Merge tag 'net-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux-2.6-microblaze.git] / drivers / pci / controller / vmd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
17
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
20 #include <asm/msi.h>
21 #include <asm/msidef.h>
22
23 #define VMD_CFGBAR      0
24 #define VMD_MEMBAR1     2
25 #define VMD_MEMBAR2     4
26
27 #define PCI_REG_VMCAP           0x40
28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
29 #define PCI_REG_VMCONFIG        0x44
30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
31 #define PCI_REG_VMLOCK          0x70
32 #define MB2_SHADOW_EN(vmlock)   (vmlock & 0x2)
33
34 #define MB2_SHADOW_OFFSET       0x2000
35 #define MB2_SHADOW_SIZE         16
36
37 enum vmd_features {
38         /*
39          * Device may contain registers which hint the physical location of the
40          * membars, in order to allow proper address translation during
41          * resource assignment to enable guest virtualization
42          */
43         VMD_FEAT_HAS_MEMBAR_SHADOW              = (1 << 0),
44
45         /*
46          * Device may provide root port configuration information which limits
47          * bus numbering
48          */
49         VMD_FEAT_HAS_BUS_RESTRICTIONS           = (1 << 1),
50
51         /*
52          * Device contains physical location shadow registers in
53          * vendor-specific capability space
54          */
55         VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP        = (1 << 2),
56 };
57
58 /*
59  * Lock for manipulating VMD IRQ lists.
60  */
61 static DEFINE_RAW_SPINLOCK(list_lock);
62
63 /**
64  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
65  * @node:       list item for parent traversal.
66  * @irq:        back pointer to parent.
67  * @enabled:    true if driver enabled IRQ
68  * @virq:       the virtual IRQ value provided to the requesting driver.
69  *
70  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
71  * a VMD IRQ using this structure.
72  */
73 struct vmd_irq {
74         struct list_head        node;
75         struct vmd_irq_list     *irq;
76         bool                    enabled;
77         unsigned int            virq;
78 };
79
80 /**
81  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
82  * @irq_list:   the list of irq's the VMD one demuxes to.
83  * @srcu:       SRCU struct for local synchronization.
84  * @count:      number of child IRQs assigned to this vector; used to track
85  *              sharing.
86  */
87 struct vmd_irq_list {
88         struct list_head        irq_list;
89         struct srcu_struct      srcu;
90         unsigned int            count;
91 };
92
93 struct vmd_dev {
94         struct pci_dev          *dev;
95
96         spinlock_t              cfg_lock;
97         char __iomem            *cfgbar;
98
99         int msix_count;
100         struct vmd_irq_list     *irqs;
101
102         struct pci_sysdata      sysdata;
103         struct resource         resources[3];
104         struct irq_domain       *irq_domain;
105         struct pci_bus          *bus;
106         u8                      busn_start;
107 };
108
109 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
110 {
111         return container_of(bus->sysdata, struct vmd_dev, sysdata);
112 }
113
114 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
115                                            struct vmd_irq_list *irqs)
116 {
117         return irqs - vmd->irqs;
118 }
119
120 /*
121  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
122  * but the MSI entry for the hardware it's driving will be programmed with a
123  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
124  * domain into one of its own, and the VMD driver de-muxes these for the
125  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
126  * and irq_chip to set this up.
127  */
128 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
129 {
130         struct vmd_irq *vmdirq = data->chip_data;
131         struct vmd_irq_list *irq = vmdirq->irq;
132         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
133
134         msg->address_hi = MSI_ADDR_BASE_HI;
135         msg->address_lo = MSI_ADDR_BASE_LO |
136                           MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
137         msg->data = 0;
138 }
139
140 /*
141  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
142  */
143 static void vmd_irq_enable(struct irq_data *data)
144 {
145         struct vmd_irq *vmdirq = data->chip_data;
146         unsigned long flags;
147
148         raw_spin_lock_irqsave(&list_lock, flags);
149         WARN_ON(vmdirq->enabled);
150         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
151         vmdirq->enabled = true;
152         raw_spin_unlock_irqrestore(&list_lock, flags);
153
154         data->chip->irq_unmask(data);
155 }
156
157 static void vmd_irq_disable(struct irq_data *data)
158 {
159         struct vmd_irq *vmdirq = data->chip_data;
160         unsigned long flags;
161
162         data->chip->irq_mask(data);
163
164         raw_spin_lock_irqsave(&list_lock, flags);
165         if (vmdirq->enabled) {
166                 list_del_rcu(&vmdirq->node);
167                 vmdirq->enabled = false;
168         }
169         raw_spin_unlock_irqrestore(&list_lock, flags);
170 }
171
172 /*
173  * XXX: Stubbed until we develop acceptable way to not create conflicts with
174  * other devices sharing the same vector.
175  */
176 static int vmd_irq_set_affinity(struct irq_data *data,
177                                 const struct cpumask *dest, bool force)
178 {
179         return -EINVAL;
180 }
181
182 static struct irq_chip vmd_msi_controller = {
183         .name                   = "VMD-MSI",
184         .irq_enable             = vmd_irq_enable,
185         .irq_disable            = vmd_irq_disable,
186         .irq_compose_msi_msg    = vmd_compose_msi_msg,
187         .irq_set_affinity       = vmd_irq_set_affinity,
188 };
189
190 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
191                                      msi_alloc_info_t *arg)
192 {
193         return 0;
194 }
195
196 /*
197  * XXX: We can be even smarter selecting the best IRQ once we solve the
198  * affinity problem.
199  */
200 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
201 {
202         int i, best = 1;
203         unsigned long flags;
204
205         if (vmd->msix_count == 1)
206                 return &vmd->irqs[0];
207
208         /*
209          * White list for fast-interrupt handlers. All others will share the
210          * "slow" interrupt vector.
211          */
212         switch (msi_desc_to_pci_dev(desc)->class) {
213         case PCI_CLASS_STORAGE_EXPRESS:
214                 break;
215         default:
216                 return &vmd->irqs[0];
217         }
218
219         raw_spin_lock_irqsave(&list_lock, flags);
220         for (i = 1; i < vmd->msix_count; i++)
221                 if (vmd->irqs[i].count < vmd->irqs[best].count)
222                         best = i;
223         vmd->irqs[best].count++;
224         raw_spin_unlock_irqrestore(&list_lock, flags);
225
226         return &vmd->irqs[best];
227 }
228
229 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
230                         unsigned int virq, irq_hw_number_t hwirq,
231                         msi_alloc_info_t *arg)
232 {
233         struct msi_desc *desc = arg->desc;
234         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
235         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
236         unsigned int index, vector;
237
238         if (!vmdirq)
239                 return -ENOMEM;
240
241         INIT_LIST_HEAD(&vmdirq->node);
242         vmdirq->irq = vmd_next_irq(vmd, desc);
243         vmdirq->virq = virq;
244         index = index_from_irqs(vmd, vmdirq->irq);
245         vector = pci_irq_vector(vmd->dev, index);
246
247         irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
248                             handle_untracked_irq, vmd, NULL);
249         return 0;
250 }
251
252 static void vmd_msi_free(struct irq_domain *domain,
253                         struct msi_domain_info *info, unsigned int virq)
254 {
255         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
256         unsigned long flags;
257
258         synchronize_srcu(&vmdirq->irq->srcu);
259
260         /* XXX: Potential optimization to rebalance */
261         raw_spin_lock_irqsave(&list_lock, flags);
262         vmdirq->irq->count--;
263         raw_spin_unlock_irqrestore(&list_lock, flags);
264
265         kfree(vmdirq);
266 }
267
268 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
269                            int nvec, msi_alloc_info_t *arg)
270 {
271         struct pci_dev *pdev = to_pci_dev(dev);
272         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
273
274         if (nvec > vmd->msix_count)
275                 return vmd->msix_count;
276
277         memset(arg, 0, sizeof(*arg));
278         return 0;
279 }
280
281 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
282 {
283         arg->desc = desc;
284 }
285
286 static struct msi_domain_ops vmd_msi_domain_ops = {
287         .get_hwirq      = vmd_get_hwirq,
288         .msi_init       = vmd_msi_init,
289         .msi_free       = vmd_msi_free,
290         .msi_prepare    = vmd_msi_prepare,
291         .set_desc       = vmd_set_desc,
292 };
293
294 static struct msi_domain_info vmd_msi_domain_info = {
295         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
296                           MSI_FLAG_PCI_MSIX,
297         .ops            = &vmd_msi_domain_ops,
298         .chip           = &vmd_msi_controller,
299 };
300
301 static int vmd_create_irq_domain(struct vmd_dev *vmd)
302 {
303         struct fwnode_handle *fn;
304
305         fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
306         if (!fn)
307                 return -ENODEV;
308
309         vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
310         if (!vmd->irq_domain) {
311                 irq_domain_free_fwnode(fn);
312                 return -ENODEV;
313         }
314
315         return 0;
316 }
317
318 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
319 {
320         if (vmd->irq_domain) {
321                 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
322
323                 irq_domain_remove(vmd->irq_domain);
324                 irq_domain_free_fwnode(fn);
325         }
326 }
327
328 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
329                                   unsigned int devfn, int reg, int len)
330 {
331         char __iomem *addr = vmd->cfgbar +
332                              ((bus->number - vmd->busn_start) << 20) +
333                              (devfn << 12) + reg;
334
335         if ((addr - vmd->cfgbar) + len >=
336             resource_size(&vmd->dev->resource[VMD_CFGBAR]))
337                 return NULL;
338
339         return addr;
340 }
341
342 /*
343  * CPU may deadlock if config space is not serialized on some versions of this
344  * hardware, so all config space access is done under a spinlock.
345  */
346 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
347                         int len, u32 *value)
348 {
349         struct vmd_dev *vmd = vmd_from_bus(bus);
350         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
351         unsigned long flags;
352         int ret = 0;
353
354         if (!addr)
355                 return -EFAULT;
356
357         spin_lock_irqsave(&vmd->cfg_lock, flags);
358         switch (len) {
359         case 1:
360                 *value = readb(addr);
361                 break;
362         case 2:
363                 *value = readw(addr);
364                 break;
365         case 4:
366                 *value = readl(addr);
367                 break;
368         default:
369                 ret = -EINVAL;
370                 break;
371         }
372         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
373         return ret;
374 }
375
376 /*
377  * VMD h/w converts non-posted config writes to posted memory writes. The
378  * read-back in this function forces the completion so it returns only after
379  * the config space was written, as expected.
380  */
381 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
382                          int len, u32 value)
383 {
384         struct vmd_dev *vmd = vmd_from_bus(bus);
385         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
386         unsigned long flags;
387         int ret = 0;
388
389         if (!addr)
390                 return -EFAULT;
391
392         spin_lock_irqsave(&vmd->cfg_lock, flags);
393         switch (len) {
394         case 1:
395                 writeb(value, addr);
396                 readb(addr);
397                 break;
398         case 2:
399                 writew(value, addr);
400                 readw(addr);
401                 break;
402         case 4:
403                 writel(value, addr);
404                 readl(addr);
405                 break;
406         default:
407                 ret = -EINVAL;
408                 break;
409         }
410         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
411         return ret;
412 }
413
414 static struct pci_ops vmd_ops = {
415         .read           = vmd_pci_read,
416         .write          = vmd_pci_write,
417 };
418
419 static void vmd_attach_resources(struct vmd_dev *vmd)
420 {
421         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
422         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
423 }
424
425 static void vmd_detach_resources(struct vmd_dev *vmd)
426 {
427         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
428         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
429 }
430
431 /*
432  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
433  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
434  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
435  * currently reserved.
436  */
437 static int vmd_find_free_domain(void)
438 {
439         int domain = 0xffff;
440         struct pci_bus *bus = NULL;
441
442         while ((bus = pci_find_next_bus(bus)) != NULL)
443                 domain = max_t(int, domain, pci_domain_nr(bus));
444         return domain + 1;
445 }
446
447 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
448                                 resource_size_t *offset1,
449                                 resource_size_t *offset2)
450 {
451         struct pci_dev *dev = vmd->dev;
452         u64 phys1, phys2;
453
454         if (native_hint) {
455                 u32 vmlock;
456                 int ret;
457
458                 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
459                 if (ret || vmlock == ~0)
460                         return -ENODEV;
461
462                 if (MB2_SHADOW_EN(vmlock)) {
463                         void __iomem *membar2;
464
465                         membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
466                         if (!membar2)
467                                 return -ENOMEM;
468                         phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
469                         phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
470                         pci_iounmap(dev, membar2);
471                 } else
472                         return 0;
473         } else {
474                 /* Hypervisor-Emulated Vendor-Specific Capability */
475                 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
476                 u32 reg, regu;
477
478                 pci_read_config_dword(dev, pos + 4, &reg);
479
480                 /* "SHDW" */
481                 if (pos && reg == 0x53484457) {
482                         pci_read_config_dword(dev, pos + 8, &reg);
483                         pci_read_config_dword(dev, pos + 12, &regu);
484                         phys1 = (u64) regu << 32 | reg;
485
486                         pci_read_config_dword(dev, pos + 16, &reg);
487                         pci_read_config_dword(dev, pos + 20, &regu);
488                         phys2 = (u64) regu << 32 | reg;
489                 } else
490                         return 0;
491         }
492
493         *offset1 = dev->resource[VMD_MEMBAR1].start -
494                         (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
495         *offset2 = dev->resource[VMD_MEMBAR2].start -
496                         (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
497
498         return 0;
499 }
500
501 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
502 {
503         struct pci_dev *dev = vmd->dev;
504         u16 reg;
505
506         pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
507         if (BUS_RESTRICT_CAP(reg)) {
508                 pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
509
510                 switch (BUS_RESTRICT_CFG(reg)) {
511                 case 0:
512                         vmd->busn_start = 0;
513                         break;
514                 case 1:
515                         vmd->busn_start = 128;
516                         break;
517                 case 2:
518                         vmd->busn_start = 224;
519                         break;
520                 default:
521                         pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
522                                 BUS_RESTRICT_CFG(reg));
523                         return -ENODEV;
524                 }
525         }
526
527         return 0;
528 }
529
530 static irqreturn_t vmd_irq(int irq, void *data)
531 {
532         struct vmd_irq_list *irqs = data;
533         struct vmd_irq *vmdirq;
534         int idx;
535
536         idx = srcu_read_lock(&irqs->srcu);
537         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
538                 generic_handle_irq(vmdirq->virq);
539         srcu_read_unlock(&irqs->srcu, idx);
540
541         return IRQ_HANDLED;
542 }
543
544 static int vmd_alloc_irqs(struct vmd_dev *vmd)
545 {
546         struct pci_dev *dev = vmd->dev;
547         int i, err;
548
549         vmd->msix_count = pci_msix_vec_count(dev);
550         if (vmd->msix_count < 0)
551                 return -ENODEV;
552
553         vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
554                                                 PCI_IRQ_MSIX);
555         if (vmd->msix_count < 0)
556                 return vmd->msix_count;
557
558         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
559                                  GFP_KERNEL);
560         if (!vmd->irqs)
561                 return -ENOMEM;
562
563         for (i = 0; i < vmd->msix_count; i++) {
564                 err = init_srcu_struct(&vmd->irqs[i].srcu);
565                 if (err)
566                         return err;
567
568                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
569                 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
570                                        vmd_irq, IRQF_NO_THREAD,
571                                        "vmd", &vmd->irqs[i]);
572                 if (err)
573                         return err;
574         }
575
576         return 0;
577 }
578
579 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
580 {
581         struct pci_sysdata *sd = &vmd->sysdata;
582         struct resource *res;
583         u32 upper_bits;
584         unsigned long flags;
585         LIST_HEAD(resources);
586         resource_size_t offset[2] = {0};
587         resource_size_t membar2_offset = 0x2000;
588         struct pci_bus *child;
589         int ret;
590
591         /*
592          * Shadow registers may exist in certain VMD device ids which allow
593          * guests to correctly assign host physical addresses to the root ports
594          * and child devices. These registers will either return the host value
595          * or 0, depending on an enable bit in the VMD device.
596          */
597         if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
598                 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
599                 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
600                 if (ret)
601                         return ret;
602         } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
603                 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
604                 if (ret)
605                         return ret;
606         }
607
608         /*
609          * Certain VMD devices may have a root port configuration option which
610          * limits the bus range to between 0-127, 128-255, or 224-255
611          */
612         if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
613                 ret = vmd_get_bus_number_start(vmd);
614                 if (ret)
615                         return ret;
616         }
617
618         res = &vmd->dev->resource[VMD_CFGBAR];
619         vmd->resources[0] = (struct resource) {
620                 .name  = "VMD CFGBAR",
621                 .start = vmd->busn_start,
622                 .end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
623                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
624         };
625
626         /*
627          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
628          * put 32-bit resources in the window.
629          *
630          * There's no hardware reason why a 64-bit window *couldn't*
631          * contain a 32-bit resource, but pbus_size_mem() computes the
632          * bridge window size assuming a 64-bit window will contain no
633          * 32-bit resources.  __pci_assign_resource() enforces that
634          * artificial restriction to make sure everything will fit.
635          *
636          * The only way we could use a 64-bit non-prefetchable MEMBAR is
637          * if its address is <4GB so that we can convert it to a 32-bit
638          * resource.  To be visible to the host OS, all VMD endpoints must
639          * be initially configured by platform BIOS, which includes setting
640          * up these resources.  We can assume the device is configured
641          * according to the platform needs.
642          */
643         res = &vmd->dev->resource[VMD_MEMBAR1];
644         upper_bits = upper_32_bits(res->end);
645         flags = res->flags & ~IORESOURCE_SIZEALIGN;
646         if (!upper_bits)
647                 flags &= ~IORESOURCE_MEM_64;
648         vmd->resources[1] = (struct resource) {
649                 .name  = "VMD MEMBAR1",
650                 .start = res->start,
651                 .end   = res->end,
652                 .flags = flags,
653                 .parent = res,
654         };
655
656         res = &vmd->dev->resource[VMD_MEMBAR2];
657         upper_bits = upper_32_bits(res->end);
658         flags = res->flags & ~IORESOURCE_SIZEALIGN;
659         if (!upper_bits)
660                 flags &= ~IORESOURCE_MEM_64;
661         vmd->resources[2] = (struct resource) {
662                 .name  = "VMD MEMBAR2",
663                 .start = res->start + membar2_offset,
664                 .end   = res->end,
665                 .flags = flags,
666                 .parent = res,
667         };
668
669         sd->vmd_dev = vmd->dev;
670         sd->domain = vmd_find_free_domain();
671         if (sd->domain < 0)
672                 return sd->domain;
673
674         sd->node = pcibus_to_node(vmd->dev->bus);
675
676         ret = vmd_create_irq_domain(vmd);
677         if (ret)
678                 return ret;
679
680         /*
681          * Override the irq domain bus token so the domain can be distinguished
682          * from a regular PCI/MSI domain.
683          */
684         irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
685
686         pci_add_resource(&resources, &vmd->resources[0]);
687         pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
688         pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
689
690         vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
691                                        &vmd_ops, sd, &resources);
692         if (!vmd->bus) {
693                 pci_free_resource_list(&resources);
694                 vmd_remove_irq_domain(vmd);
695                 return -ENODEV;
696         }
697
698         vmd_attach_resources(vmd);
699         if (vmd->irq_domain)
700                 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
701
702         pci_scan_child_bus(vmd->bus);
703         pci_assign_unassigned_bus_resources(vmd->bus);
704
705         /*
706          * VMD root buses are virtual and don't return true on pci_is_pcie()
707          * and will fail pcie_bus_configure_settings() early. It can instead be
708          * run on each of the real root ports.
709          */
710         list_for_each_entry(child, &vmd->bus->children, node)
711                 pcie_bus_configure_settings(child);
712
713         pci_bus_add_devices(vmd->bus);
714
715         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
716                                "domain"), "Can't create symlink to domain\n");
717         return 0;
718 }
719
720 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
721 {
722         struct vmd_dev *vmd;
723         int err;
724
725         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
726                 return -ENOMEM;
727
728         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
729         if (!vmd)
730                 return -ENOMEM;
731
732         vmd->dev = dev;
733         err = pcim_enable_device(dev);
734         if (err < 0)
735                 return err;
736
737         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
738         if (!vmd->cfgbar)
739                 return -ENOMEM;
740
741         pci_set_master(dev);
742         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
743             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
744                 return -ENODEV;
745
746         err = vmd_alloc_irqs(vmd);
747         if (err)
748                 return err;
749
750         spin_lock_init(&vmd->cfg_lock);
751         pci_set_drvdata(dev, vmd);
752         err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
753         if (err)
754                 return err;
755
756         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
757                  vmd->sysdata.domain);
758         return 0;
759 }
760
761 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
762 {
763         int i;
764
765         for (i = 0; i < vmd->msix_count; i++)
766                 cleanup_srcu_struct(&vmd->irqs[i].srcu);
767 }
768
769 static void vmd_remove(struct pci_dev *dev)
770 {
771         struct vmd_dev *vmd = pci_get_drvdata(dev);
772
773         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
774         pci_stop_root_bus(vmd->bus);
775         pci_remove_root_bus(vmd->bus);
776         vmd_cleanup_srcu(vmd);
777         vmd_detach_resources(vmd);
778         vmd_remove_irq_domain(vmd);
779 }
780
781 #ifdef CONFIG_PM_SLEEP
782 static int vmd_suspend(struct device *dev)
783 {
784         struct pci_dev *pdev = to_pci_dev(dev);
785         struct vmd_dev *vmd = pci_get_drvdata(pdev);
786         int i;
787
788         for (i = 0; i < vmd->msix_count; i++)
789                 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
790
791         return 0;
792 }
793
794 static int vmd_resume(struct device *dev)
795 {
796         struct pci_dev *pdev = to_pci_dev(dev);
797         struct vmd_dev *vmd = pci_get_drvdata(pdev);
798         int err, i;
799
800         for (i = 0; i < vmd->msix_count; i++) {
801                 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
802                                        vmd_irq, IRQF_NO_THREAD,
803                                        "vmd", &vmd->irqs[i]);
804                 if (err)
805                         return err;
806         }
807
808         return 0;
809 }
810 #endif
811 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
812
813 static const struct pci_device_id vmd_ids[] = {
814         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
815                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
816         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
817                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
818                                 VMD_FEAT_HAS_BUS_RESTRICTIONS,},
819         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
820                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
821                                 VMD_FEAT_HAS_BUS_RESTRICTIONS,},
822         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
823                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
824                                 VMD_FEAT_HAS_BUS_RESTRICTIONS,},
825         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
826                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
827                                 VMD_FEAT_HAS_BUS_RESTRICTIONS,},
828         {0,}
829 };
830 MODULE_DEVICE_TABLE(pci, vmd_ids);
831
832 static struct pci_driver vmd_drv = {
833         .name           = "vmd",
834         .id_table       = vmd_ids,
835         .probe          = vmd_probe,
836         .remove         = vmd_remove,
837         .driver         = {
838                 .pm     = &vmd_dev_pm_ops,
839         },
840 };
841 module_pci_driver(vmd_drv);
842
843 MODULE_AUTHOR("Intel Corporation");
844 MODULE_LICENSE("GPL v2");
845 MODULE_VERSION("0.6");