Merge tag 'for-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux...
[linux-2.6-microblaze.git] / drivers / md / dm-table.c
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 /*
32  * Similar to ceiling(log_size(n))
33  */
34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36         int result = 0;
37
38         while (n > 1) {
39                 n = dm_div_up(n, base);
40                 result++;
41         }
42
43         return result;
44 }
45
46 /*
47  * Calculate the index of the child node of the n'th node k'th key.
48  */
49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51         return (n * CHILDREN_PER_NODE) + k;
52 }
53
54 /*
55  * Return the n'th node of level l from table t.
56  */
57 static inline sector_t *get_node(struct dm_table *t,
58                                  unsigned int l, unsigned int n)
59 {
60         return t->index[l] + (n * KEYS_PER_NODE);
61 }
62
63 /*
64  * Return the highest key that you could lookup from the n'th
65  * node on level l of the btree.
66  */
67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69         for (; l < t->depth - 1; l++)
70                 n = get_child(n, CHILDREN_PER_NODE - 1);
71
72         if (n >= t->counts[l])
73                 return (sector_t) - 1;
74
75         return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77
78 /*
79  * Fills in a level of the btree based on the highs of the level
80  * below it.
81  */
82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84         unsigned int n, k;
85         sector_t *node;
86
87         for (n = 0U; n < t->counts[l]; n++) {
88                 node = get_node(t, l, n);
89
90                 for (k = 0U; k < KEYS_PER_NODE; k++)
91                         node[k] = high(t, l + 1, get_child(n, k));
92         }
93
94         return 0;
95 }
96
97 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
98 {
99         unsigned long size;
100         void *addr;
101
102         /*
103          * Check that we're not going to overflow.
104          */
105         if (nmemb > (ULONG_MAX / elem_size))
106                 return NULL;
107
108         size = nmemb * elem_size;
109         addr = vzalloc(size);
110
111         return addr;
112 }
113 EXPORT_SYMBOL(dm_vcalloc);
114
115 /*
116  * highs, and targets are managed as dynamic arrays during a
117  * table load.
118  */
119 static int alloc_targets(struct dm_table *t, unsigned int num)
120 {
121         sector_t *n_highs;
122         struct dm_target *n_targets;
123
124         /*
125          * Allocate both the target array and offset array at once.
126          */
127         n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
128                                           sizeof(sector_t));
129         if (!n_highs)
130                 return -ENOMEM;
131
132         n_targets = (struct dm_target *) (n_highs + num);
133
134         memset(n_highs, -1, sizeof(*n_highs) * num);
135         vfree(t->highs);
136
137         t->num_allocated = num;
138         t->highs = n_highs;
139         t->targets = n_targets;
140
141         return 0;
142 }
143
144 int dm_table_create(struct dm_table **result, fmode_t mode,
145                     unsigned num_targets, struct mapped_device *md)
146 {
147         struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
148
149         if (!t)
150                 return -ENOMEM;
151
152         INIT_LIST_HEAD(&t->devices);
153
154         if (!num_targets)
155                 num_targets = KEYS_PER_NODE;
156
157         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
158
159         if (!num_targets) {
160                 kfree(t);
161                 return -ENOMEM;
162         }
163
164         if (alloc_targets(t, num_targets)) {
165                 kfree(t);
166                 return -ENOMEM;
167         }
168
169         t->type = DM_TYPE_NONE;
170         t->mode = mode;
171         t->md = md;
172         *result = t;
173         return 0;
174 }
175
176 static void free_devices(struct list_head *devices, struct mapped_device *md)
177 {
178         struct list_head *tmp, *next;
179
180         list_for_each_safe(tmp, next, devices) {
181                 struct dm_dev_internal *dd =
182                     list_entry(tmp, struct dm_dev_internal, list);
183                 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
184                        dm_device_name(md), dd->dm_dev->name);
185                 dm_put_table_device(md, dd->dm_dev);
186                 kfree(dd);
187         }
188 }
189
190 static void dm_table_destroy_keyslot_manager(struct dm_table *t);
191
192 void dm_table_destroy(struct dm_table *t)
193 {
194         unsigned int i;
195
196         if (!t)
197                 return;
198
199         /* free the indexes */
200         if (t->depth >= 2)
201                 vfree(t->index[t->depth - 2]);
202
203         /* free the targets */
204         for (i = 0; i < t->num_targets; i++) {
205                 struct dm_target *tgt = t->targets + i;
206
207                 if (tgt->type->dtr)
208                         tgt->type->dtr(tgt);
209
210                 dm_put_target_type(tgt->type);
211         }
212
213         vfree(t->highs);
214
215         /* free the device list */
216         free_devices(&t->devices, t->md);
217
218         dm_free_md_mempools(t->mempools);
219
220         dm_table_destroy_keyslot_manager(t);
221
222         kfree(t);
223 }
224
225 /*
226  * See if we've already got a device in the list.
227  */
228 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
229 {
230         struct dm_dev_internal *dd;
231
232         list_for_each_entry (dd, l, list)
233                 if (dd->dm_dev->bdev->bd_dev == dev)
234                         return dd;
235
236         return NULL;
237 }
238
239 /*
240  * If possible, this checks an area of a destination device is invalid.
241  */
242 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
243                                   sector_t start, sector_t len, void *data)
244 {
245         struct queue_limits *limits = data;
246         struct block_device *bdev = dev->bdev;
247         sector_t dev_size =
248                 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
249         unsigned short logical_block_size_sectors =
250                 limits->logical_block_size >> SECTOR_SHIFT;
251         char b[BDEVNAME_SIZE];
252
253         if (!dev_size)
254                 return 0;
255
256         if ((start >= dev_size) || (start + len > dev_size)) {
257                 DMWARN("%s: %s too small for target: "
258                        "start=%llu, len=%llu, dev_size=%llu",
259                        dm_device_name(ti->table->md), bdevname(bdev, b),
260                        (unsigned long long)start,
261                        (unsigned long long)len,
262                        (unsigned long long)dev_size);
263                 return 1;
264         }
265
266         /*
267          * If the target is mapped to zoned block device(s), check
268          * that the zones are not partially mapped.
269          */
270         if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
271                 unsigned int zone_sectors = bdev_zone_sectors(bdev);
272
273                 if (start & (zone_sectors - 1)) {
274                         DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
275                                dm_device_name(ti->table->md),
276                                (unsigned long long)start,
277                                zone_sectors, bdevname(bdev, b));
278                         return 1;
279                 }
280
281                 /*
282                  * Note: The last zone of a zoned block device may be smaller
283                  * than other zones. So for a target mapping the end of a
284                  * zoned block device with such a zone, len would not be zone
285                  * aligned. We do not allow such last smaller zone to be part
286                  * of the mapping here to ensure that mappings with multiple
287                  * devices do not end up with a smaller zone in the middle of
288                  * the sector range.
289                  */
290                 if (len & (zone_sectors - 1)) {
291                         DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
292                                dm_device_name(ti->table->md),
293                                (unsigned long long)len,
294                                zone_sectors, bdevname(bdev, b));
295                         return 1;
296                 }
297         }
298
299         if (logical_block_size_sectors <= 1)
300                 return 0;
301
302         if (start & (logical_block_size_sectors - 1)) {
303                 DMWARN("%s: start=%llu not aligned to h/w "
304                        "logical block size %u of %s",
305                        dm_device_name(ti->table->md),
306                        (unsigned long long)start,
307                        limits->logical_block_size, bdevname(bdev, b));
308                 return 1;
309         }
310
311         if (len & (logical_block_size_sectors - 1)) {
312                 DMWARN("%s: len=%llu not aligned to h/w "
313                        "logical block size %u of %s",
314                        dm_device_name(ti->table->md),
315                        (unsigned long long)len,
316                        limits->logical_block_size, bdevname(bdev, b));
317                 return 1;
318         }
319
320         return 0;
321 }
322
323 /*
324  * This upgrades the mode on an already open dm_dev, being
325  * careful to leave things as they were if we fail to reopen the
326  * device and not to touch the existing bdev field in case
327  * it is accessed concurrently.
328  */
329 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
330                         struct mapped_device *md)
331 {
332         int r;
333         struct dm_dev *old_dev, *new_dev;
334
335         old_dev = dd->dm_dev;
336
337         r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
338                                 dd->dm_dev->mode | new_mode, &new_dev);
339         if (r)
340                 return r;
341
342         dd->dm_dev = new_dev;
343         dm_put_table_device(md, old_dev);
344
345         return 0;
346 }
347
348 /*
349  * Convert the path to a device
350  */
351 dev_t dm_get_dev_t(const char *path)
352 {
353         dev_t dev;
354
355         if (lookup_bdev(path, &dev))
356                 dev = name_to_dev_t(path);
357         return dev;
358 }
359 EXPORT_SYMBOL_GPL(dm_get_dev_t);
360
361 /*
362  * Add a device to the list, or just increment the usage count if
363  * it's already present.
364  */
365 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
366                   struct dm_dev **result)
367 {
368         int r;
369         dev_t dev;
370         unsigned int major, minor;
371         char dummy;
372         struct dm_dev_internal *dd;
373         struct dm_table *t = ti->table;
374
375         BUG_ON(!t);
376
377         if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
378                 /* Extract the major/minor numbers */
379                 dev = MKDEV(major, minor);
380                 if (MAJOR(dev) != major || MINOR(dev) != minor)
381                         return -EOVERFLOW;
382         } else {
383                 dev = dm_get_dev_t(path);
384                 if (!dev)
385                         return -ENODEV;
386         }
387
388         dd = find_device(&t->devices, dev);
389         if (!dd) {
390                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
391                 if (!dd)
392                         return -ENOMEM;
393
394                 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
395                         kfree(dd);
396                         return r;
397                 }
398
399                 refcount_set(&dd->count, 1);
400                 list_add(&dd->list, &t->devices);
401                 goto out;
402
403         } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
404                 r = upgrade_mode(dd, mode, t->md);
405                 if (r)
406                         return r;
407         }
408         refcount_inc(&dd->count);
409 out:
410         *result = dd->dm_dev;
411         return 0;
412 }
413 EXPORT_SYMBOL(dm_get_device);
414
415 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
416                                 sector_t start, sector_t len, void *data)
417 {
418         struct queue_limits *limits = data;
419         struct block_device *bdev = dev->bdev;
420         struct request_queue *q = bdev_get_queue(bdev);
421         char b[BDEVNAME_SIZE];
422
423         if (unlikely(!q)) {
424                 DMWARN("%s: Cannot set limits for nonexistent device %s",
425                        dm_device_name(ti->table->md), bdevname(bdev, b));
426                 return 0;
427         }
428
429         if (blk_stack_limits(limits, &q->limits,
430                         get_start_sect(bdev) + start) < 0)
431                 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
432                        "physical_block_size=%u, logical_block_size=%u, "
433                        "alignment_offset=%u, start=%llu",
434                        dm_device_name(ti->table->md), bdevname(bdev, b),
435                        q->limits.physical_block_size,
436                        q->limits.logical_block_size,
437                        q->limits.alignment_offset,
438                        (unsigned long long) start << SECTOR_SHIFT);
439         return 0;
440 }
441
442 /*
443  * Decrement a device's use count and remove it if necessary.
444  */
445 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
446 {
447         int found = 0;
448         struct list_head *devices = &ti->table->devices;
449         struct dm_dev_internal *dd;
450
451         list_for_each_entry(dd, devices, list) {
452                 if (dd->dm_dev == d) {
453                         found = 1;
454                         break;
455                 }
456         }
457         if (!found) {
458                 DMWARN("%s: device %s not in table devices list",
459                        dm_device_name(ti->table->md), d->name);
460                 return;
461         }
462         if (refcount_dec_and_test(&dd->count)) {
463                 dm_put_table_device(ti->table->md, d);
464                 list_del(&dd->list);
465                 kfree(dd);
466         }
467 }
468 EXPORT_SYMBOL(dm_put_device);
469
470 /*
471  * Checks to see if the target joins onto the end of the table.
472  */
473 static int adjoin(struct dm_table *table, struct dm_target *ti)
474 {
475         struct dm_target *prev;
476
477         if (!table->num_targets)
478                 return !ti->begin;
479
480         prev = &table->targets[table->num_targets - 1];
481         return (ti->begin == (prev->begin + prev->len));
482 }
483
484 /*
485  * Used to dynamically allocate the arg array.
486  *
487  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
488  * process messages even if some device is suspended. These messages have a
489  * small fixed number of arguments.
490  *
491  * On the other hand, dm-switch needs to process bulk data using messages and
492  * excessive use of GFP_NOIO could cause trouble.
493  */
494 static char **realloc_argv(unsigned *size, char **old_argv)
495 {
496         char **argv;
497         unsigned new_size;
498         gfp_t gfp;
499
500         if (*size) {
501                 new_size = *size * 2;
502                 gfp = GFP_KERNEL;
503         } else {
504                 new_size = 8;
505                 gfp = GFP_NOIO;
506         }
507         argv = kmalloc_array(new_size, sizeof(*argv), gfp);
508         if (argv && old_argv) {
509                 memcpy(argv, old_argv, *size * sizeof(*argv));
510                 *size = new_size;
511         }
512
513         kfree(old_argv);
514         return argv;
515 }
516
517 /*
518  * Destructively splits up the argument list to pass to ctr.
519  */
520 int dm_split_args(int *argc, char ***argvp, char *input)
521 {
522         char *start, *end = input, *out, **argv = NULL;
523         unsigned array_size = 0;
524
525         *argc = 0;
526
527         if (!input) {
528                 *argvp = NULL;
529                 return 0;
530         }
531
532         argv = realloc_argv(&array_size, argv);
533         if (!argv)
534                 return -ENOMEM;
535
536         while (1) {
537                 /* Skip whitespace */
538                 start = skip_spaces(end);
539
540                 if (!*start)
541                         break;  /* success, we hit the end */
542
543                 /* 'out' is used to remove any back-quotes */
544                 end = out = start;
545                 while (*end) {
546                         /* Everything apart from '\0' can be quoted */
547                         if (*end == '\\' && *(end + 1)) {
548                                 *out++ = *(end + 1);
549                                 end += 2;
550                                 continue;
551                         }
552
553                         if (isspace(*end))
554                                 break;  /* end of token */
555
556                         *out++ = *end++;
557                 }
558
559                 /* have we already filled the array ? */
560                 if ((*argc + 1) > array_size) {
561                         argv = realloc_argv(&array_size, argv);
562                         if (!argv)
563                                 return -ENOMEM;
564                 }
565
566                 /* we know this is whitespace */
567                 if (*end)
568                         end++;
569
570                 /* terminate the string and put it in the array */
571                 *out = '\0';
572                 argv[*argc] = start;
573                 (*argc)++;
574         }
575
576         *argvp = argv;
577         return 0;
578 }
579
580 /*
581  * Impose necessary and sufficient conditions on a devices's table such
582  * that any incoming bio which respects its logical_block_size can be
583  * processed successfully.  If it falls across the boundary between
584  * two or more targets, the size of each piece it gets split into must
585  * be compatible with the logical_block_size of the target processing it.
586  */
587 static int validate_hardware_logical_block_alignment(struct dm_table *table,
588                                                  struct queue_limits *limits)
589 {
590         /*
591          * This function uses arithmetic modulo the logical_block_size
592          * (in units of 512-byte sectors).
593          */
594         unsigned short device_logical_block_size_sects =
595                 limits->logical_block_size >> SECTOR_SHIFT;
596
597         /*
598          * Offset of the start of the next table entry, mod logical_block_size.
599          */
600         unsigned short next_target_start = 0;
601
602         /*
603          * Given an aligned bio that extends beyond the end of a
604          * target, how many sectors must the next target handle?
605          */
606         unsigned short remaining = 0;
607
608         struct dm_target *ti;
609         struct queue_limits ti_limits;
610         unsigned i;
611
612         /*
613          * Check each entry in the table in turn.
614          */
615         for (i = 0; i < dm_table_get_num_targets(table); i++) {
616                 ti = dm_table_get_target(table, i);
617
618                 blk_set_stacking_limits(&ti_limits);
619
620                 /* combine all target devices' limits */
621                 if (ti->type->iterate_devices)
622                         ti->type->iterate_devices(ti, dm_set_device_limits,
623                                                   &ti_limits);
624
625                 /*
626                  * If the remaining sectors fall entirely within this
627                  * table entry are they compatible with its logical_block_size?
628                  */
629                 if (remaining < ti->len &&
630                     remaining & ((ti_limits.logical_block_size >>
631                                   SECTOR_SHIFT) - 1))
632                         break;  /* Error */
633
634                 next_target_start =
635                     (unsigned short) ((next_target_start + ti->len) &
636                                       (device_logical_block_size_sects - 1));
637                 remaining = next_target_start ?
638                     device_logical_block_size_sects - next_target_start : 0;
639         }
640
641         if (remaining) {
642                 DMWARN("%s: table line %u (start sect %llu len %llu) "
643                        "not aligned to h/w logical block size %u",
644                        dm_device_name(table->md), i,
645                        (unsigned long long) ti->begin,
646                        (unsigned long long) ti->len,
647                        limits->logical_block_size);
648                 return -EINVAL;
649         }
650
651         return 0;
652 }
653
654 int dm_table_add_target(struct dm_table *t, const char *type,
655                         sector_t start, sector_t len, char *params)
656 {
657         int r = -EINVAL, argc;
658         char **argv;
659         struct dm_target *tgt;
660
661         if (t->singleton) {
662                 DMERR("%s: target type %s must appear alone in table",
663                       dm_device_name(t->md), t->targets->type->name);
664                 return -EINVAL;
665         }
666
667         BUG_ON(t->num_targets >= t->num_allocated);
668
669         tgt = t->targets + t->num_targets;
670         memset(tgt, 0, sizeof(*tgt));
671
672         if (!len) {
673                 DMERR("%s: zero-length target", dm_device_name(t->md));
674                 return -EINVAL;
675         }
676
677         tgt->type = dm_get_target_type(type);
678         if (!tgt->type) {
679                 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
680                 return -EINVAL;
681         }
682
683         if (dm_target_needs_singleton(tgt->type)) {
684                 if (t->num_targets) {
685                         tgt->error = "singleton target type must appear alone in table";
686                         goto bad;
687                 }
688                 t->singleton = true;
689         }
690
691         if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
692                 tgt->error = "target type may not be included in a read-only table";
693                 goto bad;
694         }
695
696         if (t->immutable_target_type) {
697                 if (t->immutable_target_type != tgt->type) {
698                         tgt->error = "immutable target type cannot be mixed with other target types";
699                         goto bad;
700                 }
701         } else if (dm_target_is_immutable(tgt->type)) {
702                 if (t->num_targets) {
703                         tgt->error = "immutable target type cannot be mixed with other target types";
704                         goto bad;
705                 }
706                 t->immutable_target_type = tgt->type;
707         }
708
709         if (dm_target_has_integrity(tgt->type))
710                 t->integrity_added = 1;
711
712         tgt->table = t;
713         tgt->begin = start;
714         tgt->len = len;
715         tgt->error = "Unknown error";
716
717         /*
718          * Does this target adjoin the previous one ?
719          */
720         if (!adjoin(t, tgt)) {
721                 tgt->error = "Gap in table";
722                 goto bad;
723         }
724
725         r = dm_split_args(&argc, &argv, params);
726         if (r) {
727                 tgt->error = "couldn't split parameters (insufficient memory)";
728                 goto bad;
729         }
730
731         r = tgt->type->ctr(tgt, argc, argv);
732         kfree(argv);
733         if (r)
734                 goto bad;
735
736         t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
737
738         if (!tgt->num_discard_bios && tgt->discards_supported)
739                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
740                        dm_device_name(t->md), type);
741
742         return 0;
743
744  bad:
745         DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
746         dm_put_target_type(tgt->type);
747         return r;
748 }
749
750 /*
751  * Target argument parsing helpers.
752  */
753 static int validate_next_arg(const struct dm_arg *arg,
754                              struct dm_arg_set *arg_set,
755                              unsigned *value, char **error, unsigned grouped)
756 {
757         const char *arg_str = dm_shift_arg(arg_set);
758         char dummy;
759
760         if (!arg_str ||
761             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
762             (*value < arg->min) ||
763             (*value > arg->max) ||
764             (grouped && arg_set->argc < *value)) {
765                 *error = arg->error;
766                 return -EINVAL;
767         }
768
769         return 0;
770 }
771
772 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
773                 unsigned *value, char **error)
774 {
775         return validate_next_arg(arg, arg_set, value, error, 0);
776 }
777 EXPORT_SYMBOL(dm_read_arg);
778
779 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
780                       unsigned *value, char **error)
781 {
782         return validate_next_arg(arg, arg_set, value, error, 1);
783 }
784 EXPORT_SYMBOL(dm_read_arg_group);
785
786 const char *dm_shift_arg(struct dm_arg_set *as)
787 {
788         char *r;
789
790         if (as->argc) {
791                 as->argc--;
792                 r = *as->argv;
793                 as->argv++;
794                 return r;
795         }
796
797         return NULL;
798 }
799 EXPORT_SYMBOL(dm_shift_arg);
800
801 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
802 {
803         BUG_ON(as->argc < num_args);
804         as->argc -= num_args;
805         as->argv += num_args;
806 }
807 EXPORT_SYMBOL(dm_consume_args);
808
809 static bool __table_type_bio_based(enum dm_queue_mode table_type)
810 {
811         return (table_type == DM_TYPE_BIO_BASED ||
812                 table_type == DM_TYPE_DAX_BIO_BASED);
813 }
814
815 static bool __table_type_request_based(enum dm_queue_mode table_type)
816 {
817         return table_type == DM_TYPE_REQUEST_BASED;
818 }
819
820 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
821 {
822         t->type = type;
823 }
824 EXPORT_SYMBOL_GPL(dm_table_set_type);
825
826 /* validate the dax capability of the target device span */
827 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
828                         sector_t start, sector_t len, void *data)
829 {
830         int blocksize = *(int *) data, id;
831         bool rc;
832
833         id = dax_read_lock();
834         rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
835         dax_read_unlock(id);
836
837         return rc;
838 }
839
840 /* Check devices support synchronous DAX */
841 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
842                                               sector_t start, sector_t len, void *data)
843 {
844         return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
845 }
846
847 bool dm_table_supports_dax(struct dm_table *t,
848                            iterate_devices_callout_fn iterate_fn, int *blocksize)
849 {
850         struct dm_target *ti;
851         unsigned i;
852
853         /* Ensure that all targets support DAX. */
854         for (i = 0; i < dm_table_get_num_targets(t); i++) {
855                 ti = dm_table_get_target(t, i);
856
857                 if (!ti->type->direct_access)
858                         return false;
859
860                 if (!ti->type->iterate_devices ||
861                     ti->type->iterate_devices(ti, iterate_fn, blocksize))
862                         return false;
863         }
864
865         return true;
866 }
867
868 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
869                                   sector_t start, sector_t len, void *data)
870 {
871         struct block_device *bdev = dev->bdev;
872         struct request_queue *q = bdev_get_queue(bdev);
873
874         /* request-based cannot stack on partitions! */
875         if (bdev_is_partition(bdev))
876                 return false;
877
878         return queue_is_mq(q);
879 }
880
881 static int dm_table_determine_type(struct dm_table *t)
882 {
883         unsigned i;
884         unsigned bio_based = 0, request_based = 0, hybrid = 0;
885         struct dm_target *tgt;
886         struct list_head *devices = dm_table_get_devices(t);
887         enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
888         int page_size = PAGE_SIZE;
889
890         if (t->type != DM_TYPE_NONE) {
891                 /* target already set the table's type */
892                 if (t->type == DM_TYPE_BIO_BASED) {
893                         /* possibly upgrade to a variant of bio-based */
894                         goto verify_bio_based;
895                 }
896                 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
897                 goto verify_rq_based;
898         }
899
900         for (i = 0; i < t->num_targets; i++) {
901                 tgt = t->targets + i;
902                 if (dm_target_hybrid(tgt))
903                         hybrid = 1;
904                 else if (dm_target_request_based(tgt))
905                         request_based = 1;
906                 else
907                         bio_based = 1;
908
909                 if (bio_based && request_based) {
910                         DMERR("Inconsistent table: different target types"
911                               " can't be mixed up");
912                         return -EINVAL;
913                 }
914         }
915
916         if (hybrid && !bio_based && !request_based) {
917                 /*
918                  * The targets can work either way.
919                  * Determine the type from the live device.
920                  * Default to bio-based if device is new.
921                  */
922                 if (__table_type_request_based(live_md_type))
923                         request_based = 1;
924                 else
925                         bio_based = 1;
926         }
927
928         if (bio_based) {
929 verify_bio_based:
930                 /* We must use this table as bio-based */
931                 t->type = DM_TYPE_BIO_BASED;
932                 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
933                     (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
934                         t->type = DM_TYPE_DAX_BIO_BASED;
935                 }
936                 return 0;
937         }
938
939         BUG_ON(!request_based); /* No targets in this table */
940
941         t->type = DM_TYPE_REQUEST_BASED;
942
943 verify_rq_based:
944         /*
945          * Request-based dm supports only tables that have a single target now.
946          * To support multiple targets, request splitting support is needed,
947          * and that needs lots of changes in the block-layer.
948          * (e.g. request completion process for partial completion.)
949          */
950         if (t->num_targets > 1) {
951                 DMERR("request-based DM doesn't support multiple targets");
952                 return -EINVAL;
953         }
954
955         if (list_empty(devices)) {
956                 int srcu_idx;
957                 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
958
959                 /* inherit live table's type */
960                 if (live_table)
961                         t->type = live_table->type;
962                 dm_put_live_table(t->md, srcu_idx);
963                 return 0;
964         }
965
966         tgt = dm_table_get_immutable_target(t);
967         if (!tgt) {
968                 DMERR("table load rejected: immutable target is required");
969                 return -EINVAL;
970         } else if (tgt->max_io_len) {
971                 DMERR("table load rejected: immutable target that splits IO is not supported");
972                 return -EINVAL;
973         }
974
975         /* Non-request-stackable devices can't be used for request-based dm */
976         if (!tgt->type->iterate_devices ||
977             !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
978                 DMERR("table load rejected: including non-request-stackable devices");
979                 return -EINVAL;
980         }
981
982         return 0;
983 }
984
985 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
986 {
987         return t->type;
988 }
989
990 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
991 {
992         return t->immutable_target_type;
993 }
994
995 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
996 {
997         /* Immutable target is implicitly a singleton */
998         if (t->num_targets > 1 ||
999             !dm_target_is_immutable(t->targets[0].type))
1000                 return NULL;
1001
1002         return t->targets;
1003 }
1004
1005 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1006 {
1007         struct dm_target *ti;
1008         unsigned i;
1009
1010         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1011                 ti = dm_table_get_target(t, i);
1012                 if (dm_target_is_wildcard(ti->type))
1013                         return ti;
1014         }
1015
1016         return NULL;
1017 }
1018
1019 bool dm_table_bio_based(struct dm_table *t)
1020 {
1021         return __table_type_bio_based(dm_table_get_type(t));
1022 }
1023
1024 bool dm_table_request_based(struct dm_table *t)
1025 {
1026         return __table_type_request_based(dm_table_get_type(t));
1027 }
1028
1029 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1030 {
1031         enum dm_queue_mode type = dm_table_get_type(t);
1032         unsigned per_io_data_size = 0;
1033         unsigned min_pool_size = 0;
1034         struct dm_target *ti;
1035         unsigned i;
1036
1037         if (unlikely(type == DM_TYPE_NONE)) {
1038                 DMWARN("no table type is set, can't allocate mempools");
1039                 return -EINVAL;
1040         }
1041
1042         if (__table_type_bio_based(type))
1043                 for (i = 0; i < t->num_targets; i++) {
1044                         ti = t->targets + i;
1045                         per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1046                         min_pool_size = max(min_pool_size, ti->num_flush_bios);
1047                 }
1048
1049         t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1050                                            per_io_data_size, min_pool_size);
1051         if (!t->mempools)
1052                 return -ENOMEM;
1053
1054         return 0;
1055 }
1056
1057 void dm_table_free_md_mempools(struct dm_table *t)
1058 {
1059         dm_free_md_mempools(t->mempools);
1060         t->mempools = NULL;
1061 }
1062
1063 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1064 {
1065         return t->mempools;
1066 }
1067
1068 static int setup_indexes(struct dm_table *t)
1069 {
1070         int i;
1071         unsigned int total = 0;
1072         sector_t *indexes;
1073
1074         /* allocate the space for *all* the indexes */
1075         for (i = t->depth - 2; i >= 0; i--) {
1076                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1077                 total += t->counts[i];
1078         }
1079
1080         indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1081         if (!indexes)
1082                 return -ENOMEM;
1083
1084         /* set up internal nodes, bottom-up */
1085         for (i = t->depth - 2; i >= 0; i--) {
1086                 t->index[i] = indexes;
1087                 indexes += (KEYS_PER_NODE * t->counts[i]);
1088                 setup_btree_index(i, t);
1089         }
1090
1091         return 0;
1092 }
1093
1094 /*
1095  * Builds the btree to index the map.
1096  */
1097 static int dm_table_build_index(struct dm_table *t)
1098 {
1099         int r = 0;
1100         unsigned int leaf_nodes;
1101
1102         /* how many indexes will the btree have ? */
1103         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1104         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1105
1106         /* leaf layer has already been set up */
1107         t->counts[t->depth - 1] = leaf_nodes;
1108         t->index[t->depth - 1] = t->highs;
1109
1110         if (t->depth >= 2)
1111                 r = setup_indexes(t);
1112
1113         return r;
1114 }
1115
1116 static bool integrity_profile_exists(struct gendisk *disk)
1117 {
1118         return !!blk_get_integrity(disk);
1119 }
1120
1121 /*
1122  * Get a disk whose integrity profile reflects the table's profile.
1123  * Returns NULL if integrity support was inconsistent or unavailable.
1124  */
1125 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1126 {
1127         struct list_head *devices = dm_table_get_devices(t);
1128         struct dm_dev_internal *dd = NULL;
1129         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1130         unsigned i;
1131
1132         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1133                 struct dm_target *ti = dm_table_get_target(t, i);
1134                 if (!dm_target_passes_integrity(ti->type))
1135                         goto no_integrity;
1136         }
1137
1138         list_for_each_entry(dd, devices, list) {
1139                 template_disk = dd->dm_dev->bdev->bd_disk;
1140                 if (!integrity_profile_exists(template_disk))
1141                         goto no_integrity;
1142                 else if (prev_disk &&
1143                          blk_integrity_compare(prev_disk, template_disk) < 0)
1144                         goto no_integrity;
1145                 prev_disk = template_disk;
1146         }
1147
1148         return template_disk;
1149
1150 no_integrity:
1151         if (prev_disk)
1152                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1153                        dm_device_name(t->md),
1154                        prev_disk->disk_name,
1155                        template_disk->disk_name);
1156         return NULL;
1157 }
1158
1159 /*
1160  * Register the mapped device for blk_integrity support if the
1161  * underlying devices have an integrity profile.  But all devices may
1162  * not have matching profiles (checking all devices isn't reliable
1163  * during table load because this table may use other DM device(s) which
1164  * must be resumed before they will have an initialized integity
1165  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1166  * profile validation: First pass during table load, final pass during
1167  * resume.
1168  */
1169 static int dm_table_register_integrity(struct dm_table *t)
1170 {
1171         struct mapped_device *md = t->md;
1172         struct gendisk *template_disk = NULL;
1173
1174         /* If target handles integrity itself do not register it here. */
1175         if (t->integrity_added)
1176                 return 0;
1177
1178         template_disk = dm_table_get_integrity_disk(t);
1179         if (!template_disk)
1180                 return 0;
1181
1182         if (!integrity_profile_exists(dm_disk(md))) {
1183                 t->integrity_supported = true;
1184                 /*
1185                  * Register integrity profile during table load; we can do
1186                  * this because the final profile must match during resume.
1187                  */
1188                 blk_integrity_register(dm_disk(md),
1189                                        blk_get_integrity(template_disk));
1190                 return 0;
1191         }
1192
1193         /*
1194          * If DM device already has an initialized integrity
1195          * profile the new profile should not conflict.
1196          */
1197         if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1198                 DMWARN("%s: conflict with existing integrity profile: "
1199                        "%s profile mismatch",
1200                        dm_device_name(t->md),
1201                        template_disk->disk_name);
1202                 return 1;
1203         }
1204
1205         /* Preserve existing integrity profile */
1206         t->integrity_supported = true;
1207         return 0;
1208 }
1209
1210 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1211
1212 struct dm_keyslot_manager {
1213         struct blk_keyslot_manager ksm;
1214         struct mapped_device *md;
1215 };
1216
1217 struct dm_keyslot_evict_args {
1218         const struct blk_crypto_key *key;
1219         int err;
1220 };
1221
1222 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1223                                      sector_t start, sector_t len, void *data)
1224 {
1225         struct dm_keyslot_evict_args *args = data;
1226         int err;
1227
1228         err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1229         if (!args->err)
1230                 args->err = err;
1231         /* Always try to evict the key from all devices. */
1232         return 0;
1233 }
1234
1235 /*
1236  * When an inline encryption key is evicted from a device-mapper device, evict
1237  * it from all the underlying devices.
1238  */
1239 static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
1240                             const struct blk_crypto_key *key, unsigned int slot)
1241 {
1242         struct dm_keyslot_manager *dksm = container_of(ksm,
1243                                                        struct dm_keyslot_manager,
1244                                                        ksm);
1245         struct mapped_device *md = dksm->md;
1246         struct dm_keyslot_evict_args args = { key };
1247         struct dm_table *t;
1248         int srcu_idx;
1249         int i;
1250         struct dm_target *ti;
1251
1252         t = dm_get_live_table(md, &srcu_idx);
1253         if (!t)
1254                 return 0;
1255         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1256                 ti = dm_table_get_target(t, i);
1257                 if (!ti->type->iterate_devices)
1258                         continue;
1259                 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1260         }
1261         dm_put_live_table(md, srcu_idx);
1262         return args.err;
1263 }
1264
1265 static struct blk_ksm_ll_ops dm_ksm_ll_ops = {
1266         .keyslot_evict = dm_keyslot_evict,
1267 };
1268
1269 static int device_intersect_crypto_modes(struct dm_target *ti,
1270                                          struct dm_dev *dev, sector_t start,
1271                                          sector_t len, void *data)
1272 {
1273         struct blk_keyslot_manager *parent = data;
1274         struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm;
1275
1276         blk_ksm_intersect_modes(parent, child);
1277         return 0;
1278 }
1279
1280 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1281 {
1282         struct dm_keyslot_manager *dksm = container_of(ksm,
1283                                                        struct dm_keyslot_manager,
1284                                                        ksm);
1285
1286         if (!ksm)
1287                 return;
1288
1289         blk_ksm_destroy(ksm);
1290         kfree(dksm);
1291 }
1292
1293 static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1294 {
1295         dm_destroy_keyslot_manager(t->ksm);
1296         t->ksm = NULL;
1297 }
1298
1299 /*
1300  * Constructs and initializes t->ksm with a keyslot manager that
1301  * represents the common set of crypto capabilities of the devices
1302  * described by the dm_table. However, if the constructed keyslot
1303  * manager does not support a superset of the crypto capabilities
1304  * supported by the current keyslot manager of the mapped_device,
1305  * it returns an error instead, since we don't support restricting
1306  * crypto capabilities on table changes. Finally, if the constructed
1307  * keyslot manager doesn't actually support any crypto modes at all,
1308  * it just returns NULL.
1309  */
1310 static int dm_table_construct_keyslot_manager(struct dm_table *t)
1311 {
1312         struct dm_keyslot_manager *dksm;
1313         struct blk_keyslot_manager *ksm;
1314         struct dm_target *ti;
1315         unsigned int i;
1316         bool ksm_is_empty = true;
1317
1318         dksm = kmalloc(sizeof(*dksm), GFP_KERNEL);
1319         if (!dksm)
1320                 return -ENOMEM;
1321         dksm->md = t->md;
1322
1323         ksm = &dksm->ksm;
1324         blk_ksm_init_passthrough(ksm);
1325         ksm->ksm_ll_ops = dm_ksm_ll_ops;
1326         ksm->max_dun_bytes_supported = UINT_MAX;
1327         memset(ksm->crypto_modes_supported, 0xFF,
1328                sizeof(ksm->crypto_modes_supported));
1329
1330         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1331                 ti = dm_table_get_target(t, i);
1332
1333                 if (!dm_target_passes_crypto(ti->type)) {
1334                         blk_ksm_intersect_modes(ksm, NULL);
1335                         break;
1336                 }
1337                 if (!ti->type->iterate_devices)
1338                         continue;
1339                 ti->type->iterate_devices(ti, device_intersect_crypto_modes,
1340                                           ksm);
1341         }
1342
1343         if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) {
1344                 DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1345                 dm_destroy_keyslot_manager(ksm);
1346                 return -EINVAL;
1347         }
1348
1349         /*
1350          * If the new KSM doesn't actually support any crypto modes, we may as
1351          * well represent it with a NULL ksm.
1352          */
1353         ksm_is_empty = true;
1354         for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) {
1355                 if (ksm->crypto_modes_supported[i]) {
1356                         ksm_is_empty = false;
1357                         break;
1358                 }
1359         }
1360
1361         if (ksm_is_empty) {
1362                 dm_destroy_keyslot_manager(ksm);
1363                 ksm = NULL;
1364         }
1365
1366         /*
1367          * t->ksm is only set temporarily while the table is being set
1368          * up, and it gets set to NULL after the capabilities have
1369          * been transferred to the request_queue.
1370          */
1371         t->ksm = ksm;
1372
1373         return 0;
1374 }
1375
1376 static void dm_update_keyslot_manager(struct request_queue *q,
1377                                       struct dm_table *t)
1378 {
1379         if (!t->ksm)
1380                 return;
1381
1382         /* Make the ksm less restrictive */
1383         if (!q->ksm) {
1384                 blk_ksm_register(t->ksm, q);
1385         } else {
1386                 blk_ksm_update_capabilities(q->ksm, t->ksm);
1387                 dm_destroy_keyslot_manager(t->ksm);
1388         }
1389         t->ksm = NULL;
1390 }
1391
1392 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1393
1394 static int dm_table_construct_keyslot_manager(struct dm_table *t)
1395 {
1396         return 0;
1397 }
1398
1399 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1400 {
1401 }
1402
1403 static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1404 {
1405 }
1406
1407 static void dm_update_keyslot_manager(struct request_queue *q,
1408                                       struct dm_table *t)
1409 {
1410 }
1411
1412 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1413
1414 /*
1415  * Prepares the table for use by building the indices,
1416  * setting the type, and allocating mempools.
1417  */
1418 int dm_table_complete(struct dm_table *t)
1419 {
1420         int r;
1421
1422         r = dm_table_determine_type(t);
1423         if (r) {
1424                 DMERR("unable to determine table type");
1425                 return r;
1426         }
1427
1428         r = dm_table_build_index(t);
1429         if (r) {
1430                 DMERR("unable to build btrees");
1431                 return r;
1432         }
1433
1434         r = dm_table_register_integrity(t);
1435         if (r) {
1436                 DMERR("could not register integrity profile.");
1437                 return r;
1438         }
1439
1440         r = dm_table_construct_keyslot_manager(t);
1441         if (r) {
1442                 DMERR("could not construct keyslot manager.");
1443                 return r;
1444         }
1445
1446         r = dm_table_alloc_md_mempools(t, t->md);
1447         if (r)
1448                 DMERR("unable to allocate mempools");
1449
1450         return r;
1451 }
1452
1453 static DEFINE_MUTEX(_event_lock);
1454 void dm_table_event_callback(struct dm_table *t,
1455                              void (*fn)(void *), void *context)
1456 {
1457         mutex_lock(&_event_lock);
1458         t->event_fn = fn;
1459         t->event_context = context;
1460         mutex_unlock(&_event_lock);
1461 }
1462
1463 void dm_table_event(struct dm_table *t)
1464 {
1465         mutex_lock(&_event_lock);
1466         if (t->event_fn)
1467                 t->event_fn(t->event_context);
1468         mutex_unlock(&_event_lock);
1469 }
1470 EXPORT_SYMBOL(dm_table_event);
1471
1472 inline sector_t dm_table_get_size(struct dm_table *t)
1473 {
1474         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1475 }
1476 EXPORT_SYMBOL(dm_table_get_size);
1477
1478 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1479 {
1480         if (index >= t->num_targets)
1481                 return NULL;
1482
1483         return t->targets + index;
1484 }
1485
1486 /*
1487  * Search the btree for the correct target.
1488  *
1489  * Caller should check returned pointer for NULL
1490  * to trap I/O beyond end of device.
1491  */
1492 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1493 {
1494         unsigned int l, n = 0, k = 0;
1495         sector_t *node;
1496
1497         if (unlikely(sector >= dm_table_get_size(t)))
1498                 return NULL;
1499
1500         for (l = 0; l < t->depth; l++) {
1501                 n = get_child(n, k);
1502                 node = get_node(t, l, n);
1503
1504                 for (k = 0; k < KEYS_PER_NODE; k++)
1505                         if (node[k] >= sector)
1506                                 break;
1507         }
1508
1509         return &t->targets[(KEYS_PER_NODE * n) + k];
1510 }
1511
1512 /*
1513  * type->iterate_devices() should be called when the sanity check needs to
1514  * iterate and check all underlying data devices. iterate_devices() will
1515  * iterate all underlying data devices until it encounters a non-zero return
1516  * code, returned by whether the input iterate_devices_callout_fn, or
1517  * iterate_devices() itself internally.
1518  *
1519  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1520  * iterate multiple underlying devices internally, in which case a non-zero
1521  * return code returned by iterate_devices_callout_fn will stop the iteration
1522  * in advance.
1523  *
1524  * Cases requiring _any_ underlying device supporting some kind of attribute,
1525  * should use the iteration structure like dm_table_any_dev_attr(), or call
1526  * it directly. @func should handle semantics of positive examples, e.g.
1527  * capable of something.
1528  *
1529  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1530  * should use the iteration structure like dm_table_supports_nowait() or
1531  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1532  * uses an @anti_func that handle semantics of counter examples, e.g. not
1533  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1534  */
1535 static bool dm_table_any_dev_attr(struct dm_table *t,
1536                                   iterate_devices_callout_fn func, void *data)
1537 {
1538         struct dm_target *ti;
1539         unsigned int i;
1540
1541         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1542                 ti = dm_table_get_target(t, i);
1543
1544                 if (ti->type->iterate_devices &&
1545                     ti->type->iterate_devices(ti, func, data))
1546                         return true;
1547         }
1548
1549         return false;
1550 }
1551
1552 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1553                         sector_t start, sector_t len, void *data)
1554 {
1555         unsigned *num_devices = data;
1556
1557         (*num_devices)++;
1558
1559         return 0;
1560 }
1561
1562 /*
1563  * Check whether a table has no data devices attached using each
1564  * target's iterate_devices method.
1565  * Returns false if the result is unknown because a target doesn't
1566  * support iterate_devices.
1567  */
1568 bool dm_table_has_no_data_devices(struct dm_table *table)
1569 {
1570         struct dm_target *ti;
1571         unsigned i, num_devices;
1572
1573         for (i = 0; i < dm_table_get_num_targets(table); i++) {
1574                 ti = dm_table_get_target(table, i);
1575
1576                 if (!ti->type->iterate_devices)
1577                         return false;
1578
1579                 num_devices = 0;
1580                 ti->type->iterate_devices(ti, count_device, &num_devices);
1581                 if (num_devices)
1582                         return false;
1583         }
1584
1585         return true;
1586 }
1587
1588 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1589                                   sector_t start, sector_t len, void *data)
1590 {
1591         struct request_queue *q = bdev_get_queue(dev->bdev);
1592         enum blk_zoned_model *zoned_model = data;
1593
1594         return blk_queue_zoned_model(q) != *zoned_model;
1595 }
1596
1597 /*
1598  * Check the device zoned model based on the target feature flag. If the target
1599  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1600  * also accepted but all devices must have the same zoned model. If the target
1601  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1602  * zoned model with all zoned devices having the same zone size.
1603  */
1604 static bool dm_table_supports_zoned_model(struct dm_table *t,
1605                                           enum blk_zoned_model zoned_model)
1606 {
1607         struct dm_target *ti;
1608         unsigned i;
1609
1610         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1611                 ti = dm_table_get_target(t, i);
1612
1613                 if (dm_target_supports_zoned_hm(ti->type)) {
1614                         if (!ti->type->iterate_devices ||
1615                             ti->type->iterate_devices(ti, device_not_zoned_model,
1616                                                       &zoned_model))
1617                                 return false;
1618                 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1619                         if (zoned_model == BLK_ZONED_HM)
1620                                 return false;
1621                 }
1622         }
1623
1624         return true;
1625 }
1626
1627 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1628                                            sector_t start, sector_t len, void *data)
1629 {
1630         struct request_queue *q = bdev_get_queue(dev->bdev);
1631         unsigned int *zone_sectors = data;
1632
1633         if (!blk_queue_is_zoned(q))
1634                 return 0;
1635
1636         return blk_queue_zone_sectors(q) != *zone_sectors;
1637 }
1638
1639 /*
1640  * Check consistency of zoned model and zone sectors across all targets. For
1641  * zone sectors, if the destination device is a zoned block device, it shall
1642  * have the specified zone_sectors.
1643  */
1644 static int validate_hardware_zoned_model(struct dm_table *table,
1645                                          enum blk_zoned_model zoned_model,
1646                                          unsigned int zone_sectors)
1647 {
1648         if (zoned_model == BLK_ZONED_NONE)
1649                 return 0;
1650
1651         if (!dm_table_supports_zoned_model(table, zoned_model)) {
1652                 DMERR("%s: zoned model is not consistent across all devices",
1653                       dm_device_name(table->md));
1654                 return -EINVAL;
1655         }
1656
1657         /* Check zone size validity and compatibility */
1658         if (!zone_sectors || !is_power_of_2(zone_sectors))
1659                 return -EINVAL;
1660
1661         if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1662                 DMERR("%s: zone sectors is not consistent across all zoned devices",
1663                       dm_device_name(table->md));
1664                 return -EINVAL;
1665         }
1666
1667         return 0;
1668 }
1669
1670 /*
1671  * Establish the new table's queue_limits and validate them.
1672  */
1673 int dm_calculate_queue_limits(struct dm_table *table,
1674                               struct queue_limits *limits)
1675 {
1676         struct dm_target *ti;
1677         struct queue_limits ti_limits;
1678         unsigned i;
1679         enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1680         unsigned int zone_sectors = 0;
1681
1682         blk_set_stacking_limits(limits);
1683
1684         for (i = 0; i < dm_table_get_num_targets(table); i++) {
1685                 blk_set_stacking_limits(&ti_limits);
1686
1687                 ti = dm_table_get_target(table, i);
1688
1689                 if (!ti->type->iterate_devices)
1690                         goto combine_limits;
1691
1692                 /*
1693                  * Combine queue limits of all the devices this target uses.
1694                  */
1695                 ti->type->iterate_devices(ti, dm_set_device_limits,
1696                                           &ti_limits);
1697
1698                 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1699                         /*
1700                          * After stacking all limits, validate all devices
1701                          * in table support this zoned model and zone sectors.
1702                          */
1703                         zoned_model = ti_limits.zoned;
1704                         zone_sectors = ti_limits.chunk_sectors;
1705                 }
1706
1707                 /* Set I/O hints portion of queue limits */
1708                 if (ti->type->io_hints)
1709                         ti->type->io_hints(ti, &ti_limits);
1710
1711                 /*
1712                  * Check each device area is consistent with the target's
1713                  * overall queue limits.
1714                  */
1715                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1716                                               &ti_limits))
1717                         return -EINVAL;
1718
1719 combine_limits:
1720                 /*
1721                  * Merge this target's queue limits into the overall limits
1722                  * for the table.
1723                  */
1724                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1725                         DMWARN("%s: adding target device "
1726                                "(start sect %llu len %llu) "
1727                                "caused an alignment inconsistency",
1728                                dm_device_name(table->md),
1729                                (unsigned long long) ti->begin,
1730                                (unsigned long long) ti->len);
1731         }
1732
1733         /*
1734          * Verify that the zoned model and zone sectors, as determined before
1735          * any .io_hints override, are the same across all devices in the table.
1736          * - this is especially relevant if .io_hints is emulating a disk-managed
1737          *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1738          * BUT...
1739          */
1740         if (limits->zoned != BLK_ZONED_NONE) {
1741                 /*
1742                  * ...IF the above limits stacking determined a zoned model
1743                  * validate that all of the table's devices conform to it.
1744                  */
1745                 zoned_model = limits->zoned;
1746                 zone_sectors = limits->chunk_sectors;
1747         }
1748         if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1749                 return -EINVAL;
1750
1751         return validate_hardware_logical_block_alignment(table, limits);
1752 }
1753
1754 /*
1755  * Verify that all devices have an integrity profile that matches the
1756  * DM device's registered integrity profile.  If the profiles don't
1757  * match then unregister the DM device's integrity profile.
1758  */
1759 static void dm_table_verify_integrity(struct dm_table *t)
1760 {
1761         struct gendisk *template_disk = NULL;
1762
1763         if (t->integrity_added)
1764                 return;
1765
1766         if (t->integrity_supported) {
1767                 /*
1768                  * Verify that the original integrity profile
1769                  * matches all the devices in this table.
1770                  */
1771                 template_disk = dm_table_get_integrity_disk(t);
1772                 if (template_disk &&
1773                     blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1774                         return;
1775         }
1776
1777         if (integrity_profile_exists(dm_disk(t->md))) {
1778                 DMWARN("%s: unable to establish an integrity profile",
1779                        dm_device_name(t->md));
1780                 blk_integrity_unregister(dm_disk(t->md));
1781         }
1782 }
1783
1784 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1785                                 sector_t start, sector_t len, void *data)
1786 {
1787         unsigned long flush = (unsigned long) data;
1788         struct request_queue *q = bdev_get_queue(dev->bdev);
1789
1790         return (q->queue_flags & flush);
1791 }
1792
1793 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1794 {
1795         struct dm_target *ti;
1796         unsigned i;
1797
1798         /*
1799          * Require at least one underlying device to support flushes.
1800          * t->devices includes internal dm devices such as mirror logs
1801          * so we need to use iterate_devices here, which targets
1802          * supporting flushes must provide.
1803          */
1804         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1805                 ti = dm_table_get_target(t, i);
1806
1807                 if (!ti->num_flush_bios)
1808                         continue;
1809
1810                 if (ti->flush_supported)
1811                         return true;
1812
1813                 if (ti->type->iterate_devices &&
1814                     ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1815                         return true;
1816         }
1817
1818         return false;
1819 }
1820
1821 static int device_dax_write_cache_enabled(struct dm_target *ti,
1822                                           struct dm_dev *dev, sector_t start,
1823                                           sector_t len, void *data)
1824 {
1825         struct dax_device *dax_dev = dev->dax_dev;
1826
1827         if (!dax_dev)
1828                 return false;
1829
1830         if (dax_write_cache_enabled(dax_dev))
1831                 return true;
1832         return false;
1833 }
1834
1835 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1836                                 sector_t start, sector_t len, void *data)
1837 {
1838         struct request_queue *q = bdev_get_queue(dev->bdev);
1839
1840         return !blk_queue_nonrot(q);
1841 }
1842
1843 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1844                              sector_t start, sector_t len, void *data)
1845 {
1846         struct request_queue *q = bdev_get_queue(dev->bdev);
1847
1848         return !blk_queue_add_random(q);
1849 }
1850
1851 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1852                                          sector_t start, sector_t len, void *data)
1853 {
1854         struct request_queue *q = bdev_get_queue(dev->bdev);
1855
1856         return !q->limits.max_write_same_sectors;
1857 }
1858
1859 static bool dm_table_supports_write_same(struct dm_table *t)
1860 {
1861         struct dm_target *ti;
1862         unsigned i;
1863
1864         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1865                 ti = dm_table_get_target(t, i);
1866
1867                 if (!ti->num_write_same_bios)
1868                         return false;
1869
1870                 if (!ti->type->iterate_devices ||
1871                     ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1872                         return false;
1873         }
1874
1875         return true;
1876 }
1877
1878 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1879                                            sector_t start, sector_t len, void *data)
1880 {
1881         struct request_queue *q = bdev_get_queue(dev->bdev);
1882
1883         return !q->limits.max_write_zeroes_sectors;
1884 }
1885
1886 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1887 {
1888         struct dm_target *ti;
1889         unsigned i = 0;
1890
1891         while (i < dm_table_get_num_targets(t)) {
1892                 ti = dm_table_get_target(t, i++);
1893
1894                 if (!ti->num_write_zeroes_bios)
1895                         return false;
1896
1897                 if (!ti->type->iterate_devices ||
1898                     ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1899                         return false;
1900         }
1901
1902         return true;
1903 }
1904
1905 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1906                                      sector_t start, sector_t len, void *data)
1907 {
1908         struct request_queue *q = bdev_get_queue(dev->bdev);
1909
1910         return !blk_queue_nowait(q);
1911 }
1912
1913 static bool dm_table_supports_nowait(struct dm_table *t)
1914 {
1915         struct dm_target *ti;
1916         unsigned i = 0;
1917
1918         while (i < dm_table_get_num_targets(t)) {
1919                 ti = dm_table_get_target(t, i++);
1920
1921                 if (!dm_target_supports_nowait(ti->type))
1922                         return false;
1923
1924                 if (!ti->type->iterate_devices ||
1925                     ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1926                         return false;
1927         }
1928
1929         return true;
1930 }
1931
1932 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1933                                       sector_t start, sector_t len, void *data)
1934 {
1935         struct request_queue *q = bdev_get_queue(dev->bdev);
1936
1937         return !blk_queue_discard(q);
1938 }
1939
1940 static bool dm_table_supports_discards(struct dm_table *t)
1941 {
1942         struct dm_target *ti;
1943         unsigned i;
1944
1945         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1946                 ti = dm_table_get_target(t, i);
1947
1948                 if (!ti->num_discard_bios)
1949                         return false;
1950
1951                 /*
1952                  * Either the target provides discard support (as implied by setting
1953                  * 'discards_supported') or it relies on _all_ data devices having
1954                  * discard support.
1955                  */
1956                 if (!ti->discards_supported &&
1957                     (!ti->type->iterate_devices ||
1958                      ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1959                         return false;
1960         }
1961
1962         return true;
1963 }
1964
1965 static int device_not_secure_erase_capable(struct dm_target *ti,
1966                                            struct dm_dev *dev, sector_t start,
1967                                            sector_t len, void *data)
1968 {
1969         struct request_queue *q = bdev_get_queue(dev->bdev);
1970
1971         return !blk_queue_secure_erase(q);
1972 }
1973
1974 static bool dm_table_supports_secure_erase(struct dm_table *t)
1975 {
1976         struct dm_target *ti;
1977         unsigned int i;
1978
1979         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1980                 ti = dm_table_get_target(t, i);
1981
1982                 if (!ti->num_secure_erase_bios)
1983                         return false;
1984
1985                 if (!ti->type->iterate_devices ||
1986                     ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1987                         return false;
1988         }
1989
1990         return true;
1991 }
1992
1993 static int device_requires_stable_pages(struct dm_target *ti,
1994                                         struct dm_dev *dev, sector_t start,
1995                                         sector_t len, void *data)
1996 {
1997         struct request_queue *q = bdev_get_queue(dev->bdev);
1998
1999         return blk_queue_stable_writes(q);
2000 }
2001
2002 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
2003                                struct queue_limits *limits)
2004 {
2005         bool wc = false, fua = false;
2006         int page_size = PAGE_SIZE;
2007
2008         /*
2009          * Copy table's limits to the DM device's request_queue
2010          */
2011         q->limits = *limits;
2012
2013         if (dm_table_supports_nowait(t))
2014                 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
2015         else
2016                 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
2017
2018         if (!dm_table_supports_discards(t)) {
2019                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
2020                 /* Must also clear discard limits... */
2021                 q->limits.max_discard_sectors = 0;
2022                 q->limits.max_hw_discard_sectors = 0;
2023                 q->limits.discard_granularity = 0;
2024                 q->limits.discard_alignment = 0;
2025                 q->limits.discard_misaligned = 0;
2026         } else
2027                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
2028
2029         if (dm_table_supports_secure_erase(t))
2030                 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
2031
2032         if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
2033                 wc = true;
2034                 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2035                         fua = true;
2036         }
2037         blk_queue_write_cache(q, wc, fua);
2038
2039         if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
2040                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2041                 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
2042                         set_dax_synchronous(t->md->dax_dev);
2043         }
2044         else
2045                 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2046
2047         if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2048                 dax_write_cache(t->md->dax_dev, true);
2049
2050         /* Ensure that all underlying devices are non-rotational. */
2051         if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2052                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2053         else
2054                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2055
2056         if (!dm_table_supports_write_same(t))
2057                 q->limits.max_write_same_sectors = 0;
2058         if (!dm_table_supports_write_zeroes(t))
2059                 q->limits.max_write_zeroes_sectors = 0;
2060
2061         dm_table_verify_integrity(t);
2062
2063         /*
2064          * Some devices don't use blk_integrity but still want stable pages
2065          * because they do their own checksumming.
2066          * If any underlying device requires stable pages, a table must require
2067          * them as well.  Only targets that support iterate_devices are considered:
2068          * don't want error, zero, etc to require stable pages.
2069          */
2070         if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2071                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2072         else
2073                 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2074
2075         /*
2076          * Determine whether or not this queue's I/O timings contribute
2077          * to the entropy pool, Only request-based targets use this.
2078          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2079          * have it set.
2080          */
2081         if (blk_queue_add_random(q) &&
2082             dm_table_any_dev_attr(t, device_is_not_random, NULL))
2083                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2084
2085         /*
2086          * For a zoned target, the number of zones should be updated for the
2087          * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
2088          * target, this is all that is needed.
2089          */
2090 #ifdef CONFIG_BLK_DEV_ZONED
2091         if (blk_queue_is_zoned(q)) {
2092                 WARN_ON_ONCE(queue_is_mq(q));
2093                 q->nr_zones = blkdev_nr_zones(t->md->disk);
2094         }
2095 #endif
2096
2097         dm_update_keyslot_manager(q, t);
2098         blk_queue_update_readahead(q);
2099 }
2100
2101 unsigned int dm_table_get_num_targets(struct dm_table *t)
2102 {
2103         return t->num_targets;
2104 }
2105
2106 struct list_head *dm_table_get_devices(struct dm_table *t)
2107 {
2108         return &t->devices;
2109 }
2110
2111 fmode_t dm_table_get_mode(struct dm_table *t)
2112 {
2113         return t->mode;
2114 }
2115 EXPORT_SYMBOL(dm_table_get_mode);
2116
2117 enum suspend_mode {
2118         PRESUSPEND,
2119         PRESUSPEND_UNDO,
2120         POSTSUSPEND,
2121 };
2122
2123 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2124 {
2125         int i = t->num_targets;
2126         struct dm_target *ti = t->targets;
2127
2128         lockdep_assert_held(&t->md->suspend_lock);
2129
2130         while (i--) {
2131                 switch (mode) {
2132                 case PRESUSPEND:
2133                         if (ti->type->presuspend)
2134                                 ti->type->presuspend(ti);
2135                         break;
2136                 case PRESUSPEND_UNDO:
2137                         if (ti->type->presuspend_undo)
2138                                 ti->type->presuspend_undo(ti);
2139                         break;
2140                 case POSTSUSPEND:
2141                         if (ti->type->postsuspend)
2142                                 ti->type->postsuspend(ti);
2143                         break;
2144                 }
2145                 ti++;
2146         }
2147 }
2148
2149 void dm_table_presuspend_targets(struct dm_table *t)
2150 {
2151         if (!t)
2152                 return;
2153
2154         suspend_targets(t, PRESUSPEND);
2155 }
2156
2157 void dm_table_presuspend_undo_targets(struct dm_table *t)
2158 {
2159         if (!t)
2160                 return;
2161
2162         suspend_targets(t, PRESUSPEND_UNDO);
2163 }
2164
2165 void dm_table_postsuspend_targets(struct dm_table *t)
2166 {
2167         if (!t)
2168                 return;
2169
2170         suspend_targets(t, POSTSUSPEND);
2171 }
2172
2173 int dm_table_resume_targets(struct dm_table *t)
2174 {
2175         int i, r = 0;
2176
2177         lockdep_assert_held(&t->md->suspend_lock);
2178
2179         for (i = 0; i < t->num_targets; i++) {
2180                 struct dm_target *ti = t->targets + i;
2181
2182                 if (!ti->type->preresume)
2183                         continue;
2184
2185                 r = ti->type->preresume(ti);
2186                 if (r) {
2187                         DMERR("%s: %s: preresume failed, error = %d",
2188                               dm_device_name(t->md), ti->type->name, r);
2189                         return r;
2190                 }
2191         }
2192
2193         for (i = 0; i < t->num_targets; i++) {
2194                 struct dm_target *ti = t->targets + i;
2195
2196                 if (ti->type->resume)
2197                         ti->type->resume(ti);
2198         }
2199
2200         return 0;
2201 }
2202
2203 struct mapped_device *dm_table_get_md(struct dm_table *t)
2204 {
2205         return t->md;
2206 }
2207 EXPORT_SYMBOL(dm_table_get_md);
2208
2209 const char *dm_table_device_name(struct dm_table *t)
2210 {
2211         return dm_device_name(t->md);
2212 }
2213 EXPORT_SYMBOL_GPL(dm_table_device_name);
2214
2215 void dm_table_run_md_queue_async(struct dm_table *t)
2216 {
2217         if (!dm_table_request_based(t))
2218                 return;
2219
2220         if (t->md->queue)
2221                 blk_mq_run_hw_queues(t->md->queue, true);
2222 }
2223 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2224