Merge branch 'next' into for-linus
[linux-2.6-microblaze.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
32
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38
39 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
40
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65         return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67
68 static inline int ceiling_fp(int32_t x)
69 {
70         int mask, ret;
71
72         ret = fp_toint(x);
73         mask = (1 << FRAC_BITS) - 1;
74         if (x & mask)
75                 ret += 1;
76         return ret;
77 }
78
79 static inline int32_t percent_fp(int percent)
80 {
81         return div_fp(percent, 100);
82 }
83
84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86         return (x * y) >> EXT_FRAC_BITS;
87 }
88
89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91         return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93
94 static inline int32_t percent_ext_fp(int percent)
95 {
96         return div_ext_fp(percent, 100);
97 }
98
99 /**
100  * struct sample -      Store performance sample
101  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
102  *                      performance during last sample period
103  * @busy_scaled:        Scaled busy value which is used to calculate next
104  *                      P state. This can be different than core_avg_perf
105  *                      to account for cpu idle period
106  * @aperf:              Difference of actual performance frequency clock count
107  *                      read from APERF MSR between last and current sample
108  * @mperf:              Difference of maximum performance frequency clock count
109  *                      read from MPERF MSR between last and current sample
110  * @tsc:                Difference of time stamp counter between last and
111  *                      current sample
112  * @time:               Current time from scheduler
113  *
114  * This structure is used in the cpudata structure to store performance sample
115  * data for choosing next P State.
116  */
117 struct sample {
118         int32_t core_avg_perf;
119         int32_t busy_scaled;
120         u64 aperf;
121         u64 mperf;
122         u64 tsc;
123         u64 time;
124 };
125
126 /**
127  * struct pstate_data - Store P state data
128  * @current_pstate:     Current requested P state
129  * @min_pstate:         Min P state possible for this platform
130  * @max_pstate:         Max P state possible for this platform
131  * @max_pstate_physical:This is physical Max P state for a processor
132  *                      This can be higher than the max_pstate which can
133  *                      be limited by platform thermal design power limits
134  * @scaling:            Scaling factor to  convert frequency to cpufreq
135  *                      frequency units
136  * @turbo_pstate:       Max Turbo P state possible for this platform
137  * @max_freq:           @max_pstate frequency in cpufreq units
138  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
139  *
140  * Stores the per cpu model P state limits and current P state.
141  */
142 struct pstate_data {
143         int     current_pstate;
144         int     min_pstate;
145         int     max_pstate;
146         int     max_pstate_physical;
147         int     scaling;
148         int     turbo_pstate;
149         unsigned int max_freq;
150         unsigned int turbo_freq;
151 };
152
153 /**
154  * struct vid_data -    Stores voltage information data
155  * @min:                VID data for this platform corresponding to
156  *                      the lowest P state
157  * @max:                VID data corresponding to the highest P State.
158  * @turbo:              VID data for turbo P state
159  * @ratio:              Ratio of (vid max - vid min) /
160  *                      (max P state - Min P State)
161  *
162  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163  * This data is used in Atom platforms, where in addition to target P state,
164  * the voltage data needs to be specified to select next P State.
165  */
166 struct vid_data {
167         int min;
168         int max;
169         int turbo;
170         int32_t ratio;
171 };
172
173 /**
174  * struct global_params - Global parameters, mostly tunable via sysfs.
175  * @no_turbo:           Whether or not to use turbo P-states.
176  * @turbo_disabled:     Whethet or not turbo P-states are available at all,
177  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
178  *                      not the maximum reported turbo P-state is different from
179  *                      the maximum reported non-turbo one.
180  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
181  *                      P-state capacity.
182  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
183  *                      P-state capacity.
184  */
185 struct global_params {
186         bool no_turbo;
187         bool turbo_disabled;
188         int max_perf_pct;
189         int min_perf_pct;
190 };
191
192 /**
193  * struct cpudata -     Per CPU instance data storage
194  * @cpu:                CPU number for this instance data
195  * @policy:             CPUFreq policy value
196  * @update_util:        CPUFreq utility callback information
197  * @update_util_set:    CPUFreq utility callback is set
198  * @iowait_boost:       iowait-related boost fraction
199  * @last_update:        Time of the last update.
200  * @pstate:             Stores P state limits for this CPU
201  * @vid:                Stores VID limits for this CPU
202  * @last_sample_time:   Last Sample time
203  * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
204  *                      This shift is a multiplier to mperf delta to
205  *                      calculate CPU busy.
206  * @prev_aperf:         Last APERF value read from APERF MSR
207  * @prev_mperf:         Last MPERF value read from MPERF MSR
208  * @prev_tsc:           Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *                      current sample
211  * @sample:             Storage for storing last Sample data
212  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
215  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:      Last saved HWP energy performance preference
217  *                      (EPP) or energy performance bias (EPB),
218  *                      when policy switched to performance
219  * @epp_policy:         Last saved policy used to set EPP/EPB
220  * @epp_default:        Power on default HWP energy performance
221  *                      preference/bias
222  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
223  *                      operation
224  *
225  * This structure stores per CPU instance data for all CPUs.
226  */
227 struct cpudata {
228         int cpu;
229
230         unsigned int policy;
231         struct update_util_data update_util;
232         bool   update_util_set;
233
234         struct pstate_data pstate;
235         struct vid_data vid;
236
237         u64     last_update;
238         u64     last_sample_time;
239         u64     aperf_mperf_shift;
240         u64     prev_aperf;
241         u64     prev_mperf;
242         u64     prev_tsc;
243         u64     prev_cummulative_iowait;
244         struct sample sample;
245         int32_t min_perf_ratio;
246         int32_t max_perf_ratio;
247 #ifdef CONFIG_ACPI
248         struct acpi_processor_performance acpi_perf_data;
249         bool valid_pss_table;
250 #endif
251         unsigned int iowait_boost;
252         s16 epp_powersave;
253         s16 epp_policy;
254         s16 epp_default;
255         s16 epp_saved;
256 };
257
258 static struct cpudata **all_cpu_data;
259
260 /**
261  * struct pstate_funcs - Per CPU model specific callbacks
262  * @get_max:            Callback to get maximum non turbo effective P state
263  * @get_max_physical:   Callback to get maximum non turbo physical P state
264  * @get_min:            Callback to get minimum P state
265  * @get_turbo:          Callback to get turbo P state
266  * @get_scaling:        Callback to get frequency scaling factor
267  * @get_val:            Callback to convert P state to actual MSR write value
268  * @get_vid:            Callback to get VID data for Atom platforms
269  *
270  * Core and Atom CPU models have different way to get P State limits. This
271  * structure is used to store those callbacks.
272  */
273 struct pstate_funcs {
274         int (*get_max)(void);
275         int (*get_max_physical)(void);
276         int (*get_min)(void);
277         int (*get_turbo)(void);
278         int (*get_scaling)(void);
279         int (*get_aperf_mperf_shift)(void);
280         u64 (*get_val)(struct cpudata*, int pstate);
281         void (*get_vid)(struct cpudata *);
282 };
283
284 static struct pstate_funcs pstate_funcs __read_mostly;
285
286 static int hwp_active __read_mostly;
287 static bool per_cpu_limits __read_mostly;
288
289 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
290
291 #ifdef CONFIG_ACPI
292 static bool acpi_ppc;
293 #endif
294
295 static struct global_params global;
296
297 static DEFINE_MUTEX(intel_pstate_driver_lock);
298 static DEFINE_MUTEX(intel_pstate_limits_lock);
299
300 #ifdef CONFIG_ACPI
301
302 static bool intel_pstate_get_ppc_enable_status(void)
303 {
304         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
305             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
306                 return true;
307
308         return acpi_ppc;
309 }
310
311 #ifdef CONFIG_ACPI_CPPC_LIB
312
313 /* The work item is needed to avoid CPU hotplug locking issues */
314 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
315 {
316         sched_set_itmt_support();
317 }
318
319 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
320
321 static void intel_pstate_set_itmt_prio(int cpu)
322 {
323         struct cppc_perf_caps cppc_perf;
324         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
325         int ret;
326
327         ret = cppc_get_perf_caps(cpu, &cppc_perf);
328         if (ret)
329                 return;
330
331         /*
332          * The priorities can be set regardless of whether or not
333          * sched_set_itmt_support(true) has been called and it is valid to
334          * update them at any time after it has been called.
335          */
336         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
337
338         if (max_highest_perf <= min_highest_perf) {
339                 if (cppc_perf.highest_perf > max_highest_perf)
340                         max_highest_perf = cppc_perf.highest_perf;
341
342                 if (cppc_perf.highest_perf < min_highest_perf)
343                         min_highest_perf = cppc_perf.highest_perf;
344
345                 if (max_highest_perf > min_highest_perf) {
346                         /*
347                          * This code can be run during CPU online under the
348                          * CPU hotplug locks, so sched_set_itmt_support()
349                          * cannot be called from here.  Queue up a work item
350                          * to invoke it.
351                          */
352                         schedule_work(&sched_itmt_work);
353                 }
354         }
355 }
356 #else
357 static void intel_pstate_set_itmt_prio(int cpu)
358 {
359 }
360 #endif
361
362 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
363 {
364         struct cpudata *cpu;
365         int ret;
366         int i;
367
368         if (hwp_active) {
369                 intel_pstate_set_itmt_prio(policy->cpu);
370                 return;
371         }
372
373         if (!intel_pstate_get_ppc_enable_status())
374                 return;
375
376         cpu = all_cpu_data[policy->cpu];
377
378         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
379                                                   policy->cpu);
380         if (ret)
381                 return;
382
383         /*
384          * Check if the control value in _PSS is for PERF_CTL MSR, which should
385          * guarantee that the states returned by it map to the states in our
386          * list directly.
387          */
388         if (cpu->acpi_perf_data.control_register.space_id !=
389                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
390                 goto err;
391
392         /*
393          * If there is only one entry _PSS, simply ignore _PSS and continue as
394          * usual without taking _PSS into account
395          */
396         if (cpu->acpi_perf_data.state_count < 2)
397                 goto err;
398
399         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
400         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
401                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
402                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
403                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
404                          (u32) cpu->acpi_perf_data.states[i].power,
405                          (u32) cpu->acpi_perf_data.states[i].control);
406         }
407
408         /*
409          * The _PSS table doesn't contain whole turbo frequency range.
410          * This just contains +1 MHZ above the max non turbo frequency,
411          * with control value corresponding to max turbo ratio. But
412          * when cpufreq set policy is called, it will call with this
413          * max frequency, which will cause a reduced performance as
414          * this driver uses real max turbo frequency as the max
415          * frequency. So correct this frequency in _PSS table to
416          * correct max turbo frequency based on the turbo state.
417          * Also need to convert to MHz as _PSS freq is in MHz.
418          */
419         if (!global.turbo_disabled)
420                 cpu->acpi_perf_data.states[0].core_frequency =
421                                         policy->cpuinfo.max_freq / 1000;
422         cpu->valid_pss_table = true;
423         pr_debug("_PPC limits will be enforced\n");
424
425         return;
426
427  err:
428         cpu->valid_pss_table = false;
429         acpi_processor_unregister_performance(policy->cpu);
430 }
431
432 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
433 {
434         struct cpudata *cpu;
435
436         cpu = all_cpu_data[policy->cpu];
437         if (!cpu->valid_pss_table)
438                 return;
439
440         acpi_processor_unregister_performance(policy->cpu);
441 }
442 #else
443 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
444 {
445 }
446
447 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
448 {
449 }
450 #endif
451
452 static inline void update_turbo_state(void)
453 {
454         u64 misc_en;
455         struct cpudata *cpu;
456
457         cpu = all_cpu_data[0];
458         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
459         global.turbo_disabled =
460                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
461                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
462 }
463
464 static int min_perf_pct_min(void)
465 {
466         struct cpudata *cpu = all_cpu_data[0];
467         int turbo_pstate = cpu->pstate.turbo_pstate;
468
469         return turbo_pstate ?
470                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
471 }
472
473 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
474 {
475         u64 epb;
476         int ret;
477
478         if (!static_cpu_has(X86_FEATURE_EPB))
479                 return -ENXIO;
480
481         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
482         if (ret)
483                 return (s16)ret;
484
485         return (s16)(epb & 0x0f);
486 }
487
488 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
489 {
490         s16 epp;
491
492         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
493                 /*
494                  * When hwp_req_data is 0, means that caller didn't read
495                  * MSR_HWP_REQUEST, so need to read and get EPP.
496                  */
497                 if (!hwp_req_data) {
498                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
499                                             &hwp_req_data);
500                         if (epp)
501                                 return epp;
502                 }
503                 epp = (hwp_req_data >> 24) & 0xff;
504         } else {
505                 /* When there is no EPP present, HWP uses EPB settings */
506                 epp = intel_pstate_get_epb(cpu_data);
507         }
508
509         return epp;
510 }
511
512 static int intel_pstate_set_epb(int cpu, s16 pref)
513 {
514         u64 epb;
515         int ret;
516
517         if (!static_cpu_has(X86_FEATURE_EPB))
518                 return -ENXIO;
519
520         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
521         if (ret)
522                 return ret;
523
524         epb = (epb & ~0x0f) | pref;
525         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
526
527         return 0;
528 }
529
530 /*
531  * EPP/EPB display strings corresponding to EPP index in the
532  * energy_perf_strings[]
533  *      index           String
534  *-------------------------------------
535  *      0               default
536  *      1               performance
537  *      2               balance_performance
538  *      3               balance_power
539  *      4               power
540  */
541 static const char * const energy_perf_strings[] = {
542         "default",
543         "performance",
544         "balance_performance",
545         "balance_power",
546         "power",
547         NULL
548 };
549 static const unsigned int epp_values[] = {
550         HWP_EPP_PERFORMANCE,
551         HWP_EPP_BALANCE_PERFORMANCE,
552         HWP_EPP_BALANCE_POWERSAVE,
553         HWP_EPP_POWERSAVE
554 };
555
556 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
557 {
558         s16 epp;
559         int index = -EINVAL;
560
561         epp = intel_pstate_get_epp(cpu_data, 0);
562         if (epp < 0)
563                 return epp;
564
565         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
566                 if (epp == HWP_EPP_PERFORMANCE)
567                         return 1;
568                 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
569                         return 2;
570                 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
571                         return 3;
572                 else
573                         return 4;
574         } else if (static_cpu_has(X86_FEATURE_EPB)) {
575                 /*
576                  * Range:
577                  *      0x00-0x03       :       Performance
578                  *      0x04-0x07       :       Balance performance
579                  *      0x08-0x0B       :       Balance power
580                  *      0x0C-0x0F       :       Power
581                  * The EPB is a 4 bit value, but our ranges restrict the
582                  * value which can be set. Here only using top two bits
583                  * effectively.
584                  */
585                 index = (epp >> 2) + 1;
586         }
587
588         return index;
589 }
590
591 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
592                                               int pref_index)
593 {
594         int epp = -EINVAL;
595         int ret;
596
597         if (!pref_index)
598                 epp = cpu_data->epp_default;
599
600         mutex_lock(&intel_pstate_limits_lock);
601
602         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
603                 u64 value;
604
605                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
606                 if (ret)
607                         goto return_pref;
608
609                 value &= ~GENMASK_ULL(31, 24);
610
611                 if (epp == -EINVAL)
612                         epp = epp_values[pref_index - 1];
613
614                 value |= (u64)epp << 24;
615                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
616         } else {
617                 if (epp == -EINVAL)
618                         epp = (pref_index - 1) << 2;
619                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
620         }
621 return_pref:
622         mutex_unlock(&intel_pstate_limits_lock);
623
624         return ret;
625 }
626
627 static ssize_t show_energy_performance_available_preferences(
628                                 struct cpufreq_policy *policy, char *buf)
629 {
630         int i = 0;
631         int ret = 0;
632
633         while (energy_perf_strings[i] != NULL)
634                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
635
636         ret += sprintf(&buf[ret], "\n");
637
638         return ret;
639 }
640
641 cpufreq_freq_attr_ro(energy_performance_available_preferences);
642
643 static ssize_t store_energy_performance_preference(
644                 struct cpufreq_policy *policy, const char *buf, size_t count)
645 {
646         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
647         char str_preference[21];
648         int ret, i = 0;
649
650         ret = sscanf(buf, "%20s", str_preference);
651         if (ret != 1)
652                 return -EINVAL;
653
654         while (energy_perf_strings[i] != NULL) {
655                 if (!strcmp(str_preference, energy_perf_strings[i])) {
656                         intel_pstate_set_energy_pref_index(cpu_data, i);
657                         return count;
658                 }
659                 ++i;
660         }
661
662         return -EINVAL;
663 }
664
665 static ssize_t show_energy_performance_preference(
666                                 struct cpufreq_policy *policy, char *buf)
667 {
668         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
669         int preference;
670
671         preference = intel_pstate_get_energy_pref_index(cpu_data);
672         if (preference < 0)
673                 return preference;
674
675         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
676 }
677
678 cpufreq_freq_attr_rw(energy_performance_preference);
679
680 static struct freq_attr *hwp_cpufreq_attrs[] = {
681         &energy_performance_preference,
682         &energy_performance_available_preferences,
683         NULL,
684 };
685
686 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
687                                      int *current_max)
688 {
689         u64 cap;
690
691         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
692         if (global.no_turbo)
693                 *current_max = HWP_GUARANTEED_PERF(cap);
694         else
695                 *current_max = HWP_HIGHEST_PERF(cap);
696
697         *phy_max = HWP_HIGHEST_PERF(cap);
698 }
699
700 static void intel_pstate_hwp_set(unsigned int cpu)
701 {
702         struct cpudata *cpu_data = all_cpu_data[cpu];
703         int max, min;
704         u64 value;
705         s16 epp;
706
707         max = cpu_data->max_perf_ratio;
708         min = cpu_data->min_perf_ratio;
709
710         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
711                 min = max;
712
713         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
714
715         value &= ~HWP_MIN_PERF(~0L);
716         value |= HWP_MIN_PERF(min);
717
718         value &= ~HWP_MAX_PERF(~0L);
719         value |= HWP_MAX_PERF(max);
720
721         if (cpu_data->epp_policy == cpu_data->policy)
722                 goto skip_epp;
723
724         cpu_data->epp_policy = cpu_data->policy;
725
726         if (cpu_data->epp_saved >= 0) {
727                 epp = cpu_data->epp_saved;
728                 cpu_data->epp_saved = -EINVAL;
729                 goto update_epp;
730         }
731
732         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
733                 epp = intel_pstate_get_epp(cpu_data, value);
734                 cpu_data->epp_powersave = epp;
735                 /* If EPP read was failed, then don't try to write */
736                 if (epp < 0)
737                         goto skip_epp;
738
739                 epp = 0;
740         } else {
741                 /* skip setting EPP, when saved value is invalid */
742                 if (cpu_data->epp_powersave < 0)
743                         goto skip_epp;
744
745                 /*
746                  * No need to restore EPP when it is not zero. This
747                  * means:
748                  *  - Policy is not changed
749                  *  - user has manually changed
750                  *  - Error reading EPB
751                  */
752                 epp = intel_pstate_get_epp(cpu_data, value);
753                 if (epp)
754                         goto skip_epp;
755
756                 epp = cpu_data->epp_powersave;
757         }
758 update_epp:
759         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
760                 value &= ~GENMASK_ULL(31, 24);
761                 value |= (u64)epp << 24;
762         } else {
763                 intel_pstate_set_epb(cpu, epp);
764         }
765 skip_epp:
766         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
767 }
768
769 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
770 {
771         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
772
773         if (!hwp_active)
774                 return 0;
775
776         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
777
778         return 0;
779 }
780
781 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
782
783 static int intel_pstate_resume(struct cpufreq_policy *policy)
784 {
785         if (!hwp_active)
786                 return 0;
787
788         mutex_lock(&intel_pstate_limits_lock);
789
790         if (policy->cpu == 0)
791                 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
792
793         all_cpu_data[policy->cpu]->epp_policy = 0;
794         intel_pstate_hwp_set(policy->cpu);
795
796         mutex_unlock(&intel_pstate_limits_lock);
797
798         return 0;
799 }
800
801 static void intel_pstate_update_policies(void)
802 {
803         int cpu;
804
805         for_each_possible_cpu(cpu)
806                 cpufreq_update_policy(cpu);
807 }
808
809 /************************** sysfs begin ************************/
810 #define show_one(file_name, object)                                     \
811         static ssize_t show_##file_name                                 \
812         (struct kobject *kobj, struct attribute *attr, char *buf)       \
813         {                                                               \
814                 return sprintf(buf, "%u\n", global.object);             \
815         }
816
817 static ssize_t intel_pstate_show_status(char *buf);
818 static int intel_pstate_update_status(const char *buf, size_t size);
819
820 static ssize_t show_status(struct kobject *kobj,
821                            struct attribute *attr, char *buf)
822 {
823         ssize_t ret;
824
825         mutex_lock(&intel_pstate_driver_lock);
826         ret = intel_pstate_show_status(buf);
827         mutex_unlock(&intel_pstate_driver_lock);
828
829         return ret;
830 }
831
832 static ssize_t store_status(struct kobject *a, struct attribute *b,
833                             const char *buf, size_t count)
834 {
835         char *p = memchr(buf, '\n', count);
836         int ret;
837
838         mutex_lock(&intel_pstate_driver_lock);
839         ret = intel_pstate_update_status(buf, p ? p - buf : count);
840         mutex_unlock(&intel_pstate_driver_lock);
841
842         return ret < 0 ? ret : count;
843 }
844
845 static ssize_t show_turbo_pct(struct kobject *kobj,
846                                 struct attribute *attr, char *buf)
847 {
848         struct cpudata *cpu;
849         int total, no_turbo, turbo_pct;
850         uint32_t turbo_fp;
851
852         mutex_lock(&intel_pstate_driver_lock);
853
854         if (!intel_pstate_driver) {
855                 mutex_unlock(&intel_pstate_driver_lock);
856                 return -EAGAIN;
857         }
858
859         cpu = all_cpu_data[0];
860
861         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
862         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
863         turbo_fp = div_fp(no_turbo, total);
864         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
865
866         mutex_unlock(&intel_pstate_driver_lock);
867
868         return sprintf(buf, "%u\n", turbo_pct);
869 }
870
871 static ssize_t show_num_pstates(struct kobject *kobj,
872                                 struct attribute *attr, char *buf)
873 {
874         struct cpudata *cpu;
875         int total;
876
877         mutex_lock(&intel_pstate_driver_lock);
878
879         if (!intel_pstate_driver) {
880                 mutex_unlock(&intel_pstate_driver_lock);
881                 return -EAGAIN;
882         }
883
884         cpu = all_cpu_data[0];
885         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
886
887         mutex_unlock(&intel_pstate_driver_lock);
888
889         return sprintf(buf, "%u\n", total);
890 }
891
892 static ssize_t show_no_turbo(struct kobject *kobj,
893                              struct attribute *attr, char *buf)
894 {
895         ssize_t ret;
896
897         mutex_lock(&intel_pstate_driver_lock);
898
899         if (!intel_pstate_driver) {
900                 mutex_unlock(&intel_pstate_driver_lock);
901                 return -EAGAIN;
902         }
903
904         update_turbo_state();
905         if (global.turbo_disabled)
906                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
907         else
908                 ret = sprintf(buf, "%u\n", global.no_turbo);
909
910         mutex_unlock(&intel_pstate_driver_lock);
911
912         return ret;
913 }
914
915 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
916                               const char *buf, size_t count)
917 {
918         unsigned int input;
919         int ret;
920
921         ret = sscanf(buf, "%u", &input);
922         if (ret != 1)
923                 return -EINVAL;
924
925         mutex_lock(&intel_pstate_driver_lock);
926
927         if (!intel_pstate_driver) {
928                 mutex_unlock(&intel_pstate_driver_lock);
929                 return -EAGAIN;
930         }
931
932         mutex_lock(&intel_pstate_limits_lock);
933
934         update_turbo_state();
935         if (global.turbo_disabled) {
936                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
937                 mutex_unlock(&intel_pstate_limits_lock);
938                 mutex_unlock(&intel_pstate_driver_lock);
939                 return -EPERM;
940         }
941
942         global.no_turbo = clamp_t(int, input, 0, 1);
943
944         if (global.no_turbo) {
945                 struct cpudata *cpu = all_cpu_data[0];
946                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
947
948                 /* Squash the global minimum into the permitted range. */
949                 if (global.min_perf_pct > pct)
950                         global.min_perf_pct = pct;
951         }
952
953         mutex_unlock(&intel_pstate_limits_lock);
954
955         intel_pstate_update_policies();
956
957         mutex_unlock(&intel_pstate_driver_lock);
958
959         return count;
960 }
961
962 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
963                                   const char *buf, size_t count)
964 {
965         unsigned int input;
966         int ret;
967
968         ret = sscanf(buf, "%u", &input);
969         if (ret != 1)
970                 return -EINVAL;
971
972         mutex_lock(&intel_pstate_driver_lock);
973
974         if (!intel_pstate_driver) {
975                 mutex_unlock(&intel_pstate_driver_lock);
976                 return -EAGAIN;
977         }
978
979         mutex_lock(&intel_pstate_limits_lock);
980
981         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
982
983         mutex_unlock(&intel_pstate_limits_lock);
984
985         intel_pstate_update_policies();
986
987         mutex_unlock(&intel_pstate_driver_lock);
988
989         return count;
990 }
991
992 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
993                                   const char *buf, size_t count)
994 {
995         unsigned int input;
996         int ret;
997
998         ret = sscanf(buf, "%u", &input);
999         if (ret != 1)
1000                 return -EINVAL;
1001
1002         mutex_lock(&intel_pstate_driver_lock);
1003
1004         if (!intel_pstate_driver) {
1005                 mutex_unlock(&intel_pstate_driver_lock);
1006                 return -EAGAIN;
1007         }
1008
1009         mutex_lock(&intel_pstate_limits_lock);
1010
1011         global.min_perf_pct = clamp_t(int, input,
1012                                       min_perf_pct_min(), global.max_perf_pct);
1013
1014         mutex_unlock(&intel_pstate_limits_lock);
1015
1016         intel_pstate_update_policies();
1017
1018         mutex_unlock(&intel_pstate_driver_lock);
1019
1020         return count;
1021 }
1022
1023 show_one(max_perf_pct, max_perf_pct);
1024 show_one(min_perf_pct, min_perf_pct);
1025
1026 define_one_global_rw(status);
1027 define_one_global_rw(no_turbo);
1028 define_one_global_rw(max_perf_pct);
1029 define_one_global_rw(min_perf_pct);
1030 define_one_global_ro(turbo_pct);
1031 define_one_global_ro(num_pstates);
1032
1033 static struct attribute *intel_pstate_attributes[] = {
1034         &status.attr,
1035         &no_turbo.attr,
1036         &turbo_pct.attr,
1037         &num_pstates.attr,
1038         NULL
1039 };
1040
1041 static const struct attribute_group intel_pstate_attr_group = {
1042         .attrs = intel_pstate_attributes,
1043 };
1044
1045 static void __init intel_pstate_sysfs_expose_params(void)
1046 {
1047         struct kobject *intel_pstate_kobject;
1048         int rc;
1049
1050         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1051                                                 &cpu_subsys.dev_root->kobj);
1052         if (WARN_ON(!intel_pstate_kobject))
1053                 return;
1054
1055         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1056         if (WARN_ON(rc))
1057                 return;
1058
1059         /*
1060          * If per cpu limits are enforced there are no global limits, so
1061          * return without creating max/min_perf_pct attributes
1062          */
1063         if (per_cpu_limits)
1064                 return;
1065
1066         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1067         WARN_ON(rc);
1068
1069         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1070         WARN_ON(rc);
1071
1072 }
1073 /************************** sysfs end ************************/
1074
1075 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1076 {
1077         /* First disable HWP notification interrupt as we don't process them */
1078         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1079                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1080
1081         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1082         cpudata->epp_policy = 0;
1083         if (cpudata->epp_default == -EINVAL)
1084                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1085 }
1086
1087 #define MSR_IA32_POWER_CTL_BIT_EE       19
1088
1089 /* Disable energy efficiency optimization */
1090 static void intel_pstate_disable_ee(int cpu)
1091 {
1092         u64 power_ctl;
1093         int ret;
1094
1095         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1096         if (ret)
1097                 return;
1098
1099         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1100                 pr_info("Disabling energy efficiency optimization\n");
1101                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1102                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1103         }
1104 }
1105
1106 static int atom_get_min_pstate(void)
1107 {
1108         u64 value;
1109
1110         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1111         return (value >> 8) & 0x7F;
1112 }
1113
1114 static int atom_get_max_pstate(void)
1115 {
1116         u64 value;
1117
1118         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1119         return (value >> 16) & 0x7F;
1120 }
1121
1122 static int atom_get_turbo_pstate(void)
1123 {
1124         u64 value;
1125
1126         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1127         return value & 0x7F;
1128 }
1129
1130 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1131 {
1132         u64 val;
1133         int32_t vid_fp;
1134         u32 vid;
1135
1136         val = (u64)pstate << 8;
1137         if (global.no_turbo && !global.turbo_disabled)
1138                 val |= (u64)1 << 32;
1139
1140         vid_fp = cpudata->vid.min + mul_fp(
1141                 int_tofp(pstate - cpudata->pstate.min_pstate),
1142                 cpudata->vid.ratio);
1143
1144         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1145         vid = ceiling_fp(vid_fp);
1146
1147         if (pstate > cpudata->pstate.max_pstate)
1148                 vid = cpudata->vid.turbo;
1149
1150         return val | vid;
1151 }
1152
1153 static int silvermont_get_scaling(void)
1154 {
1155         u64 value;
1156         int i;
1157         /* Defined in Table 35-6 from SDM (Sept 2015) */
1158         static int silvermont_freq_table[] = {
1159                 83300, 100000, 133300, 116700, 80000};
1160
1161         rdmsrl(MSR_FSB_FREQ, value);
1162         i = value & 0x7;
1163         WARN_ON(i > 4);
1164
1165         return silvermont_freq_table[i];
1166 }
1167
1168 static int airmont_get_scaling(void)
1169 {
1170         u64 value;
1171         int i;
1172         /* Defined in Table 35-10 from SDM (Sept 2015) */
1173         static int airmont_freq_table[] = {
1174                 83300, 100000, 133300, 116700, 80000,
1175                 93300, 90000, 88900, 87500};
1176
1177         rdmsrl(MSR_FSB_FREQ, value);
1178         i = value & 0xF;
1179         WARN_ON(i > 8);
1180
1181         return airmont_freq_table[i];
1182 }
1183
1184 static void atom_get_vid(struct cpudata *cpudata)
1185 {
1186         u64 value;
1187
1188         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1189         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1190         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1191         cpudata->vid.ratio = div_fp(
1192                 cpudata->vid.max - cpudata->vid.min,
1193                 int_tofp(cpudata->pstate.max_pstate -
1194                         cpudata->pstate.min_pstate));
1195
1196         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1197         cpudata->vid.turbo = value & 0x7f;
1198 }
1199
1200 static int core_get_min_pstate(void)
1201 {
1202         u64 value;
1203
1204         rdmsrl(MSR_PLATFORM_INFO, value);
1205         return (value >> 40) & 0xFF;
1206 }
1207
1208 static int core_get_max_pstate_physical(void)
1209 {
1210         u64 value;
1211
1212         rdmsrl(MSR_PLATFORM_INFO, value);
1213         return (value >> 8) & 0xFF;
1214 }
1215
1216 static int core_get_tdp_ratio(u64 plat_info)
1217 {
1218         /* Check how many TDP levels present */
1219         if (plat_info & 0x600000000) {
1220                 u64 tdp_ctrl;
1221                 u64 tdp_ratio;
1222                 int tdp_msr;
1223                 int err;
1224
1225                 /* Get the TDP level (0, 1, 2) to get ratios */
1226                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1227                 if (err)
1228                         return err;
1229
1230                 /* TDP MSR are continuous starting at 0x648 */
1231                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1232                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1233                 if (err)
1234                         return err;
1235
1236                 /* For level 1 and 2, bits[23:16] contain the ratio */
1237                 if (tdp_ctrl & 0x03)
1238                         tdp_ratio >>= 16;
1239
1240                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1241                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1242
1243                 return (int)tdp_ratio;
1244         }
1245
1246         return -ENXIO;
1247 }
1248
1249 static int core_get_max_pstate(void)
1250 {
1251         u64 tar;
1252         u64 plat_info;
1253         int max_pstate;
1254         int tdp_ratio;
1255         int err;
1256
1257         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1258         max_pstate = (plat_info >> 8) & 0xFF;
1259
1260         tdp_ratio = core_get_tdp_ratio(plat_info);
1261         if (tdp_ratio <= 0)
1262                 return max_pstate;
1263
1264         if (hwp_active) {
1265                 /* Turbo activation ratio is not used on HWP platforms */
1266                 return tdp_ratio;
1267         }
1268
1269         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1270         if (!err) {
1271                 int tar_levels;
1272
1273                 /* Do some sanity checking for safety */
1274                 tar_levels = tar & 0xff;
1275                 if (tdp_ratio - 1 == tar_levels) {
1276                         max_pstate = tar_levels;
1277                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1278                 }
1279         }
1280
1281         return max_pstate;
1282 }
1283
1284 static int core_get_turbo_pstate(void)
1285 {
1286         u64 value;
1287         int nont, ret;
1288
1289         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1290         nont = core_get_max_pstate();
1291         ret = (value) & 255;
1292         if (ret <= nont)
1293                 ret = nont;
1294         return ret;
1295 }
1296
1297 static inline int core_get_scaling(void)
1298 {
1299         return 100000;
1300 }
1301
1302 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1303 {
1304         u64 val;
1305
1306         val = (u64)pstate << 8;
1307         if (global.no_turbo && !global.turbo_disabled)
1308                 val |= (u64)1 << 32;
1309
1310         return val;
1311 }
1312
1313 static int knl_get_aperf_mperf_shift(void)
1314 {
1315         return 10;
1316 }
1317
1318 static int knl_get_turbo_pstate(void)
1319 {
1320         u64 value;
1321         int nont, ret;
1322
1323         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1324         nont = core_get_max_pstate();
1325         ret = (((value) >> 8) & 0xFF);
1326         if (ret <= nont)
1327                 ret = nont;
1328         return ret;
1329 }
1330
1331 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1332 {
1333         return global.no_turbo || global.turbo_disabled ?
1334                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1335 }
1336
1337 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1338 {
1339         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1340         cpu->pstate.current_pstate = pstate;
1341         /*
1342          * Generally, there is no guarantee that this code will always run on
1343          * the CPU being updated, so force the register update to run on the
1344          * right CPU.
1345          */
1346         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1347                       pstate_funcs.get_val(cpu, pstate));
1348 }
1349
1350 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1351 {
1352         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1353 }
1354
1355 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1356 {
1357         int pstate;
1358
1359         update_turbo_state();
1360         pstate = intel_pstate_get_base_pstate(cpu);
1361         pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1362         intel_pstate_set_pstate(cpu, pstate);
1363 }
1364
1365 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1366 {
1367         cpu->pstate.min_pstate = pstate_funcs.get_min();
1368         cpu->pstate.max_pstate = pstate_funcs.get_max();
1369         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1370         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1371         cpu->pstate.scaling = pstate_funcs.get_scaling();
1372         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1373         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1374
1375         if (pstate_funcs.get_aperf_mperf_shift)
1376                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1377
1378         if (pstate_funcs.get_vid)
1379                 pstate_funcs.get_vid(cpu);
1380
1381         intel_pstate_set_min_pstate(cpu);
1382 }
1383
1384 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1385 {
1386         struct sample *sample = &cpu->sample;
1387
1388         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1389 }
1390
1391 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1392 {
1393         u64 aperf, mperf;
1394         unsigned long flags;
1395         u64 tsc;
1396
1397         local_irq_save(flags);
1398         rdmsrl(MSR_IA32_APERF, aperf);
1399         rdmsrl(MSR_IA32_MPERF, mperf);
1400         tsc = rdtsc();
1401         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1402                 local_irq_restore(flags);
1403                 return false;
1404         }
1405         local_irq_restore(flags);
1406
1407         cpu->last_sample_time = cpu->sample.time;
1408         cpu->sample.time = time;
1409         cpu->sample.aperf = aperf;
1410         cpu->sample.mperf = mperf;
1411         cpu->sample.tsc =  tsc;
1412         cpu->sample.aperf -= cpu->prev_aperf;
1413         cpu->sample.mperf -= cpu->prev_mperf;
1414         cpu->sample.tsc -= cpu->prev_tsc;
1415
1416         cpu->prev_aperf = aperf;
1417         cpu->prev_mperf = mperf;
1418         cpu->prev_tsc = tsc;
1419         /*
1420          * First time this function is invoked in a given cycle, all of the
1421          * previous sample data fields are equal to zero or stale and they must
1422          * be populated with meaningful numbers for things to work, so assume
1423          * that sample.time will always be reset before setting the utilization
1424          * update hook and make the caller skip the sample then.
1425          */
1426         if (cpu->last_sample_time) {
1427                 intel_pstate_calc_avg_perf(cpu);
1428                 return true;
1429         }
1430         return false;
1431 }
1432
1433 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1434 {
1435         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1436 }
1437
1438 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1439 {
1440         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1441                           cpu->sample.core_avg_perf);
1442 }
1443
1444 static inline int32_t get_target_pstate(struct cpudata *cpu)
1445 {
1446         struct sample *sample = &cpu->sample;
1447         int32_t busy_frac, boost;
1448         int target, avg_pstate;
1449
1450         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1451                            sample->tsc);
1452
1453         boost = cpu->iowait_boost;
1454         cpu->iowait_boost >>= 1;
1455
1456         if (busy_frac < boost)
1457                 busy_frac = boost;
1458
1459         sample->busy_scaled = busy_frac * 100;
1460
1461         target = global.no_turbo || global.turbo_disabled ?
1462                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1463         target += target >> 2;
1464         target = mul_fp(target, busy_frac);
1465         if (target < cpu->pstate.min_pstate)
1466                 target = cpu->pstate.min_pstate;
1467
1468         /*
1469          * If the average P-state during the previous cycle was higher than the
1470          * current target, add 50% of the difference to the target to reduce
1471          * possible performance oscillations and offset possible performance
1472          * loss related to moving the workload from one CPU to another within
1473          * a package/module.
1474          */
1475         avg_pstate = get_avg_pstate(cpu);
1476         if (avg_pstate > target)
1477                 target += (avg_pstate - target) >> 1;
1478
1479         return target;
1480 }
1481
1482 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1483 {
1484         int max_pstate = intel_pstate_get_base_pstate(cpu);
1485         int min_pstate;
1486
1487         min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1488         max_pstate = max(min_pstate, cpu->max_perf_ratio);
1489         return clamp_t(int, pstate, min_pstate, max_pstate);
1490 }
1491
1492 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1493 {
1494         if (pstate == cpu->pstate.current_pstate)
1495                 return;
1496
1497         cpu->pstate.current_pstate = pstate;
1498         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1499 }
1500
1501 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1502 {
1503         int from = cpu->pstate.current_pstate;
1504         struct sample *sample;
1505         int target_pstate;
1506
1507         update_turbo_state();
1508
1509         target_pstate = get_target_pstate(cpu);
1510         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1511         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1512         intel_pstate_update_pstate(cpu, target_pstate);
1513
1514         sample = &cpu->sample;
1515         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1516                 fp_toint(sample->busy_scaled),
1517                 from,
1518                 cpu->pstate.current_pstate,
1519                 sample->mperf,
1520                 sample->aperf,
1521                 sample->tsc,
1522                 get_avg_frequency(cpu),
1523                 fp_toint(cpu->iowait_boost * 100));
1524 }
1525
1526 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1527                                      unsigned int flags)
1528 {
1529         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1530         u64 delta_ns;
1531
1532         /* Don't allow remote callbacks */
1533         if (smp_processor_id() != cpu->cpu)
1534                 return;
1535
1536         if (flags & SCHED_CPUFREQ_IOWAIT) {
1537                 cpu->iowait_boost = int_tofp(1);
1538                 cpu->last_update = time;
1539                 /*
1540                  * The last time the busy was 100% so P-state was max anyway
1541                  * so avoid overhead of computation.
1542                  */
1543                 if (fp_toint(cpu->sample.busy_scaled) == 100)
1544                         return;
1545
1546                 goto set_pstate;
1547         } else if (cpu->iowait_boost) {
1548                 /* Clear iowait_boost if the CPU may have been idle. */
1549                 delta_ns = time - cpu->last_update;
1550                 if (delta_ns > TICK_NSEC)
1551                         cpu->iowait_boost = 0;
1552         }
1553         cpu->last_update = time;
1554         delta_ns = time - cpu->sample.time;
1555         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1556                 return;
1557
1558 set_pstate:
1559         if (intel_pstate_sample(cpu, time))
1560                 intel_pstate_adjust_pstate(cpu);
1561 }
1562
1563 static struct pstate_funcs core_funcs = {
1564         .get_max = core_get_max_pstate,
1565         .get_max_physical = core_get_max_pstate_physical,
1566         .get_min = core_get_min_pstate,
1567         .get_turbo = core_get_turbo_pstate,
1568         .get_scaling = core_get_scaling,
1569         .get_val = core_get_val,
1570 };
1571
1572 static const struct pstate_funcs silvermont_funcs = {
1573         .get_max = atom_get_max_pstate,
1574         .get_max_physical = atom_get_max_pstate,
1575         .get_min = atom_get_min_pstate,
1576         .get_turbo = atom_get_turbo_pstate,
1577         .get_val = atom_get_val,
1578         .get_scaling = silvermont_get_scaling,
1579         .get_vid = atom_get_vid,
1580 };
1581
1582 static const struct pstate_funcs airmont_funcs = {
1583         .get_max = atom_get_max_pstate,
1584         .get_max_physical = atom_get_max_pstate,
1585         .get_min = atom_get_min_pstate,
1586         .get_turbo = atom_get_turbo_pstate,
1587         .get_val = atom_get_val,
1588         .get_scaling = airmont_get_scaling,
1589         .get_vid = atom_get_vid,
1590 };
1591
1592 static const struct pstate_funcs knl_funcs = {
1593         .get_max = core_get_max_pstate,
1594         .get_max_physical = core_get_max_pstate_physical,
1595         .get_min = core_get_min_pstate,
1596         .get_turbo = knl_get_turbo_pstate,
1597         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1598         .get_scaling = core_get_scaling,
1599         .get_val = core_get_val,
1600 };
1601
1602 #define ICPU(model, policy) \
1603         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1604                         (unsigned long)&policy }
1605
1606 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1607         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1608         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1609         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_funcs),
1610         ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1611         ICPU(INTEL_FAM6_HASWELL_CORE,           core_funcs),
1612         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_funcs),
1613         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1614         ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1615         ICPU(INTEL_FAM6_HASWELL_ULT,            core_funcs),
1616         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_funcs),
1617         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_funcs),
1618         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1619         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_funcs),
1620         ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1621         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_funcs),
1622         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_funcs),
1623         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1624         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1625         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          core_funcs),
1626         ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1627         ICPU(INTEL_FAM6_SKYLAKE_X,              core_funcs),
1628         {}
1629 };
1630 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1631
1632 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1633         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1634         ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1635         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1636         {}
1637 };
1638
1639 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1640         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1641         {}
1642 };
1643
1644 static int intel_pstate_init_cpu(unsigned int cpunum)
1645 {
1646         struct cpudata *cpu;
1647
1648         cpu = all_cpu_data[cpunum];
1649
1650         if (!cpu) {
1651                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1652                 if (!cpu)
1653                         return -ENOMEM;
1654
1655                 all_cpu_data[cpunum] = cpu;
1656
1657                 cpu->epp_default = -EINVAL;
1658                 cpu->epp_powersave = -EINVAL;
1659                 cpu->epp_saved = -EINVAL;
1660         }
1661
1662         cpu = all_cpu_data[cpunum];
1663
1664         cpu->cpu = cpunum;
1665
1666         if (hwp_active) {
1667                 const struct x86_cpu_id *id;
1668
1669                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1670                 if (id)
1671                         intel_pstate_disable_ee(cpunum);
1672
1673                 intel_pstate_hwp_enable(cpu);
1674         }
1675
1676         intel_pstate_get_cpu_pstates(cpu);
1677
1678         pr_debug("controlling: cpu %d\n", cpunum);
1679
1680         return 0;
1681 }
1682
1683 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1684 {
1685         struct cpudata *cpu = all_cpu_data[cpu_num];
1686
1687         if (hwp_active)
1688                 return;
1689
1690         if (cpu->update_util_set)
1691                 return;
1692
1693         /* Prevent intel_pstate_update_util() from using stale data. */
1694         cpu->sample.time = 0;
1695         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1696                                      intel_pstate_update_util);
1697         cpu->update_util_set = true;
1698 }
1699
1700 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1701 {
1702         struct cpudata *cpu_data = all_cpu_data[cpu];
1703
1704         if (!cpu_data->update_util_set)
1705                 return;
1706
1707         cpufreq_remove_update_util_hook(cpu);
1708         cpu_data->update_util_set = false;
1709         synchronize_sched();
1710 }
1711
1712 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1713 {
1714         return global.turbo_disabled || global.no_turbo ?
1715                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1716 }
1717
1718 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1719                                             struct cpudata *cpu)
1720 {
1721         int max_freq = intel_pstate_get_max_freq(cpu);
1722         int32_t max_policy_perf, min_policy_perf;
1723         int max_state, turbo_max;
1724
1725         /*
1726          * HWP needs some special consideration, because on BDX the
1727          * HWP_REQUEST uses abstract value to represent performance
1728          * rather than pure ratios.
1729          */
1730         if (hwp_active) {
1731                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1732         } else {
1733                 max_state = intel_pstate_get_base_pstate(cpu);
1734                 turbo_max = cpu->pstate.turbo_pstate;
1735         }
1736
1737         max_policy_perf = max_state * policy->max / max_freq;
1738         if (policy->max == policy->min) {
1739                 min_policy_perf = max_policy_perf;
1740         } else {
1741                 min_policy_perf = max_state * policy->min / max_freq;
1742                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1743                                           0, max_policy_perf);
1744         }
1745
1746         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1747                  policy->cpu, max_state,
1748                  min_policy_perf, max_policy_perf);
1749
1750         /* Normalize user input to [min_perf, max_perf] */
1751         if (per_cpu_limits) {
1752                 cpu->min_perf_ratio = min_policy_perf;
1753                 cpu->max_perf_ratio = max_policy_perf;
1754         } else {
1755                 int32_t global_min, global_max;
1756
1757                 /* Global limits are in percent of the maximum turbo P-state. */
1758                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1759                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1760                 global_min = clamp_t(int32_t, global_min, 0, global_max);
1761
1762                 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1763                          global_min, global_max);
1764
1765                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
1766                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1767                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
1768                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1769
1770                 /* Make sure min_perf <= max_perf */
1771                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1772                                           cpu->max_perf_ratio);
1773
1774         }
1775         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1776                  cpu->max_perf_ratio,
1777                  cpu->min_perf_ratio);
1778 }
1779
1780 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1781 {
1782         struct cpudata *cpu;
1783
1784         if (!policy->cpuinfo.max_freq)
1785                 return -ENODEV;
1786
1787         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1788                  policy->cpuinfo.max_freq, policy->max);
1789
1790         cpu = all_cpu_data[policy->cpu];
1791         cpu->policy = policy->policy;
1792
1793         mutex_lock(&intel_pstate_limits_lock);
1794
1795         intel_pstate_update_perf_limits(policy, cpu);
1796
1797         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1798                 /*
1799                  * NOHZ_FULL CPUs need this as the governor callback may not
1800                  * be invoked on them.
1801                  */
1802                 intel_pstate_clear_update_util_hook(policy->cpu);
1803                 intel_pstate_max_within_limits(cpu);
1804         } else {
1805                 intel_pstate_set_update_util_hook(policy->cpu);
1806         }
1807
1808         if (hwp_active)
1809                 intel_pstate_hwp_set(policy->cpu);
1810
1811         mutex_unlock(&intel_pstate_limits_lock);
1812
1813         return 0;
1814 }
1815
1816 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
1817                                          struct cpudata *cpu)
1818 {
1819         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1820             policy->max < policy->cpuinfo.max_freq &&
1821             policy->max > cpu->pstate.max_freq) {
1822                 pr_debug("policy->max > max non turbo frequency\n");
1823                 policy->max = policy->cpuinfo.max_freq;
1824         }
1825 }
1826
1827 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1828 {
1829         struct cpudata *cpu = all_cpu_data[policy->cpu];
1830
1831         update_turbo_state();
1832         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1833                                      intel_pstate_get_max_freq(cpu));
1834
1835         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1836             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1837                 return -EINVAL;
1838
1839         intel_pstate_adjust_policy_max(policy, cpu);
1840
1841         return 0;
1842 }
1843
1844 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1845 {
1846         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
1847 }
1848
1849 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1850 {
1851         pr_debug("CPU %d exiting\n", policy->cpu);
1852
1853         intel_pstate_clear_update_util_hook(policy->cpu);
1854         if (hwp_active)
1855                 intel_pstate_hwp_save_state(policy);
1856         else
1857                 intel_cpufreq_stop_cpu(policy);
1858 }
1859
1860 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1861 {
1862         intel_pstate_exit_perf_limits(policy);
1863
1864         policy->fast_switch_possible = false;
1865
1866         return 0;
1867 }
1868
1869 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1870 {
1871         struct cpudata *cpu;
1872         int rc;
1873
1874         rc = intel_pstate_init_cpu(policy->cpu);
1875         if (rc)
1876                 return rc;
1877
1878         cpu = all_cpu_data[policy->cpu];
1879
1880         cpu->max_perf_ratio = 0xFF;
1881         cpu->min_perf_ratio = 0;
1882
1883         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1884         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1885
1886         /* cpuinfo and default policy values */
1887         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1888         update_turbo_state();
1889         policy->cpuinfo.max_freq = global.turbo_disabled ?
1890                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1891         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1892
1893         intel_pstate_init_acpi_perf_limits(policy);
1894
1895         policy->fast_switch_possible = true;
1896
1897         return 0;
1898 }
1899
1900 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1901 {
1902         int ret = __intel_pstate_cpu_init(policy);
1903
1904         if (ret)
1905                 return ret;
1906
1907         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
1908                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1909         else
1910                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1911
1912         return 0;
1913 }
1914
1915 static struct cpufreq_driver intel_pstate = {
1916         .flags          = CPUFREQ_CONST_LOOPS,
1917         .verify         = intel_pstate_verify_policy,
1918         .setpolicy      = intel_pstate_set_policy,
1919         .suspend        = intel_pstate_hwp_save_state,
1920         .resume         = intel_pstate_resume,
1921         .init           = intel_pstate_cpu_init,
1922         .exit           = intel_pstate_cpu_exit,
1923         .stop_cpu       = intel_pstate_stop_cpu,
1924         .name           = "intel_pstate",
1925 };
1926
1927 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
1928 {
1929         struct cpudata *cpu = all_cpu_data[policy->cpu];
1930
1931         update_turbo_state();
1932         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1933                                      intel_pstate_get_max_freq(cpu));
1934
1935         intel_pstate_adjust_policy_max(policy, cpu);
1936
1937         intel_pstate_update_perf_limits(policy, cpu);
1938
1939         return 0;
1940 }
1941
1942 static int intel_cpufreq_target(struct cpufreq_policy *policy,
1943                                 unsigned int target_freq,
1944                                 unsigned int relation)
1945 {
1946         struct cpudata *cpu = all_cpu_data[policy->cpu];
1947         struct cpufreq_freqs freqs;
1948         int target_pstate;
1949
1950         update_turbo_state();
1951
1952         freqs.old = policy->cur;
1953         freqs.new = target_freq;
1954
1955         cpufreq_freq_transition_begin(policy, &freqs);
1956         switch (relation) {
1957         case CPUFREQ_RELATION_L:
1958                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
1959                 break;
1960         case CPUFREQ_RELATION_H:
1961                 target_pstate = freqs.new / cpu->pstate.scaling;
1962                 break;
1963         default:
1964                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
1965                 break;
1966         }
1967         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1968         if (target_pstate != cpu->pstate.current_pstate) {
1969                 cpu->pstate.current_pstate = target_pstate;
1970                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
1971                               pstate_funcs.get_val(cpu, target_pstate));
1972         }
1973         freqs.new = target_pstate * cpu->pstate.scaling;
1974         cpufreq_freq_transition_end(policy, &freqs, false);
1975
1976         return 0;
1977 }
1978
1979 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
1980                                               unsigned int target_freq)
1981 {
1982         struct cpudata *cpu = all_cpu_data[policy->cpu];
1983         int target_pstate;
1984
1985         update_turbo_state();
1986
1987         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
1988         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1989         intel_pstate_update_pstate(cpu, target_pstate);
1990         return target_pstate * cpu->pstate.scaling;
1991 }
1992
1993 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
1994 {
1995         int ret = __intel_pstate_cpu_init(policy);
1996
1997         if (ret)
1998                 return ret;
1999
2000         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2001         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2002         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2003         policy->cur = policy->cpuinfo.min_freq;
2004
2005         return 0;
2006 }
2007
2008 static struct cpufreq_driver intel_cpufreq = {
2009         .flags          = CPUFREQ_CONST_LOOPS,
2010         .verify         = intel_cpufreq_verify_policy,
2011         .target         = intel_cpufreq_target,
2012         .fast_switch    = intel_cpufreq_fast_switch,
2013         .init           = intel_cpufreq_cpu_init,
2014         .exit           = intel_pstate_cpu_exit,
2015         .stop_cpu       = intel_cpufreq_stop_cpu,
2016         .name           = "intel_cpufreq",
2017 };
2018
2019 static struct cpufreq_driver *default_driver = &intel_pstate;
2020
2021 static void intel_pstate_driver_cleanup(void)
2022 {
2023         unsigned int cpu;
2024
2025         get_online_cpus();
2026         for_each_online_cpu(cpu) {
2027                 if (all_cpu_data[cpu]) {
2028                         if (intel_pstate_driver == &intel_pstate)
2029                                 intel_pstate_clear_update_util_hook(cpu);
2030
2031                         kfree(all_cpu_data[cpu]);
2032                         all_cpu_data[cpu] = NULL;
2033                 }
2034         }
2035         put_online_cpus();
2036         intel_pstate_driver = NULL;
2037 }
2038
2039 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2040 {
2041         int ret;
2042
2043         memset(&global, 0, sizeof(global));
2044         global.max_perf_pct = 100;
2045
2046         intel_pstate_driver = driver;
2047         ret = cpufreq_register_driver(intel_pstate_driver);
2048         if (ret) {
2049                 intel_pstate_driver_cleanup();
2050                 return ret;
2051         }
2052
2053         global.min_perf_pct = min_perf_pct_min();
2054
2055         return 0;
2056 }
2057
2058 static int intel_pstate_unregister_driver(void)
2059 {
2060         if (hwp_active)
2061                 return -EBUSY;
2062
2063         cpufreq_unregister_driver(intel_pstate_driver);
2064         intel_pstate_driver_cleanup();
2065
2066         return 0;
2067 }
2068
2069 static ssize_t intel_pstate_show_status(char *buf)
2070 {
2071         if (!intel_pstate_driver)
2072                 return sprintf(buf, "off\n");
2073
2074         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2075                                         "active" : "passive");
2076 }
2077
2078 static int intel_pstate_update_status(const char *buf, size_t size)
2079 {
2080         int ret;
2081
2082         if (size == 3 && !strncmp(buf, "off", size))
2083                 return intel_pstate_driver ?
2084                         intel_pstate_unregister_driver() : -EINVAL;
2085
2086         if (size == 6 && !strncmp(buf, "active", size)) {
2087                 if (intel_pstate_driver) {
2088                         if (intel_pstate_driver == &intel_pstate)
2089                                 return 0;
2090
2091                         ret = intel_pstate_unregister_driver();
2092                         if (ret)
2093                                 return ret;
2094                 }
2095
2096                 return intel_pstate_register_driver(&intel_pstate);
2097         }
2098
2099         if (size == 7 && !strncmp(buf, "passive", size)) {
2100                 if (intel_pstate_driver) {
2101                         if (intel_pstate_driver == &intel_cpufreq)
2102                                 return 0;
2103
2104                         ret = intel_pstate_unregister_driver();
2105                         if (ret)
2106                                 return ret;
2107                 }
2108
2109                 return intel_pstate_register_driver(&intel_cpufreq);
2110         }
2111
2112         return -EINVAL;
2113 }
2114
2115 static int no_load __initdata;
2116 static int no_hwp __initdata;
2117 static int hwp_only __initdata;
2118 static unsigned int force_load __initdata;
2119
2120 static int __init intel_pstate_msrs_not_valid(void)
2121 {
2122         if (!pstate_funcs.get_max() ||
2123             !pstate_funcs.get_min() ||
2124             !pstate_funcs.get_turbo())
2125                 return -ENODEV;
2126
2127         return 0;
2128 }
2129
2130 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2131 {
2132         pstate_funcs.get_max   = funcs->get_max;
2133         pstate_funcs.get_max_physical = funcs->get_max_physical;
2134         pstate_funcs.get_min   = funcs->get_min;
2135         pstate_funcs.get_turbo = funcs->get_turbo;
2136         pstate_funcs.get_scaling = funcs->get_scaling;
2137         pstate_funcs.get_val   = funcs->get_val;
2138         pstate_funcs.get_vid   = funcs->get_vid;
2139         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2140 }
2141
2142 #ifdef CONFIG_ACPI
2143
2144 static bool __init intel_pstate_no_acpi_pss(void)
2145 {
2146         int i;
2147
2148         for_each_possible_cpu(i) {
2149                 acpi_status status;
2150                 union acpi_object *pss;
2151                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2152                 struct acpi_processor *pr = per_cpu(processors, i);
2153
2154                 if (!pr)
2155                         continue;
2156
2157                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2158                 if (ACPI_FAILURE(status))
2159                         continue;
2160
2161                 pss = buffer.pointer;
2162                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2163                         kfree(pss);
2164                         return false;
2165                 }
2166
2167                 kfree(pss);
2168         }
2169
2170         return true;
2171 }
2172
2173 static bool __init intel_pstate_has_acpi_ppc(void)
2174 {
2175         int i;
2176
2177         for_each_possible_cpu(i) {
2178                 struct acpi_processor *pr = per_cpu(processors, i);
2179
2180                 if (!pr)
2181                         continue;
2182                 if (acpi_has_method(pr->handle, "_PPC"))
2183                         return true;
2184         }
2185         return false;
2186 }
2187
2188 enum {
2189         PSS,
2190         PPC,
2191 };
2192
2193 /* Hardware vendor-specific info that has its own power management modes */
2194 static struct acpi_platform_list plat_info[] __initdata = {
2195         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2196         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2197         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2198         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2199         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2200         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2201         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2202         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2203         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2204         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2205         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2206         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2207         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2208         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2209         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2210         { } /* End */
2211 };
2212
2213 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2214 {
2215         const struct x86_cpu_id *id;
2216         u64 misc_pwr;
2217         int idx;
2218
2219         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2220         if (id) {
2221                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2222                 if ( misc_pwr & (1 << 8))
2223                         return true;
2224         }
2225
2226         idx = acpi_match_platform_list(plat_info);
2227         if (idx < 0)
2228                 return false;
2229
2230         switch (plat_info[idx].data) {
2231         case PSS:
2232                 return intel_pstate_no_acpi_pss();
2233         case PPC:
2234                 return intel_pstate_has_acpi_ppc() && !force_load;
2235         }
2236
2237         return false;
2238 }
2239
2240 static void intel_pstate_request_control_from_smm(void)
2241 {
2242         /*
2243          * It may be unsafe to request P-states control from SMM if _PPC support
2244          * has not been enabled.
2245          */
2246         if (acpi_ppc)
2247                 acpi_processor_pstate_control();
2248 }
2249 #else /* CONFIG_ACPI not enabled */
2250 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2251 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2252 static inline void intel_pstate_request_control_from_smm(void) {}
2253 #endif /* CONFIG_ACPI */
2254
2255 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2256         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2257         {}
2258 };
2259
2260 static int __init intel_pstate_init(void)
2261 {
2262         int rc;
2263
2264         if (no_load)
2265                 return -ENODEV;
2266
2267         if (x86_match_cpu(hwp_support_ids)) {
2268                 copy_cpu_funcs(&core_funcs);
2269                 if (!no_hwp) {
2270                         hwp_active++;
2271                         intel_pstate.attr = hwp_cpufreq_attrs;
2272                         goto hwp_cpu_matched;
2273                 }
2274         } else {
2275                 const struct x86_cpu_id *id;
2276
2277                 id = x86_match_cpu(intel_pstate_cpu_ids);
2278                 if (!id)
2279                         return -ENODEV;
2280
2281                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2282         }
2283
2284         if (intel_pstate_msrs_not_valid())
2285                 return -ENODEV;
2286
2287 hwp_cpu_matched:
2288         /*
2289          * The Intel pstate driver will be ignored if the platform
2290          * firmware has its own power management modes.
2291          */
2292         if (intel_pstate_platform_pwr_mgmt_exists())
2293                 return -ENODEV;
2294
2295         if (!hwp_active && hwp_only)
2296                 return -ENOTSUPP;
2297
2298         pr_info("Intel P-state driver initializing\n");
2299
2300         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2301         if (!all_cpu_data)
2302                 return -ENOMEM;
2303
2304         intel_pstate_request_control_from_smm();
2305
2306         intel_pstate_sysfs_expose_params();
2307
2308         mutex_lock(&intel_pstate_driver_lock);
2309         rc = intel_pstate_register_driver(default_driver);
2310         mutex_unlock(&intel_pstate_driver_lock);
2311         if (rc)
2312                 return rc;
2313
2314         if (hwp_active)
2315                 pr_info("HWP enabled\n");
2316
2317         return 0;
2318 }
2319 device_initcall(intel_pstate_init);
2320
2321 static int __init intel_pstate_setup(char *str)
2322 {
2323         if (!str)
2324                 return -EINVAL;
2325
2326         if (!strcmp(str, "disable")) {
2327                 no_load = 1;
2328         } else if (!strcmp(str, "passive")) {
2329                 pr_info("Passive mode enabled\n");
2330                 default_driver = &intel_cpufreq;
2331                 no_hwp = 1;
2332         }
2333         if (!strcmp(str, "no_hwp")) {
2334                 pr_info("HWP disabled\n");
2335                 no_hwp = 1;
2336         }
2337         if (!strcmp(str, "force"))
2338                 force_load = 1;
2339         if (!strcmp(str, "hwp_only"))
2340                 hwp_only = 1;
2341         if (!strcmp(str, "per_cpu_perf_limits"))
2342                 per_cpu_limits = true;
2343
2344 #ifdef CONFIG_ACPI
2345         if (!strcmp(str, "support_acpi_ppc"))
2346                 acpi_ppc = true;
2347 #endif
2348
2349         return 0;
2350 }
2351 early_param("intel_pstate", intel_pstate_setup);
2352
2353 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2354 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2355 MODULE_LICENSE("GPL");