Merge tag 'thermal-v5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/therma...
[linux-2.6-microblaze.git] / drivers / md / dm-table.c
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 /*
32  * Similar to ceiling(log_size(n))
33  */
34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36         int result = 0;
37
38         while (n > 1) {
39                 n = dm_div_up(n, base);
40                 result++;
41         }
42
43         return result;
44 }
45
46 /*
47  * Calculate the index of the child node of the n'th node k'th key.
48  */
49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51         return (n * CHILDREN_PER_NODE) + k;
52 }
53
54 /*
55  * Return the n'th node of level l from table t.
56  */
57 static inline sector_t *get_node(struct dm_table *t,
58                                  unsigned int l, unsigned int n)
59 {
60         return t->index[l] + (n * KEYS_PER_NODE);
61 }
62
63 /*
64  * Return the highest key that you could lookup from the n'th
65  * node on level l of the btree.
66  */
67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69         for (; l < t->depth - 1; l++)
70                 n = get_child(n, CHILDREN_PER_NODE - 1);
71
72         if (n >= t->counts[l])
73                 return (sector_t) - 1;
74
75         return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77
78 /*
79  * Fills in a level of the btree based on the highs of the level
80  * below it.
81  */
82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84         unsigned int n, k;
85         sector_t *node;
86
87         for (n = 0U; n < t->counts[l]; n++) {
88                 node = get_node(t, l, n);
89
90                 for (k = 0U; k < KEYS_PER_NODE; k++)
91                         node[k] = high(t, l + 1, get_child(n, k));
92         }
93
94         return 0;
95 }
96
97 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
98 {
99         unsigned long size;
100         void *addr;
101
102         /*
103          * Check that we're not going to overflow.
104          */
105         if (nmemb > (ULONG_MAX / elem_size))
106                 return NULL;
107
108         size = nmemb * elem_size;
109         addr = vzalloc(size);
110
111         return addr;
112 }
113 EXPORT_SYMBOL(dm_vcalloc);
114
115 /*
116  * highs, and targets are managed as dynamic arrays during a
117  * table load.
118  */
119 static int alloc_targets(struct dm_table *t, unsigned int num)
120 {
121         sector_t *n_highs;
122         struct dm_target *n_targets;
123
124         /*
125          * Allocate both the target array and offset array at once.
126          */
127         n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
128                                           sizeof(sector_t));
129         if (!n_highs)
130                 return -ENOMEM;
131
132         n_targets = (struct dm_target *) (n_highs + num);
133
134         memset(n_highs, -1, sizeof(*n_highs) * num);
135         vfree(t->highs);
136
137         t->num_allocated = num;
138         t->highs = n_highs;
139         t->targets = n_targets;
140
141         return 0;
142 }
143
144 int dm_table_create(struct dm_table **result, fmode_t mode,
145                     unsigned num_targets, struct mapped_device *md)
146 {
147         struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
148
149         if (!t)
150                 return -ENOMEM;
151
152         INIT_LIST_HEAD(&t->devices);
153
154         if (!num_targets)
155                 num_targets = KEYS_PER_NODE;
156
157         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
158
159         if (!num_targets) {
160                 kfree(t);
161                 return -ENOMEM;
162         }
163
164         if (alloc_targets(t, num_targets)) {
165                 kfree(t);
166                 return -ENOMEM;
167         }
168
169         t->type = DM_TYPE_NONE;
170         t->mode = mode;
171         t->md = md;
172         *result = t;
173         return 0;
174 }
175
176 static void free_devices(struct list_head *devices, struct mapped_device *md)
177 {
178         struct list_head *tmp, *next;
179
180         list_for_each_safe(tmp, next, devices) {
181                 struct dm_dev_internal *dd =
182                     list_entry(tmp, struct dm_dev_internal, list);
183                 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
184                        dm_device_name(md), dd->dm_dev->name);
185                 dm_put_table_device(md, dd->dm_dev);
186                 kfree(dd);
187         }
188 }
189
190 void dm_table_destroy(struct dm_table *t)
191 {
192         unsigned int i;
193
194         if (!t)
195                 return;
196
197         /* free the indexes */
198         if (t->depth >= 2)
199                 vfree(t->index[t->depth - 2]);
200
201         /* free the targets */
202         for (i = 0; i < t->num_targets; i++) {
203                 struct dm_target *tgt = t->targets + i;
204
205                 if (tgt->type->dtr)
206                         tgt->type->dtr(tgt);
207
208                 dm_put_target_type(tgt->type);
209         }
210
211         vfree(t->highs);
212
213         /* free the device list */
214         free_devices(&t->devices, t->md);
215
216         dm_free_md_mempools(t->mempools);
217
218         kfree(t);
219 }
220
221 /*
222  * See if we've already got a device in the list.
223  */
224 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
225 {
226         struct dm_dev_internal *dd;
227
228         list_for_each_entry (dd, l, list)
229                 if (dd->dm_dev->bdev->bd_dev == dev)
230                         return dd;
231
232         return NULL;
233 }
234
235 /*
236  * If possible, this checks an area of a destination device is invalid.
237  */
238 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
239                                   sector_t start, sector_t len, void *data)
240 {
241         struct queue_limits *limits = data;
242         struct block_device *bdev = dev->bdev;
243         sector_t dev_size =
244                 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
245         unsigned short logical_block_size_sectors =
246                 limits->logical_block_size >> SECTOR_SHIFT;
247         char b[BDEVNAME_SIZE];
248
249         if (!dev_size)
250                 return 0;
251
252         if ((start >= dev_size) || (start + len > dev_size)) {
253                 DMWARN("%s: %s too small for target: "
254                        "start=%llu, len=%llu, dev_size=%llu",
255                        dm_device_name(ti->table->md), bdevname(bdev, b),
256                        (unsigned long long)start,
257                        (unsigned long long)len,
258                        (unsigned long long)dev_size);
259                 return 1;
260         }
261
262         /*
263          * If the target is mapped to zoned block device(s), check
264          * that the zones are not partially mapped.
265          */
266         if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
267                 unsigned int zone_sectors = bdev_zone_sectors(bdev);
268
269                 if (start & (zone_sectors - 1)) {
270                         DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
271                                dm_device_name(ti->table->md),
272                                (unsigned long long)start,
273                                zone_sectors, bdevname(bdev, b));
274                         return 1;
275                 }
276
277                 /*
278                  * Note: The last zone of a zoned block device may be smaller
279                  * than other zones. So for a target mapping the end of a
280                  * zoned block device with such a zone, len would not be zone
281                  * aligned. We do not allow such last smaller zone to be part
282                  * of the mapping here to ensure that mappings with multiple
283                  * devices do not end up with a smaller zone in the middle of
284                  * the sector range.
285                  */
286                 if (len & (zone_sectors - 1)) {
287                         DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
288                                dm_device_name(ti->table->md),
289                                (unsigned long long)len,
290                                zone_sectors, bdevname(bdev, b));
291                         return 1;
292                 }
293         }
294
295         if (logical_block_size_sectors <= 1)
296                 return 0;
297
298         if (start & (logical_block_size_sectors - 1)) {
299                 DMWARN("%s: start=%llu not aligned to h/w "
300                        "logical block size %u of %s",
301                        dm_device_name(ti->table->md),
302                        (unsigned long long)start,
303                        limits->logical_block_size, bdevname(bdev, b));
304                 return 1;
305         }
306
307         if (len & (logical_block_size_sectors - 1)) {
308                 DMWARN("%s: len=%llu not aligned to h/w "
309                        "logical block size %u of %s",
310                        dm_device_name(ti->table->md),
311                        (unsigned long long)len,
312                        limits->logical_block_size, bdevname(bdev, b));
313                 return 1;
314         }
315
316         return 0;
317 }
318
319 /*
320  * This upgrades the mode on an already open dm_dev, being
321  * careful to leave things as they were if we fail to reopen the
322  * device and not to touch the existing bdev field in case
323  * it is accessed concurrently.
324  */
325 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
326                         struct mapped_device *md)
327 {
328         int r;
329         struct dm_dev *old_dev, *new_dev;
330
331         old_dev = dd->dm_dev;
332
333         r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
334                                 dd->dm_dev->mode | new_mode, &new_dev);
335         if (r)
336                 return r;
337
338         dd->dm_dev = new_dev;
339         dm_put_table_device(md, old_dev);
340
341         return 0;
342 }
343
344 /*
345  * Convert the path to a device
346  */
347 dev_t dm_get_dev_t(const char *path)
348 {
349         dev_t dev;
350         struct block_device *bdev;
351
352         bdev = lookup_bdev(path);
353         if (IS_ERR(bdev))
354                 dev = name_to_dev_t(path);
355         else {
356                 dev = bdev->bd_dev;
357                 bdput(bdev);
358         }
359
360         return dev;
361 }
362 EXPORT_SYMBOL_GPL(dm_get_dev_t);
363
364 /*
365  * Add a device to the list, or just increment the usage count if
366  * it's already present.
367  */
368 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
369                   struct dm_dev **result)
370 {
371         int r;
372         dev_t dev;
373         struct dm_dev_internal *dd;
374         struct dm_table *t = ti->table;
375
376         BUG_ON(!t);
377
378         dev = dm_get_dev_t(path);
379         if (!dev)
380                 return -ENODEV;
381
382         dd = find_device(&t->devices, dev);
383         if (!dd) {
384                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
385                 if (!dd)
386                         return -ENOMEM;
387
388                 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
389                         kfree(dd);
390                         return r;
391                 }
392
393                 refcount_set(&dd->count, 1);
394                 list_add(&dd->list, &t->devices);
395                 goto out;
396
397         } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
398                 r = upgrade_mode(dd, mode, t->md);
399                 if (r)
400                         return r;
401         }
402         refcount_inc(&dd->count);
403 out:
404         *result = dd->dm_dev;
405         return 0;
406 }
407 EXPORT_SYMBOL(dm_get_device);
408
409 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
410                                 sector_t start, sector_t len, void *data)
411 {
412         struct queue_limits *limits = data;
413         struct block_device *bdev = dev->bdev;
414         struct request_queue *q = bdev_get_queue(bdev);
415         char b[BDEVNAME_SIZE];
416
417         if (unlikely(!q)) {
418                 DMWARN("%s: Cannot set limits for nonexistent device %s",
419                        dm_device_name(ti->table->md), bdevname(bdev, b));
420                 return 0;
421         }
422
423         if (blk_stack_limits(limits, &q->limits,
424                         get_start_sect(bdev) + start) < 0)
425                 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
426                        "physical_block_size=%u, logical_block_size=%u, "
427                        "alignment_offset=%u, start=%llu",
428                        dm_device_name(ti->table->md), bdevname(bdev, b),
429                        q->limits.physical_block_size,
430                        q->limits.logical_block_size,
431                        q->limits.alignment_offset,
432                        (unsigned long long) start << SECTOR_SHIFT);
433         return 0;
434 }
435
436 /*
437  * Decrement a device's use count and remove it if necessary.
438  */
439 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
440 {
441         int found = 0;
442         struct list_head *devices = &ti->table->devices;
443         struct dm_dev_internal *dd;
444
445         list_for_each_entry(dd, devices, list) {
446                 if (dd->dm_dev == d) {
447                         found = 1;
448                         break;
449                 }
450         }
451         if (!found) {
452                 DMWARN("%s: device %s not in table devices list",
453                        dm_device_name(ti->table->md), d->name);
454                 return;
455         }
456         if (refcount_dec_and_test(&dd->count)) {
457                 dm_put_table_device(ti->table->md, d);
458                 list_del(&dd->list);
459                 kfree(dd);
460         }
461 }
462 EXPORT_SYMBOL(dm_put_device);
463
464 /*
465  * Checks to see if the target joins onto the end of the table.
466  */
467 static int adjoin(struct dm_table *table, struct dm_target *ti)
468 {
469         struct dm_target *prev;
470
471         if (!table->num_targets)
472                 return !ti->begin;
473
474         prev = &table->targets[table->num_targets - 1];
475         return (ti->begin == (prev->begin + prev->len));
476 }
477
478 /*
479  * Used to dynamically allocate the arg array.
480  *
481  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
482  * process messages even if some device is suspended. These messages have a
483  * small fixed number of arguments.
484  *
485  * On the other hand, dm-switch needs to process bulk data using messages and
486  * excessive use of GFP_NOIO could cause trouble.
487  */
488 static char **realloc_argv(unsigned *size, char **old_argv)
489 {
490         char **argv;
491         unsigned new_size;
492         gfp_t gfp;
493
494         if (*size) {
495                 new_size = *size * 2;
496                 gfp = GFP_KERNEL;
497         } else {
498                 new_size = 8;
499                 gfp = GFP_NOIO;
500         }
501         argv = kmalloc_array(new_size, sizeof(*argv), gfp);
502         if (argv && old_argv) {
503                 memcpy(argv, old_argv, *size * sizeof(*argv));
504                 *size = new_size;
505         }
506
507         kfree(old_argv);
508         return argv;
509 }
510
511 /*
512  * Destructively splits up the argument list to pass to ctr.
513  */
514 int dm_split_args(int *argc, char ***argvp, char *input)
515 {
516         char *start, *end = input, *out, **argv = NULL;
517         unsigned array_size = 0;
518
519         *argc = 0;
520
521         if (!input) {
522                 *argvp = NULL;
523                 return 0;
524         }
525
526         argv = realloc_argv(&array_size, argv);
527         if (!argv)
528                 return -ENOMEM;
529
530         while (1) {
531                 /* Skip whitespace */
532                 start = skip_spaces(end);
533
534                 if (!*start)
535                         break;  /* success, we hit the end */
536
537                 /* 'out' is used to remove any back-quotes */
538                 end = out = start;
539                 while (*end) {
540                         /* Everything apart from '\0' can be quoted */
541                         if (*end == '\\' && *(end + 1)) {
542                                 *out++ = *(end + 1);
543                                 end += 2;
544                                 continue;
545                         }
546
547                         if (isspace(*end))
548                                 break;  /* end of token */
549
550                         *out++ = *end++;
551                 }
552
553                 /* have we already filled the array ? */
554                 if ((*argc + 1) > array_size) {
555                         argv = realloc_argv(&array_size, argv);
556                         if (!argv)
557                                 return -ENOMEM;
558                 }
559
560                 /* we know this is whitespace */
561                 if (*end)
562                         end++;
563
564                 /* terminate the string and put it in the array */
565                 *out = '\0';
566                 argv[*argc] = start;
567                 (*argc)++;
568         }
569
570         *argvp = argv;
571         return 0;
572 }
573
574 /*
575  * Impose necessary and sufficient conditions on a devices's table such
576  * that any incoming bio which respects its logical_block_size can be
577  * processed successfully.  If it falls across the boundary between
578  * two or more targets, the size of each piece it gets split into must
579  * be compatible with the logical_block_size of the target processing it.
580  */
581 static int validate_hardware_logical_block_alignment(struct dm_table *table,
582                                                  struct queue_limits *limits)
583 {
584         /*
585          * This function uses arithmetic modulo the logical_block_size
586          * (in units of 512-byte sectors).
587          */
588         unsigned short device_logical_block_size_sects =
589                 limits->logical_block_size >> SECTOR_SHIFT;
590
591         /*
592          * Offset of the start of the next table entry, mod logical_block_size.
593          */
594         unsigned short next_target_start = 0;
595
596         /*
597          * Given an aligned bio that extends beyond the end of a
598          * target, how many sectors must the next target handle?
599          */
600         unsigned short remaining = 0;
601
602         struct dm_target *ti;
603         struct queue_limits ti_limits;
604         unsigned i;
605
606         /*
607          * Check each entry in the table in turn.
608          */
609         for (i = 0; i < dm_table_get_num_targets(table); i++) {
610                 ti = dm_table_get_target(table, i);
611
612                 blk_set_stacking_limits(&ti_limits);
613
614                 /* combine all target devices' limits */
615                 if (ti->type->iterate_devices)
616                         ti->type->iterate_devices(ti, dm_set_device_limits,
617                                                   &ti_limits);
618
619                 /*
620                  * If the remaining sectors fall entirely within this
621                  * table entry are they compatible with its logical_block_size?
622                  */
623                 if (remaining < ti->len &&
624                     remaining & ((ti_limits.logical_block_size >>
625                                   SECTOR_SHIFT) - 1))
626                         break;  /* Error */
627
628                 next_target_start =
629                     (unsigned short) ((next_target_start + ti->len) &
630                                       (device_logical_block_size_sects - 1));
631                 remaining = next_target_start ?
632                     device_logical_block_size_sects - next_target_start : 0;
633         }
634
635         if (remaining) {
636                 DMWARN("%s: table line %u (start sect %llu len %llu) "
637                        "not aligned to h/w logical block size %u",
638                        dm_device_name(table->md), i,
639                        (unsigned long long) ti->begin,
640                        (unsigned long long) ti->len,
641                        limits->logical_block_size);
642                 return -EINVAL;
643         }
644
645         return 0;
646 }
647
648 int dm_table_add_target(struct dm_table *t, const char *type,
649                         sector_t start, sector_t len, char *params)
650 {
651         int r = -EINVAL, argc;
652         char **argv;
653         struct dm_target *tgt;
654
655         if (t->singleton) {
656                 DMERR("%s: target type %s must appear alone in table",
657                       dm_device_name(t->md), t->targets->type->name);
658                 return -EINVAL;
659         }
660
661         BUG_ON(t->num_targets >= t->num_allocated);
662
663         tgt = t->targets + t->num_targets;
664         memset(tgt, 0, sizeof(*tgt));
665
666         if (!len) {
667                 DMERR("%s: zero-length target", dm_device_name(t->md));
668                 return -EINVAL;
669         }
670
671         tgt->type = dm_get_target_type(type);
672         if (!tgt->type) {
673                 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
674                 return -EINVAL;
675         }
676
677         if (dm_target_needs_singleton(tgt->type)) {
678                 if (t->num_targets) {
679                         tgt->error = "singleton target type must appear alone in table";
680                         goto bad;
681                 }
682                 t->singleton = true;
683         }
684
685         if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
686                 tgt->error = "target type may not be included in a read-only table";
687                 goto bad;
688         }
689
690         if (t->immutable_target_type) {
691                 if (t->immutable_target_type != tgt->type) {
692                         tgt->error = "immutable target type cannot be mixed with other target types";
693                         goto bad;
694                 }
695         } else if (dm_target_is_immutable(tgt->type)) {
696                 if (t->num_targets) {
697                         tgt->error = "immutable target type cannot be mixed with other target types";
698                         goto bad;
699                 }
700                 t->immutable_target_type = tgt->type;
701         }
702
703         if (dm_target_has_integrity(tgt->type))
704                 t->integrity_added = 1;
705
706         tgt->table = t;
707         tgt->begin = start;
708         tgt->len = len;
709         tgt->error = "Unknown error";
710
711         /*
712          * Does this target adjoin the previous one ?
713          */
714         if (!adjoin(t, tgt)) {
715                 tgt->error = "Gap in table";
716                 goto bad;
717         }
718
719         r = dm_split_args(&argc, &argv, params);
720         if (r) {
721                 tgt->error = "couldn't split parameters (insufficient memory)";
722                 goto bad;
723         }
724
725         r = tgt->type->ctr(tgt, argc, argv);
726         kfree(argv);
727         if (r)
728                 goto bad;
729
730         t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
731
732         if (!tgt->num_discard_bios && tgt->discards_supported)
733                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
734                        dm_device_name(t->md), type);
735
736         return 0;
737
738  bad:
739         DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
740         dm_put_target_type(tgt->type);
741         return r;
742 }
743
744 /*
745  * Target argument parsing helpers.
746  */
747 static int validate_next_arg(const struct dm_arg *arg,
748                              struct dm_arg_set *arg_set,
749                              unsigned *value, char **error, unsigned grouped)
750 {
751         const char *arg_str = dm_shift_arg(arg_set);
752         char dummy;
753
754         if (!arg_str ||
755             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
756             (*value < arg->min) ||
757             (*value > arg->max) ||
758             (grouped && arg_set->argc < *value)) {
759                 *error = arg->error;
760                 return -EINVAL;
761         }
762
763         return 0;
764 }
765
766 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
767                 unsigned *value, char **error)
768 {
769         return validate_next_arg(arg, arg_set, value, error, 0);
770 }
771 EXPORT_SYMBOL(dm_read_arg);
772
773 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
774                       unsigned *value, char **error)
775 {
776         return validate_next_arg(arg, arg_set, value, error, 1);
777 }
778 EXPORT_SYMBOL(dm_read_arg_group);
779
780 const char *dm_shift_arg(struct dm_arg_set *as)
781 {
782         char *r;
783
784         if (as->argc) {
785                 as->argc--;
786                 r = *as->argv;
787                 as->argv++;
788                 return r;
789         }
790
791         return NULL;
792 }
793 EXPORT_SYMBOL(dm_shift_arg);
794
795 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
796 {
797         BUG_ON(as->argc < num_args);
798         as->argc -= num_args;
799         as->argv += num_args;
800 }
801 EXPORT_SYMBOL(dm_consume_args);
802
803 static bool __table_type_bio_based(enum dm_queue_mode table_type)
804 {
805         return (table_type == DM_TYPE_BIO_BASED ||
806                 table_type == DM_TYPE_DAX_BIO_BASED);
807 }
808
809 static bool __table_type_request_based(enum dm_queue_mode table_type)
810 {
811         return table_type == DM_TYPE_REQUEST_BASED;
812 }
813
814 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
815 {
816         t->type = type;
817 }
818 EXPORT_SYMBOL_GPL(dm_table_set_type);
819
820 /* validate the dax capability of the target device span */
821 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
822                         sector_t start, sector_t len, void *data)
823 {
824         int blocksize = *(int *) data, id;
825         bool rc;
826
827         id = dax_read_lock();
828         rc = dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
829         dax_read_unlock(id);
830
831         return rc;
832 }
833
834 /* Check devices support synchronous DAX */
835 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
836                                   sector_t start, sector_t len, void *data)
837 {
838         return dev->dax_dev && dax_synchronous(dev->dax_dev);
839 }
840
841 bool dm_table_supports_dax(struct dm_table *t,
842                            iterate_devices_callout_fn iterate_fn, int *blocksize)
843 {
844         struct dm_target *ti;
845         unsigned i;
846
847         /* Ensure that all targets support DAX. */
848         for (i = 0; i < dm_table_get_num_targets(t); i++) {
849                 ti = dm_table_get_target(t, i);
850
851                 if (!ti->type->direct_access)
852                         return false;
853
854                 if (!ti->type->iterate_devices ||
855                     !ti->type->iterate_devices(ti, iterate_fn, blocksize))
856                         return false;
857         }
858
859         return true;
860 }
861
862 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
863                                   sector_t start, sector_t len, void *data)
864 {
865         struct block_device *bdev = dev->bdev;
866         struct request_queue *q = bdev_get_queue(bdev);
867
868         /* request-based cannot stack on partitions! */
869         if (bdev_is_partition(bdev))
870                 return false;
871
872         return queue_is_mq(q);
873 }
874
875 static int dm_table_determine_type(struct dm_table *t)
876 {
877         unsigned i;
878         unsigned bio_based = 0, request_based = 0, hybrid = 0;
879         struct dm_target *tgt;
880         struct list_head *devices = dm_table_get_devices(t);
881         enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
882         int page_size = PAGE_SIZE;
883
884         if (t->type != DM_TYPE_NONE) {
885                 /* target already set the table's type */
886                 if (t->type == DM_TYPE_BIO_BASED) {
887                         /* possibly upgrade to a variant of bio-based */
888                         goto verify_bio_based;
889                 }
890                 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
891                 goto verify_rq_based;
892         }
893
894         for (i = 0; i < t->num_targets; i++) {
895                 tgt = t->targets + i;
896                 if (dm_target_hybrid(tgt))
897                         hybrid = 1;
898                 else if (dm_target_request_based(tgt))
899                         request_based = 1;
900                 else
901                         bio_based = 1;
902
903                 if (bio_based && request_based) {
904                         DMERR("Inconsistent table: different target types"
905                               " can't be mixed up");
906                         return -EINVAL;
907                 }
908         }
909
910         if (hybrid && !bio_based && !request_based) {
911                 /*
912                  * The targets can work either way.
913                  * Determine the type from the live device.
914                  * Default to bio-based if device is new.
915                  */
916                 if (__table_type_request_based(live_md_type))
917                         request_based = 1;
918                 else
919                         bio_based = 1;
920         }
921
922         if (bio_based) {
923 verify_bio_based:
924                 /* We must use this table as bio-based */
925                 t->type = DM_TYPE_BIO_BASED;
926                 if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
927                     (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
928                         t->type = DM_TYPE_DAX_BIO_BASED;
929                 }
930                 return 0;
931         }
932
933         BUG_ON(!request_based); /* No targets in this table */
934
935         t->type = DM_TYPE_REQUEST_BASED;
936
937 verify_rq_based:
938         /*
939          * Request-based dm supports only tables that have a single target now.
940          * To support multiple targets, request splitting support is needed,
941          * and that needs lots of changes in the block-layer.
942          * (e.g. request completion process for partial completion.)
943          */
944         if (t->num_targets > 1) {
945                 DMERR("request-based DM doesn't support multiple targets");
946                 return -EINVAL;
947         }
948
949         if (list_empty(devices)) {
950                 int srcu_idx;
951                 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
952
953                 /* inherit live table's type */
954                 if (live_table)
955                         t->type = live_table->type;
956                 dm_put_live_table(t->md, srcu_idx);
957                 return 0;
958         }
959
960         tgt = dm_table_get_immutable_target(t);
961         if (!tgt) {
962                 DMERR("table load rejected: immutable target is required");
963                 return -EINVAL;
964         } else if (tgt->max_io_len) {
965                 DMERR("table load rejected: immutable target that splits IO is not supported");
966                 return -EINVAL;
967         }
968
969         /* Non-request-stackable devices can't be used for request-based dm */
970         if (!tgt->type->iterate_devices ||
971             !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
972                 DMERR("table load rejected: including non-request-stackable devices");
973                 return -EINVAL;
974         }
975
976         return 0;
977 }
978
979 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
980 {
981         return t->type;
982 }
983
984 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
985 {
986         return t->immutable_target_type;
987 }
988
989 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
990 {
991         /* Immutable target is implicitly a singleton */
992         if (t->num_targets > 1 ||
993             !dm_target_is_immutable(t->targets[0].type))
994                 return NULL;
995
996         return t->targets;
997 }
998
999 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1000 {
1001         struct dm_target *ti;
1002         unsigned i;
1003
1004         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1005                 ti = dm_table_get_target(t, i);
1006                 if (dm_target_is_wildcard(ti->type))
1007                         return ti;
1008         }
1009
1010         return NULL;
1011 }
1012
1013 bool dm_table_bio_based(struct dm_table *t)
1014 {
1015         return __table_type_bio_based(dm_table_get_type(t));
1016 }
1017
1018 bool dm_table_request_based(struct dm_table *t)
1019 {
1020         return __table_type_request_based(dm_table_get_type(t));
1021 }
1022
1023 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1024 {
1025         enum dm_queue_mode type = dm_table_get_type(t);
1026         unsigned per_io_data_size = 0;
1027         unsigned min_pool_size = 0;
1028         struct dm_target *ti;
1029         unsigned i;
1030
1031         if (unlikely(type == DM_TYPE_NONE)) {
1032                 DMWARN("no table type is set, can't allocate mempools");
1033                 return -EINVAL;
1034         }
1035
1036         if (__table_type_bio_based(type))
1037                 for (i = 0; i < t->num_targets; i++) {
1038                         ti = t->targets + i;
1039                         per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1040                         min_pool_size = max(min_pool_size, ti->num_flush_bios);
1041                 }
1042
1043         t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1044                                            per_io_data_size, min_pool_size);
1045         if (!t->mempools)
1046                 return -ENOMEM;
1047
1048         return 0;
1049 }
1050
1051 void dm_table_free_md_mempools(struct dm_table *t)
1052 {
1053         dm_free_md_mempools(t->mempools);
1054         t->mempools = NULL;
1055 }
1056
1057 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1058 {
1059         return t->mempools;
1060 }
1061
1062 static int setup_indexes(struct dm_table *t)
1063 {
1064         int i;
1065         unsigned int total = 0;
1066         sector_t *indexes;
1067
1068         /* allocate the space for *all* the indexes */
1069         for (i = t->depth - 2; i >= 0; i--) {
1070                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1071                 total += t->counts[i];
1072         }
1073
1074         indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1075         if (!indexes)
1076                 return -ENOMEM;
1077
1078         /* set up internal nodes, bottom-up */
1079         for (i = t->depth - 2; i >= 0; i--) {
1080                 t->index[i] = indexes;
1081                 indexes += (KEYS_PER_NODE * t->counts[i]);
1082                 setup_btree_index(i, t);
1083         }
1084
1085         return 0;
1086 }
1087
1088 /*
1089  * Builds the btree to index the map.
1090  */
1091 static int dm_table_build_index(struct dm_table *t)
1092 {
1093         int r = 0;
1094         unsigned int leaf_nodes;
1095
1096         /* how many indexes will the btree have ? */
1097         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1098         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1099
1100         /* leaf layer has already been set up */
1101         t->counts[t->depth - 1] = leaf_nodes;
1102         t->index[t->depth - 1] = t->highs;
1103
1104         if (t->depth >= 2)
1105                 r = setup_indexes(t);
1106
1107         return r;
1108 }
1109
1110 static bool integrity_profile_exists(struct gendisk *disk)
1111 {
1112         return !!blk_get_integrity(disk);
1113 }
1114
1115 /*
1116  * Get a disk whose integrity profile reflects the table's profile.
1117  * Returns NULL if integrity support was inconsistent or unavailable.
1118  */
1119 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1120 {
1121         struct list_head *devices = dm_table_get_devices(t);
1122         struct dm_dev_internal *dd = NULL;
1123         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1124         unsigned i;
1125
1126         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1127                 struct dm_target *ti = dm_table_get_target(t, i);
1128                 if (!dm_target_passes_integrity(ti->type))
1129                         goto no_integrity;
1130         }
1131
1132         list_for_each_entry(dd, devices, list) {
1133                 template_disk = dd->dm_dev->bdev->bd_disk;
1134                 if (!integrity_profile_exists(template_disk))
1135                         goto no_integrity;
1136                 else if (prev_disk &&
1137                          blk_integrity_compare(prev_disk, template_disk) < 0)
1138                         goto no_integrity;
1139                 prev_disk = template_disk;
1140         }
1141
1142         return template_disk;
1143
1144 no_integrity:
1145         if (prev_disk)
1146                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1147                        dm_device_name(t->md),
1148                        prev_disk->disk_name,
1149                        template_disk->disk_name);
1150         return NULL;
1151 }
1152
1153 /*
1154  * Register the mapped device for blk_integrity support if the
1155  * underlying devices have an integrity profile.  But all devices may
1156  * not have matching profiles (checking all devices isn't reliable
1157  * during table load because this table may use other DM device(s) which
1158  * must be resumed before they will have an initialized integity
1159  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1160  * profile validation: First pass during table load, final pass during
1161  * resume.
1162  */
1163 static int dm_table_register_integrity(struct dm_table *t)
1164 {
1165         struct mapped_device *md = t->md;
1166         struct gendisk *template_disk = NULL;
1167
1168         /* If target handles integrity itself do not register it here. */
1169         if (t->integrity_added)
1170                 return 0;
1171
1172         template_disk = dm_table_get_integrity_disk(t);
1173         if (!template_disk)
1174                 return 0;
1175
1176         if (!integrity_profile_exists(dm_disk(md))) {
1177                 t->integrity_supported = true;
1178                 /*
1179                  * Register integrity profile during table load; we can do
1180                  * this because the final profile must match during resume.
1181                  */
1182                 blk_integrity_register(dm_disk(md),
1183                                        blk_get_integrity(template_disk));
1184                 return 0;
1185         }
1186
1187         /*
1188          * If DM device already has an initialized integrity
1189          * profile the new profile should not conflict.
1190          */
1191         if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1192                 DMWARN("%s: conflict with existing integrity profile: "
1193                        "%s profile mismatch",
1194                        dm_device_name(t->md),
1195                        template_disk->disk_name);
1196                 return 1;
1197         }
1198
1199         /* Preserve existing integrity profile */
1200         t->integrity_supported = true;
1201         return 0;
1202 }
1203
1204 /*
1205  * Prepares the table for use by building the indices,
1206  * setting the type, and allocating mempools.
1207  */
1208 int dm_table_complete(struct dm_table *t)
1209 {
1210         int r;
1211
1212         r = dm_table_determine_type(t);
1213         if (r) {
1214                 DMERR("unable to determine table type");
1215                 return r;
1216         }
1217
1218         r = dm_table_build_index(t);
1219         if (r) {
1220                 DMERR("unable to build btrees");
1221                 return r;
1222         }
1223
1224         r = dm_table_register_integrity(t);
1225         if (r) {
1226                 DMERR("could not register integrity profile.");
1227                 return r;
1228         }
1229
1230         r = dm_table_alloc_md_mempools(t, t->md);
1231         if (r)
1232                 DMERR("unable to allocate mempools");
1233
1234         return r;
1235 }
1236
1237 static DEFINE_MUTEX(_event_lock);
1238 void dm_table_event_callback(struct dm_table *t,
1239                              void (*fn)(void *), void *context)
1240 {
1241         mutex_lock(&_event_lock);
1242         t->event_fn = fn;
1243         t->event_context = context;
1244         mutex_unlock(&_event_lock);
1245 }
1246
1247 void dm_table_event(struct dm_table *t)
1248 {
1249         mutex_lock(&_event_lock);
1250         if (t->event_fn)
1251                 t->event_fn(t->event_context);
1252         mutex_unlock(&_event_lock);
1253 }
1254 EXPORT_SYMBOL(dm_table_event);
1255
1256 inline sector_t dm_table_get_size(struct dm_table *t)
1257 {
1258         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1259 }
1260 EXPORT_SYMBOL(dm_table_get_size);
1261
1262 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1263 {
1264         if (index >= t->num_targets)
1265                 return NULL;
1266
1267         return t->targets + index;
1268 }
1269
1270 /*
1271  * Search the btree for the correct target.
1272  *
1273  * Caller should check returned pointer for NULL
1274  * to trap I/O beyond end of device.
1275  */
1276 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1277 {
1278         unsigned int l, n = 0, k = 0;
1279         sector_t *node;
1280
1281         if (unlikely(sector >= dm_table_get_size(t)))
1282                 return NULL;
1283
1284         for (l = 0; l < t->depth; l++) {
1285                 n = get_child(n, k);
1286                 node = get_node(t, l, n);
1287
1288                 for (k = 0; k < KEYS_PER_NODE; k++)
1289                         if (node[k] >= sector)
1290                                 break;
1291         }
1292
1293         return &t->targets[(KEYS_PER_NODE * n) + k];
1294 }
1295
1296 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1297                         sector_t start, sector_t len, void *data)
1298 {
1299         unsigned *num_devices = data;
1300
1301         (*num_devices)++;
1302
1303         return 0;
1304 }
1305
1306 /*
1307  * Check whether a table has no data devices attached using each
1308  * target's iterate_devices method.
1309  * Returns false if the result is unknown because a target doesn't
1310  * support iterate_devices.
1311  */
1312 bool dm_table_has_no_data_devices(struct dm_table *table)
1313 {
1314         struct dm_target *ti;
1315         unsigned i, num_devices;
1316
1317         for (i = 0; i < dm_table_get_num_targets(table); i++) {
1318                 ti = dm_table_get_target(table, i);
1319
1320                 if (!ti->type->iterate_devices)
1321                         return false;
1322
1323                 num_devices = 0;
1324                 ti->type->iterate_devices(ti, count_device, &num_devices);
1325                 if (num_devices)
1326                         return false;
1327         }
1328
1329         return true;
1330 }
1331
1332 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1333                                  sector_t start, sector_t len, void *data)
1334 {
1335         struct request_queue *q = bdev_get_queue(dev->bdev);
1336         enum blk_zoned_model *zoned_model = data;
1337
1338         return q && blk_queue_zoned_model(q) == *zoned_model;
1339 }
1340
1341 static bool dm_table_supports_zoned_model(struct dm_table *t,
1342                                           enum blk_zoned_model zoned_model)
1343 {
1344         struct dm_target *ti;
1345         unsigned i;
1346
1347         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1348                 ti = dm_table_get_target(t, i);
1349
1350                 if (zoned_model == BLK_ZONED_HM &&
1351                     !dm_target_supports_zoned_hm(ti->type))
1352                         return false;
1353
1354                 if (!ti->type->iterate_devices ||
1355                     !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1356                         return false;
1357         }
1358
1359         return true;
1360 }
1361
1362 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1363                                        sector_t start, sector_t len, void *data)
1364 {
1365         struct request_queue *q = bdev_get_queue(dev->bdev);
1366         unsigned int *zone_sectors = data;
1367
1368         return q && blk_queue_zone_sectors(q) == *zone_sectors;
1369 }
1370
1371 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1372                                           unsigned int zone_sectors)
1373 {
1374         struct dm_target *ti;
1375         unsigned i;
1376
1377         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1378                 ti = dm_table_get_target(t, i);
1379
1380                 if (!ti->type->iterate_devices ||
1381                     !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1382                         return false;
1383         }
1384
1385         return true;
1386 }
1387
1388 static int validate_hardware_zoned_model(struct dm_table *table,
1389                                          enum blk_zoned_model zoned_model,
1390                                          unsigned int zone_sectors)
1391 {
1392         if (zoned_model == BLK_ZONED_NONE)
1393                 return 0;
1394
1395         if (!dm_table_supports_zoned_model(table, zoned_model)) {
1396                 DMERR("%s: zoned model is not consistent across all devices",
1397                       dm_device_name(table->md));
1398                 return -EINVAL;
1399         }
1400
1401         /* Check zone size validity and compatibility */
1402         if (!zone_sectors || !is_power_of_2(zone_sectors))
1403                 return -EINVAL;
1404
1405         if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1406                 DMERR("%s: zone sectors is not consistent across all devices",
1407                       dm_device_name(table->md));
1408                 return -EINVAL;
1409         }
1410
1411         return 0;
1412 }
1413
1414 /*
1415  * Establish the new table's queue_limits and validate them.
1416  */
1417 int dm_calculate_queue_limits(struct dm_table *table,
1418                               struct queue_limits *limits)
1419 {
1420         struct dm_target *ti;
1421         struct queue_limits ti_limits;
1422         unsigned i;
1423         enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1424         unsigned int zone_sectors = 0;
1425
1426         blk_set_stacking_limits(limits);
1427
1428         for (i = 0; i < dm_table_get_num_targets(table); i++) {
1429                 blk_set_stacking_limits(&ti_limits);
1430
1431                 ti = dm_table_get_target(table, i);
1432
1433                 if (!ti->type->iterate_devices)
1434                         goto combine_limits;
1435
1436                 /*
1437                  * Combine queue limits of all the devices this target uses.
1438                  */
1439                 ti->type->iterate_devices(ti, dm_set_device_limits,
1440                                           &ti_limits);
1441
1442                 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1443                         /*
1444                          * After stacking all limits, validate all devices
1445                          * in table support this zoned model and zone sectors.
1446                          */
1447                         zoned_model = ti_limits.zoned;
1448                         zone_sectors = ti_limits.chunk_sectors;
1449                 }
1450
1451                 /* Set I/O hints portion of queue limits */
1452                 if (ti->type->io_hints)
1453                         ti->type->io_hints(ti, &ti_limits);
1454
1455                 /*
1456                  * Check each device area is consistent with the target's
1457                  * overall queue limits.
1458                  */
1459                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1460                                               &ti_limits))
1461                         return -EINVAL;
1462
1463 combine_limits:
1464                 /*
1465                  * Merge this target's queue limits into the overall limits
1466                  * for the table.
1467                  */
1468                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1469                         DMWARN("%s: adding target device "
1470                                "(start sect %llu len %llu) "
1471                                "caused an alignment inconsistency",
1472                                dm_device_name(table->md),
1473                                (unsigned long long) ti->begin,
1474                                (unsigned long long) ti->len);
1475         }
1476
1477         /*
1478          * Verify that the zoned model and zone sectors, as determined before
1479          * any .io_hints override, are the same across all devices in the table.
1480          * - this is especially relevant if .io_hints is emulating a disk-managed
1481          *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1482          * BUT...
1483          */
1484         if (limits->zoned != BLK_ZONED_NONE) {
1485                 /*
1486                  * ...IF the above limits stacking determined a zoned model
1487                  * validate that all of the table's devices conform to it.
1488                  */
1489                 zoned_model = limits->zoned;
1490                 zone_sectors = limits->chunk_sectors;
1491         }
1492         if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1493                 return -EINVAL;
1494
1495         return validate_hardware_logical_block_alignment(table, limits);
1496 }
1497
1498 /*
1499  * Verify that all devices have an integrity profile that matches the
1500  * DM device's registered integrity profile.  If the profiles don't
1501  * match then unregister the DM device's integrity profile.
1502  */
1503 static void dm_table_verify_integrity(struct dm_table *t)
1504 {
1505         struct gendisk *template_disk = NULL;
1506
1507         if (t->integrity_added)
1508                 return;
1509
1510         if (t->integrity_supported) {
1511                 /*
1512                  * Verify that the original integrity profile
1513                  * matches all the devices in this table.
1514                  */
1515                 template_disk = dm_table_get_integrity_disk(t);
1516                 if (template_disk &&
1517                     blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1518                         return;
1519         }
1520
1521         if (integrity_profile_exists(dm_disk(t->md))) {
1522                 DMWARN("%s: unable to establish an integrity profile",
1523                        dm_device_name(t->md));
1524                 blk_integrity_unregister(dm_disk(t->md));
1525         }
1526 }
1527
1528 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1529                                 sector_t start, sector_t len, void *data)
1530 {
1531         unsigned long flush = (unsigned long) data;
1532         struct request_queue *q = bdev_get_queue(dev->bdev);
1533
1534         return q && (q->queue_flags & flush);
1535 }
1536
1537 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1538 {
1539         struct dm_target *ti;
1540         unsigned i;
1541
1542         /*
1543          * Require at least one underlying device to support flushes.
1544          * t->devices includes internal dm devices such as mirror logs
1545          * so we need to use iterate_devices here, which targets
1546          * supporting flushes must provide.
1547          */
1548         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1549                 ti = dm_table_get_target(t, i);
1550
1551                 if (!ti->num_flush_bios)
1552                         continue;
1553
1554                 if (ti->flush_supported)
1555                         return true;
1556
1557                 if (ti->type->iterate_devices &&
1558                     ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1559                         return true;
1560         }
1561
1562         return false;
1563 }
1564
1565 static int device_dax_write_cache_enabled(struct dm_target *ti,
1566                                           struct dm_dev *dev, sector_t start,
1567                                           sector_t len, void *data)
1568 {
1569         struct dax_device *dax_dev = dev->dax_dev;
1570
1571         if (!dax_dev)
1572                 return false;
1573
1574         if (dax_write_cache_enabled(dax_dev))
1575                 return true;
1576         return false;
1577 }
1578
1579 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1580 {
1581         struct dm_target *ti;
1582         unsigned i;
1583
1584         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1585                 ti = dm_table_get_target(t, i);
1586
1587                 if (ti->type->iterate_devices &&
1588                     ti->type->iterate_devices(ti,
1589                                 device_dax_write_cache_enabled, NULL))
1590                         return true;
1591         }
1592
1593         return false;
1594 }
1595
1596 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1597                             sector_t start, sector_t len, void *data)
1598 {
1599         struct request_queue *q = bdev_get_queue(dev->bdev);
1600
1601         return q && blk_queue_nonrot(q);
1602 }
1603
1604 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1605                              sector_t start, sector_t len, void *data)
1606 {
1607         struct request_queue *q = bdev_get_queue(dev->bdev);
1608
1609         return q && !blk_queue_add_random(q);
1610 }
1611
1612 static bool dm_table_all_devices_attribute(struct dm_table *t,
1613                                            iterate_devices_callout_fn func)
1614 {
1615         struct dm_target *ti;
1616         unsigned i;
1617
1618         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1619                 ti = dm_table_get_target(t, i);
1620
1621                 if (!ti->type->iterate_devices ||
1622                     !ti->type->iterate_devices(ti, func, NULL))
1623                         return false;
1624         }
1625
1626         return true;
1627 }
1628
1629 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1630                                          sector_t start, sector_t len, void *data)
1631 {
1632         struct request_queue *q = bdev_get_queue(dev->bdev);
1633
1634         return q && !q->limits.max_write_same_sectors;
1635 }
1636
1637 static bool dm_table_supports_write_same(struct dm_table *t)
1638 {
1639         struct dm_target *ti;
1640         unsigned i;
1641
1642         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1643                 ti = dm_table_get_target(t, i);
1644
1645                 if (!ti->num_write_same_bios)
1646                         return false;
1647
1648                 if (!ti->type->iterate_devices ||
1649                     ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1650                         return false;
1651         }
1652
1653         return true;
1654 }
1655
1656 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1657                                            sector_t start, sector_t len, void *data)
1658 {
1659         struct request_queue *q = bdev_get_queue(dev->bdev);
1660
1661         return q && !q->limits.max_write_zeroes_sectors;
1662 }
1663
1664 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1665 {
1666         struct dm_target *ti;
1667         unsigned i = 0;
1668
1669         while (i < dm_table_get_num_targets(t)) {
1670                 ti = dm_table_get_target(t, i++);
1671
1672                 if (!ti->num_write_zeroes_bios)
1673                         return false;
1674
1675                 if (!ti->type->iterate_devices ||
1676                     ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1677                         return false;
1678         }
1679
1680         return true;
1681 }
1682
1683 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1684                                      sector_t start, sector_t len, void *data)
1685 {
1686         struct request_queue *q = bdev_get_queue(dev->bdev);
1687
1688         return q && !blk_queue_nowait(q);
1689 }
1690
1691 static bool dm_table_supports_nowait(struct dm_table *t)
1692 {
1693         struct dm_target *ti;
1694         unsigned i = 0;
1695
1696         while (i < dm_table_get_num_targets(t)) {
1697                 ti = dm_table_get_target(t, i++);
1698
1699                 if (!dm_target_supports_nowait(ti->type))
1700                         return false;
1701
1702                 if (!ti->type->iterate_devices ||
1703                     ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1704                         return false;
1705         }
1706
1707         return true;
1708 }
1709
1710 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1711                                       sector_t start, sector_t len, void *data)
1712 {
1713         struct request_queue *q = bdev_get_queue(dev->bdev);
1714
1715         return q && !blk_queue_discard(q);
1716 }
1717
1718 static bool dm_table_supports_discards(struct dm_table *t)
1719 {
1720         struct dm_target *ti;
1721         unsigned i;
1722
1723         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1724                 ti = dm_table_get_target(t, i);
1725
1726                 if (!ti->num_discard_bios)
1727                         return false;
1728
1729                 /*
1730                  * Either the target provides discard support (as implied by setting
1731                  * 'discards_supported') or it relies on _all_ data devices having
1732                  * discard support.
1733                  */
1734                 if (!ti->discards_supported &&
1735                     (!ti->type->iterate_devices ||
1736                      ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1737                         return false;
1738         }
1739
1740         return true;
1741 }
1742
1743 static int device_not_secure_erase_capable(struct dm_target *ti,
1744                                            struct dm_dev *dev, sector_t start,
1745                                            sector_t len, void *data)
1746 {
1747         struct request_queue *q = bdev_get_queue(dev->bdev);
1748
1749         return q && !blk_queue_secure_erase(q);
1750 }
1751
1752 static bool dm_table_supports_secure_erase(struct dm_table *t)
1753 {
1754         struct dm_target *ti;
1755         unsigned int i;
1756
1757         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1758                 ti = dm_table_get_target(t, i);
1759
1760                 if (!ti->num_secure_erase_bios)
1761                         return false;
1762
1763                 if (!ti->type->iterate_devices ||
1764                     ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1765                         return false;
1766         }
1767
1768         return true;
1769 }
1770
1771 static int device_requires_stable_pages(struct dm_target *ti,
1772                                         struct dm_dev *dev, sector_t start,
1773                                         sector_t len, void *data)
1774 {
1775         struct request_queue *q = bdev_get_queue(dev->bdev);
1776
1777         return q && blk_queue_stable_writes(q);
1778 }
1779
1780 /*
1781  * If any underlying device requires stable pages, a table must require
1782  * them as well.  Only targets that support iterate_devices are considered:
1783  * don't want error, zero, etc to require stable pages.
1784  */
1785 static bool dm_table_requires_stable_pages(struct dm_table *t)
1786 {
1787         struct dm_target *ti;
1788         unsigned i;
1789
1790         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1791                 ti = dm_table_get_target(t, i);
1792
1793                 if (ti->type->iterate_devices &&
1794                     ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1795                         return true;
1796         }
1797
1798         return false;
1799 }
1800
1801 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1802                                struct queue_limits *limits)
1803 {
1804         bool wc = false, fua = false;
1805         int page_size = PAGE_SIZE;
1806
1807         /*
1808          * Copy table's limits to the DM device's request_queue
1809          */
1810         q->limits = *limits;
1811
1812         if (dm_table_supports_nowait(t))
1813                 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1814         else
1815                 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1816
1817         if (!dm_table_supports_discards(t)) {
1818                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1819                 /* Must also clear discard limits... */
1820                 q->limits.max_discard_sectors = 0;
1821                 q->limits.max_hw_discard_sectors = 0;
1822                 q->limits.discard_granularity = 0;
1823                 q->limits.discard_alignment = 0;
1824                 q->limits.discard_misaligned = 0;
1825         } else
1826                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1827
1828         if (dm_table_supports_secure_erase(t))
1829                 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1830
1831         if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1832                 wc = true;
1833                 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1834                         fua = true;
1835         }
1836         blk_queue_write_cache(q, wc, fua);
1837
1838         if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1839                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1840                 if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1841                         set_dax_synchronous(t->md->dax_dev);
1842         }
1843         else
1844                 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1845
1846         if (dm_table_supports_dax_write_cache(t))
1847                 dax_write_cache(t->md->dax_dev, true);
1848
1849         /* Ensure that all underlying devices are non-rotational. */
1850         if (dm_table_all_devices_attribute(t, device_is_nonrot))
1851                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1852         else
1853                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1854
1855         if (!dm_table_supports_write_same(t))
1856                 q->limits.max_write_same_sectors = 0;
1857         if (!dm_table_supports_write_zeroes(t))
1858                 q->limits.max_write_zeroes_sectors = 0;
1859
1860         dm_table_verify_integrity(t);
1861
1862         /*
1863          * Some devices don't use blk_integrity but still want stable pages
1864          * because they do their own checksumming.
1865          */
1866         if (dm_table_requires_stable_pages(t))
1867                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
1868         else
1869                 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
1870
1871         /*
1872          * Determine whether or not this queue's I/O timings contribute
1873          * to the entropy pool, Only request-based targets use this.
1874          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1875          * have it set.
1876          */
1877         if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1878                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1879
1880         /*
1881          * For a zoned target, the number of zones should be updated for the
1882          * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1883          * target, this is all that is needed.
1884          */
1885 #ifdef CONFIG_BLK_DEV_ZONED
1886         if (blk_queue_is_zoned(q)) {
1887                 WARN_ON_ONCE(queue_is_mq(q));
1888                 q->nr_zones = blkdev_nr_zones(t->md->disk);
1889         }
1890 #endif
1891
1892         blk_queue_update_readahead(q);
1893 }
1894
1895 unsigned int dm_table_get_num_targets(struct dm_table *t)
1896 {
1897         return t->num_targets;
1898 }
1899
1900 struct list_head *dm_table_get_devices(struct dm_table *t)
1901 {
1902         return &t->devices;
1903 }
1904
1905 fmode_t dm_table_get_mode(struct dm_table *t)
1906 {
1907         return t->mode;
1908 }
1909 EXPORT_SYMBOL(dm_table_get_mode);
1910
1911 enum suspend_mode {
1912         PRESUSPEND,
1913         PRESUSPEND_UNDO,
1914         POSTSUSPEND,
1915 };
1916
1917 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1918 {
1919         int i = t->num_targets;
1920         struct dm_target *ti = t->targets;
1921
1922         lockdep_assert_held(&t->md->suspend_lock);
1923
1924         while (i--) {
1925                 switch (mode) {
1926                 case PRESUSPEND:
1927                         if (ti->type->presuspend)
1928                                 ti->type->presuspend(ti);
1929                         break;
1930                 case PRESUSPEND_UNDO:
1931                         if (ti->type->presuspend_undo)
1932                                 ti->type->presuspend_undo(ti);
1933                         break;
1934                 case POSTSUSPEND:
1935                         if (ti->type->postsuspend)
1936                                 ti->type->postsuspend(ti);
1937                         break;
1938                 }
1939                 ti++;
1940         }
1941 }
1942
1943 void dm_table_presuspend_targets(struct dm_table *t)
1944 {
1945         if (!t)
1946                 return;
1947
1948         suspend_targets(t, PRESUSPEND);
1949 }
1950
1951 void dm_table_presuspend_undo_targets(struct dm_table *t)
1952 {
1953         if (!t)
1954                 return;
1955
1956         suspend_targets(t, PRESUSPEND_UNDO);
1957 }
1958
1959 void dm_table_postsuspend_targets(struct dm_table *t)
1960 {
1961         if (!t)
1962                 return;
1963
1964         suspend_targets(t, POSTSUSPEND);
1965 }
1966
1967 int dm_table_resume_targets(struct dm_table *t)
1968 {
1969         int i, r = 0;
1970
1971         lockdep_assert_held(&t->md->suspend_lock);
1972
1973         for (i = 0; i < t->num_targets; i++) {
1974                 struct dm_target *ti = t->targets + i;
1975
1976                 if (!ti->type->preresume)
1977                         continue;
1978
1979                 r = ti->type->preresume(ti);
1980                 if (r) {
1981                         DMERR("%s: %s: preresume failed, error = %d",
1982                               dm_device_name(t->md), ti->type->name, r);
1983                         return r;
1984                 }
1985         }
1986
1987         for (i = 0; i < t->num_targets; i++) {
1988                 struct dm_target *ti = t->targets + i;
1989
1990                 if (ti->type->resume)
1991                         ti->type->resume(ti);
1992         }
1993
1994         return 0;
1995 }
1996
1997 struct mapped_device *dm_table_get_md(struct dm_table *t)
1998 {
1999         return t->md;
2000 }
2001 EXPORT_SYMBOL(dm_table_get_md);
2002
2003 const char *dm_table_device_name(struct dm_table *t)
2004 {
2005         return dm_device_name(t->md);
2006 }
2007 EXPORT_SYMBOL_GPL(dm_table_device_name);
2008
2009 void dm_table_run_md_queue_async(struct dm_table *t)
2010 {
2011         if (!dm_table_request_based(t))
2012                 return;
2013
2014         if (t->md->queue)
2015                 blk_mq_run_hw_queues(t->md->queue, true);
2016 }
2017 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2018