * mapping
698  */
699 static int __update_reloc_root(struct btrfs_root *root)
700 {
701         struct btrfs_fs_info *fs_info = root->fs_info;
702         struct rb_node *rb_node;
703         struct mapping_node *node = NULL;
704         struct reloc_control *rc = fs_info->reloc_ctl;
705
706         spin_lock(&rc->reloc_root_tree.lock);
707         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
708                                    root->commit_root->start);
709         if (rb_node) {
710                 node = rb_entry(rb_node, struct mapping_node, rb_node);
711                 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
712         }
713         spin_unlock(&rc->reloc_root_tree.lock);
714
715         if (!node)
716                 return 0;
717         BUG_ON((struct btrfs_root *)node->data != root);
718
719         spin_lock(&rc->reloc_root_tree.lock);
720         node->bytenr = root->node->start;
721         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
722                                    node->bytenr, &node->rb_node);
723         spin_unlock(&rc->reloc_root_tree.lock);
724         if (rb_node)
725                 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
726         return 0;
727 }
728
729 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
730                                         struct btrfs_root *root, u64 objectid)
731 {
732         struct btrfs_fs_info *fs_info = root->fs_info;
733         struct btrfs_root *reloc_root;
734         struct extent_buffer *eb;
735         struct btrfs_root_item *root_item;
736         struct btrfs_key root_key;
737         int ret = 0;
738         bool must_abort = false;
739
740         root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
741         if (!root_item)
742                 return ERR_PTR(-ENOMEM);
743
744         root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
745         root_key.type = BTRFS_ROOT_ITEM_KEY;
746         root_key.offset = objectid;
747
748         if (root->root_key.objectid == objectid) {
749                 u64 commit_root_gen;
750
751                 /* called by btrfs_init_reloc_root */
752                 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
753                                       BTRFS_TREE_RELOC_OBJECTID);
754                 if (ret)
755                         goto fail;
756
757                 /*
758                  * Set the last_snapshot field to the generation of the commit
759                  * root - like this ctree.c:btrfs_block_can_be_shared() behaves
760                  * correctly (returns true) when the relocation root is created
761                  * either inside the critical section of a transaction commit
762                  * (through transaction.c:qgroup_account_snapshot()) and when
763                  * it's created before the transaction commit is started.
764                  */
765                 commit_root_gen = btrfs_header_generation(root->commit_root);
766                 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
767         } else {
768                 /*
769                  * called by btrfs_reloc_post_snapshot_hook.
770                  * the source tree is a reloc tree, all tree blocks
771                  * modified after it was created have RELOC flag
772                  * set in their headers. so it's OK to not update
773                  * the 'last_snapshot'.
774                  */
775                 ret = btrfs_copy_root(trans, root, root->node, &eb,
776                                       BTRFS_TREE_RELOC_OBJECTID);
777                 if (ret)
778                         goto fail;
779         }
780
781         /*
782          * We have changed references at this point, we must abort the
783          * transaction if anything fails.
784          */
785         must_abort = true;
786
787         memcpy(root_item, &root->root_item, sizeof(*root_item));
788         btrfs_set_root_bytenr(root_item, eb->start);
789         btrfs_set_root_level(root_item, btrfs_header_level(eb));
790         btrfs_set_root_generation(root_item, trans->transid);
791
792         if (root->root_key.objectid == objectid) {
793                 btrfs_set_root_refs(root_item, 0);
794                 memset(&root_item->drop_progress, 0,
795                        sizeof(struct btrfs_disk_key));
796                 btrfs_set_root_drop_level(root_item, 0);
797         }
798
799         btrfs_tree_unlock(eb);
800         free_extent_buffer(eb);
801
802         ret = btrfs_insert_root(trans, fs_info->tree_root,
803                                 &root_key, root_item);
804         if (ret)
805                 goto fail;
806
807         kfree(root_item);
808
809         reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
810         if (IS_ERR(reloc_root)) {
811                 ret = PTR_ERR(reloc_root);
812                 goto abort;
813         }
814         set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
815         reloc_root->last_trans = trans->transid;
816         return reloc_root;
817 fail:
818         kfree(root_item);
819 abort:
820         if (must_abort)
821                 btrfs_abort_transaction(trans, ret);
822         return ERR_PTR(ret);
823 }
824
825 /*
826  * create reloc tree for a given fs tree. reloc tree is just a
827  * snapshot of the fs tree with special root objectid.
828  *
829  * The reloc_root comes out of here with two references, one for
830  * root->reloc_root, and another for being on the rc->reloc_roots list.
831  */
832 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
833                           struct btrfs_root *root)
834 {
835         struct btrfs_fs_info *fs_info = root->fs_info;
836         struct btrfs_root *reloc_root;
837         struct reloc_control *rc = fs_info->reloc_ctl;
838         struct btrfs_block_rsv *rsv;
839         int clear_rsv = 0;
840         int ret;
841
842         if (!rc)
843                 return 0;
844
845         /*
846          * The subvolume has reloc tree but the swap is finished, no need to
847          * create/update the dead reloc tree
848          */
849         if (reloc_root_is_dead(root))
850                 return 0;
851
852         /*
853          * This is subtle but important.  We do not do
854          * record_root_in_transaction for reloc roots, instead we record their
855          * corresponding fs root, and then here we update the last trans for the
856          * reloc root.  This means that we have to do this for the entire life
857          * of the reloc root, regardless of which stage of the relocation we are
858          * in.
859          */
860         if (root->reloc_root) {
861                 reloc_root = root->reloc_root;
862                 reloc_root->last_trans = trans->transid;
863                 return 0;
864         }
865
866         /*
867          * We are merging reloc roots, we do not need new reloc trees.  Also
868          * reloc trees never need their own reloc tree.
869          */
870         if (!rc->create_reloc_tree ||
871             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
872                 return 0;
873
874         if (!trans->reloc_reserved) {
875                 rsv = trans->block_rsv;
876                 trans->block_rsv = rc->block_rsv;
877                 clear_rsv = 1;
878         }
879         reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
880         if (clear_rsv)
881                 trans->block_rsv = rsv;
882         if (IS_ERR(reloc_root))
883                 return PTR_ERR(reloc_root);
884
885         ret = __add_reloc_root(reloc_root);
886         ASSERT(ret != -EEXIST);
887         if (ret) {
888                 /* Pairs with create_reloc_root */
889                 btrfs_put_root(reloc_root);
890                 return ret;
891         }
892         root->reloc_root = btrfs_grab_root(reloc_root);
893         return 0;
894 }
895
896 /*
897  * update root item of reloc tree
898  */
899 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
900                             struct btrfs_root *root)
901 {
902         struct btrfs_fs_info *fs_info = root->fs_info;
903         struct btrfs_root *reloc_root;
904         struct btrfs_root_item *root_item;
905         int ret;
906
907         if (!have_reloc_root(root))
908                 return 0;
909
910         reloc_root = root->reloc_root;
911         root_item = &reloc_root->root_item;
912
913         /*
914          * We are probably ok here, but __del_reloc_root() will drop its ref of
915          * the root.  We have the ref for root->reloc_root, but just in case
916          * hold it while we update the reloc root.
917          */
918         btrfs_grab_root(reloc_root);
919
920         /* root->reloc_root will stay until current relocation finished */
921         if (fs_info->reloc_ctl->merge_reloc_tree &&
922             btrfs_root_refs(root_item) == 0) {
923                 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
924                 /*
925                  * Mark the tree as dead before we change reloc_root so
926                  * have_reloc_root will not touch it from now on.
927                  */
928                 smp_wmb();
929                 __del_reloc_root(reloc_root);
930         }
931
932         if (reloc_root->commit_root != reloc_root->node) {
933                 __update_reloc_root(reloc_root);
934                 btrfs_set_root_node(root_item, reloc_root->node);
935                 free_extent_buffer(reloc_root->commit_root);
936                 reloc_root->commit_root = btrfs_root_node(reloc_root);
937         }
938
939         ret = btrfs_update_root(trans, fs_info->tree_root,
940                                 &reloc_root->root_key, root_item);
941         btrfs_put_root(reloc_root);
942         return ret;
943 }
944
945 /*
946  * helper to find first cached inode with inode number >= objectid
947  * in a subvolume
948  */
949 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
950 {
951         struct rb_node *node;
952         struct rb_node *prev;
953         struct btrfs_inode *entry;
954         struct inode *inode;
955
956         spin_lock(&root->inode_lock);
957 again:
958         node = root->inode_tree.rb_node;
959         prev = NULL;
960         while (node) {
961                 prev = node;
962                 entry = rb_entry(node, struct btrfs_inode, rb_node);
963
964                 if (objectid < btrfs_ino(entry))
965                         node = node->rb_left;
966                 else if (objectid > btrfs_ino(entry))
967                         node = node->rb_right;
968                 else
969                         break;
970         }
971         if (!node) {
972                 while (prev) {
973                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
974                         if (objectid <= btrfs_ino(entry)) {
975                                 node = prev;
976                                 break;
977                         }
978                         prev = rb_next(prev);
979                 }
980         }
981         while (node) {
982                 entry = rb_entry(node, struct btrfs_inode, rb_node);
983                 inode = igrab(&entry->vfs_inode);
984                 if (inode) {
985                         spin_unlock(&root->inode_lock);
986                         return inode;
987                 }
988
989                 objectid = btrfs_ino(entry) + 1;
990                 if (cond_resched_lock(&root->inode_lock))
991                         goto again;
992
993                 node = rb_next(node);
994         }
995         spin_unlock(&root->inode_lock);
996         return NULL;
997 }
998
999 /*
1000  * get new location of data
1001  */
1002 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1003                             u64 bytenr, u64 num_bytes)
1004 {
1005         struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1006         struct btrfs_path *path;
1007         struct btrfs_file_extent_item *fi;
1008         struct extent_buffer *leaf;
1009         int ret;
1010
1011         path = btrfs_alloc_path();
1012         if (!path)
1013                 return -ENOMEM;
1014
1015         bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1016         ret = btrfs_lookup_file_extent(NULL, root, path,
1017                         btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1018         if (ret < 0)
1019                 goto out;
1020         if (ret > 0) {
1021                 ret = -ENOENT;
1022                 goto out;
1023         }
1024
1025         leaf = path->nodes[0];
1026         fi = btrfs_item_ptr(leaf, path->slots[0],
1027                             struct btrfs_file_extent_item);
1028
1029         BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1030                btrfs_file_extent_compression(leaf, fi) ||
1031                btrfs_file_extent_encryption(leaf, fi) ||
1032                btrfs_file_extent_other_encoding(leaf, fi));
1033
1034         if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1035                 ret = -EINVAL;
1036                 goto out;
1037         }
1038
1039         *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1040         ret = 0;
1041 out:
1042         btrfs_free_path(path);
1043         return ret;
1044 }
1045
1046 /*
1047  * update file extent items in the tree leaf to point to
1048  * the new locations.
1049  */
1050 static noinline_for_stack
1051 int replace_file_extents(struct btrfs_trans_handle *trans,
1052                          struct reloc_control *rc,
1053                          struct btrfs_root *root,
1054                          struct extent_buffer *leaf)
1055 {
1056         struct btrfs_fs_info *fs_info = root->fs_info;
1057         struct btrfs_key key;
1058         struct btrfs_file_extent_item *fi;
1059         struct inode *inode = NULL;
1060         u64 parent;
1061         u64 bytenr;
1062         u64 new_bytenr = 0;
1063         u64 num_bytes;
1064         u64 end;
1065         u32 nritems;
1066         u32 i;
1067         int ret = 0;
1068         int first = 1;
1069         int dirty = 0;
1070
1071         if (rc->stage != UPDATE_DATA_PTRS)
1072                 return 0;
1073
1074         /* reloc trees always use full backref */
1075         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1076                 parent = leaf->start;
1077         else
1078                 parent = 0;
1079
1080         nritems = btrfs_header_nritems(leaf);
1081         for (i = 0; i < nritems; i++) {
1082                 struct btrfs_ref ref = { 0 };
1083
1084                 cond_resched();
1085                 btrfs_item_key_to_cpu(leaf, &key, i);
1086                 if (key.type != BTRFS_EXTENT_DATA_KEY)
1087                         continue;
1088                 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1089                 if (btrfs_file_extent_type(leaf, fi) ==
1090                     BTRFS_FILE_EXTENT_INLINE)
1091                         continue;
1092                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1093                 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1094                 if (bytenr == 0)
1095                         continue;
1096                 if (!in_range(bytenr, rc->block_group->start,
1097                               rc->block_group->length))
1098                         continue;
1099
1100                 /*
1101                  * if we are modifying block in fs tree, wait for readpage
1102                  * to complete and drop the extent cache
1103                  */
1104                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1105                         if (first) {
1106                                 inode = find_next_inode(root, key.objectid);
1107                                 first = 0;
1108                         } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1109                                 btrfs_add_delayed_iput(inode);
1110                                 inode = find_next_inode(root, key.objectid);
1111                         }
1112                         if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1113                                 end = key.offset +
1114                                       btrfs_file_extent_num_bytes(leaf, fi);
1115                                 WARN_ON(!IS_ALIGNED(key.offset,
1116                                                     fs_info->sectorsize));
1117                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1118                                 end--;
1119                                 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1120                                                       key.offset, end);
1121                                 if (!ret)
1122                                         continue;
1123
1124                                 btrfs_drop_extent_cache(BTRFS_I(inode),
1125                                                 key.offset,     end, 1);
1126                                 unlock_extent(&BTRFS_I(inode)->io_tree,
1127                                               key.offset, end);
1128                         }
1129                 }
1130
1131                 ret = get_new_location(rc->data_inode, &new_bytenr,
1132                                        bytenr, num_bytes);
1133                 if (ret) {
1134                         /*
1135                          * Don't have to abort since we've not changed anything
1136                          * in the file extent yet.
1137                          */
1138                         break;
1139                 }
1140
1141                 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1142                 dirty = 1;
1143
1144                 key.offset -= btrfs_file_extent_offset(leaf, fi);
1145                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1146                                        num_bytes, parent);
1147                 ref.real_root = root->root_key.objectid;
1148                 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1149                                     key.objectid, key.offset);
1150                 ret = btrfs_inc_extent_ref(trans, &ref);
1151                 if (ret) {
1152                         btrfs_abort_transaction(trans, ret);
1153                         break;
1154                 }
1155
1156                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1157                                        num_bytes, parent);
1158                 ref.real_root = root->root_key.objectid;
1159                 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1160                                     key.objectid, key.offset);
1161                 ret = btrfs_free_extent(trans, &ref);
1162                 if (ret) {
1163                         btrfs_abort_transaction(trans, ret);
1164                         break;
1165                 }
1166         }
1167         if (dirty)
1168                 btrfs_mark_buffer_dirty(leaf);
1169         if (inode)
1170                 btrfs_add_delayed_iput(inode);
1171         return ret;
1172 }
1173
1174 static noinline_for_stack
1175 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1176                      struct btrfs_path *path, int level)
1177 {
1178         struct btrfs_disk_key key1;
1179         struct btrfs_disk_key key2;
1180         btrfs_node_key(eb, &key1, slot);
1181         btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1182         return memcmp(&key1, &key2, sizeof(key1));
1183 }
1184
1185 /*
1186  * try to replace tree blocks in fs tree with the new blocks
1187  * in reloc tree. tree blocks haven't been modified since the
1188  * reloc tree was create can be replaced.
1189  *
1190  * if a block was replaced, level of the block + 1 is returned.
1191  * if no block got replaced, 0 is returned. if there are other
1192  * errors, a negative error number is returned.
1193  */
1194 static noinline_for_stack
1195 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1196                  struct btrfs_root *dest, struct btrfs_root *src,
1197                  struct btrfs_path *path, struct btrfs_key *next_key,
1198                  int lowest_level, int max_level)
1199 {
1200         struct btrfs_fs_info *fs_info = dest->fs_info;
1201         struct extent_buffer *eb;
1202         struct extent_buffer *parent;
1203         struct btrfs_ref ref = { 0 };
1204         struct btrfs_key key;
1205         u64 old_bytenr;
1206         u64 new_bytenr;
1207         u64 old_ptr_gen;
1208         u64 new_ptr_gen;
1209         u64 last_snapshot;
1210         u32 blocksize;
1211         int cow = 0;
1212         int level;
1213         int ret;
1214         int slot;
1215
1216         ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1217         ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1218
1219         last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1220 again:
1221         slot = path->slots[lowest_level];
1222         btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1223
1224         eb = btrfs_lock_root_node(dest);
1225         level = btrfs_header_level(eb);
1226
1227         if (level < lowest_level) {
1228                 btrfs_tree_unlock(eb);
1229                 free_extent_buffer(eb);
1230                 return 0;
1231         }
1232
1233         if (cow) {
1234                 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1235                                       BTRFS_NESTING_COW);
1236                 if (ret) {
1237                         btrfs_tree_unlock(eb);
1238                         free_extent_buffer(eb);
1239                         return ret;
1240                 }
1241         }
1242
1243         if (next_key) {
1244                 next_key->objectid = (u64)-1;
1245                 next_key->type = (u8)-1;
1246                 next_key->offset = (u64)-1;
1247         }
1248
1249         parent = eb;
1250         while (1) {
1251                 level = btrfs_header_level(parent);
1252                 ASSERT(level >= lowest_level);
1253
1254                 ret = btrfs_bin_search(parent, &key, &slot);
1255                 if (ret < 0)
1256                         break;
1257                 if (ret && slot > 0)
1258                         slot--;
1259
1260                 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1261                         btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1262
1263                 old_bytenr = btrfs_node_blockptr(parent, slot);
1264                 blocksize = fs_info->nodesize;
1265                 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1266
1267                 if (level <= max_level) {
1268                         eb = path->nodes[level];
1269                         new_bytenr = btrfs_node_blockptr(eb,
1270                                                         path->slots[level]);
1271                         new_ptr_gen = btrfs_node_ptr_generation(eb,
1272                                                         path->slots[level]);
1273                 } else {
1274                         new_bytenr = 0;
1275                         new_ptr_gen = 0;
1276                 }
1277
1278                 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1279                         ret = level;
1280                         break;
1281                 }
1282
1283                 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1284                     memcmp_node_keys(parent, slot, path, level)) {
1285                         if (level <= lowest_level) {
1286                                 ret = 0;
1287                                 break;
1288                         }
1289
1290                         eb = btrfs_read_node_slot(parent, slot);
1291                         if (IS_ERR(eb)) {
1292                                 ret = PTR_ERR(eb);
1293                                 break;
1294                         }
1295                         btrfs_tree_lock(eb);
1296                         if (cow) {
1297                                 ret = btrfs_cow_block(trans, dest, eb, parent,
1298                                                       slot, &eb,
1299                                                       BTRFS_NESTING_COW);
1300                                 if (ret) {
1301                                         btrfs_tree_unlock(eb);
1302                                         free_extent_buffer(eb);
1303                                         break;
1304                                 }
1305                         }
1306
1307                         btrfs_tree_unlock(parent);
1308                         free_extent_buffer(parent);
1309
1310                         parent = eb;
1311                         continue;
1312                 }
1313
1314                 if (!cow) {
1315                         btrfs_tree_unlock(parent);
1316                         free_extent_buffer(parent);
1317                         cow = 1;
1318                         goto again;
1319                 }
1320
1321                 btrfs_node_key_to_cpu(path->nodes[level], &key,
1322                                       path->slots[level]);
1323                 btrfs_release_path(path);
1324
1325                 path->lowest_level = level;
1326                 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1327                 path->lowest_level = 0;
1328                 if (ret) {
1329                         if (ret > 0)
1330                                 ret = -ENOENT;
1331                         break;
1332                 }
1333
1334                 /*
1335                  * Info qgroup to trace both subtrees.
1336                  *
1337                  * We must trace both trees.
1338                  * 1) Tree reloc subtree
1339                  *    If not traced, we will leak data numbers
1340                  * 2) Fs subtree
1341                  *    If not traced, we will double count old data
1342                  *
1343                  * We don't scan the subtree right now, but only record
1344                  * the swapped tree blocks.
1345                  * The real subtree rescan is delayed until we have new
1346                  * CoW on the subtree root node before transaction commit.
1347                  */
1348                 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1349                                 rc->block_group, parent, slot,
1350                                 path->nodes[level], path->slots[level],
1351                                 last_snapshot);
1352                 if (ret < 0)
1353                         break;
1354                 /*
1355                  * swap blocks in fs tree and reloc tree.
1356                  */
1357                 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1358                 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1359                 btrfs_mark_buffer_dirty(parent);
1360
1361                 btrfs_set_node_blockptr(path->nodes[level],
1362                                         path->slots[level], old_bytenr);
1363                 btrfs_set_node_ptr_generation(path->nodes[level],
1364                                               path->slots[level], old_ptr_gen);
1365                 btrfs_mark_buffer_dirty(path->nodes[level]);
1366
1367                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1368                                        blocksize, path->nodes[level]->start);
1369                 ref.skip_qgroup = true;
1370                 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1371                 ret = btrfs_inc_extent_ref(trans, &ref);
1372                 if (ret) {
1373                         btrfs_abort_transaction(trans, ret);
1374                         break;
1375                 }
1376                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1377                                        blocksize, 0);
1378                 ref.skip_qgroup = true;
1379                 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1380                 ret = btrfs_inc_extent_ref(trans, &ref);
1381                 if (ret) {
1382                         btrfs_abort_transaction(trans, ret);
1383                         break;
1384                 }
1385
1386                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1387                                        blocksize, path->nodes[level]->start);
1388                 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1389                 ref.skip_qgroup = true;
1390                 ret = btrfs_free_extent(trans, &ref);
1391                 if (ret) {
1392                         btrfs_abort_transaction(trans, ret);
1393                         break;
1394                 }
1395
1396                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1397                                        blocksize, 0);
1398                 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1399                 ref.skip_qgroup = true;
1400                 ret = btrfs_free_extent(trans, &ref);
1401                 if (ret) {
1402                         btrfs_abort_transaction(trans, ret);
1403                         break;
1404                 }
1405
1406                 btrfs_unlock_up_safe(path, 0);
1407
1408                 ret = level;
1409                 break;
1410         }
1411         btrfs_tree_unlock(parent);
1412         free_extent_buffer(parent);
1413         return ret;
1414 }
1415
1416 /*
1417  * helper to find next relocated block in reloc tree
1418  */
1419 static noinline_for_stack
1420 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1421                        int *level)
1422 {
1423         struct extent_buffer *eb;
1424         int i;
1425         u64 last_snapshot;
1426         u32 nritems;
1427
1428         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1429
1430         for (i = 0; i < *level; i++) {
1431                 free_extent_buffer(path->nodes[i]);
1432                 path->nodes[i] = NULL;
1433         }
1434
1435         for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1436                 eb = path->nodes[i];
1437                 nritems = btrfs_header_nritems(eb);
1438                 while (path->slots[i] + 1 < nritems) {
1439                         path->slots[i]++;
1440                         if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1441                             last_snapshot)
1442                                 continue;
1443
1444                         *level = i;
1445                         return 0;
1446                 }
1447                 free_extent_buffer(path->nodes[i]);
1448                 path->nodes[i] = NULL;
1449         }
1450         return 1;
1451 }
1452
1453 /*
1454  * walk down reloc tree to find relocated block of lowest level
1455  */
1456 static noinline_for_stack
1457 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1458                          int *level)
1459 {
1460         struct extent_buffer *eb = NULL;
1461         int i;
1462         u64 ptr_gen = 0;
1463         u64 last_snapshot;
1464         u32 nritems;
1465
1466         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1467
1468         for (i = *level; i > 0; i--) {
1469                 eb = path->nodes[i];
1470                 nritems = btrfs_header_nritems(eb);
1471                 while (path->slots[i] < nritems) {
1472                         ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1473                         if (ptr_gen > last_snapshot)
1474                                 break;
1475                         path->slots[i]++;
1476                 }
1477                 if (path->slots[i] >= nritems) {
1478                         if (i == *level)
1479                                 break;
1480                         *level = i + 1;
1481                         return 0;
1482                 }
1483                 if (i == 1) {
1484                         *level = i;
1485                         return 0;
1486                 }
1487
1488                 eb = btrfs_read_node_slot(eb, path->slots[i]);
1489                 if (IS_ERR(eb))
1490                         return PTR_ERR(eb);
1491                 BUG_ON(btrfs_header_level(eb) != i - 1);
1492                 path->nodes[i - 1] = eb;
1493                 path->slots[i - 1] = 0;
1494         }
1495         return 1;
1496 }
1497
1498 /*
1499  * invalidate extent cache for file extents whose key in range of
1500  * [min_key, max_key)
1501  */
1502 static int invalidate_extent_cache(struct btrfs_root *root,
1503                                    struct btrfs_key *min_key,
1504                                    struct btrfs_key *max_key)
1505 {
1506         struct btrfs_fs_info *fs_info = root->fs_info;
1507         struct inode *inode = NULL;
1508         u64 objectid;
1509         u64 start, end;
1510         u64 ino;
1511
1512         objectid = min_key->objectid;
1513         while (1) {
1514                 cond_resched();
1515                 iput(inode);
1516
1517                 if (objectid > max_key->objectid)
1518                         break;
1519
1520                 inode = find_next_inode(root, objectid);
1521                 if (!inode)
1522                         break;
1523                 ino = btrfs_ino(BTRFS_I(inode));
1524
1525                 if (ino > max_key->objectid) {
1526                         iput(inode);
1527                         break;
1528                 }
1529
1530                 objectid = ino + 1;
1531                 if (!S_ISREG(inode->i_mode))
1532                         continue;
1533
1534                 if (unlikely(min_key->objectid == ino)) {
1535                         if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1536                                 continue;
1537                         if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1538                                 start = 0;
1539                         else {
1540                                 start = min_key->offset;
1541                                 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1542                         }
1543                 } else {
1544                         start = 0;
1545                 }
1546
1547                 if (unlikely(max_key->objectid == ino)) {
1548                         if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1549                                 continue;
1550                         if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1551                                 end = (u64)-1;
1552                         } else {
1553                                 if (max_key->offset == 0)
1554                                         continue;
1555                                 end = max_key->offset;
1556                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1557                                 end--;
1558                         }
1559                 } else {
1560                         end = (u64)-1;
1561                 }
1562
1563                 /* the lock_extent waits for readpage to complete */
1564                 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1565                 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1566                 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1567         }
1568         return 0;
1569 }
1570
1571 static int find_next_key(struct btrfs_path *path, int level,
1572                          struct btrfs_key *key)
1573
1574 {
1575         while (level < BTRFS_MAX_LEVEL) {
1576                 if (!path->nodes[level])
1577                         break;
1578                 if (path->slots[level] + 1 <
1579                     btrfs_header_nritems(path->nodes[level])) {
1580                         btrfs_node_key_to_cpu(path->nodes[level], key,
1581                                               path->slots[level] + 1);
1582                         return 0;
1583                 }
1584                 level++;
1585         }
1586         return 1;
1587 }
1588
1589 /*
1590  * Insert current subvolume into reloc_control::dirty_subvol_roots
1591  */
1592 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1593                                struct reloc_control *rc,
1594                                struct btrfs_root *root)
1595 {
1596         struct btrfs_root *reloc_root = root->reloc_root;
1597         struct btrfs_root_item *reloc_root_item;
1598         int ret;
1599
1600         /* @root must be a subvolume tree root with a valid reloc tree */
1601         ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1602         ASSERT(reloc_root);
1603
1604         reloc_root_item = &reloc_root->root_item;
1605         memset(&reloc_root_item->drop_progress, 0,
1606                 sizeof(reloc_root_item->drop_progress));
1607         btrfs_set_root_drop_level(reloc_root_item, 0);
1608         btrfs_set_root_refs(reloc_root_item, 0);
1609         ret = btrfs_update_reloc_root(trans, root);
1610         if (ret)
1611                 return ret;
1612
1613         if (list_empty(&root->reloc_dirty_list)) {
1614                 btrfs_grab_root(root);
1615                 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1616         }
1617
1618         return 0;
1619 }
1620
1621 static int clean_dirty_subvols(struct reloc_control *rc)
1622 {
1623         struct btrfs_root *root;
1624         struct btrfs_root *next;
1625         int ret = 0;
1626         int ret2;
1627
1628         list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1629                                  reloc_dirty_list) {
1630                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1631                         /* Merged subvolume, cleanup its reloc root */
1632                         struct btrfs_root *reloc_root = root->reloc_root;
1633
1634                         list_del_init(&root->reloc_dirty_list);
1635                         root->reloc_root = NULL;
1636                         /*
1637                          * Need barrier to ensure clear_bit() only happens after
1638                          * root->reloc_root = NULL. Pairs with have_reloc_root.
1639                          */
1640                         smp_wmb();
1641                         clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1642                         if (reloc_root) {
1643                                 /*
1644                                  * btrfs_drop_snapshot drops our ref we hold for
1645                                  * ->reloc_root.  If it fails however we must
1646                                  * drop the ref ourselves.
1647                                  */
1648                                 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1649                                 if (ret2 < 0) {
1650                                         btrfs_put_root(reloc_root);
1651                                         if (!ret)
1652                                                 ret = ret2;
1653                                 }
1654                         }
1655                         btrfs_put_root(root);
1656                 } else {
1657                         /* Orphan reloc tree, just clean it up */
1658                         ret2 = btrfs_drop_snapshot(root, 0, 1);
1659                         if (ret2 < 0) {
1660                                 btrfs_put_root(root);
1661                                 if (!ret)
1662                                         ret = ret2;
1663                         }
1664                 }
1665         }
1666         return ret;
1667 }
1668
1669 /*
1670  * merge the relocated tree blocks in reloc tree with corresponding
1671  * fs tree.
1672  */
1673 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1674                                                struct btrfs_root *root)
1675 {
1676         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1677         struct btrfs_key key;
1678         struct btrfs_key next_key;
1679         struct btrfs_trans_handle *trans = NULL;
1680         struct btrfs_root *reloc_root;
1681         struct btrfs_root_item *root_item;
1682         struct btrfs_path *path;
1683         struct extent_buffer *leaf;
1684         int reserve_level;
1685         int level;
1686         int max_level;
1687         int replaced = 0;
1688         int ret = 0;
1689         u32 min_reserved;
1690
1691         path = btrfs_alloc_path();
1692         if (!path)
1693                 return -ENOMEM;
1694         path->reada = READA_FORWARD;
1695
1696         reloc_root = root->reloc_root;
1697         root_item = &reloc_root->root_item;
1698
1699         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1700                 level = btrfs_root_level(root_item);
1701                 atomic_inc(&reloc_root->node->refs);
1702                 path->nodes[level] = reloc_root->node;
1703                 path->slots[level] = 0;
1704         } else {
1705                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1706
1707                 level = btrfs_root_drop_level(root_item);
1708                 BUG_ON(level == 0);
1709                 path->lowest_level = level;
1710                 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1711                 path->lowest_level = 0;
1712                 if (ret < 0) {
1713                         btrfs_free_path(path);
1714                         return ret;
1715                 }
1716
1717                 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1718                                       path->slots[level]);
1719                 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1720
1721                 btrfs_unlock_up_safe(path, 0);
1722         }
1723
1724         /*
1725          * In merge_reloc_root(), we modify the upper level pointer to swap the
1726          * tree blocks between reloc tree and subvolume tree.  Thus for tree
1727          * block COW, we COW at most from level 1 to root level for each tree.
1728          *
1729          * Thus the needed metadata size is at most root_level * nodesize,
1730          * and * 2 since we have two trees to COW.
1731          */
1732         reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1733         min_reserved = fs_info->nodesize * reserve_level * 2;
1734         memset(&next_key, 0, sizeof(next_key));
1735
1736         while (1) {
1737                 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1738                                              BTRFS_RESERVE_FLUSH_LIMIT);
1739                 if (ret)
1740                         goto out;
1741                 trans = btrfs_start_transaction(root, 0);
1742                 if (IS_ERR(trans)) {
1743                         ret = PTR_ERR(trans);
1744                         trans = NULL;
1745                         goto out;
1746                 }
1747
1748                 /*
1749                  * At this point we no longer have a reloc_control, so we can't
1750                  * depend on btrfs_init_reloc_root to update our last_trans.
1751                  *
1752                  * But that's ok, we started the trans handle on our
1753                  * corresponding fs_root, which means it's been added to the
1754                  * dirty list.  At commit time we'll still call
1755                  * btrfs_update_reloc_root() and update our root item
1756                  * appropriately.
1757                  */
1758                 reloc_root->last_trans = trans->transid;
1759                 trans->block_rsv = rc->block_rsv;
1760
1761                 replaced = 0;
1762                 max_level = level;
1763
1764                 ret = walk_down_reloc_tree(reloc_root, path, &level);
1765                 if (ret < 0)
1766                         goto out;
1767                 if (ret > 0)
1768                         break;
1769
1770                 if (!find_next_key(path, level, &key) &&
1771                     btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1772                         ret = 0;
1773                 } else {
1774                         ret = replace_path(trans, rc, root, reloc_root, path,
1775                                            &next_key, level, max_level);
1776                 }
1777                 if (ret < 0)
1778                         goto out;
1779                 if (ret > 0) {
1780                         level = ret;
1781                         btrfs_node_key_to_cpu(path->nodes[level], &key,
1782                                               path->slots[level]);
1783                         replaced = 1;
1784                 }
1785
1786                 ret = walk_up_reloc_tree(reloc_root, path, &level);
1787                 if (ret > 0)
1788                         break;
1789
1790                 BUG_ON(level == 0);
1791                 /*
1792                  * save the merging progress in the drop_progress.
1793                  * this is OK since root refs == 1 in this case.
1794                  */
1795                 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1796                                path->slots[level]);
1797                 btrfs_set_root_drop_level(root_item, level);
1798
1799                 btrfs_end_transaction_throttle(trans);
1800                 trans = NULL;
1801
1802                 btrfs_btree_balance_dirty(fs_info);
1803
1804                 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1805                         invalidate_extent_cache(root, &key, &next_key);
1806         }
1807
1808         /*
1809          * handle the case only one block in the fs tree need to be
1810          * relocated and the block is tree root.
1811          */
1812         leaf = btrfs_lock_root_node(root);
1813         ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1814                               BTRFS_NESTING_COW);
1815         btrfs_tree_unlock(leaf);
1816         free_extent_buffer(leaf);
1817 out:
1818         btrfs_free_path(path);
1819
1820         if (ret == 0) {
1821                 ret = insert_dirty_subvol(trans, rc, root);
1822                 if (ret)
1823                         btrfs_abort_transaction(trans, ret);
1824         }
1825
1826         if (trans)
1827                 btrfs_end_transaction_throttle(trans);
1828
1829         btrfs_btree_balance_dirty(fs_info);
1830
1831         if (replaced && rc->stage == UPDATE_DATA_PTRS)
1832                 invalidate_extent_cache(root, &key, &next_key);
1833
1834         return ret;
1835 }
1836
1837 static noinline_for_stack
1838 int prepare_to_merge(struct reloc_control *rc, int err)
1839 {
1840         struct btrfs_root *root = rc->extent_root;
1841         struct btrfs_fs_info *fs_info = root->fs_info;
1842         struct btrfs_root *reloc_root;
1843         struct btrfs_trans_handle *trans;
1844         LIST_HEAD(reloc_roots);
1845         u64 num_bytes = 0;
1846         int ret;
1847
1848         mutex_lock(&fs_info->reloc_mutex);
1849         rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1850         rc->merging_rsv_size += rc->nodes_relocated * 2;
1851         mutex_unlock(&fs_info->reloc_mutex);
1852
1853 again:
1854         if (!err) {
1855                 num_bytes = rc->merging_rsv_size;
1856                 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1857                                           BTRFS_RESERVE_FLUSH_ALL);
1858                 if (ret)
1859                         err = ret;
1860         }
1861
1862         trans = btrfs_join_transaction(rc->extent_root);
1863         if (IS_ERR(trans)) {
1864                 if (!err)
1865                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1866                                                 num_bytes, NULL);
1867                 return PTR_ERR(trans);
1868         }
1869
1870         if (!err) {
1871                 if (num_bytes != rc->merging_rsv_size) {
1872                         btrfs_end_transaction(trans);
1873                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1874                                                 num_bytes, NULL);
1875                         goto again;
1876                 }
1877         }
1878
1879         rc->merge_reloc_tree = 1;
1880
1881         while (!list_empty(&rc->reloc_roots)) {
1882                 reloc_root = list_entry(rc->reloc_roots.next,
1883                                         struct btrfs_root, root_list);
1884                 list_del_init(&reloc_root->root_list);
1885
1886                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1887                                 false);
1888                 if (IS_ERR(root)) {
1889                         /*
1890                          * Even if we have an error we need this reloc root
1891                          * back on our list so we can clean up properly.
1892                          */
1893                         list_add(&reloc_root->root_list, &reloc_roots);
1894                         btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1895                         if (!err)
1896                                 err = PTR_ERR(root);
1897                         break;
1898                 }
1899                 ASSERT(root->reloc_root == reloc_root);
1900
1901                 /*
1902                  * set reference count to 1, so btrfs_recover_relocation
1903                  * knows it should resumes merging
1904                  */
1905                 if (!err)
1906                         btrfs_set_root_refs(&reloc_root->root_item, 1);
1907                 ret = btrfs_update_reloc_root(trans, root);
1908
1909                 /*
1910                  * Even if we have an error we need this reloc root back on our
1911                  * list so we can clean up properly.
1912                  */
1913                 list_add(&reloc_root->root_list, &reloc_roots);
1914                 btrfs_put_root(root);
1915
1916                 if (ret) {
1917                         btrfs_abort_transaction(trans, ret);
1918                         if (!err)
1919                                 err = ret;
1920                         break;
1921                 }
1922         }
1923
1924         list_splice(&reloc_roots, &rc->reloc_roots);
1925
1926         if (!err)
1927                 err = btrfs_commit_transaction(trans);
1928         else
1929                 btrfs_end_transaction(trans);
1930         return err;
1931 }
1932
1933 static noinline_for_stack
1934 void free_reloc_roots(struct list_head *list)
1935 {
1936         struct btrfs_root *reloc_root, *tmp;
1937
1938         list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1939                 __del_reloc_root(reloc_root);
1940 }
1941
1942 static noinline_for_stack
1943 void merge_reloc_roots(struct reloc_control *rc)
1944 {
1945         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1946         struct btrfs_root *root;
1947         struct btrfs_root *reloc_root;
1948         LIST_HEAD(reloc_roots);
1949         int found = 0;
1950         int ret = 0;
1951 again:
1952         root = rc->extent_root;
1953
1954         /*
1955          * this serializes us with btrfs_record_root_in_transaction,
1956          * we have to make sure nobody is in the middle of
1957          * adding their roots to the list while we are
1958          * doing this splice
1959          */
1960         mutex_lock(&fs_info->reloc_mutex);
1961         list_splice_init(&rc->reloc_roots, &reloc_roots);
1962         mutex_unlock(&fs_info->reloc_mutex);
1963
1964         while (!list_empty(&reloc_roots)) {
1965                 found = 1;
1966                 reloc_root = list_entry(reloc_roots.next,
1967                                         struct btrfs_root, root_list);
1968
1969                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1970                                          false);
1971                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1972                         if (IS_ERR(root)) {
1973                                 /*
1974                                  * For recovery we read the fs roots on mount,
1975                                  * and if we didn't find the root then we marked
1976                                  * the reloc root as a garbage root.  For normal
1977                                  * relocation obviously the root should exist in
1978                                  * memory.  However there's no reason we can't
1979                                  * handle the error properly here just in case.
1980                                  */
1981                                 ASSERT(0);
1982                                 ret = PTR_ERR(root);
1983                                 goto out;
1984                         }
1985                         if (root->reloc_root != reloc_root) {
1986                                 /*
1987                                  * This is actually impossible without something
1988                                  * going really wrong (like weird race condition
1989                                  * or cosmic rays).
1990                                  */
1991                                 ASSERT(0);
1992                                 ret = -EINVAL;
1993                                 goto out;
1994                         }
1995                         ret = merge_reloc_root(rc, root);
1996                         btrfs_put_root(root);
1997                         if (ret) {
1998                                 if (list_empty(&reloc_root->root_list))
1999                                         list_add_tail(&reloc_root->root_list,
2000                                                       &reloc_roots);
2001                                 goto out;
2002                         }
2003                 } else {
2004                         if (!IS_ERR(root)) {
2005                                 if (root->reloc_root == reloc_root) {
2006                                         root->reloc_root = NULL;
2007                                         btrfs_put_root(reloc_root);
2008                                 }
2009                                 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2010                                           &root->state);
2011                                 btrfs_put_root(root);
2012                         }
2013
2014                         list_del_init(&reloc_root->root_list);
2015                         /* Don't forget to queue this reloc root for cleanup */
2016                         list_add_tail(&reloc_root->reloc_dirty_list,
2017                                       &rc->dirty_subvol_roots);
2018                 }
2019         }
2020
2021         if (found) {
2022                 found = 0;
2023                 goto again;
2024         }
2025 out:
2026         if (ret) {
2027                 btrfs_handle_fs_error(fs_info, ret, NULL);
2028                 free_reloc_roots(&reloc_roots);
2029
2030                 /* new reloc root may be added */
2031                 mutex_lock(&fs_info->reloc_mutex);
2032                 list_splice_init(&rc->reloc_roots, &reloc_roots);
2033                 mutex_unlock(&fs_info->reloc_mutex);
2034                 free_reloc_roots(&reloc_roots);
2035         }
2036
2037         /*
2038          * We used to have
2039          *
2040          * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2041          *
2042          * here, but it's wrong.  If we fail to start the transaction in
2043          * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2044          * have actually been removed from the reloc_root_tree rb tree.  This is
2045          * fine because we're bailing here, and we hold a reference on the root
2046          * for the list that holds it, so these roots will be cleaned up when we
2047          * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2048          * will be cleaned up on unmount.
2049          *
2050          * The remaining nodes will be cleaned up by free_reloc_control.
2051          */
2052 }
2053
2054 static void free_block_list(struct rb_root *blocks)
2055 {
2056         struct tree_block *block;
2057         struct rb_node *rb_node;
2058         while ((rb_node = rb_first(blocks))) {
2059                 block = rb_entry(rb_node, struct tree_block, rb_node);
2060                 rb_erase(rb_node, blocks);
2061                 kfree(block);
2062         }
2063 }
2064
2065 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2066                                       struct btrfs_root *reloc_root)
2067 {
2068         struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2069         struct btrfs_root *root;
2070         int ret;
2071
2072         if (reloc_root->last_trans == trans->transid)
2073                 return 0;
2074
2075         root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2076
2077         /*
2078          * This should succeed, since we can't have a reloc root without having
2079          * already looked up the actual root and created the reloc root for this
2080          * root.
2081          *
2082          * However if there's some sort of corruption where we have a ref to a
2083          * reloc root without a corresponding root this could return ENOENT.
2084          */
2085         if (IS_ERR(root)) {
2086                 ASSERT(0);
2087                 return PTR_ERR(root);
2088         }
2089         if (root->reloc_root != reloc_root) {
2090                 ASSERT(0);
2091                 btrfs_err(fs_info,
2092                           "root %llu has two reloc roots associated with it",
2093                           reloc_root->root_key.offset);
2094                 btrfs_put_root(root);
2095                 return -EUCLEAN;
2096         }
2097         ret = btrfs_record_root_in_trans(trans, root);
2098         btrfs_put_root(root);
2099
2100         return ret;
2101 }
2102
2103 static noinline_for_stack
2104 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2105                                      struct reloc_control *rc,
2106                                      struct btrfs_backref_node *node,
2107                                      struct btrfs_backref_edge *edges[])
2108 {
2109         struct btrfs_backref_node *next;
2110         struct btrfs_root *root;
2111         int index = 0;
2112         int ret;
2113
2114         next = node;
2115         while (1) {
2116                 cond_resched();
2117                 next = walk_up_backref(next, edges, &index);
2118                 root = next->root;
2119
2120                 /*
2121                  * If there is no root, then our references for this block are
2122                  * incomplete, as we should be able to walk all the way up to a
2123                  * block that is owned by a root.
2124                  *
2125                  * This path is only for SHAREABLE roots, so if we come upon a
2126                  * non-SHAREABLE root then we have backrefs that resolve
2127                  * improperly.
2128                  *
2129                  * Both of these cases indicate file system corruption, or a bug
2130                  * in the backref walking code.
2131                  */
2132                 if (!root) {
2133                         ASSERT(0);
2134                         btrfs_err(trans->fs_info,
2135                 "bytenr %llu doesn't have a backref path ending in a root",
2136                                   node->bytenr);
2137                         return ERR_PTR(-EUCLEAN);
2138                 }
2139                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2140                         ASSERT(0);
2141                         btrfs_err(trans->fs_info,
2142         "bytenr %llu has multiple refs with one ending in a non-shareable root",
2143                                   node->bytenr);
2144                         return ERR_PTR(-EUCLEAN);
2145                 }
2146
2147                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2148                         ret = record_reloc_root_in_trans(trans, root);
2149                         if (ret)
2150                                 return ERR_PTR(ret);
2151                         break;
2152                 }
2153
2154                 ret = btrfs_record_root_in_trans(trans, root);
2155                 if (ret)
2156                         return ERR_PTR(ret);
2157                 root = root->reloc_root;
2158
2159                 /*
2160                  * We could have raced with another thread which failed, so
2161                  * root->reloc_root may not be set, return ENOENT in this case.
2162                  */
2163                 if (!root)
2164                         return ERR_PTR(-ENOENT);
2165
2166                 if (next->new_bytenr != root->node->start) {
2167                         /*
2168                          * We just created the reloc root, so we shouldn't have
2169                          * ->new_bytenr set and this shouldn't be in the changed
2170                          *  list.  If it is then we have multiple roots pointing
2171                          *  at the same bytenr which indicates corruption, or
2172                          *  we've made a mistake in the backref walking code.
2173                          */
2174                         ASSERT(next->new_bytenr == 0);
2175                         ASSERT(list_empty(&next->list));
2176                         if (next->new_bytenr || !list_empty(&next->list)) {
2177                                 btrfs_err(trans->fs_info,
2178         "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2179                                           node->bytenr, next->bytenr);
2180                                 return ERR_PTR(-EUCLEAN);
2181                         }
2182
2183                         next->new_bytenr = root->node->start;
2184                         btrfs_put_root(next->root);
2185                         next->root = btrfs_grab_root(root);
2186                         ASSERT(next->root);
2187                         list_add_tail(&next->list,
2188                                       &rc->backref_cache.changed);
2189                         mark_block_processed(rc, next);
2190                         break;
2191                 }
2192
2193                 WARN_ON(1);
2194                 root = NULL;
2195                 next = walk_down_backref(edges, &index);
2196                 if (!next || next->level <= node->level)
2197                         break;
2198         }
2199         if (!root) {
2200                 /*
2201                  * This can happen if there's fs corruption or if there's a bug
2202                  * in the backref lookup code.
2203                  */
2204                 ASSERT(0);
2205                 return ERR_PTR(-ENOENT);
2206         }
2207
2208         next = node;
2209         /* setup backref node path for btrfs_reloc_cow_block */
2210         while (1) {
2211                 rc->backref_cache.path[next->level] = next;
2212                 if (--index < 0)
2213                         break;
2214                 next = edges[index]->node[UPPER];
2215         }
2216         return root;
2217 }
2218
2219 /*
2220  * Select a tree root for relocation.
2221  *
2222  * Return NULL if the block is not shareable. We should use do_relocation() in
2223  * this case.
2224  *
2225  * Return a tree root pointer if the block is shareable.
2226  * Return -ENOENT if the block is root of reloc tree.
2227  */
2228 static noinline_for_stack
2229 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2230 {
2231         struct btrfs_backref_node *next;
2232         struct btrfs_root *root;
2233         struct btrfs_root *fs_root = NULL;
2234         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2235         int index = 0;
2236
2237         next = node;
2238         while (1) {
2239                 cond_resched();
2240                 next = walk_up_backref(next, edges, &index);
2241                 root = next->root;
2242
2243                 /*
2244                  * This can occur if we have incomplete extent refs leading all
2245                  * the way up a particular path, in this case return -EUCLEAN.
2246                  */
2247                 if (!root)
2248                         return ERR_PTR(-EUCLEAN);
2249
2250                 /* No other choice for non-shareable tree */
2251                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2252                         return root;
2253
2254                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2255                         fs_root = root;
2256
2257                 if (next != node)
2258                         return NULL;
2259
2260                 next = walk_down_backref(edges, &index);
2261                 if (!next || next->level <= node->level)
2262                         break;
2263         }
2264
2265         if (!fs_root)
2266                 return ERR_PTR(-ENOENT);
2267         return fs_root;
2268 }
2269
2270 static noinline_for_stack
2271 u64 calcu_metadata_size(struct reloc_control *rc,
2272                         struct btrfs_backref_node *node, int reserve)
2273 {
2274         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2275         struct btrfs_backref_node *next = node;
2276         struct btrfs_backref_edge *edge;
2277         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2278         u64 num_bytes = 0;
2279         int index = 0;
2280
2281         BUG_ON(reserve && node->processed);
2282
2283         while (next) {
2284                 cond_resched();
2285                 while (1) {
2286                         if (next->processed && (reserve || next != node))
2287                                 break;
2288
2289                         num_bytes += fs_info->nodesize;
2290
2291                         if (list_empty(&next->upper))
2292                                 break;
2293
2294                         edge = list_entry(next->upper.next,
2295                                         struct btrfs_backref_edge, list[LOWER]);
2296                         edges[index++] = edge;
2297                         next = edge->node[UPPER];
2298                 }
2299                 next = walk_down_backref(edges, &index);
2300         }
2301         return num_bytes;
2302 }
2303
2304 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2305                                   struct reloc_control *rc,
2306                                   struct btrfs_backref_node *node)
2307 {
2308         struct btrfs_root *root = rc->extent_root;
2309         struct btrfs_fs_info *fs_info = root->fs_info;
2310         u64 num_bytes;
2311         int ret;
2312         u64 tmp;
2313
2314         num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2315
2316         trans->block_rsv = rc->block_rsv;
2317         rc->reserved_bytes += num_bytes;
2318
2319         /*
2320          * We are under a transaction here so we can only do limited flushing.
2321          * If we get an enospc just kick back -EAGAIN so we know to drop the
2322          * transaction and try to refill when we can flush all the things.
2323          */
2324         ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2325                                 BTRFS_RESERVE_FLUSH_LIMIT);
2326         if (ret) {
2327                 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2328                 while (tmp <= rc->reserved_bytes)
2329                         tmp <<= 1;
2330                 /*
2331                  * only one thread can access block_rsv at this point,
2332                  * so we don't need hold lock to protect block_rsv.
2333                  * we expand more reservation size here to allow enough
2334                  * space for relocation and we will return earlier in
2335                  * enospc case.
2336                  */
2337                 rc->block_rsv->size = tmp + fs_info->nodesize *
2338                                       RELOCATION_RESERVED_NODES;
2339                 return -EAGAIN;
2340         }
2341
2342         return 0;
2343 }
2344
2345 /*
2346  * relocate a block tree, and then update pointers in upper level
2347  * blocks that reference the block to point to the new location.
2348  *
2349  * if called by link_to_upper, the block has already been relocated.
2350  * in that case this function just updates pointers.
2351  */
2352 static int do_relocation(struct btrfs_trans_handle *trans,
2353                          struct reloc_control *rc,
2354                          struct btrfs_backref_node *node,
2355                          struct btrfs_key *key,
2356                          struct btrfs_path *path, int lowest)
2357 {
2358         struct btrfs_backref_node *upper;
2359         struct btrfs_backref_edge *edge;
2360         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2361         struct btrfs_root *root;
2362         struct extent_buffer *eb;
2363         u32 blocksize;
2364         u64 bytenr;
2365         int slot;
2366         int ret = 0;
2367
2368         /*
2369          * If we are lowest then this is the first time we're processing this
2370          * block, and thus shouldn't have an eb associated with it yet.
2371          */
2372         ASSERT(!lowest || !node->eb);
2373
2374         path->lowest_level = node->level + 1;
2375         rc->backref_cache.path[node->level] = node;
2376         list_for_each_entry(edge, &node->upper, list[LOWER]) {
2377                 struct btrfs_ref ref = { 0 };
2378
2379                 cond_resched();
2380
2381                 upper = edge->node[UPPER];
2382                 root = select_reloc_root(trans, rc, upper, edges);
2383                 if (IS_ERR(root)) {
2384                         ret = PTR_ERR(root);
2385                         goto next;
2386                 }
2387
2388                 if (upper->eb && !upper->locked) {
2389                         if (!lowest) {
2390                                 ret = btrfs_bin_search(upper->eb, key, &slot);
2391                                 if (ret < 0)
2392                                         goto next;
2393                                 BUG_ON(ret);
2394                                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2395                                 if (node->eb->start == bytenr)
2396                                         goto next;
2397                         }
2398                         btrfs_backref_drop_node_buffer(upper);
2399                 }
2400
2401                 if (!upper->eb) {
2402                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2403                         if (ret) {
2404                                 if (ret > 0)
2405                                         ret = -ENOENT;
2406
2407                                 btrfs_release_path(path);
2408                                 break;
2409                         }
2410
2411                         if (!upper->eb) {
2412                                 upper->eb = path->nodes[upper->level];
2413                                 path->nodes[upper->level] = NULL;
2414                         } else {
2415                                 BUG_ON(upper->eb != path->nodes[upper->level]);
2416                         }
2417
2418                         upper->locked = 1;
2419                         path->locks[upper->level] = 0;
2420
2421                         slot = path->slots[upper->level];
2422                         btrfs_release_path(path);
2423                 } else {
2424                         ret = btrfs_bin_search(upper->eb, key, &slot);
2425                         if (ret < 0)
2426                                 goto next;
2427                         BUG_ON(ret);
2428                 }
2429
2430                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2431                 if (lowest) {
2432                         if (bytenr != node->bytenr) {
2433                                 btrfs_err(root->fs_info,
2434                 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2435                                           bytenr, node->bytenr, slot,
2436                                           upper->eb->start);
2437                                 ret = -EIO;
2438                                 goto next;
2439                         }
2440                 } else {
2441                         if (node->eb->start == bytenr)
2442                                 goto next;
2443                 }
2444
2445                 blocksize = root->fs_info->nodesize;
2446                 eb = btrfs_read_node_slot(upper->eb, slot);
2447                 if (IS_ERR(eb)) {
2448                         ret = PTR_ERR(eb);
2449                         goto next;
2450                 }
2451                 btrfs_tree_lock(eb);
2452
2453                 if (!node->eb) {
2454                         ret = btrfs_cow_block(trans, root, eb, upper->eb,
2455                                               slot, &eb, BTRFS_NESTING_COW);
2456                         btrfs_tree_unlock(eb);
2457                         free_extent_buffer(eb);
2458                         if (ret < 0)
2459                                 goto next;
2460                         /*
2461                          * We've just COWed this block, it should have updated
2462                          * the correct backref node entry.
2463                          */
2464                         ASSERT(node->eb == eb);
2465                 } else {
2466                         btrfs_set_node_blockptr(upper->eb, slot,
2467                                                 node->eb->start);
2468                         btrfs_set_node_ptr_generation(upper->eb, slot,
2469                                                       trans->transid);
2470                         btrfs_mark_buffer_dirty(upper->eb);
2471
2472                         btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2473                                                node->eb->start, blocksize,
2474                                                upper->eb->start);
2475                         ref.real_root = root->root_key.objectid;
2476                         btrfs_init_tree_ref(&ref, node->level,
2477                                             btrfs_header_owner(upper->eb));
2478                         ret = btrfs_inc_extent_ref(trans, &ref);
2479                         if (!ret)
2480                                 ret = btrfs_drop_subtree(trans, root, eb,
2481                                                          upper->eb);
2482                         if (ret)
2483                                 btrfs_abort_transaction(trans, ret);
2484                 }
2485 next:
2486                 if (!upper->pending)
2487                         btrfs_backref_drop_node_buffer(upper);
2488                 else
2489                         btrfs_backref_unlock_node_buffer(upper);
2490                 if (ret)
2491                         break;
2492         }
2493
2494         if (!ret && node->pending) {
2495                 btrfs_backref_drop_node_buffer(node);
2496                 list_move_tail(&node->list, &rc->backref_cache.changed);
2497                 node->pending = 0;
2498         }
2499
2500         path->lowest_level = 0;
2501
2502         /*
2503          * We should have allocated all of our space in the block rsv and thus
2504          * shouldn't ENOSPC.
2505          */
2506         ASSERT(ret != -ENOSPC);
2507         return ret;
2508 }
2509
2510 static int link_to_upper(struct btrfs_trans_handle *trans,
2511                          struct reloc_control *rc,
2512                          struct btrfs_backref_node *node,
2513                          struct btrfs_path *path)
2514 {
2515         struct btrfs_key key;
2516
2517         btrfs_node_key_to_cpu(node->eb, &key, 0);
2518         return do_relocation(trans, rc, node, &key, path, 0);
2519 }
2520
2521 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2522                                 struct reloc_control *rc,
2523                                 struct btrfs_path *path, int err)
2524 {
2525         LIST_HEAD(list);
2526         struct btrfs_backref_cache *cache = &rc->backref_cache;
2527         struct btrfs_backref_node *node;
2528         int level;
2529         int ret;
2530
2531         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2532                 while (!list_empty(&cache->pending[level])) {
2533                         node = list_entry(cache->pending[level].next,
2534                                           struct btrfs_backref_node, list);
2535                         list_move_tail(&node->list, &list);
2536                         BUG_ON(!node->pending);
2537
2538                         if (!err) {
2539                                 ret = link_to_upper(trans, rc, node, path);
2540                                 if (ret < 0)
2541                                         err = ret;
2542                         }
2543                 }
2544                 list_splice_init(&list, &cache->pending[level]);
2545         }
2546         return err;
2547 }
2548
2549 /*
2550  * mark a block and all blocks directly/indirectly reference the block
2551  * as processed.
2552  */
2553 static void update_processed_blocks(struct reloc_control *rc,
2554                                     struct btrfs_backref_node *node)
2555 {
2556         struct btrfs_backref_node *next = node;
2557         struct btrfs_backref_edge *edge;
2558         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2559         int index = 0;
2560
2561         while (next) {
2562                 cond_resched();
2563                 while (1) {
2564                         if (next->processed)
2565                                 break;
2566
2567                         mark_block_processed(rc, next);
2568
2569                         if (list_empty(&next->upper))
2570                                 break;
2571
2572                         edge = list_entry(next->upper.next,
2573                                         struct btrfs_backref_edge, list[LOWER]);
2574                         edges[index++] = edge;
2575                         next = edge->node[UPPER];
2576                 }
2577                 next = walk_down_backref(edges, &index);
2578         }
2579 }
2580
2581 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2582 {
2583         u32 blocksize = rc->extent_root->fs_info->nodesize;
2584
2585         if (test_range_bit(&rc->processed_blocks, bytenr,
2586                            bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2587                 return 1;
2588         return 0;
2589 }
2590
2591 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2592                               struct tree_block *block)
2593 {
2594         struct extent_buffer *eb;
2595
2596         eb = read_tree_block(fs_info, block->bytenr, block->owner,
2597                              block->key.offset, block->level, NULL);
2598         if (IS_ERR(eb)) {
2599                 return PTR_ERR(eb);
2600         } else if (!extent_buffer_uptodate(eb)) {
2601                 free_extent_buffer(eb);
2602                 return -EIO;
2603         }
2604         if (block->level == 0)
2605                 btrfs_item_key_to_cpu(eb, &block->key, 0);
2606         else
2607                 btrfs_node_key_to_cpu(eb, &block->key, 0);
2608         free_extent_buffer(eb);
2609         block->key_ready = 1;
2610         return 0;
2611 }
2612
2613 /*
2614  * helper function to relocate a tree block
2615  */
2616 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2617                                 struct reloc_control *rc,
2618                                 struct btrfs_backref_node *node,
2619                                 struct btrfs_key *key,
2620                                 struct btrfs_path *path)
2621 {
2622         struct btrfs_root *root;
2623         int ret = 0;
2624
2625         if (!node)
2626                 return 0;
2627
2628         /*
2629          * If we fail here we want to drop our backref_node because we are going
2630          * to start over and regenerate the tree for it.
2631          */
2632         ret = reserve_metadata_space(trans, rc, node);
2633         if (ret)
2634                 goto out;
2635
2636         BUG_ON(node->processed);
2637         root = select_one_root(node);
2638         if (IS_ERR(root)) {
2639                 ret = PTR_ERR(root);
2640
2641                 /* See explanation in select_one_root for the -EUCLEAN case. */
2642                 ASSERT(ret == -ENOENT);
2643                 if (ret == -ENOENT) {
2644                         ret = 0;
2645                         update_processed_blocks(rc, node);
2646                 }
2647                 goto out;
2648         }
2649
2650         if (root) {
2651                 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2652                         /*
2653                          * This block was the root block of a root, and this is
2654                          * the first time we're processing the block and thus it
2655                          * should not have had the ->new_bytenr modified and
2656                          * should have not been included on the changed list.
2657                          *
2658                          * However in the case of corruption we could have
2659                          * multiple refs pointing to the same block improperly,
2660                          * and thus we would trip over these checks.  ASSERT()
2661                          * for the developer case, because it could indicate a
2662                          * bug in the backref code, however error out for a
2663                          * normal user in the case of corruption.
2664                          */
2665                         ASSERT(node->new_bytenr == 0);
2666                         ASSERT(list_empty(&node->list));
2667                         if (node->new_bytenr || !list_empty(&node->list)) {
2668                                 btrfs_err(root->fs_info,
2669                                   "bytenr %llu has improper references to it",
2670                                           node->bytenr);
2671                                 ret = -EUCLEAN;
2672                                 goto out;
2673                         }
2674                         ret = btrfs_record_root_in_trans(trans, root);
2675                         if (ret)
2676                                 goto out;
2677                         /*
2678                          * Another thread could have failed, need to check if we
2679                          * have reloc_root actually set.
2680                          */
2681                         if (!root->reloc_root) {
2682                                 ret = -ENOENT;
2683                                 goto out;
2684                         }
2685                         root = root->reloc_root;
2686                         node->new_bytenr = root->node->start;
2687                         btrfs_put_root(node->root);
2688                         node->root = btrfs_grab_root(root);
2689                         ASSERT(node->root);
2690                         list_add_tail(&node->list, &rc->backref_cache.changed);
2691                 } else {
2692                         path->lowest_level = node->level;
2693                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2694                         btrfs_release_path(path);
2695                         if (ret > 0)
2696                                 ret = 0;
2697                 }
2698                 if (!ret)
2699                         update_processed_blocks(rc, node);
2700         } else {
2701                 ret = do_relocation(trans, rc, node, key, path, 1);
2702         }
2703 out:
2704         if (ret || node->level == 0 || node->cowonly)
2705                 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2706         return ret;
2707 }
2708
2709 /*
2710  * relocate a list of blocks
2711  */
2712 static noinline_for_stack
2713 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2714                          struct reloc_control *rc, struct rb_root *blocks)
2715 {
2716         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2717         struct btrfs_backref_node *node;
2718         struct btrfs_path *path;
2719         struct tree_block *block;
2720         struct tree_block *next;
2721         int ret;
2722         int err = 0;
2723
2724         path = btrfs_alloc_path();
2725         if (!path) {
2726                 err = -ENOMEM;
2727                 goto out_free_blocks;
2728         }
2729
2730         /* Kick in readahead for tree blocks with missing keys */
2731         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2732                 if (!block->key_ready)
2733                         btrfs_readahead_tree_block(fs_info, block->bytenr,
2734                                                    block->owner, 0,
2735                                                    block->level);
2736         }
2737
2738         /* Get first keys */
2739         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2740                 if (!block->key_ready) {
2741                         err = get_tree_block_key(fs_info, block);
2742                         if (err)
2743                                 goto out_free_path;
2744                 }
2745         }
2746
2747         /* Do tree relocation */
2748         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2749                 node = build_backref_tree(rc, &block->key,
2750                                           block->level, block->bytenr);
2751                 if (IS_ERR(node)) {
2752                         err = PTR_ERR(node);
2753                         goto out;
2754                 }
2755
2756                 ret = relocate_tree_block(trans, rc, node, &block->key,
2757                                           path);
2758                 if (ret < 0) {
2759                         err = ret;
2760                         break;
2761                 }
2762         }
2763 out:
2764         err = finish_pending_nodes(trans, rc, path, err);
2765
2766 out_free_path:
2767         btrfs_free_path(path);
2768 out_free_blocks:
2769         free_block_list(blocks);
2770         return err;
2771 }
2772
2773 static noinline_for_stack int prealloc_file_extent_cluster(
2774                                 struct btrfs_inode *inode,
2775                                 struct file_extent_cluster *cluster)
2776 {
2777         u64 alloc_hint = 0;
2778         u64 start;
2779         u64 end;
2780         u64 offset = inode->index_cnt;
2781         u64 num_bytes;
2782         int nr;
2783         int ret = 0;
2784         u64 prealloc_start = cluster->start - offset;
2785         u64 prealloc_end = cluster->end - offset;
2786         u64 cur_offset = prealloc_start;
2787
2788         BUG_ON(cluster->start != cluster->boundary[0]);
2789         ret = btrfs_alloc_data_chunk_ondemand(inode,
2790                                               prealloc_end + 1 - prealloc_start);
2791         if (ret)
2792                 return ret;
2793
2794         /*
2795          * On a zoned filesystem, we cannot preallocate the file region.
2796          * Instead, we dirty and fiemap_write the region.
2797          */
2798         if (btrfs_is_zoned(inode->root->fs_info)) {
2799                 struct btrfs_root *root = inode->root;
2800                 struct btrfs_trans_handle *trans;
2801
2802                 end = cluster->end - offset + 1;
2803                 trans = btrfs_start_transaction(root, 1);
2804                 if (IS_ERR(trans))
2805                         return PTR_ERR(trans);
2806
2807                 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
2808                 i_size_write(&inode->vfs_inode, end);
2809                 ret = btrfs_update_inode(trans, root, inode);
2810                 if (ret) {
2811                         btrfs_abort_transaction(trans, ret);
2812                         btrfs_end_transaction(trans);
2813                         return ret;
2814                 }
2815
2816                 return btrfs_end_transaction(trans);
2817         }
2818
2819         btrfs_inode_lock(&inode->vfs_inode, 0);
2820         for (nr = 0; nr < cluster->nr; nr++) {
2821                 start = cluster->boundary[nr] - offset;
2822                 if (nr + 1 < cluster->nr)
2823                         end = cluster->boundary[nr + 1] - 1 - offset;
2824                 else
2825                         end = cluster->end - offset;
2826
2827                 lock_extent(&inode->io_tree, start, end);
2828                 num_bytes = end + 1 - start;
2829                 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2830                                                 num_bytes, num_bytes,
2831                                                 end + 1, &alloc_hint);
2832                 cur_offset = end + 1;
2833                 unlock_extent(&inode->io_tree, start, end);
2834                 if (ret)
2835                         break;
2836         }
2837         btrfs_inode_unlock(&inode->vfs_inode, 0);
2838
2839         if (cur_offset < prealloc_end)
2840                 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2841                                                prealloc_end + 1 - cur_offset);
2842         return ret;
2843 }
2844
2845 static noinline_for_stack
2846 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2847                          u64 block_start)
2848 {
2849         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2850         struct extent_map *em;
2851         int ret = 0;
2852
2853         em = alloc_extent_map();
2854         if (!em)
2855                 return -ENOMEM;
2856
2857         em->start = start;
2858         em->len = end + 1 - start;
2859         em->block_len = em->len;
2860         em->block_start = block_start;
2861         set_bit(EXTENT_FLAG_PINNED, &em->flags);
2862
2863         lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2864         while (1) {
2865                 write_lock(&em_tree->lock);
2866                 ret = add_extent_mapping(em_tree, em, 0);
2867                 write_unlock(&em_tree->lock);
2868                 if (ret != -EEXIST) {
2869                         free_extent_map(em);
2870                         break;
2871                 }
2872                 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2873         }
2874         unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2875         return ret;
2876 }
2877
2878 /*
2879  * Allow error injection to test balance/relocation cancellation
2880  */
2881 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2882 {
2883         return atomic_read(&fs_info->balance_cancel_req) ||
2884                 atomic_read(&fs_info->reloc_cancel_req) ||
2885                 fatal_signal_pending(current);
2886 }
2887 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2888
2889 static int relocate_file_extent_cluster(struct inode *inode,
2890                                         struct file_extent_cluster *cluster)
2891 {
2892         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2893         u64 page_start;
2894         u64 page_end;
2895         u64 offset = BTRFS_I(inode)->index_cnt;
2896         unsigned long index;
2897         unsigned long last_index;
2898         struct page *page;
2899         struct file_ra_state *ra;
2900         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2901         int nr = 0;
2902         int ret = 0;
2903
2904         if (!cluster->nr)
2905                 return 0;
2906
2907         ra = kzalloc(sizeof(*ra), GFP_NOFS);
2908         if (!ra)
2909                 return -ENOMEM;
2910
2911         ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2912         if (ret)
2913                 goto out;
2914
2915         file_ra_state_init(ra, inode->i_mapping);
2916
2917         ret = setup_extent_mapping(inode, cluster->start - offset,
2918                                    cluster->end - offset, cluster->start);
2919         if (ret)
2920                 goto out;
2921
2922         index = (cluster->start - offset) >> PAGE_SHIFT;
2923         last_index = (cluster->end - offset) >> PAGE_SHIFT;
2924         while (index <= last_index) {
2925                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2926                                 PAGE_SIZE);
2927                 if (ret)
2928                         goto out;
2929
2930                 page = find_lock_page(inode->i_mapping, index);
2931                 if (!page) {
2932                         page_cache_sync_readahead(inode->i_mapping,
2933                                                   ra, NULL, index,
2934                                                   last_index + 1 - index);
2935                         page = find_or_create_page(inode->i_mapping, index,
2936                                                    mask);
2937                         if (!page) {
2938                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2939                                                         PAGE_SIZE, true);
2940                                 btrfs_delalloc_release_extents(BTRFS_I(inode),
2941                                                         PAGE_SIZE);
2942                                 ret = -ENOMEM;
2943                                 goto out;
2944                         }
2945                 }
2946                 ret = set_page_extent_mapped(page);
2947                 if (ret < 0) {
2948                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
2949                                                         PAGE_SIZE, true);
2950                         btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2951                         unlock_page(page);
2952                         put_page(page);
2953                         goto out;
2954                 }
2955
2956                 if (PageReadahead(page)) {
2957                         page_cache_async_readahead(inode->i_mapping,
2958                                                    ra, NULL, page, index,
2959                                                    last_index + 1 - index);
2960                 }
2961
2962                 if (!PageUptodate(page)) {
2963                         btrfs_readpage(NULL, page);
2964                         lock_page(page);
2965                         if (!PageUptodate(page)) {
2966                                 unlock_page(page);
2967                                 put_page(page);
2968                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2969                                                         PAGE_SIZE, true);
2970                                 btrfs_delalloc_release_extents(BTRFS_I(inode),
2971                                                                PAGE_SIZE);
2972                                 ret = -EIO;
2973                                 goto out;
2974                         }
2975                 }
2976
2977                 page_start = page_offset(page);
2978                 page_end = page_start + PAGE_SIZE - 1;
2979
2980                 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2981
2982                 if (nr < cluster->nr &&
2983                     page_start + offset == cluster->boundary[nr]) {
2984                         set_extent_bits(&BTRFS_I(inode)->io_tree,
2985                                         page_start, page_end,
2986                                         EXTENT_BOUNDARY);
2987                         nr++;
2988                 }
2989
2990                 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2991                                                 page_end, 0, NULL);
2992                 if (ret) {
2993                         unlock_page(page);
2994                         put_page(page);
2995                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
2996                                                          PAGE_SIZE, true);
2997                         btrfs_delalloc_release_extents(BTRFS_I(inode),
2998                                                        PAGE_SIZE);
2999
3000                         clear_extent_bits(&BTRFS_I(inode)->io_tree,
3001                                           page_start, page_end,
3002                                           EXTENT_LOCKED | EXTENT_BOUNDARY);
3003                         goto out;
3004
3005                 }
3006                 set_page_dirty(page);
3007
3008                 unlock_extent(&BTRFS_I(inode)->io_tree,
3009                               page_start, page_end);
3010                 unlock_page(page);
3011                 put_page(page);
3012
3013                 index++;
3014                 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3015                 balance_dirty_pages_ratelimited(inode->i_mapping);
3016                 btrfs_throttle(fs_info);
3017                 if (btrfs_should_cancel_balance(fs_info)) {
3018                         ret = -ECANCELED;
3019                         goto out;
3020                 }
3021         }
3022         WARN_ON(nr != cluster->nr);
3023         if (btrfs_is_zoned(fs_info) && !ret)
3024                 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
3025 out:
3026         kfree(ra);
3027         return ret;
3028 }
3029
3030 static noinline_for_stack
3031 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3032                          struct file_extent_cluster *cluster)
3033 {
3034         int ret;
3035
3036         if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3037                 ret = relocate_file_extent_cluster(inode, cluster);
3038                 if (ret)
3039                         return ret;
3040                 cluster->nr = 0;
3041         }
3042
3043         if (!cluster->nr)
3044                 cluster->start = extent_key->objectid;
3045         else
3046                 BUG_ON(cluster->nr >= MAX_EXTENTS);
3047         cluster->end = extent_key->objectid + extent_key->offset - 1;
3048         cluster->boundary[cluster->nr] = extent_key->objectid;
3049         cluster->nr++;
3050
3051         if (cluster->nr >= MAX_EXTENTS) {
3052                 ret = relocate_file_extent_cluster(inode, cluster);
3053                 if (ret)
3054                         return ret;
3055                 cluster->nr = 0;
3056         }
3057         return 0;
3058 }
3059
3060 /*
3061  * helper to add a tree block to the list.
3062  * the major work is getting the generation and level of the block
3063  */
3064 static int add_tree_block(struct reloc_control *rc,
3065                           struct btrfs_key *extent_key,
3066                           struct btrfs_path *path,
3067                           struct rb_root *blocks)
3068 {
3069         struct extent_buffer *eb;
3070         struct btrfs_extent_item *ei;
3071         struct btrfs_tree_block_info *bi;
3072         struct tree_block *block;
3073         struct rb_node *rb_node;
3074         u32 item_size;
3075         int level = -1;
3076         u64 generation;
3077         u64 owner = 0;
3078
3079         eb =  path->nodes[0];
3080         item_size = btrfs_item_size_nr(eb, path->slots[0]);
3081
3082         if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3083             item_size >= sizeof(*ei) + sizeof(*bi)) {
3084                 unsigned long ptr = 0, end;
3085
3086                 ei = btrfs_item_ptr(eb, path->slots[0],
3087                                 struct btrfs_extent_item);
3088                 end = (unsigned long)ei + item_size;
3089                 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3090                         bi = (struct btrfs_tree_block_info *)(ei + 1);
3091                         level = btrfs_tree_block_level(eb, bi);
3092                         ptr = (unsigned long)(bi + 1);
3093                 } else {
3094                         level = (int)extent_key->offset;
3095                         ptr = (unsigned long)(ei + 1);
3096                 }
3097                 generation = btrfs_extent_generation(eb, ei);
3098
3099                 /*
3100                  * We're reading random blocks without knowing their owner ahead
3101                  * of time.  This is ok most of the time, as all reloc roots and
3102                  * fs roots have the same lock type.  However normal trees do
3103                  * not, and the only way to know ahead of time is to read the
3104                  * inline ref offset.  We know it's an fs root if
3105                  *
3106                  * 1. There's more than one ref.
3107                  * 2. There's a SHARED_DATA_REF_KEY set.
3108                  * 3. FULL_BACKREF is set on the flags.
3109                  *
3110                  * Otherwise it's safe to assume that the ref offset == the
3111                  * owner of this block, so we can use that when calling
3112                  * read_tree_block.
3113                  */
3114                 if (btrfs_extent_refs(eb, ei) == 1 &&
3115                     !(btrfs_extent_flags(eb, ei) &
3116                       BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3117                     ptr < end) {
3118                         struct btrfs_extent_inline_ref *iref;
3119                         int type;
3120
3121                         iref = (struct btrfs_extent_inline_ref *)ptr;
3122                         type = btrfs_get_extent_inline_ref_type(eb, iref,
3123                                                         BTRFS_REF_TYPE_BLOCK);
3124                         if (type == BTRFS_REF_TYPE_INVALID)
3125                                 return -EINVAL;
3126                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
3127                                 owner = btrfs_extent_inline_ref_offset(eb, iref);
3128                 }
3129         } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3130                 btrfs_print_v0_err(eb->fs_info);
3131                 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3132                 return -EINVAL;
3133         } else {
3134                 BUG();
3135         }
3136
3137         btrfs_release_path(path);
3138
3139         BUG_ON(level == -1);
3140
3141         block = kmalloc(sizeof(*block), GFP_NOFS);
3142         if (!block)
3143                 return -ENOMEM;
3144
3145         block->bytenr = extent_key->objectid;
3146         block->key.objectid = rc->extent_root->fs_info->nodesize;
3147         block->key.offset = generation;
3148         block->level = level;
3149         block->key_ready = 0;
3150         block->owner = owner;
3151
3152         rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3153         if (rb_node)
3154                 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3155                                     -EEXIST);
3156
3157         return 0;
3158 }
3159
3160 /*
3161  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3162  */
3163 static int __add_tree_block(struct reloc_control *rc,
3164                             u64 bytenr, u32 blocksize,
3165                             struct rb_root *blocks)
3166 {
3167         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3168         struct btrfs_path *path;
3169         struct btrfs_key key;
3170         int ret;
3171         bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3172
3173         if (tree_block_processed(bytenr, rc))
3174                 return 0;
3175
3176         if (rb_simple_search(blocks, bytenr))
3177                 return 0;
3178
3179         path = btrfs_alloc_path();
3180         if (!path)
3181                 return -ENOMEM;
3182 again:
3183         key.objectid = bytenr;
3184         if (skinny) {
3185                 key.type = BTRFS_METADATA_ITEM_KEY;
3186                 key.offset = (u64)-1;
3187         } else {
3188                 key.type = BTRFS_EXTENT_ITEM_KEY;
3189                 key.offset = blocksize;
3190         }
3191
3192         path->search_commit_root = 1;
3193         path->skip_locking = 1;
3194         ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3195         if (ret < 0)
3196                 goto out;
3197
3198         if (ret > 0 && skinny) {
3199                 if (path->slots[0]) {
3200                         path->slots[0]--;
3201                         btrfs_item_key_to_cpu(path->nodes[0], &key,
3202                                               path->slots[0]);
3203                         if (key.objectid == bytenr &&
3204                             (key.type == BTRFS_METADATA_ITEM_KEY ||
3205                              (key.type == BTRFS_EXTENT_ITEM_KEY &&
3206                               key.offset == blocksize)))
3207                                 ret = 0;
3208                 }
3209
3210                 if (ret) {
3211                         skinny = false;
3212                         btrfs_release_path(path);
3213                         goto again;
3214                 }
3215         }
3216         if (ret) {
3217                 ASSERT(ret == 1);
3218                 btrfs_print_leaf(path->nodes[0]);
3219                 btrfs_err(fs_info,
3220              "tree block extent item (%llu) is not found in extent tree",
3221                      bytenr);
3222                 WARN_ON(1);
3223                 ret = -EINVAL;
3224                 goto out;
3225         }
3226
3227         ret = add_tree_block(rc, &key, path, blocks);
3228 out:
3229         btrfs_free_path(path);
3230         return ret;
3231 }
3232
3233 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3234                                     struct btrfs_block_group *block_group,
3235                                     struct inode *inode,
3236                                     u64 ino)
3237 {
3238         struct btrfs_root *root = fs_info->tree_root;
3239         struct btrfs_trans_handle *trans;
3240         int ret = 0;
3241
3242         if (inode)
3243                 goto truncate;
3244
3245         inode = btrfs_iget(fs_info->sb, ino, root);
3246         if (IS_ERR(inode))
3247                 return -ENOENT;
3248
3249 truncate:
3250         ret = btrfs_check_trunc_cache_free_space(fs_info,
3251                                                  &fs_info->global_block_rsv);
3252         if (ret)
3253                 goto out;
3254
3255         trans = btrfs_join_transaction(root);
3256         if (IS_ERR(trans)) {
3257                 ret = PTR_ERR(trans);
3258                 goto out;
3259         }
3260
3261         ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3262
3263         btrfs_end_transaction(trans);
3264         btrfs_btree_balance_dirty(fs_info);
3265 out:
3266         iput(inode);
3267         return ret;
3268 }
3269
3270 /*
3271  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3272  * cache inode, to avoid free space cache data extent blocking data relocation.
3273  */
3274 static int delete_v1_space_cache(struct extent_buffer *leaf,
3275                                  struct btrfs_block_group *block_group,
3276                                  u64 data_bytenr)
3277 {
3278         u64 space_cache_ino;
3279         struct btrfs_file_extent_item *ei;
3280         struct btrfs_key key;
3281         bool found = false;
3282         int i;
3283         int ret;
3284
3285         if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3286                 return 0;
3287
3288         for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3289                 u8 type;
3290
3291                 btrfs_item_key_to_cpu(leaf, &key, i);
3292                 if (key.type != BTRFS_EXTENT_DATA_KEY)
3293                         continue;
3294                 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3295                 type = btrfs_file_extent_type(leaf, ei);
3296
3297                 if ((type == BTRFS_FILE_EXTENT_REG ||
3298                      type == BTRFS_FILE_EXTENT_PREALLOC) &&
3299                     btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3300                         found = true;
3301                         space_cache_ino = key.objectid;
3302                         break;
3303                 }
3304         }
3305         if (!found)
3306                 return -ENOENT;
3307         ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3308                                         space_cache_ino);
3309         return ret;
3310 }
3311
3312 /*
3313  * helper to find all tree blocks that reference a given data extent
3314  */
3315 static noinline_for_stack
3316 int add_data_references(struct reloc_control *rc,
3317                         struct btrfs_key *extent_key,
3318                         struct btrfs_path *path,
3319                         struct rb_root *blocks)
3320 {
3321         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3322         struct ulist *leaves = NULL;
3323         struct ulist_iterator leaf_uiter;
3324         struct ulist_node *ref_node = NULL;
3325         const u32 blocksize = fs_info->nodesize;
3326         int ret = 0;
3327
3328         btrfs_release_path(path);
3329         ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3330                                    0, &leaves, NULL, true);
3331         if (ret < 0)
3332                 return ret;
3333
3334         ULIST_ITER_INIT(&leaf_uiter);
3335         while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3336                 struct extent_buffer *eb;
3337
3338                 eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3339                 if (IS_ERR(eb)) {
3340                         ret = PTR_ERR(eb);
3341                         break;
3342                 }
3343                 ret = delete_v1_space_cache(eb, rc->block_group,
3344                                             extent_key->objectid);
3345                 free_extent_buffer(eb);
3346                 if (ret < 0)
3347                         break;
3348                 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3349                 if (ret < 0)
3350                         break;
3351         }
3352         if (ret < 0)
3353                 free_block_list(blocks);
3354         ulist_free(leaves);
3355         return ret;
3356 }
3357
3358 /*
3359  * helper to find next unprocessed extent
3360  */
3361 static noinline_for_stack
3362 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3363                      struct btrfs_key *extent_key)
3364 {
3365         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3366         struct btrfs_key key;
3367         struct extent_buffer *leaf;
3368         u64 start, end, last;
3369         int ret;
3370
3371         last = rc->block_group->start + rc->block_group->length;
3372         while (1) {
3373                 cond_resched();
3374                 if (rc->search_start >= last) {
3375                         ret = 1;
3376                         break;
3377                 }
3378
3379                 key.objectid = rc->search_start;
3380                 key.type = BTRFS_EXTENT_ITEM_KEY;
3381                 key.offset = 0;
3382
3383                 path->search_commit_root = 1;
3384                 path->skip_locking = 1;
3385                 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3386                                         0, 0);
3387                 if (ret < 0)
3388                         break;
3389 next:
3390                 leaf = path->nodes[0];
3391                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3392                         ret = btrfs_next_leaf(rc->extent_root, path);
3393                         if (ret != 0)
3394                                 break;
3395                         leaf = path->nodes[0];
3396                 }
3397
3398                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3399                 if (key.objectid >= last) {
3400                         ret = 1;
3401                         break;
3402                 }
3403
3404                 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3405                     key.type != BTRFS_METADATA_ITEM_KEY) {
3406                         path->slots[0]++;
3407                         goto next;
3408                 }
3409
3410                 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3411                     key.objectid + key.offset <= rc->search_start) {
3412                         path->slots[0]++;
3413                         goto next;
3414                 }
3415
3416                 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3417                     key.objectid + fs_info->nodesize <=
3418                     rc->search_start) {
3419                         path->slots[0]++;
3420                         goto next;
3421                 }
3422
3423                 ret = find_first_extent_bit(&rc->processed_blocks,
3424                                             key.objectid, &start, &end,
3425                                             EXTENT_DIRTY, NULL);
3426
3427                 if (ret == 0 && start <= key.objectid) {
3428                         btrfs_release_path(path);
3429                         rc->search_start = end + 1;
3430                 } else {
3431                         if (key.type == BTRFS_EXTENT_ITEM_KEY)
3432                                 rc->search_start = key.objectid + key.offset;
3433                         else
3434                                 rc->search_start = key.objectid +
3435                                         fs_info->nodesize;
3436                         memcpy(extent_key, &key, sizeof(key));
3437                         return 0;
3438                 }
3439         }
3440         btrfs_release_path(path);
3441         return ret;
3442 }
3443
3444 static void set_reloc_control(struct reloc_control *rc)
3445 {
3446         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3447
3448         mutex_lock(&fs_info->reloc_mutex);
3449         fs_info->reloc_ctl = rc;
3450         mutex_unlock(&fs_info->reloc_mutex);
3451 }
3452
3453 static void unset_reloc_control(struct reloc_control *rc)
3454 {
3455         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3456
3457         mutex_lock(&fs_info->reloc_mutex);
3458         fs_info->reloc_ctl = NULL;
3459         mutex_unlock(&fs_info->reloc_mutex);
3460 }
3461
3462 static noinline_for_stack
3463 int prepare_to_relocate(struct reloc_control *rc)
3464 {
3465         struct btrfs_trans_handle *trans;
3466         int ret;
3467
3468         rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3469                                               BTRFS_BLOCK_RSV_TEMP);
3470         if (!rc->block_rsv)
3471                 return -ENOMEM;
3472
3473         memset(&rc->cluster, 0, sizeof(rc->cluster));
3474         rc->search_start = rc->block_group->start;
3475         rc->extents_found = 0;
3476         rc->nodes_relocated = 0;
3477         rc->merging_rsv_size = 0;
3478         rc->reserved_bytes = 0;
3479         rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3480                               RELOCATION_RESERVED_NODES;
3481         ret = btrfs_block_rsv_refill(rc->extent_root,
3482                                      rc->block_rsv, rc->block_rsv->size,
3483                                      BTRFS_RESERVE_FLUSH_ALL);
3484         if (ret)
3485                 return ret;
3486
3487         rc->create_reloc_tree = 1;
3488         set_reloc_control(rc);
3489
3490         trans = btrfs_join_transaction(rc->extent_root);
3491         if (IS_ERR(trans)) {
3492                 unset_reloc_control(rc);
3493                 /*
3494                  * extent tree is not a ref_cow tree and has no reloc_root to
3495                  * cleanup.  And callers are responsible to free the above
3496                  * block rsv.
3497                  */
3498                 return PTR_ERR(trans);
3499         }
3500         return btrfs_commit_transaction(trans);
3501 }
3502
3503 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3504 {
3505         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3506         struct rb_root blocks = RB_ROOT;
3507         struct btrfs_key key;
3508         struct btrfs_trans_handle *trans = NULL;
3509         struct btrfs_path *path;
3510         struct btrfs_extent_item *ei;
3511         u64 flags;
3512         int ret;
3513         int err = 0;
3514         int progress = 0;
3515
3516         path = btrfs_alloc_path();
3517         if (!path)
3518                 return -ENOMEM;
3519         path->reada = READA_FORWARD;
3520
3521         ret = prepare_to_relocate(rc);
3522         if (ret) {
3523                 err = ret;
3524                 goto out_free;
3525         }
3526
3527         while (1) {
3528                 rc->reserved_bytes = 0;
3529                 ret = btrfs_block_rsv_refill(rc->extent_root,
3530                                         rc->block_rsv, rc->block_rsv->size,
3531                                         BTRFS_RESERVE_FLUSH_ALL);
3532                 if (ret) {
3533                         err = ret;
3534                         break;
3535                 }
3536                 progress++;
3537                 trans = btrfs_start_transaction(rc->extent_root, 0);
3538                 if (IS_ERR(trans)) {
3539                         err = PTR_ERR(trans);
3540                         trans = NULL;
3541                         break;
3542                 }
3543 restart:
3544                 if (update_backref_cache(trans, &rc->backref_cache)) {
3545                         btrfs_end_transaction(trans);
3546                         trans = NULL;
3547                         continue;
3548                 }
3549
3550                 ret = find_next_extent(rc, path, &key);
3551                 if (ret < 0)
3552                         err = ret;
3553                 if (ret != 0)
3554                         break;
3555
3556                 rc->extents_found++;
3557
3558                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3559                                     struct btrfs_extent_item);
3560                 flags = btrfs_extent_flags(path->nodes[0], ei);
3561
3562                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3563                         ret = add_tree_block(rc, &key, path, &blocks);
3564                 } else if (rc->stage == UPDATE_DATA_PTRS &&
3565                            (flags & BTRFS_EXTENT_FLAG_DATA)) {
3566                         ret = add_data_references(rc, &key, path, &blocks);
3567                 } else {
3568                         btrfs_release_path(path);
3569                         ret = 0;
3570                 }
3571                 if (ret < 0) {
3572                         err = ret;
3573                         break;
3574                 }
3575
3576                 if (!RB_EMPTY_ROOT(&blocks)) {
3577                         ret = relocate_tree_blocks(trans, rc, &blocks);
3578                         if (ret < 0) {
3579                                 if (ret != -EAGAIN) {
3580                                         err = ret;
3581                                         break;
3582                                 }
3583                                 rc->extents_found--;
3584                                 rc->search_start = key.objectid;
3585                         }
3586                 }
3587
3588                 btrfs_end_transaction_throttle(trans);
3589                 btrfs_btree_balance_dirty(fs_info);
3590                 trans = NULL;
3591
3592                 if (rc->stage == MOVE_DATA_EXTENTS &&
3593                     (flags & BTRFS_EXTENT_FLAG_DATA)) {
3594                         rc->found_file_extent = 1;
3595                         ret = relocate_data_extent(rc->data_inode,
3596                                                    &key, &rc->cluster);
3597                         if (ret < 0) {
3598                                 err = ret;
3599                                 break;
3600                         }
3601                 }
3602                 if (btrfs_should_cancel_balance(fs_info)) {
3603                         err = -ECANCELED;
3604                         break;
3605                 }
3606         }
3607         if (trans && progress && err == -ENOSPC) {
3608                 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3609                 if (ret == 1) {
3610                         err = 0;
3611                         progress = 0;
3612                         goto restart;
3613                 }
3614         }
3615
3616         btrfs_release_path(path);
3617         clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3618
3619         if (trans) {
3620                 btrfs_end_transaction_throttle(trans);
3621                 btrfs_btree_balance_dirty(fs_info);
3622         }
3623
3624         if (!err) {
3625                 ret = relocate_file_extent_cluster(rc->data_inode,
3626                                                    &rc->cluster);
3627                 if (ret < 0)
3628                         err = ret;
3629         }
3630
3631         rc->create_reloc_tree = 0;
3632         set_reloc_control(rc);
3633
3634         btrfs_backref_release_cache(&rc->backref_cache);
3635         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3636
3637         /*
3638          * Even in the case when the relocation is cancelled, we should all go
3639          * through prepare_to_merge() and merge_reloc_roots().
3640          *
3641          * For error (including cancelled balance), prepare_to_merge() will
3642          * mark all reloc trees orphan, then queue them for cleanup in
3643          * merge_reloc_roots()
3644          */
3645         err = prepare_to_merge(rc, err);
3646
3647         merge_reloc_roots(rc);
3648
3649         rc->merge_reloc_tree = 0;
3650         unset_reloc_control(rc);
3651         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3652
3653         /* get rid of pinned extents */
3654         trans = btrfs_join_transaction(rc->extent_root);
3655         if (IS_ERR(trans)) {
3656                 err = PTR_ERR(trans);
3657                 goto out_free;
3658         }
3659         ret = btrfs_commit_transaction(trans);
3660         if (ret && !err)
3661                 err = ret;
3662 out_free:
3663         ret = clean_dirty_subvols(rc);
3664         if (ret < 0 && !err)
3665                 err = ret;
3666         btrfs_free_block_rsv(fs_info, rc->block_rsv);
3667         btrfs_free_path(path);
3668         return err;
3669 }
3670
3671 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3672                                  struct btrfs_root *root, u64 objectid)
3673 {
3674         struct btrfs_path *path;
3675         struct btrfs_inode_item *item;
3676         struct extent_buffer *leaf;
3677         u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
3678         int ret;
3679
3680         if (btrfs_is_zoned(trans->fs_info))
3681                 flags &= ~BTRFS_INODE_PREALLOC;
3682
3683         path = btrfs_alloc_path();
3684         if (!path)
3685                 return -ENOMEM;
3686
3687         ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3688         if (ret)
3689                 goto out;
3690
3691         leaf = path->nodes[0];
3692         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3693         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3694         btrfs_set_inode_generation(leaf, item, 1);
3695         btrfs_set_inode_size(leaf, item, 0);
3696         btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3697         btrfs_set_inode_flags(leaf, item, flags);
3698         btrfs_mark_buffer_dirty(leaf);
3699 out:
3700         btrfs_free_path(path);
3701         return ret;
3702 }
3703
3704 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3705                                 struct btrfs_root *root, u64 objectid)
3706 {
3707         struct btrfs_path *path;
3708         struct btrfs_key key;
3709         int ret = 0;
3710
3711         path = btrfs_alloc_path();
3712         if (!path) {
3713                 ret = -ENOMEM;
3714                 goto out;
3715         }
3716
3717         key.objectid = objectid;
3718         key.type = BTRFS_INODE_ITEM_KEY;
3719         key.offset = 0;
3720         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3721         if (ret) {
3722                 if (ret > 0)
3723                         ret = -ENOENT;
3724                 goto out;
3725         }
3726         ret = btrfs_del_item(trans, root, path);
3727 out:
3728         if (ret)
3729                 btrfs_abort_transaction(trans, ret);
3730         btrfs_free_path(path);
3731 }
3732
3733 /*
3734  * helper to create inode for data relocation.
3735  * the inode is in data relocation tree and its link count is 0
3736  */
3737 static noinline_for_stack
3738 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3739                                  struct btrfs_block_group *group)
3740 {
3741         struct inode *inode = NULL;
3742         struct btrfs_trans_handle *trans;
3743         struct btrfs_root *root;
3744         u64 objectid;
3745         int err = 0;
3746
3747         root = btrfs_grab_root(fs_info->data_reloc_root);
3748         trans = btrfs_start_transaction(root, 6);
3749         if (IS_ERR(trans)) {
3750                 btrfs_put_root(root);
3751                 return ERR_CAST(trans);
3752         }
3753
3754         err = btrfs_get_free_objectid(root, &objectid);
3755         if (err)
3756                 goto out;
3757
3758         err = __insert_orphan_inode(trans, root, objectid);
3759         if (err)
3760                 goto out;
3761
3762         inode = btrfs_iget(fs_info->sb, objectid, root);
3763         if (IS_ERR(inode)) {
3764                 delete_orphan_inode(trans, root, objectid);
3765                 err = PTR_ERR(inode);
3766                 inode = NULL;
3767                 goto out;
3768         }
3769         BTRFS_I(inode)->index_cnt = group->start;
3770
3771         err = btrfs_orphan_add(trans, BTRFS_I(inode));
3772 out:
3773         btrfs_put_root(root);
3774         btrfs_end_transaction(trans);
3775         btrfs_btree_balance_dirty(fs_info);
3776         if (err) {
3777                 if (inode)
3778                         iput(inode);
3779                 inode = ERR_PTR(err);
3780         }
3781         return inode;
3782 }
3783
3784 /*
3785  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3786  * has been requested meanwhile and don't start in that case.
3787  *
3788  * Return:
3789  *   0             success
3790  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3791  *   -ECANCELED    cancellation request was set before the operation started
3792  *   -EAGAIN       can not start because there are ongoing send operations
3793  */
3794 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3795 {
3796         spin_lock(&fs_info->send_reloc_lock);
3797         if (fs_info->send_in_progress) {
3798                 btrfs_warn_rl(fs_info,
3799 "cannot run relocation while send operations are in progress (%d in progress)",
3800                               fs_info->send_in_progress);
3801                 spin_unlock(&fs_info->send_reloc_lock);
3802                 return -EAGAIN;
3803         }
3804         if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3805                 /* This should not happen */
3806                 spin_unlock(&fs_info->send_reloc_lock);
3807                 btrfs_err(fs_info, "reloc already running, cannot start");
3808                 return -EINPROGRESS;
3809         }
3810         spin_unlock(&fs_info->send_reloc_lock);
3811
3812         if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3813                 btrfs_info(fs_info, "chunk relocation canceled on start");
3814                 /*
3815                  * On cancel, clear all requests but let the caller mark
3816                  * the end after cleanup operations.
3817                  */
3818                 atomic_set(&fs_info->reloc_cancel_req, 0);
3819                 return -ECANCELED;
3820         }
3821         return 0;
3822 }
3823
3824 /*
3825  * Mark end of chunk relocation that is cancellable and wake any waiters.
3826  */
3827 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3828 {
3829         /* Requested after start, clear bit first so any waiters can continue */
3830         if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3831                 btrfs_info(fs_info, "chunk relocation canceled during operation");
3832         spin_lock(&fs_info->send_reloc_lock);
3833         clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3834         spin_unlock(&fs_info->send_reloc_lock);
3835         atomic_set(&fs_info->reloc_cancel_req, 0);
3836 }
3837
3838 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3839 {
3840         struct reloc_control *rc;
3841
3842         rc = kzalloc(sizeof(*rc), GFP_NOFS);
3843         if (!rc)
3844                 return NULL;
3845
3846         INIT_LIST_HEAD(&rc->reloc_roots);
3847         INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3848         btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3849         mapping_tree_init(&rc->reloc_root_tree);
3850         extent_io_tree_init(fs_info, &rc->processed_blocks,
3851                             IO_TREE_RELOC_BLOCKS, NULL);
3852         return rc;
3853 }
3854
3855 static void free_reloc_control(struct reloc_control *rc)
3856 {
3857         struct mapping_node *node, *tmp;
3858
3859         free_reloc_roots(&rc->reloc_roots);
3860         rbtree_postorder_for_each_entry_safe(node, tmp,
3861                         &rc->reloc_root_tree.rb_root, rb_node)
3862                 kfree(node);
3863
3864         kfree(rc);
3865 }
3866
3867 /*
3868  * Print the block group being relocated
3869  */
3870 static void describe_relocation(struct btrfs_fs_info *fs_info,
3871                                 struct btrfs_block_group *block_group)
3872 {
3873         char buf[128] = {'\0'};
3874
3875         btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3876
3877         btrfs_info(fs_info,
3878                    "relocating block group %llu flags %s",
3879                    block_group->start, buf);
3880 }
3881
3882 static const char *stage_to_string(int stage)
3883 {
3884         if (stage == MOVE_DATA_EXTENTS)
3885                 return "move data extents";
3886         if (stage == UPDATE_DATA_PTRS)
3887                 return "update data pointers";
3888         return "unknown";
3889 }
3890
3891 /*
3892  * function to relocate all extents in a block group.
3893  */
3894 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3895 {
3896         struct btrfs_block_group *bg;
3897         struct btrfs_root *extent_root = fs_info->extent_root;
3898         struct reloc_control *rc;
3899         struct inode *inode;
3900         struct btrfs_path *path;
3901         int ret;
3902         int rw = 0;
3903         int err = 0;
3904
3905         bg = btrfs_lookup_block_group(fs_info, group_start);
3906         if (!bg)
3907                 return -ENOENT;
3908
3909         if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3910                 btrfs_put_block_group(bg);
3911                 return -ETXTBSY;
3912         }
3913
3914         rc = alloc_reloc_control(fs_info);
3915         if (!rc) {
3916                 btrfs_put_block_group(bg);
3917                 return -ENOMEM;
3918         }
3919
3920         ret = reloc_chunk_start(fs_info);
3921         if (ret < 0) {
3922                 err = ret;
3923                 goto out_put_bg;
3924         }
3925
3926         rc->extent_root = extent_root;
3927         rc->block_group = bg;
3928
3929         ret = btrfs_inc_block_group_ro(rc->block_group, true);
3930         if (ret) {
3931                 err = ret;
3932                 goto out;
3933         }
3934         rw = 1;
3935
3936         path = btrfs_alloc_path();
3937         if (!path) {
3938                 err = -ENOMEM;
3939                 goto out;
3940         }
3941
3942         inode = lookup_free_space_inode(rc->block_group, path);
3943         btrfs_free_path(path);
3944
3945         if (!IS_ERR(inode))
3946                 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3947         else
3948                 ret = PTR_ERR(inode);
3949
3950         if (ret && ret != -ENOENT) {
3951                 err = ret;
3952                 goto out;
3953         }
3954
3955         rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3956         if (IS_ERR(rc->data_inode)) {
3957                 err = PTR_ERR(rc->data_inode);
3958                 rc->data_inode = NULL;
3959                 goto out;
3960         }
3961
3962         describe_relocation(fs_info, rc->block_group);
3963
3964         btrfs_wait_block_group_reservations(rc->block_group);
3965         btrfs_wait_nocow_writers(rc->block_group);
3966         btrfs_wait_ordered_roots(fs_info, U64_MAX,
3967                                  rc->block_group->start,
3968                                  rc->block_group->length);
3969
3970         while (1) {
3971                 int finishes_stage;
3972
3973                 mutex_lock(&fs_info->cleaner_mutex);
3974                 ret = relocate_block_group(rc);
3975                 mutex_unlock(&fs_info->cleaner_mutex);
3976                 if (ret < 0)
3977                         err = ret;
3978
3979                 finishes_stage = rc->stage;
3980                 /*
3981                  * We may have gotten ENOSPC after we already dirtied some
3982                  * extents.  If writeout happens while we're relocating a
3983                  * different block group we could end up hitting the
3984                  * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3985                  * btrfs_reloc_cow_block.  Make sure we write everything out
3986                  * properly so we don't trip over this problem, and then break
3987                  * out of the loop if we hit an error.
3988                  */
3989                 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3990                         ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3991                                                        (u64)-1);
3992                         if (ret)
3993                                 err = ret;
3994                         invalidate_mapping_pages(rc->data_inode->i_mapping,
3995                                                  0, -1);
3996                         rc->stage = UPDATE_DATA_PTRS;
3997                 }
3998
3999                 if (err < 0)
4000                         goto out;
4001
4002                 if (rc->extents_found == 0)
4003                         break;
4004
4005                 btrfs_info(fs_info, "found %llu extents, stage: %s",
4006                            rc->extents_found, stage_to_string(finishes_stage));
4007         }
4008
4009         WARN_ON(rc->block_group->pinned > 0);
4010         WARN_ON(rc->block_group->reserved > 0);
4011         WARN_ON(rc->block_group->used > 0);
4012 out:
4013         if (err && rw)
4014                 btrfs_dec_block_group_ro(rc->block_group);
4015         iput(rc->data_inode);
4016 out_put_bg:
4017         btrfs_put_block_group(bg);
4018         reloc_chunk_end(fs_info);
4019         free_reloc_control(rc);
4020         return err;
4021 }
4022
4023 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4024 {
4025         struct btrfs_fs_info *fs_info = root->fs_info;
4026         struct btrfs_trans_handle *trans;
4027         int ret, err;
4028
4029         trans = btrfs_start_transaction(fs_info->tree_root, 0);
4030         if (IS_ERR(trans))
4031                 return PTR_ERR(trans);
4032
4033         memset(&root->root_item.drop_progress, 0,
4034                 sizeof(root->root_item.drop_progress));
4035         btrfs_set_root_drop_level(&root->root_item, 0);
4036         btrfs_set_root_refs(&root->root_item, 0);
4037         ret = btrfs_update_root(trans, fs_info->tree_root,
4038                                 &root->root_key, &root->root_item);
4039
4040         err = btrfs_end_transaction(trans);
4041         if (err)
4042                 return err;
4043         return ret;
4044 }
4045
4046 /*
4047  * recover relocation interrupted by system crash.
4048  *
4049  * this function resumes merging reloc trees with corresponding fs trees.
4050  * this is important for keeping the sharing of tree blocks
4051  */
4052 int btrfs_recover_relocation(struct btrfs_root *root)
4053 {
4054         struct btrfs_fs_info *fs_info = root->fs_info;
4055         LIST_HEAD(reloc_roots);
4056         struct btrfs_key key;
4057         struct btrfs_root *fs_root;
4058         struct btrfs_root *reloc_root;
4059         struct btrfs_path *path;
4060         struct extent_buffer *leaf;
4061         struct reloc_control *rc = NULL;
4062         struct btrfs_trans_handle *trans;
4063         int ret;
4064         int err = 0;
4065
4066         path = btrfs_alloc_path();
4067         if (!path)
4068                 return -ENOMEM;
4069         path->reada = READA_BACK;
4070
4071         key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4072         key.type = BTRFS_ROOT_ITEM_KEY;
4073         key.offset = (u64)-1;
4074
4075         while (1) {
4076                 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4077                                         path, 0, 0);
4078                 if (ret < 0) {
4079                         err = ret;
4080                         goto out;
4081                 }
4082                 if (ret > 0) {
4083                         if (path->slots[0] == 0)
4084                                 break;
4085                         path->slots[0]--;
4086                 }
4087                 leaf = path->nodes[0];
4088                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4089                 btrfs_release_path(path);
4090
4091                 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4092                     key.type != BTRFS_ROOT_ITEM_KEY)
4093                         break;
4094
4095                 reloc_root = btrfs_read_tree_root(root, &key);
4096                 if (IS_ERR(reloc_root)) {
4097                         err = PTR_ERR(reloc_root);
4098                         goto out;
4099                 }
4100
4101                 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4102                 list_add(&reloc_root->root_list, &reloc_roots);
4103
4104                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4105                         fs_root = btrfs_get_fs_root(fs_info,
4106                                         reloc_root->root_key.offset, false);
4107                         if (IS_ERR(fs_root)) {
4108                                 ret = PTR_ERR(fs_root);
4109                                 if (ret != -ENOENT) {
4110                                         err = ret;
4111                                         goto out;
4112                                 }
4113                                 ret = mark_garbage_root(reloc_root);
4114                                 if (ret < 0) {
4115                                         err = ret;
4116                                         goto out;
4117                                 }
4118                         } else {
4119                                 btrfs_put_root(fs_root);
4120                         }
4121                 }
4122
4123                 if (key.offset == 0)
4124                         break;
4125
4126                 key.offset--;
4127         }
4128         btrfs_release_path(path);
4129
4130         if (list_empty(&reloc_roots))
4131                 goto out;
4132
4133         rc = alloc_reloc_control(fs_info);
4134         if (!rc) {
4135                 err = -ENOMEM;
4136                 goto out;
4137         }
4138
4139         ret = reloc_chunk_start(fs_info);
4140         if (ret < 0) {
4141                 err = ret;
4142                 goto out_end;
4143         }
4144
4145         rc->extent_root = fs_info->extent_root;
4146
4147         set_reloc_control(rc);
4148
4149         trans = btrfs_join_transaction(rc->extent_root);
4150         if (IS_ERR(trans)) {
4151                 err = PTR_ERR(trans);
4152                 goto out_unset;
4153         }
4154
4155         rc->merge_reloc_tree = 1;
4156
4157         while (!list_empty(&reloc_roots)) {
4158                 reloc_root = list_entry(reloc_roots.next,
4159                                         struct btrfs_root, root_list);
4160                 list_del(&reloc_root->root_list);
4161
4162                 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4163                         list_add_tail(&reloc_root->root_list,
4164                                       &rc->reloc_roots);
4165                         continue;
4166                 }
4167
4168                 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4169                                             false);
4170                 if (IS_ERR(fs_root)) {
4171                         err = PTR_ERR(fs_root);
4172                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4173                         btrfs_end_transaction(trans);
4174                         goto out_unset;
4175                 }
4176
4177                 err = __add_reloc_root(reloc_root);
4178                 ASSERT(err != -EEXIST);
4179                 if (err) {
4180                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4181                         btrfs_put_root(fs_root);
4182                         btrfs_end_transaction(trans);
4183                         goto out_unset;
4184                 }
4185                 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4186                 btrfs_put_root(fs_root);
4187         }
4188
4189         err = btrfs_commit_transaction(trans);
4190         if (err)
4191                 goto out_unset;
4192
4193         merge_reloc_roots(rc);
4194
4195         unset_reloc_control(rc);
4196
4197         trans = btrfs_join_transaction(rc->extent_root);
4198         if (IS_ERR(trans)) {
4199                 err = PTR_ERR(trans);
4200                 goto out_clean;
4201         }
4202         err = btrfs_commit_transaction(trans);
4203 out_clean:
4204         ret = clean_dirty_subvols(rc);
4205         if (ret < 0 && !err)
4206                 err = ret;
4207 out_unset:
4208         unset_reloc_control(rc);
4209 out_end:
4210         reloc_chunk_end(fs_info);
4211         free_reloc_control(rc);
4212 out:
4213         free_reloc_roots(&reloc_roots);
4214
4215         btrfs_free_path(path);
4216
4217         if (err == 0) {
4218                 /* cleanup orphan inode in data relocation tree */
4219                 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4220                 ASSERT(fs_root);
4221                 err = btrfs_orphan_cleanup(fs_root);
4222                 btrfs_put_root(fs_root);
4223         }
4224         return err;
4225 }
4226
4227 /*
4228  * helper to add ordered checksum for data relocation.
4229  *
4230  * cloning checksum properly handles the nodatasum extents.
4231  * it also saves CPU time to re-calculate the checksum.
4232  */
4233 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4234 {
4235         struct btrfs_fs_info *fs_info = inode->root->fs_info;
4236         struct btrfs_ordered_sum *sums;
4237         struct btrfs_ordered_extent *ordered;
4238         int ret;
4239         u64 disk_bytenr;
4240         u64 new_bytenr;
4241         LIST_HEAD(list);
4242
4243         ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4244         BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4245
4246         disk_bytenr = file_pos + inode->index_cnt;
4247         ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4248                                        disk_bytenr + len - 1, &list, 0);
4249         if (ret)
4250                 goto out;
4251
4252         while (!list_empty(&list)) {
4253                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4254                 list_del_init(&sums->list);
4255
4256                 /*
4257                  * We need to offset the new_bytenr based on where the csum is.
4258                  * We need to do this because we will read in entire prealloc
4259                  * extents but we may have written to say the middle of the
4260                  * prealloc extent, so we need to make sure the csum goes with
4261                  * the right disk offset.
4262                  *
4263                  * We can do this because the data reloc inode refers strictly
4264                  * to the on disk bytes, so we don't have to worry about
4265                  * disk_len vs real len like with real inodes since it's all
4266                  * disk length.
4267                  */
4268                 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4269                 sums->bytenr = new_bytenr;
4270
4271                 btrfs_add_ordered_sum(ordered, sums);
4272         }
4273 out:
4274         btrfs_put_ordered_extent(ordered);
4275         return ret;
4276 }
4277
4278 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4279                           struct btrfs_root *root, struct extent_buffer *buf,
4280                           struct extent_buffer *cow)
4281 {
4282         struct btrfs_fs_info *fs_info = root->fs_info;
4283         struct reloc_control *rc;
4284         struct btrfs_backref_node *node;
4285         int first_cow = 0;
4286         int level;
4287         int ret = 0;
4288
4289         rc = fs_info->reloc_ctl;
4290         if (!rc)
4291                 return 0;
4292
4293         BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4294                root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4295
4296         level = btrfs_header_level(buf);
4297         if (btrfs_header_generation(buf) <=
4298             btrfs_root_last_snapshot(&root->root_item))
4299                 first_cow = 1;
4300
4301         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4302             rc->create_reloc_tree) {
4303                 WARN_ON(!first_cow && level == 0);
4304
4305                 node = rc->backref_cache.path[level];
4306                 BUG_ON(node->bytenr != buf->start &&
4307                        node->new_bytenr != buf->start);
4308
4309                 btrfs_backref_drop_node_buffer(node);
4310                 atomic_inc(&cow->refs);
4311                 node->eb = cow;
4312                 node->new_bytenr = cow->start;
4313
4314                 if (!node->pending) {
4315                         list_move_tail(&node->list,
4316                                        &rc->backref_cache.pending[level]);
4317                         node->pending = 1;
4318                 }
4319
4320                 if (first_cow)
4321                         mark_block_processed(rc, node);
4322
4323                 if (first_cow && level > 0)
4324                         rc->nodes_relocated += buf->len;
4325         }
4326
4327         if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4328                 ret = replace_file_extents(trans, rc, root, cow);
4329         return ret;
4330 }
4331
4332 /*
4333  * called before creating snapshot. it calculates metadata reservation
4334  * required for relocating tree blocks in the snapshot
4335  */
4336 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4337                               u64 *bytes_to_reserve)
4338 {
4339         struct btrfs_root *root = pending->root;
4340         struct reloc_control *rc = root->fs_info->reloc_ctl;
4341
4342         if (!rc || !have_reloc_root(root))
4343                 return;
4344
4345         if (!rc->merge_reloc_tree)
4346                 return;
4347
4348         root = root->reloc_root;
4349         BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4350         /*
4351          * relocation is in the stage of merging trees. the space
4352          * used by merging a reloc tree is twice the size of
4353          * relocated tree nodes in the worst case. half for cowing
4354          * the reloc tree, half for cowing the fs tree. the space
4355          * used by cowing the reloc tree will be freed after the
4356          * tree is dropped. if we create snapshot, cowing the fs
4357          * tree may use more space than it frees. so we need
4358          * reserve extra space.
4359          */
4360         *bytes_to_reserve += rc->nodes_relocated;
4361 }
4362
4363 /*
4364  * called after snapshot is created. migrate block reservation
4365  * and create reloc root for the newly created snapshot
4366  *
4367  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4368  * references held on the reloc_root, one for root->reloc_root and one for
4369  * rc->reloc_roots.
4370  */
4371 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4372                                struct btrfs_pending_snapshot *pending)
4373 {
4374         struct btrfs_root *root = pending->root;
4375         struct btrfs_root *reloc_root;
4376         struct btrfs_root *new_root;
4377         struct reloc_control *rc = root->fs_info->reloc_ctl;
4378         int ret;
4379
4380         if (!rc || !have_reloc_root(root))
4381                 return 0;
4382
4383         rc = root->fs_info->reloc_ctl;
4384         rc->merging_rsv_size += rc->nodes_relocated;
4385
4386         if (rc->merge_reloc_tree) {
4387                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4388                                               rc->block_rsv,
4389                                               rc->nodes_relocated, true);
4390                 if (ret)
4391                         return ret;
4392         }
4393
4394         new_root = pending->snap;
4395         reloc_root = create_reloc_root(trans, root->reloc_root,
4396                                        new_root->root_key.objectid);
4397         if (IS_ERR(reloc_root))
4398                 return PTR_ERR(reloc_root);
4399
4400         ret = __add_reloc_root(reloc_root);
4401         ASSERT(ret != -EEXIST);
4402         if (ret) {
4403                 /* Pairs with create_reloc_root */
4404                 btrfs_put_root(reloc_root);
4405                 return ret;
4406         }
4407         new_root->reloc_root = btrfs_grab_root(reloc_root);
4408
4409         if (rc->create_reloc_tree)
4410                 ret = clone_backref_node(trans, rc, root, reloc_root);
4411         return ret;
4412 }