Merge tag 'slab-for-5.17-part2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / pci / controller / vmd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/iommu.h>
10 #include <linux/irq.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/msi.h>
14 #include <linux/pci.h>
15 #include <linux/pci-acpi.h>
16 #include <linux/pci-ecam.h>
17 #include <linux/srcu.h>
18 #include <linux/rculist.h>
19 #include <linux/rcupdate.h>
20
21 #include <asm/irqdomain.h>
22
23 #define VMD_CFGBAR      0
24 #define VMD_MEMBAR1     2
25 #define VMD_MEMBAR2     4
26
27 #define PCI_REG_VMCAP           0x40
28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
29 #define PCI_REG_VMCONFIG        0x44
30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
31 #define VMCONFIG_MSI_REMAP      0x2
32 #define PCI_REG_VMLOCK          0x70
33 #define MB2_SHADOW_EN(vmlock)   (vmlock & 0x2)
34
35 #define MB2_SHADOW_OFFSET       0x2000
36 #define MB2_SHADOW_SIZE         16
37
38 enum vmd_features {
39         /*
40          * Device may contain registers which hint the physical location of the
41          * membars, in order to allow proper address translation during
42          * resource assignment to enable guest virtualization
43          */
44         VMD_FEAT_HAS_MEMBAR_SHADOW              = (1 << 0),
45
46         /*
47          * Device may provide root port configuration information which limits
48          * bus numbering
49          */
50         VMD_FEAT_HAS_BUS_RESTRICTIONS           = (1 << 1),
51
52         /*
53          * Device contains physical location shadow registers in
54          * vendor-specific capability space
55          */
56         VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP        = (1 << 2),
57
58         /*
59          * Device may use MSI-X vector 0 for software triggering and will not
60          * be used for MSI remapping
61          */
62         VMD_FEAT_OFFSET_FIRST_VECTOR            = (1 << 3),
63
64         /*
65          * Device can bypass remapping MSI-X transactions into its MSI-X table,
66          * avoiding the requirement of a VMD MSI domain for child device
67          * interrupt handling.
68          */
69         VMD_FEAT_CAN_BYPASS_MSI_REMAP           = (1 << 4),
70 };
71
72 static DEFINE_IDA(vmd_instance_ida);
73
74 /*
75  * Lock for manipulating VMD IRQ lists.
76  */
77 static DEFINE_RAW_SPINLOCK(list_lock);
78
79 /**
80  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
81  * @node:       list item for parent traversal.
82  * @irq:        back pointer to parent.
83  * @enabled:    true if driver enabled IRQ
84  * @virq:       the virtual IRQ value provided to the requesting driver.
85  *
86  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
87  * a VMD IRQ using this structure.
88  */
89 struct vmd_irq {
90         struct list_head        node;
91         struct vmd_irq_list     *irq;
92         bool                    enabled;
93         unsigned int            virq;
94 };
95
96 /**
97  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
98  * @irq_list:   the list of irq's the VMD one demuxes to.
99  * @srcu:       SRCU struct for local synchronization.
100  * @count:      number of child IRQs assigned to this vector; used to track
101  *              sharing.
102  */
103 struct vmd_irq_list {
104         struct list_head        irq_list;
105         struct srcu_struct      srcu;
106         unsigned int            count;
107 };
108
109 struct vmd_dev {
110         struct pci_dev          *dev;
111
112         spinlock_t              cfg_lock;
113         void __iomem            *cfgbar;
114
115         int msix_count;
116         struct vmd_irq_list     *irqs;
117
118         struct pci_sysdata      sysdata;
119         struct resource         resources[3];
120         struct irq_domain       *irq_domain;
121         struct pci_bus          *bus;
122         u8                      busn_start;
123         u8                      first_vec;
124         char                    *name;
125         int                     instance;
126 };
127
128 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
129 {
130         return container_of(bus->sysdata, struct vmd_dev, sysdata);
131 }
132
133 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
134                                            struct vmd_irq_list *irqs)
135 {
136         return irqs - vmd->irqs;
137 }
138
139 /*
140  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
141  * but the MSI entry for the hardware it's driving will be programmed with a
142  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
143  * domain into one of its own, and the VMD driver de-muxes these for the
144  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
145  * and irq_chip to set this up.
146  */
147 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
148 {
149         struct vmd_irq *vmdirq = data->chip_data;
150         struct vmd_irq_list *irq = vmdirq->irq;
151         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
152
153         memset(msg, 0, sizeof(*msg));
154         msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
155         msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
156         msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
157 }
158
159 /*
160  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
161  */
162 static void vmd_irq_enable(struct irq_data *data)
163 {
164         struct vmd_irq *vmdirq = data->chip_data;
165         unsigned long flags;
166
167         raw_spin_lock_irqsave(&list_lock, flags);
168         WARN_ON(vmdirq->enabled);
169         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
170         vmdirq->enabled = true;
171         raw_spin_unlock_irqrestore(&list_lock, flags);
172
173         data->chip->irq_unmask(data);
174 }
175
176 static void vmd_irq_disable(struct irq_data *data)
177 {
178         struct vmd_irq *vmdirq = data->chip_data;
179         unsigned long flags;
180
181         data->chip->irq_mask(data);
182
183         raw_spin_lock_irqsave(&list_lock, flags);
184         if (vmdirq->enabled) {
185                 list_del_rcu(&vmdirq->node);
186                 vmdirq->enabled = false;
187         }
188         raw_spin_unlock_irqrestore(&list_lock, flags);
189 }
190
191 /*
192  * XXX: Stubbed until we develop acceptable way to not create conflicts with
193  * other devices sharing the same vector.
194  */
195 static int vmd_irq_set_affinity(struct irq_data *data,
196                                 const struct cpumask *dest, bool force)
197 {
198         return -EINVAL;
199 }
200
201 static struct irq_chip vmd_msi_controller = {
202         .name                   = "VMD-MSI",
203         .irq_enable             = vmd_irq_enable,
204         .irq_disable            = vmd_irq_disable,
205         .irq_compose_msi_msg    = vmd_compose_msi_msg,
206         .irq_set_affinity       = vmd_irq_set_affinity,
207 };
208
209 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
210                                      msi_alloc_info_t *arg)
211 {
212         return 0;
213 }
214
215 /*
216  * XXX: We can be even smarter selecting the best IRQ once we solve the
217  * affinity problem.
218  */
219 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
220 {
221         unsigned long flags;
222         int i, best;
223
224         if (vmd->msix_count == 1 + vmd->first_vec)
225                 return &vmd->irqs[vmd->first_vec];
226
227         /*
228          * White list for fast-interrupt handlers. All others will share the
229          * "slow" interrupt vector.
230          */
231         switch (msi_desc_to_pci_dev(desc)->class) {
232         case PCI_CLASS_STORAGE_EXPRESS:
233                 break;
234         default:
235                 return &vmd->irqs[vmd->first_vec];
236         }
237
238         raw_spin_lock_irqsave(&list_lock, flags);
239         best = vmd->first_vec + 1;
240         for (i = best; i < vmd->msix_count; i++)
241                 if (vmd->irqs[i].count < vmd->irqs[best].count)
242                         best = i;
243         vmd->irqs[best].count++;
244         raw_spin_unlock_irqrestore(&list_lock, flags);
245
246         return &vmd->irqs[best];
247 }
248
249 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
250                         unsigned int virq, irq_hw_number_t hwirq,
251                         msi_alloc_info_t *arg)
252 {
253         struct msi_desc *desc = arg->desc;
254         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
255         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
256         unsigned int index, vector;
257
258         if (!vmdirq)
259                 return -ENOMEM;
260
261         INIT_LIST_HEAD(&vmdirq->node);
262         vmdirq->irq = vmd_next_irq(vmd, desc);
263         vmdirq->virq = virq;
264         index = index_from_irqs(vmd, vmdirq->irq);
265         vector = pci_irq_vector(vmd->dev, index);
266
267         irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
268                             handle_untracked_irq, vmd, NULL);
269         return 0;
270 }
271
272 static void vmd_msi_free(struct irq_domain *domain,
273                         struct msi_domain_info *info, unsigned int virq)
274 {
275         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
276         unsigned long flags;
277
278         synchronize_srcu(&vmdirq->irq->srcu);
279
280         /* XXX: Potential optimization to rebalance */
281         raw_spin_lock_irqsave(&list_lock, flags);
282         vmdirq->irq->count--;
283         raw_spin_unlock_irqrestore(&list_lock, flags);
284
285         kfree(vmdirq);
286 }
287
288 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
289                            int nvec, msi_alloc_info_t *arg)
290 {
291         struct pci_dev *pdev = to_pci_dev(dev);
292         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
293
294         if (nvec > vmd->msix_count)
295                 return vmd->msix_count;
296
297         memset(arg, 0, sizeof(*arg));
298         return 0;
299 }
300
301 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
302 {
303         arg->desc = desc;
304 }
305
306 static struct msi_domain_ops vmd_msi_domain_ops = {
307         .get_hwirq      = vmd_get_hwirq,
308         .msi_init       = vmd_msi_init,
309         .msi_free       = vmd_msi_free,
310         .msi_prepare    = vmd_msi_prepare,
311         .set_desc       = vmd_set_desc,
312 };
313
314 static struct msi_domain_info vmd_msi_domain_info = {
315         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
316                           MSI_FLAG_PCI_MSIX,
317         .ops            = &vmd_msi_domain_ops,
318         .chip           = &vmd_msi_controller,
319 };
320
321 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
322 {
323         u16 reg;
324
325         pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
326         reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
327                        (reg | VMCONFIG_MSI_REMAP);
328         pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
329 }
330
331 static int vmd_create_irq_domain(struct vmd_dev *vmd)
332 {
333         struct fwnode_handle *fn;
334
335         fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
336         if (!fn)
337                 return -ENODEV;
338
339         vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
340         if (!vmd->irq_domain) {
341                 irq_domain_free_fwnode(fn);
342                 return -ENODEV;
343         }
344
345         return 0;
346 }
347
348 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
349 {
350         /*
351          * Some production BIOS won't enable remapping between soft reboots.
352          * Ensure remapping is restored before unloading the driver.
353          */
354         if (!vmd->msix_count)
355                 vmd_set_msi_remapping(vmd, true);
356
357         if (vmd->irq_domain) {
358                 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
359
360                 irq_domain_remove(vmd->irq_domain);
361                 irq_domain_free_fwnode(fn);
362         }
363 }
364
365 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
366                                   unsigned int devfn, int reg, int len)
367 {
368         unsigned int busnr_ecam = bus->number - vmd->busn_start;
369         u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
370
371         if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
372                 return NULL;
373
374         return vmd->cfgbar + offset;
375 }
376
377 /*
378  * CPU may deadlock if config space is not serialized on some versions of this
379  * hardware, so all config space access is done under a spinlock.
380  */
381 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
382                         int len, u32 *value)
383 {
384         struct vmd_dev *vmd = vmd_from_bus(bus);
385         void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
386         unsigned long flags;
387         int ret = 0;
388
389         if (!addr)
390                 return -EFAULT;
391
392         spin_lock_irqsave(&vmd->cfg_lock, flags);
393         switch (len) {
394         case 1:
395                 *value = readb(addr);
396                 break;
397         case 2:
398                 *value = readw(addr);
399                 break;
400         case 4:
401                 *value = readl(addr);
402                 break;
403         default:
404                 ret = -EINVAL;
405                 break;
406         }
407         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
408         return ret;
409 }
410
411 /*
412  * VMD h/w converts non-posted config writes to posted memory writes. The
413  * read-back in this function forces the completion so it returns only after
414  * the config space was written, as expected.
415  */
416 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
417                          int len, u32 value)
418 {
419         struct vmd_dev *vmd = vmd_from_bus(bus);
420         void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
421         unsigned long flags;
422         int ret = 0;
423
424         if (!addr)
425                 return -EFAULT;
426
427         spin_lock_irqsave(&vmd->cfg_lock, flags);
428         switch (len) {
429         case 1:
430                 writeb(value, addr);
431                 readb(addr);
432                 break;
433         case 2:
434                 writew(value, addr);
435                 readw(addr);
436                 break;
437         case 4:
438                 writel(value, addr);
439                 readl(addr);
440                 break;
441         default:
442                 ret = -EINVAL;
443                 break;
444         }
445         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
446         return ret;
447 }
448
449 static struct pci_ops vmd_ops = {
450         .read           = vmd_pci_read,
451         .write          = vmd_pci_write,
452 };
453
454 #ifdef CONFIG_ACPI
455 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
456 {
457         struct pci_host_bridge *bridge;
458         u32 busnr, addr;
459
460         if (pci_dev->bus->ops != &vmd_ops)
461                 return NULL;
462
463         bridge = pci_find_host_bridge(pci_dev->bus);
464         busnr = pci_dev->bus->number - bridge->bus->number;
465         /*
466          * The address computation below is only applicable to relative bus
467          * numbers below 32.
468          */
469         if (busnr > 31)
470                 return NULL;
471
472         addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
473
474         dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
475                 addr);
476
477         return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
478                                       false);
479 }
480
481 static bool hook_installed;
482
483 static void vmd_acpi_begin(void)
484 {
485         if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
486                 return;
487
488         hook_installed = true;
489 }
490
491 static void vmd_acpi_end(void)
492 {
493         if (!hook_installed)
494                 return;
495
496         pci_acpi_clear_companion_lookup_hook();
497         hook_installed = false;
498 }
499 #else
500 static inline void vmd_acpi_begin(void) { }
501 static inline void vmd_acpi_end(void) { }
502 #endif /* CONFIG_ACPI */
503
504 static void vmd_domain_reset(struct vmd_dev *vmd)
505 {
506         u16 bus, max_buses = resource_size(&vmd->resources[0]);
507         u8 dev, functions, fn, hdr_type;
508         char __iomem *base;
509
510         for (bus = 0; bus < max_buses; bus++) {
511                 for (dev = 0; dev < 32; dev++) {
512                         base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
513                                                 PCI_DEVFN(dev, 0), 0);
514
515                         hdr_type = readb(base + PCI_HEADER_TYPE) &
516                                          PCI_HEADER_TYPE_MASK;
517
518                         functions = (hdr_type & 0x80) ? 8 : 1;
519                         for (fn = 0; fn < functions; fn++) {
520                                 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
521                                                 PCI_DEVFN(dev, fn), 0);
522
523                                 hdr_type = readb(base + PCI_HEADER_TYPE) &
524                                                 PCI_HEADER_TYPE_MASK;
525
526                                 if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
527                                     (readw(base + PCI_CLASS_DEVICE) !=
528                                      PCI_CLASS_BRIDGE_PCI))
529                                         continue;
530
531                                 memset_io(base + PCI_IO_BASE, 0,
532                                           PCI_ROM_ADDRESS1 - PCI_IO_BASE);
533                         }
534                 }
535         }
536 }
537
538 static void vmd_attach_resources(struct vmd_dev *vmd)
539 {
540         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
541         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
542 }
543
544 static void vmd_detach_resources(struct vmd_dev *vmd)
545 {
546         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
547         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
548 }
549
550 /*
551  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
552  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
553  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
554  * currently reserved.
555  */
556 static int vmd_find_free_domain(void)
557 {
558         int domain = 0xffff;
559         struct pci_bus *bus = NULL;
560
561         while ((bus = pci_find_next_bus(bus)) != NULL)
562                 domain = max_t(int, domain, pci_domain_nr(bus));
563         return domain + 1;
564 }
565
566 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
567                                 resource_size_t *offset1,
568                                 resource_size_t *offset2)
569 {
570         struct pci_dev *dev = vmd->dev;
571         u64 phys1, phys2;
572
573         if (native_hint) {
574                 u32 vmlock;
575                 int ret;
576
577                 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
578                 if (ret || PCI_POSSIBLE_ERROR(vmlock))
579                         return -ENODEV;
580
581                 if (MB2_SHADOW_EN(vmlock)) {
582                         void __iomem *membar2;
583
584                         membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
585                         if (!membar2)
586                                 return -ENOMEM;
587                         phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
588                         phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
589                         pci_iounmap(dev, membar2);
590                 } else
591                         return 0;
592         } else {
593                 /* Hypervisor-Emulated Vendor-Specific Capability */
594                 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
595                 u32 reg, regu;
596
597                 pci_read_config_dword(dev, pos + 4, &reg);
598
599                 /* "SHDW" */
600                 if (pos && reg == 0x53484457) {
601                         pci_read_config_dword(dev, pos + 8, &reg);
602                         pci_read_config_dword(dev, pos + 12, &regu);
603                         phys1 = (u64) regu << 32 | reg;
604
605                         pci_read_config_dword(dev, pos + 16, &reg);
606                         pci_read_config_dword(dev, pos + 20, &regu);
607                         phys2 = (u64) regu << 32 | reg;
608                 } else
609                         return 0;
610         }
611
612         *offset1 = dev->resource[VMD_MEMBAR1].start -
613                         (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
614         *offset2 = dev->resource[VMD_MEMBAR2].start -
615                         (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
616
617         return 0;
618 }
619
620 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
621 {
622         struct pci_dev *dev = vmd->dev;
623         u16 reg;
624
625         pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
626         if (BUS_RESTRICT_CAP(reg)) {
627                 pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
628
629                 switch (BUS_RESTRICT_CFG(reg)) {
630                 case 0:
631                         vmd->busn_start = 0;
632                         break;
633                 case 1:
634                         vmd->busn_start = 128;
635                         break;
636                 case 2:
637                         vmd->busn_start = 224;
638                         break;
639                 default:
640                         pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
641                                 BUS_RESTRICT_CFG(reg));
642                         return -ENODEV;
643                 }
644         }
645
646         return 0;
647 }
648
649 static irqreturn_t vmd_irq(int irq, void *data)
650 {
651         struct vmd_irq_list *irqs = data;
652         struct vmd_irq *vmdirq;
653         int idx;
654
655         idx = srcu_read_lock(&irqs->srcu);
656         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
657                 generic_handle_irq(vmdirq->virq);
658         srcu_read_unlock(&irqs->srcu, idx);
659
660         return IRQ_HANDLED;
661 }
662
663 static int vmd_alloc_irqs(struct vmd_dev *vmd)
664 {
665         struct pci_dev *dev = vmd->dev;
666         int i, err;
667
668         vmd->msix_count = pci_msix_vec_count(dev);
669         if (vmd->msix_count < 0)
670                 return -ENODEV;
671
672         vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
673                                                 vmd->msix_count, PCI_IRQ_MSIX);
674         if (vmd->msix_count < 0)
675                 return vmd->msix_count;
676
677         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
678                                  GFP_KERNEL);
679         if (!vmd->irqs)
680                 return -ENOMEM;
681
682         for (i = 0; i < vmd->msix_count; i++) {
683                 err = init_srcu_struct(&vmd->irqs[i].srcu);
684                 if (err)
685                         return err;
686
687                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
688                 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
689                                        vmd_irq, IRQF_NO_THREAD,
690                                        vmd->name, &vmd->irqs[i]);
691                 if (err)
692                         return err;
693         }
694
695         return 0;
696 }
697
698 /*
699  * Since VMD is an aperture to regular PCIe root ports, only allow it to
700  * control features that the OS is allowed to control on the physical PCI bus.
701  */
702 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
703                                        struct pci_host_bridge *vmd_bridge)
704 {
705         vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
706         vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
707         vmd_bridge->native_aer = root_bridge->native_aer;
708         vmd_bridge->native_pme = root_bridge->native_pme;
709         vmd_bridge->native_ltr = root_bridge->native_ltr;
710         vmd_bridge->native_dpc = root_bridge->native_dpc;
711 }
712
713 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
714 {
715         struct pci_sysdata *sd = &vmd->sysdata;
716         struct resource *res;
717         u32 upper_bits;
718         unsigned long flags;
719         LIST_HEAD(resources);
720         resource_size_t offset[2] = {0};
721         resource_size_t membar2_offset = 0x2000;
722         struct pci_bus *child;
723         int ret;
724
725         /*
726          * Shadow registers may exist in certain VMD device ids which allow
727          * guests to correctly assign host physical addresses to the root ports
728          * and child devices. These registers will either return the host value
729          * or 0, depending on an enable bit in the VMD device.
730          */
731         if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
732                 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
733                 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
734                 if (ret)
735                         return ret;
736         } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
737                 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
738                 if (ret)
739                         return ret;
740         }
741
742         /*
743          * Certain VMD devices may have a root port configuration option which
744          * limits the bus range to between 0-127, 128-255, or 224-255
745          */
746         if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
747                 ret = vmd_get_bus_number_start(vmd);
748                 if (ret)
749                         return ret;
750         }
751
752         res = &vmd->dev->resource[VMD_CFGBAR];
753         vmd->resources[0] = (struct resource) {
754                 .name  = "VMD CFGBAR",
755                 .start = vmd->busn_start,
756                 .end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
757                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
758         };
759
760         /*
761          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
762          * put 32-bit resources in the window.
763          *
764          * There's no hardware reason why a 64-bit window *couldn't*
765          * contain a 32-bit resource, but pbus_size_mem() computes the
766          * bridge window size assuming a 64-bit window will contain no
767          * 32-bit resources.  __pci_assign_resource() enforces that
768          * artificial restriction to make sure everything will fit.
769          *
770          * The only way we could use a 64-bit non-prefetchable MEMBAR is
771          * if its address is <4GB so that we can convert it to a 32-bit
772          * resource.  To be visible to the host OS, all VMD endpoints must
773          * be initially configured by platform BIOS, which includes setting
774          * up these resources.  We can assume the device is configured
775          * according to the platform needs.
776          */
777         res = &vmd->dev->resource[VMD_MEMBAR1];
778         upper_bits = upper_32_bits(res->end);
779         flags = res->flags & ~IORESOURCE_SIZEALIGN;
780         if (!upper_bits)
781                 flags &= ~IORESOURCE_MEM_64;
782         vmd->resources[1] = (struct resource) {
783                 .name  = "VMD MEMBAR1",
784                 .start = res->start,
785                 .end   = res->end,
786                 .flags = flags,
787                 .parent = res,
788         };
789
790         res = &vmd->dev->resource[VMD_MEMBAR2];
791         upper_bits = upper_32_bits(res->end);
792         flags = res->flags & ~IORESOURCE_SIZEALIGN;
793         if (!upper_bits)
794                 flags &= ~IORESOURCE_MEM_64;
795         vmd->resources[2] = (struct resource) {
796                 .name  = "VMD MEMBAR2",
797                 .start = res->start + membar2_offset,
798                 .end   = res->end,
799                 .flags = flags,
800                 .parent = res,
801         };
802
803         sd->vmd_dev = vmd->dev;
804         sd->domain = vmd_find_free_domain();
805         if (sd->domain < 0)
806                 return sd->domain;
807
808         sd->node = pcibus_to_node(vmd->dev->bus);
809
810         /*
811          * Currently MSI remapping must be enabled in guest passthrough mode
812          * due to some missing interrupt remapping plumbing. This is probably
813          * acceptable because the guest is usually CPU-limited and MSI
814          * remapping doesn't become a performance bottleneck.
815          */
816         if (iommu_capable(vmd->dev->dev.bus, IOMMU_CAP_INTR_REMAP) ||
817             !(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
818             offset[0] || offset[1]) {
819                 ret = vmd_alloc_irqs(vmd);
820                 if (ret)
821                         return ret;
822
823                 vmd_set_msi_remapping(vmd, true);
824
825                 ret = vmd_create_irq_domain(vmd);
826                 if (ret)
827                         return ret;
828
829                 /*
830                  * Override the IRQ domain bus token so the domain can be
831                  * distinguished from a regular PCI/MSI domain.
832                  */
833                 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
834         } else {
835                 vmd_set_msi_remapping(vmd, false);
836         }
837
838         pci_add_resource(&resources, &vmd->resources[0]);
839         pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
840         pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
841
842         vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
843                                        &vmd_ops, sd, &resources);
844         if (!vmd->bus) {
845                 pci_free_resource_list(&resources);
846                 vmd_remove_irq_domain(vmd);
847                 return -ENODEV;
848         }
849
850         vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
851                                    to_pci_host_bridge(vmd->bus->bridge));
852
853         vmd_attach_resources(vmd);
854         if (vmd->irq_domain)
855                 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
856
857         vmd_acpi_begin();
858
859         pci_scan_child_bus(vmd->bus);
860         vmd_domain_reset(vmd);
861         list_for_each_entry(child, &vmd->bus->children, node)
862                 pci_reset_bus(child->self);
863         pci_assign_unassigned_bus_resources(vmd->bus);
864
865         /*
866          * VMD root buses are virtual and don't return true on pci_is_pcie()
867          * and will fail pcie_bus_configure_settings() early. It can instead be
868          * run on each of the real root ports.
869          */
870         list_for_each_entry(child, &vmd->bus->children, node)
871                 pcie_bus_configure_settings(child);
872
873         pci_bus_add_devices(vmd->bus);
874
875         vmd_acpi_end();
876
877         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
878                                "domain"), "Can't create symlink to domain\n");
879         return 0;
880 }
881
882 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
883 {
884         unsigned long features = (unsigned long) id->driver_data;
885         struct vmd_dev *vmd;
886         int err;
887
888         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
889                 return -ENOMEM;
890
891         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
892         if (!vmd)
893                 return -ENOMEM;
894
895         vmd->dev = dev;
896         vmd->instance = ida_simple_get(&vmd_instance_ida, 0, 0, GFP_KERNEL);
897         if (vmd->instance < 0)
898                 return vmd->instance;
899
900         vmd->name = kasprintf(GFP_KERNEL, "vmd%d", vmd->instance);
901         if (!vmd->name) {
902                 err = -ENOMEM;
903                 goto out_release_instance;
904         }
905
906         err = pcim_enable_device(dev);
907         if (err < 0)
908                 goto out_release_instance;
909
910         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
911         if (!vmd->cfgbar) {
912                 err = -ENOMEM;
913                 goto out_release_instance;
914         }
915
916         pci_set_master(dev);
917         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
918             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
919                 err = -ENODEV;
920                 goto out_release_instance;
921         }
922
923         if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
924                 vmd->first_vec = 1;
925
926         spin_lock_init(&vmd->cfg_lock);
927         pci_set_drvdata(dev, vmd);
928         err = vmd_enable_domain(vmd, features);
929         if (err)
930                 goto out_release_instance;
931
932         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
933                  vmd->sysdata.domain);
934         return 0;
935
936  out_release_instance:
937         ida_simple_remove(&vmd_instance_ida, vmd->instance);
938         kfree(vmd->name);
939         return err;
940 }
941
942 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
943 {
944         int i;
945
946         for (i = 0; i < vmd->msix_count; i++)
947                 cleanup_srcu_struct(&vmd->irqs[i].srcu);
948 }
949
950 static void vmd_remove(struct pci_dev *dev)
951 {
952         struct vmd_dev *vmd = pci_get_drvdata(dev);
953
954         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
955         pci_stop_root_bus(vmd->bus);
956         pci_remove_root_bus(vmd->bus);
957         vmd_cleanup_srcu(vmd);
958         vmd_detach_resources(vmd);
959         vmd_remove_irq_domain(vmd);
960         ida_simple_remove(&vmd_instance_ida, vmd->instance);
961         kfree(vmd->name);
962 }
963
964 #ifdef CONFIG_PM_SLEEP
965 static int vmd_suspend(struct device *dev)
966 {
967         struct pci_dev *pdev = to_pci_dev(dev);
968         struct vmd_dev *vmd = pci_get_drvdata(pdev);
969         int i;
970
971         for (i = 0; i < vmd->msix_count; i++)
972                 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
973
974         return 0;
975 }
976
977 static int vmd_resume(struct device *dev)
978 {
979         struct pci_dev *pdev = to_pci_dev(dev);
980         struct vmd_dev *vmd = pci_get_drvdata(pdev);
981         int err, i;
982
983         for (i = 0; i < vmd->msix_count; i++) {
984                 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
985                                        vmd_irq, IRQF_NO_THREAD,
986                                        vmd->name, &vmd->irqs[i]);
987                 if (err)
988                         return err;
989         }
990
991         return 0;
992 }
993 #endif
994 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
995
996 static const struct pci_device_id vmd_ids[] = {
997         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
998                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
999         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1000                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1001                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1002                                 VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1003         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
1004                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1005                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1006                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1007         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
1008                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1009                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1010                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1011         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0xa77f),
1012                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1013                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1014                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1015         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1016                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1017                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1018                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1019         {0,}
1020 };
1021 MODULE_DEVICE_TABLE(pci, vmd_ids);
1022
1023 static struct pci_driver vmd_drv = {
1024         .name           = "vmd",
1025         .id_table       = vmd_ids,
1026         .probe          = vmd_probe,
1027         .remove         = vmd_remove,
1028         .driver         = {
1029                 .pm     = &vmd_dev_pm_ops,
1030         },
1031 };
1032 module_pci_driver(vmd_drv);
1033
1034 MODULE_AUTHOR("Intel Corporation");
1035 MODULE_LICENSE("GPL v2");
1036 MODULE_VERSION("0.6");