PCI: xgene-msi: Remove redundant dev_err() call in xgene_msi_probe()
[linux-2.6-microblaze.git] / drivers / net / ethernet / sfc / tx_common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include "net_driver.h"
12 #include "efx.h"
13 #include "nic_common.h"
14 #include "tx_common.h"
15
16 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
17 {
18         return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
19                             PAGE_SIZE >> EFX_TX_CB_ORDER);
20 }
21
22 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
23 {
24         struct efx_nic *efx = tx_queue->efx;
25         unsigned int entries;
26         int rc;
27
28         /* Create the smallest power-of-two aligned ring */
29         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
30         EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
31         tx_queue->ptr_mask = entries - 1;
32
33         netif_dbg(efx, probe, efx->net_dev,
34                   "creating TX queue %d size %#x mask %#x\n",
35                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
36
37         /* Allocate software ring */
38         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
39                                    GFP_KERNEL);
40         if (!tx_queue->buffer)
41                 return -ENOMEM;
42
43         tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
44                                     sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
45         if (!tx_queue->cb_page) {
46                 rc = -ENOMEM;
47                 goto fail1;
48         }
49
50         /* Allocate hardware ring, determine TXQ type */
51         rc = efx_nic_probe_tx(tx_queue);
52         if (rc)
53                 goto fail2;
54
55         tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
56         return 0;
57
58 fail2:
59         kfree(tx_queue->cb_page);
60         tx_queue->cb_page = NULL;
61 fail1:
62         kfree(tx_queue->buffer);
63         tx_queue->buffer = NULL;
64         return rc;
65 }
66
67 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
68 {
69         struct efx_nic *efx = tx_queue->efx;
70
71         netif_dbg(efx, drv, efx->net_dev,
72                   "initialising TX queue %d\n", tx_queue->queue);
73
74         tx_queue->insert_count = 0;
75         tx_queue->notify_count = 0;
76         tx_queue->write_count = 0;
77         tx_queue->packet_write_count = 0;
78         tx_queue->old_write_count = 0;
79         tx_queue->read_count = 0;
80         tx_queue->old_read_count = 0;
81         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
82         tx_queue->xmit_pending = false;
83         tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
84                                   tx_queue->channel == efx_ptp_channel(efx));
85         tx_queue->completed_timestamp_major = 0;
86         tx_queue->completed_timestamp_minor = 0;
87
88         tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
89         tx_queue->tso_version = 0;
90
91         /* Set up TX descriptor ring */
92         efx_nic_init_tx(tx_queue);
93
94         tx_queue->initialised = true;
95 }
96
97 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
98 {
99         struct efx_tx_buffer *buffer;
100
101         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
102                   "shutting down TX queue %d\n", tx_queue->queue);
103
104         if (!tx_queue->buffer)
105                 return;
106
107         /* Free any buffers left in the ring */
108         while (tx_queue->read_count != tx_queue->write_count) {
109                 unsigned int pkts_compl = 0, bytes_compl = 0;
110
111                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
112                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
113
114                 ++tx_queue->read_count;
115         }
116         tx_queue->xmit_pending = false;
117         netdev_tx_reset_queue(tx_queue->core_txq);
118 }
119
120 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
121 {
122         int i;
123
124         if (!tx_queue->buffer)
125                 return;
126
127         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
128                   "destroying TX queue %d\n", tx_queue->queue);
129         efx_nic_remove_tx(tx_queue);
130
131         if (tx_queue->cb_page) {
132                 for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
133                         efx_nic_free_buffer(tx_queue->efx,
134                                             &tx_queue->cb_page[i]);
135                 kfree(tx_queue->cb_page);
136                 tx_queue->cb_page = NULL;
137         }
138
139         kfree(tx_queue->buffer);
140         tx_queue->buffer = NULL;
141         tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
142 }
143
144 void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
145                         struct efx_tx_buffer *buffer,
146                         unsigned int *pkts_compl,
147                         unsigned int *bytes_compl)
148 {
149         if (buffer->unmap_len) {
150                 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
151                 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
152
153                 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
154                         dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
155                                          DMA_TO_DEVICE);
156                 else
157                         dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
158                                        DMA_TO_DEVICE);
159                 buffer->unmap_len = 0;
160         }
161
162         if (buffer->flags & EFX_TX_BUF_SKB) {
163                 struct sk_buff *skb = (struct sk_buff *)buffer->skb;
164
165                 EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
166                 (*pkts_compl)++;
167                 (*bytes_compl) += skb->len;
168                 if (tx_queue->timestamping &&
169                     (tx_queue->completed_timestamp_major ||
170                      tx_queue->completed_timestamp_minor)) {
171                         struct skb_shared_hwtstamps hwtstamp;
172
173                         hwtstamp.hwtstamp =
174                                 efx_ptp_nic_to_kernel_time(tx_queue);
175                         skb_tstamp_tx(skb, &hwtstamp);
176
177                         tx_queue->completed_timestamp_major = 0;
178                         tx_queue->completed_timestamp_minor = 0;
179                 }
180                 dev_consume_skb_any((struct sk_buff *)buffer->skb);
181                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
182                            "TX queue %d transmission id %x complete\n",
183                            tx_queue->queue, tx_queue->read_count);
184         } else if (buffer->flags & EFX_TX_BUF_XDP) {
185                 xdp_return_frame_rx_napi(buffer->xdpf);
186         }
187
188         buffer->len = 0;
189         buffer->flags = 0;
190 }
191
192 /* Remove packets from the TX queue
193  *
194  * This removes packets from the TX queue, up to and including the
195  * specified index.
196  */
197 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
198                                 unsigned int index,
199                                 unsigned int *pkts_compl,
200                                 unsigned int *bytes_compl)
201 {
202         struct efx_nic *efx = tx_queue->efx;
203         unsigned int stop_index, read_ptr;
204
205         stop_index = (index + 1) & tx_queue->ptr_mask;
206         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
207
208         while (read_ptr != stop_index) {
209                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
210
211                 if (!efx_tx_buffer_in_use(buffer)) {
212                         netif_err(efx, tx_err, efx->net_dev,
213                                   "TX queue %d spurious TX completion id %d\n",
214                                   tx_queue->queue, read_ptr);
215                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
216                         return;
217                 }
218
219                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
220
221                 ++tx_queue->read_count;
222                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
223         }
224 }
225
226 void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
227 {
228         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
229                 tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
230                 if (tx_queue->read_count == tx_queue->old_write_count) {
231                         /* Ensure that read_count is flushed. */
232                         smp_mb();
233                         tx_queue->empty_read_count =
234                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
235                 }
236         }
237 }
238
239 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
240 {
241         unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
242         struct efx_nic *efx = tx_queue->efx;
243
244         EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
245
246         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
247         tx_queue->pkts_compl += pkts_compl;
248         tx_queue->bytes_compl += bytes_compl;
249
250         if (pkts_compl > 1)
251                 ++tx_queue->merge_events;
252
253         /* See if we need to restart the netif queue.  This memory
254          * barrier ensures that we write read_count (inside
255          * efx_dequeue_buffers()) before reading the queue status.
256          */
257         smp_mb();
258         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
259             likely(efx->port_enabled) &&
260             likely(netif_device_present(efx->net_dev))) {
261                 fill_level = efx_channel_tx_fill_level(tx_queue->channel);
262                 if (fill_level <= efx->txq_wake_thresh)
263                         netif_tx_wake_queue(tx_queue->core_txq);
264         }
265
266         efx_xmit_done_check_empty(tx_queue);
267 }
268
269 /* Remove buffers put into a tx_queue for the current packet.
270  * None of the buffers must have an skb attached.
271  */
272 void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
273                         unsigned int insert_count)
274 {
275         struct efx_tx_buffer *buffer;
276         unsigned int bytes_compl = 0;
277         unsigned int pkts_compl = 0;
278
279         /* Work backwards until we hit the original insert pointer value */
280         while (tx_queue->insert_count != insert_count) {
281                 --tx_queue->insert_count;
282                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
283                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
284         }
285 }
286
287 struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
288                                        dma_addr_t dma_addr, size_t len)
289 {
290         const struct efx_nic_type *nic_type = tx_queue->efx->type;
291         struct efx_tx_buffer *buffer;
292         unsigned int dma_len;
293
294         /* Map the fragment taking account of NIC-dependent DMA limits. */
295         do {
296                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
297
298                 if (nic_type->tx_limit_len)
299                         dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
300                 else
301                         dma_len = len;
302
303                 buffer->len = dma_len;
304                 buffer->dma_addr = dma_addr;
305                 buffer->flags = EFX_TX_BUF_CONT;
306                 len -= dma_len;
307                 dma_addr += dma_len;
308                 ++tx_queue->insert_count;
309         } while (len);
310
311         return buffer;
312 }
313
314 int efx_tx_tso_header_length(struct sk_buff *skb)
315 {
316         size_t header_len;
317
318         if (skb->encapsulation)
319                 header_len = skb_inner_transport_header(skb) -
320                                 skb->data +
321                                 (inner_tcp_hdr(skb)->doff << 2u);
322         else
323                 header_len = skb_transport_header(skb) - skb->data +
324                                 (tcp_hdr(skb)->doff << 2u);
325         return header_len;
326 }
327
328 /* Map all data from an SKB for DMA and create descriptors on the queue. */
329 int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
330                     unsigned int segment_count)
331 {
332         struct efx_nic *efx = tx_queue->efx;
333         struct device *dma_dev = &efx->pci_dev->dev;
334         unsigned int frag_index, nr_frags;
335         dma_addr_t dma_addr, unmap_addr;
336         unsigned short dma_flags;
337         size_t len, unmap_len;
338
339         nr_frags = skb_shinfo(skb)->nr_frags;
340         frag_index = 0;
341
342         /* Map header data. */
343         len = skb_headlen(skb);
344         dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
345         dma_flags = EFX_TX_BUF_MAP_SINGLE;
346         unmap_len = len;
347         unmap_addr = dma_addr;
348
349         if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
350                 return -EIO;
351
352         if (segment_count) {
353                 /* For TSO we need to put the header in to a separate
354                  * descriptor. Map this separately if necessary.
355                  */
356                 size_t header_len = efx_tx_tso_header_length(skb);
357
358                 if (header_len != len) {
359                         tx_queue->tso_long_headers++;
360                         efx_tx_map_chunk(tx_queue, dma_addr, header_len);
361                         len -= header_len;
362                         dma_addr += header_len;
363                 }
364         }
365
366         /* Add descriptors for each fragment. */
367         do {
368                 struct efx_tx_buffer *buffer;
369                 skb_frag_t *fragment;
370
371                 buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
372
373                 /* The final descriptor for a fragment is responsible for
374                  * unmapping the whole fragment.
375                  */
376                 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
377                 buffer->unmap_len = unmap_len;
378                 buffer->dma_offset = buffer->dma_addr - unmap_addr;
379
380                 if (frag_index >= nr_frags) {
381                         /* Store SKB details with the final buffer for
382                          * the completion.
383                          */
384                         buffer->skb = skb;
385                         buffer->flags = EFX_TX_BUF_SKB | dma_flags;
386                         return 0;
387                 }
388
389                 /* Move on to the next fragment. */
390                 fragment = &skb_shinfo(skb)->frags[frag_index++];
391                 len = skb_frag_size(fragment);
392                 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
393                                             DMA_TO_DEVICE);
394                 dma_flags = 0;
395                 unmap_len = len;
396                 unmap_addr = dma_addr;
397
398                 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
399                         return -EIO;
400         } while (1);
401 }
402
403 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
404 {
405         /* Header and payload descriptor for each output segment, plus
406          * one for every input fragment boundary within a segment
407          */
408         unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
409
410         /* Possibly one more per segment for option descriptors */
411         if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
412                 max_descs += EFX_TSO_MAX_SEGS;
413
414         /* Possibly more for PCIe page boundaries within input fragments */
415         if (PAGE_SIZE > EFX_PAGE_SIZE)
416                 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
417                                    DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
418
419         return max_descs;
420 }
421
422 /*
423  * Fallback to software TSO.
424  *
425  * This is used if we are unable to send a GSO packet through hardware TSO.
426  * This should only ever happen due to per-queue restrictions - unsupported
427  * packets should first be filtered by the feature flags.
428  *
429  * Returns 0 on success, error code otherwise.
430  */
431 int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
432 {
433         struct sk_buff *segments, *next;
434
435         segments = skb_gso_segment(skb, 0);
436         if (IS_ERR(segments))
437                 return PTR_ERR(segments);
438
439         dev_consume_skb_any(skb);
440
441         skb_list_walk_safe(segments, skb, next) {
442                 skb_mark_not_on_list(skb);
443                 efx_enqueue_skb(tx_queue, skb);
444         }
445
446         return 0;
447 }