Merge tag 'for-5.9-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-microblaze.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35
36 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
37
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
41
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50
51 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65         return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67
68 static inline int ceiling_fp(int32_t x)
69 {
70         int mask, ret;
71
72         ret = fp_toint(x);
73         mask = (1 << FRAC_BITS) - 1;
74         if (x & mask)
75                 ret += 1;
76         return ret;
77 }
78
79 static inline int32_t percent_fp(int percent)
80 {
81         return div_fp(percent, 100);
82 }
83
84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86         return (x * y) >> EXT_FRAC_BITS;
87 }
88
89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91         return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93
94 static inline int32_t percent_ext_fp(int percent)
95 {
96         return div_ext_fp(percent, 100);
97 }
98
99 /**
100  * struct sample -      Store performance sample
101  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
102  *                      performance during last sample period
103  * @busy_scaled:        Scaled busy value which is used to calculate next
104  *                      P state. This can be different than core_avg_perf
105  *                      to account for cpu idle period
106  * @aperf:              Difference of actual performance frequency clock count
107  *                      read from APERF MSR between last and current sample
108  * @mperf:              Difference of maximum performance frequency clock count
109  *                      read from MPERF MSR between last and current sample
110  * @tsc:                Difference of time stamp counter between last and
111  *                      current sample
112  * @time:               Current time from scheduler
113  *
114  * This structure is used in the cpudata structure to store performance sample
115  * data for choosing next P State.
116  */
117 struct sample {
118         int32_t core_avg_perf;
119         int32_t busy_scaled;
120         u64 aperf;
121         u64 mperf;
122         u64 tsc;
123         u64 time;
124 };
125
126 /**
127  * struct pstate_data - Store P state data
128  * @current_pstate:     Current requested P state
129  * @min_pstate:         Min P state possible for this platform
130  * @max_pstate:         Max P state possible for this platform
131  * @max_pstate_physical:This is physical Max P state for a processor
132  *                      This can be higher than the max_pstate which can
133  *                      be limited by platform thermal design power limits
134  * @scaling:            Scaling factor to  convert frequency to cpufreq
135  *                      frequency units
136  * @turbo_pstate:       Max Turbo P state possible for this platform
137  * @max_freq:           @max_pstate frequency in cpufreq units
138  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
139  *
140  * Stores the per cpu model P state limits and current P state.
141  */
142 struct pstate_data {
143         int     current_pstate;
144         int     min_pstate;
145         int     max_pstate;
146         int     max_pstate_physical;
147         int     scaling;
148         int     turbo_pstate;
149         unsigned int max_freq;
150         unsigned int turbo_freq;
151 };
152
153 /**
154  * struct vid_data -    Stores voltage information data
155  * @min:                VID data for this platform corresponding to
156  *                      the lowest P state
157  * @max:                VID data corresponding to the highest P State.
158  * @turbo:              VID data for turbo P state
159  * @ratio:              Ratio of (vid max - vid min) /
160  *                      (max P state - Min P State)
161  *
162  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163  * This data is used in Atom platforms, where in addition to target P state,
164  * the voltage data needs to be specified to select next P State.
165  */
166 struct vid_data {
167         int min;
168         int max;
169         int turbo;
170         int32_t ratio;
171 };
172
173 /**
174  * struct global_params - Global parameters, mostly tunable via sysfs.
175  * @no_turbo:           Whether or not to use turbo P-states.
176  * @turbo_disabled:     Whether or not turbo P-states are available at all,
177  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
178  *                      not the maximum reported turbo P-state is different from
179  *                      the maximum reported non-turbo one.
180  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
181  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
182  *                      P-state capacity.
183  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
184  *                      P-state capacity.
185  */
186 struct global_params {
187         bool no_turbo;
188         bool turbo_disabled;
189         bool turbo_disabled_mf;
190         int max_perf_pct;
191         int min_perf_pct;
192 };
193
194 /**
195  * struct cpudata -     Per CPU instance data storage
196  * @cpu:                CPU number for this instance data
197  * @policy:             CPUFreq policy value
198  * @update_util:        CPUFreq utility callback information
199  * @update_util_set:    CPUFreq utility callback is set
200  * @iowait_boost:       iowait-related boost fraction
201  * @last_update:        Time of the last update.
202  * @pstate:             Stores P state limits for this CPU
203  * @vid:                Stores VID limits for this CPU
204  * @last_sample_time:   Last Sample time
205  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
206  * @prev_aperf:         Last APERF value read from APERF MSR
207  * @prev_mperf:         Last MPERF value read from MPERF MSR
208  * @prev_tsc:           Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *                      current sample
211  * @sample:             Storage for storing last Sample data
212  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
215  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:      Last saved HWP energy performance preference
217  *                      (EPP) or energy performance bias (EPB),
218  *                      when policy switched to performance
219  * @epp_policy:         Last saved policy used to set EPP/EPB
220  * @epp_default:        Power on default HWP energy performance
221  *                      preference/bias
222  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
223  *                      operation
224  * @epp_cached          Cached HWP energy-performance preference value
225  * @hwp_req_cached:     Cached value of the last HWP Request MSR
226  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
227  * @last_io_update:     Last time when IO wake flag was set
228  * @sched_flags:        Store scheduler flags for possible cross CPU update
229  * @hwp_boost_min:      Last HWP boosted min performance
230  *
231  * This structure stores per CPU instance data for all CPUs.
232  */
233 struct cpudata {
234         int cpu;
235
236         unsigned int policy;
237         struct update_util_data update_util;
238         bool   update_util_set;
239
240         struct pstate_data pstate;
241         struct vid_data vid;
242
243         u64     last_update;
244         u64     last_sample_time;
245         u64     aperf_mperf_shift;
246         u64     prev_aperf;
247         u64     prev_mperf;
248         u64     prev_tsc;
249         u64     prev_cummulative_iowait;
250         struct sample sample;
251         int32_t min_perf_ratio;
252         int32_t max_perf_ratio;
253 #ifdef CONFIG_ACPI
254         struct acpi_processor_performance acpi_perf_data;
255         bool valid_pss_table;
256 #endif
257         unsigned int iowait_boost;
258         s16 epp_powersave;
259         s16 epp_policy;
260         s16 epp_default;
261         s16 epp_saved;
262         s16 epp_cached;
263         u64 hwp_req_cached;
264         u64 hwp_cap_cached;
265         u64 last_io_update;
266         unsigned int sched_flags;
267         u32 hwp_boost_min;
268 };
269
270 static struct cpudata **all_cpu_data;
271
272 /**
273  * struct pstate_funcs - Per CPU model specific callbacks
274  * @get_max:            Callback to get maximum non turbo effective P state
275  * @get_max_physical:   Callback to get maximum non turbo physical P state
276  * @get_min:            Callback to get minimum P state
277  * @get_turbo:          Callback to get turbo P state
278  * @get_scaling:        Callback to get frequency scaling factor
279  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
280  * @get_val:            Callback to convert P state to actual MSR write value
281  * @get_vid:            Callback to get VID data for Atom platforms
282  *
283  * Core and Atom CPU models have different way to get P State limits. This
284  * structure is used to store those callbacks.
285  */
286 struct pstate_funcs {
287         int (*get_max)(void);
288         int (*get_max_physical)(void);
289         int (*get_min)(void);
290         int (*get_turbo)(void);
291         int (*get_scaling)(void);
292         int (*get_aperf_mperf_shift)(void);
293         u64 (*get_val)(struct cpudata*, int pstate);
294         void (*get_vid)(struct cpudata *);
295 };
296
297 static struct pstate_funcs pstate_funcs __read_mostly;
298
299 static int hwp_active __read_mostly;
300 static int hwp_mode_bdw __read_mostly;
301 static bool per_cpu_limits __read_mostly;
302 static bool hwp_boost __read_mostly;
303
304 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
305
306 #ifdef CONFIG_ACPI
307 static bool acpi_ppc;
308 #endif
309
310 static struct global_params global;
311
312 static DEFINE_MUTEX(intel_pstate_driver_lock);
313 static DEFINE_MUTEX(intel_pstate_limits_lock);
314
315 #ifdef CONFIG_ACPI
316
317 static bool intel_pstate_acpi_pm_profile_server(void)
318 {
319         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
320             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
321                 return true;
322
323         return false;
324 }
325
326 static bool intel_pstate_get_ppc_enable_status(void)
327 {
328         if (intel_pstate_acpi_pm_profile_server())
329                 return true;
330
331         return acpi_ppc;
332 }
333
334 #ifdef CONFIG_ACPI_CPPC_LIB
335
336 /* The work item is needed to avoid CPU hotplug locking issues */
337 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
338 {
339         sched_set_itmt_support();
340 }
341
342 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
343
344 static void intel_pstate_set_itmt_prio(int cpu)
345 {
346         struct cppc_perf_caps cppc_perf;
347         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
348         int ret;
349
350         ret = cppc_get_perf_caps(cpu, &cppc_perf);
351         if (ret)
352                 return;
353
354         /*
355          * The priorities can be set regardless of whether or not
356          * sched_set_itmt_support(true) has been called and it is valid to
357          * update them at any time after it has been called.
358          */
359         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
360
361         if (max_highest_perf <= min_highest_perf) {
362                 if (cppc_perf.highest_perf > max_highest_perf)
363                         max_highest_perf = cppc_perf.highest_perf;
364
365                 if (cppc_perf.highest_perf < min_highest_perf)
366                         min_highest_perf = cppc_perf.highest_perf;
367
368                 if (max_highest_perf > min_highest_perf) {
369                         /*
370                          * This code can be run during CPU online under the
371                          * CPU hotplug locks, so sched_set_itmt_support()
372                          * cannot be called from here.  Queue up a work item
373                          * to invoke it.
374                          */
375                         schedule_work(&sched_itmt_work);
376                 }
377         }
378 }
379
380 static int intel_pstate_get_cppc_guranteed(int cpu)
381 {
382         struct cppc_perf_caps cppc_perf;
383         int ret;
384
385         ret = cppc_get_perf_caps(cpu, &cppc_perf);
386         if (ret)
387                 return ret;
388
389         if (cppc_perf.guaranteed_perf)
390                 return cppc_perf.guaranteed_perf;
391
392         return cppc_perf.nominal_perf;
393 }
394
395 #else /* CONFIG_ACPI_CPPC_LIB */
396 static void intel_pstate_set_itmt_prio(int cpu)
397 {
398 }
399 #endif /* CONFIG_ACPI_CPPC_LIB */
400
401 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
402 {
403         struct cpudata *cpu;
404         int ret;
405         int i;
406
407         if (hwp_active) {
408                 intel_pstate_set_itmt_prio(policy->cpu);
409                 return;
410         }
411
412         if (!intel_pstate_get_ppc_enable_status())
413                 return;
414
415         cpu = all_cpu_data[policy->cpu];
416
417         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
418                                                   policy->cpu);
419         if (ret)
420                 return;
421
422         /*
423          * Check if the control value in _PSS is for PERF_CTL MSR, which should
424          * guarantee that the states returned by it map to the states in our
425          * list directly.
426          */
427         if (cpu->acpi_perf_data.control_register.space_id !=
428                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
429                 goto err;
430
431         /*
432          * If there is only one entry _PSS, simply ignore _PSS and continue as
433          * usual without taking _PSS into account
434          */
435         if (cpu->acpi_perf_data.state_count < 2)
436                 goto err;
437
438         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
439         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
440                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
441                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
442                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
443                          (u32) cpu->acpi_perf_data.states[i].power,
444                          (u32) cpu->acpi_perf_data.states[i].control);
445         }
446
447         /*
448          * The _PSS table doesn't contain whole turbo frequency range.
449          * This just contains +1 MHZ above the max non turbo frequency,
450          * with control value corresponding to max turbo ratio. But
451          * when cpufreq set policy is called, it will call with this
452          * max frequency, which will cause a reduced performance as
453          * this driver uses real max turbo frequency as the max
454          * frequency. So correct this frequency in _PSS table to
455          * correct max turbo frequency based on the turbo state.
456          * Also need to convert to MHz as _PSS freq is in MHz.
457          */
458         if (!global.turbo_disabled)
459                 cpu->acpi_perf_data.states[0].core_frequency =
460                                         policy->cpuinfo.max_freq / 1000;
461         cpu->valid_pss_table = true;
462         pr_debug("_PPC limits will be enforced\n");
463
464         return;
465
466  err:
467         cpu->valid_pss_table = false;
468         acpi_processor_unregister_performance(policy->cpu);
469 }
470
471 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
472 {
473         struct cpudata *cpu;
474
475         cpu = all_cpu_data[policy->cpu];
476         if (!cpu->valid_pss_table)
477                 return;
478
479         acpi_processor_unregister_performance(policy->cpu);
480 }
481 #else /* CONFIG_ACPI */
482 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
483 {
484 }
485
486 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
487 {
488 }
489
490 static inline bool intel_pstate_acpi_pm_profile_server(void)
491 {
492         return false;
493 }
494 #endif /* CONFIG_ACPI */
495
496 #ifndef CONFIG_ACPI_CPPC_LIB
497 static int intel_pstate_get_cppc_guranteed(int cpu)
498 {
499         return -ENOTSUPP;
500 }
501 #endif /* CONFIG_ACPI_CPPC_LIB */
502
503 static inline void update_turbo_state(void)
504 {
505         u64 misc_en;
506         struct cpudata *cpu;
507
508         cpu = all_cpu_data[0];
509         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
510         global.turbo_disabled =
511                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
512                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
513 }
514
515 static int min_perf_pct_min(void)
516 {
517         struct cpudata *cpu = all_cpu_data[0];
518         int turbo_pstate = cpu->pstate.turbo_pstate;
519
520         return turbo_pstate ?
521                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
522 }
523
524 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
525 {
526         u64 epb;
527         int ret;
528
529         if (!boot_cpu_has(X86_FEATURE_EPB))
530                 return -ENXIO;
531
532         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
533         if (ret)
534                 return (s16)ret;
535
536         return (s16)(epb & 0x0f);
537 }
538
539 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
540 {
541         s16 epp;
542
543         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
544                 /*
545                  * When hwp_req_data is 0, means that caller didn't read
546                  * MSR_HWP_REQUEST, so need to read and get EPP.
547                  */
548                 if (!hwp_req_data) {
549                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
550                                             &hwp_req_data);
551                         if (epp)
552                                 return epp;
553                 }
554                 epp = (hwp_req_data >> 24) & 0xff;
555         } else {
556                 /* When there is no EPP present, HWP uses EPB settings */
557                 epp = intel_pstate_get_epb(cpu_data);
558         }
559
560         return epp;
561 }
562
563 static int intel_pstate_set_epb(int cpu, s16 pref)
564 {
565         u64 epb;
566         int ret;
567
568         if (!boot_cpu_has(X86_FEATURE_EPB))
569                 return -ENXIO;
570
571         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
572         if (ret)
573                 return ret;
574
575         epb = (epb & ~0x0f) | pref;
576         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
577
578         return 0;
579 }
580
581 /*
582  * EPP/EPB display strings corresponding to EPP index in the
583  * energy_perf_strings[]
584  *      index           String
585  *-------------------------------------
586  *      0               default
587  *      1               performance
588  *      2               balance_performance
589  *      3               balance_power
590  *      4               power
591  */
592 static const char * const energy_perf_strings[] = {
593         "default",
594         "performance",
595         "balance_performance",
596         "balance_power",
597         "power",
598         NULL
599 };
600 static const unsigned int epp_values[] = {
601         HWP_EPP_PERFORMANCE,
602         HWP_EPP_BALANCE_PERFORMANCE,
603         HWP_EPP_BALANCE_POWERSAVE,
604         HWP_EPP_POWERSAVE
605 };
606
607 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
608 {
609         s16 epp;
610         int index = -EINVAL;
611
612         *raw_epp = 0;
613         epp = intel_pstate_get_epp(cpu_data, 0);
614         if (epp < 0)
615                 return epp;
616
617         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
618                 if (epp == HWP_EPP_PERFORMANCE)
619                         return 1;
620                 if (epp == HWP_EPP_BALANCE_PERFORMANCE)
621                         return 2;
622                 if (epp == HWP_EPP_BALANCE_POWERSAVE)
623                         return 3;
624                 if (epp == HWP_EPP_POWERSAVE)
625                         return 4;
626                 *raw_epp = epp;
627                 return 0;
628         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
629                 /*
630                  * Range:
631                  *      0x00-0x03       :       Performance
632                  *      0x04-0x07       :       Balance performance
633                  *      0x08-0x0B       :       Balance power
634                  *      0x0C-0x0F       :       Power
635                  * The EPB is a 4 bit value, but our ranges restrict the
636                  * value which can be set. Here only using top two bits
637                  * effectively.
638                  */
639                 index = (epp >> 2) + 1;
640         }
641
642         return index;
643 }
644
645 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
646 {
647         /*
648          * Use the cached HWP Request MSR value, because in the active mode the
649          * register itself may be updated by intel_pstate_hwp_boost_up() or
650          * intel_pstate_hwp_boost_down() at any time.
651          */
652         u64 value = READ_ONCE(cpu->hwp_req_cached);
653
654         value &= ~GENMASK_ULL(31, 24);
655         value |= (u64)epp << 24;
656         /*
657          * The only other updater of hwp_req_cached in the active mode,
658          * intel_pstate_hwp_set(), is called under the same lock as this
659          * function, so it cannot run in parallel with the update below.
660          */
661         WRITE_ONCE(cpu->hwp_req_cached, value);
662         return wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
663 }
664
665 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
666                                               int pref_index, bool use_raw,
667                                               u32 raw_epp)
668 {
669         int epp = -EINVAL;
670         int ret;
671
672         if (!pref_index)
673                 epp = cpu_data->epp_default;
674
675         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
676                 if (use_raw)
677                         epp = raw_epp;
678                 else if (epp == -EINVAL)
679                         epp = epp_values[pref_index - 1];
680
681                 ret = intel_pstate_set_epp(cpu_data, epp);
682         } else {
683                 if (epp == -EINVAL)
684                         epp = (pref_index - 1) << 2;
685                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
686         }
687
688         return ret;
689 }
690
691 static ssize_t show_energy_performance_available_preferences(
692                                 struct cpufreq_policy *policy, char *buf)
693 {
694         int i = 0;
695         int ret = 0;
696
697         while (energy_perf_strings[i] != NULL)
698                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
699
700         ret += sprintf(&buf[ret], "\n");
701
702         return ret;
703 }
704
705 cpufreq_freq_attr_ro(energy_performance_available_preferences);
706
707 static struct cpufreq_driver intel_pstate;
708
709 static ssize_t store_energy_performance_preference(
710                 struct cpufreq_policy *policy, const char *buf, size_t count)
711 {
712         struct cpudata *cpu = all_cpu_data[policy->cpu];
713         char str_preference[21];
714         bool raw = false;
715         ssize_t ret;
716         u32 epp = 0;
717
718         ret = sscanf(buf, "%20s", str_preference);
719         if (ret != 1)
720                 return -EINVAL;
721
722         ret = match_string(energy_perf_strings, -1, str_preference);
723         if (ret < 0) {
724                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
725                         return ret;
726
727                 ret = kstrtouint(buf, 10, &epp);
728                 if (ret)
729                         return ret;
730
731                 if (epp > 255)
732                         return -EINVAL;
733
734                 raw = true;
735         }
736
737         /*
738          * This function runs with the policy R/W semaphore held, which
739          * guarantees that the driver pointer will not change while it is
740          * running.
741          */
742         if (!intel_pstate_driver)
743                 return -EAGAIN;
744
745         mutex_lock(&intel_pstate_limits_lock);
746
747         if (intel_pstate_driver == &intel_pstate) {
748                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
749         } else {
750                 /*
751                  * In the passive mode the governor needs to be stopped on the
752                  * target CPU before the EPP update and restarted after it,
753                  * which is super-heavy-weight, so make sure it is worth doing
754                  * upfront.
755                  */
756                 if (!raw)
757                         epp = ret ? epp_values[ret - 1] : cpu->epp_default;
758
759                 if (cpu->epp_cached != epp) {
760                         int err;
761
762                         cpufreq_stop_governor(policy);
763                         ret = intel_pstate_set_epp(cpu, epp);
764                         err = cpufreq_start_governor(policy);
765                         if (!ret) {
766                                 cpu->epp_cached = epp;
767                                 ret = err;
768                         }
769                 }
770         }
771
772         mutex_unlock(&intel_pstate_limits_lock);
773
774         return ret ?: count;
775 }
776
777 static ssize_t show_energy_performance_preference(
778                                 struct cpufreq_policy *policy, char *buf)
779 {
780         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
781         int preference, raw_epp;
782
783         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
784         if (preference < 0)
785                 return preference;
786
787         if (raw_epp)
788                 return  sprintf(buf, "%d\n", raw_epp);
789         else
790                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
791 }
792
793 cpufreq_freq_attr_rw(energy_performance_preference);
794
795 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
796 {
797         struct cpudata *cpu;
798         u64 cap;
799         int ratio;
800
801         ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
802         if (ratio <= 0) {
803                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
804                 ratio = HWP_GUARANTEED_PERF(cap);
805         }
806
807         cpu = all_cpu_data[policy->cpu];
808
809         return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
810 }
811
812 cpufreq_freq_attr_ro(base_frequency);
813
814 static struct freq_attr *hwp_cpufreq_attrs[] = {
815         &energy_performance_preference,
816         &energy_performance_available_preferences,
817         &base_frequency,
818         NULL,
819 };
820
821 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
822                                      int *current_max)
823 {
824         u64 cap;
825
826         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
827         WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
828         if (global.no_turbo)
829                 *current_max = HWP_GUARANTEED_PERF(cap);
830         else
831                 *current_max = HWP_HIGHEST_PERF(cap);
832
833         *phy_max = HWP_HIGHEST_PERF(cap);
834 }
835
836 static void intel_pstate_hwp_set(unsigned int cpu)
837 {
838         struct cpudata *cpu_data = all_cpu_data[cpu];
839         int max, min;
840         u64 value;
841         s16 epp;
842
843         max = cpu_data->max_perf_ratio;
844         min = cpu_data->min_perf_ratio;
845
846         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
847                 min = max;
848
849         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
850
851         value &= ~HWP_MIN_PERF(~0L);
852         value |= HWP_MIN_PERF(min);
853
854         value &= ~HWP_MAX_PERF(~0L);
855         value |= HWP_MAX_PERF(max);
856
857         if (cpu_data->epp_policy == cpu_data->policy)
858                 goto skip_epp;
859
860         cpu_data->epp_policy = cpu_data->policy;
861
862         if (cpu_data->epp_saved >= 0) {
863                 epp = cpu_data->epp_saved;
864                 cpu_data->epp_saved = -EINVAL;
865                 goto update_epp;
866         }
867
868         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
869                 epp = intel_pstate_get_epp(cpu_data, value);
870                 cpu_data->epp_powersave = epp;
871                 /* If EPP read was failed, then don't try to write */
872                 if (epp < 0)
873                         goto skip_epp;
874
875                 epp = 0;
876         } else {
877                 /* skip setting EPP, when saved value is invalid */
878                 if (cpu_data->epp_powersave < 0)
879                         goto skip_epp;
880
881                 /*
882                  * No need to restore EPP when it is not zero. This
883                  * means:
884                  *  - Policy is not changed
885                  *  - user has manually changed
886                  *  - Error reading EPB
887                  */
888                 epp = intel_pstate_get_epp(cpu_data, value);
889                 if (epp)
890                         goto skip_epp;
891
892                 epp = cpu_data->epp_powersave;
893         }
894 update_epp:
895         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
896                 value &= ~GENMASK_ULL(31, 24);
897                 value |= (u64)epp << 24;
898         } else {
899                 intel_pstate_set_epb(cpu, epp);
900         }
901 skip_epp:
902         WRITE_ONCE(cpu_data->hwp_req_cached, value);
903         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
904 }
905
906 static void intel_pstate_hwp_force_min_perf(int cpu)
907 {
908         u64 value;
909         int min_perf;
910
911         value = all_cpu_data[cpu]->hwp_req_cached;
912         value &= ~GENMASK_ULL(31, 0);
913         min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
914
915         /* Set hwp_max = hwp_min */
916         value |= HWP_MAX_PERF(min_perf);
917         value |= HWP_MIN_PERF(min_perf);
918
919         /* Set EPP to min */
920         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
921                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
922
923         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
924 }
925
926 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
927 {
928         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
929
930         if (!hwp_active)
931                 return 0;
932
933         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
934
935         return 0;
936 }
937
938 #define POWER_CTL_EE_ENABLE     1
939 #define POWER_CTL_EE_DISABLE    2
940
941 static int power_ctl_ee_state;
942
943 static void set_power_ctl_ee_state(bool input)
944 {
945         u64 power_ctl;
946
947         mutex_lock(&intel_pstate_driver_lock);
948         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
949         if (input) {
950                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
951                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
952         } else {
953                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
954                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
955         }
956         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
957         mutex_unlock(&intel_pstate_driver_lock);
958 }
959
960 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
961
962 static int intel_pstate_resume(struct cpufreq_policy *policy)
963 {
964
965         /* Only restore if the system default is changed */
966         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
967                 set_power_ctl_ee_state(true);
968         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
969                 set_power_ctl_ee_state(false);
970
971         if (!hwp_active)
972                 return 0;
973
974         mutex_lock(&intel_pstate_limits_lock);
975
976         if (policy->cpu == 0)
977                 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
978
979         all_cpu_data[policy->cpu]->epp_policy = 0;
980         intel_pstate_hwp_set(policy->cpu);
981
982         mutex_unlock(&intel_pstate_limits_lock);
983
984         return 0;
985 }
986
987 static void intel_pstate_update_policies(void)
988 {
989         int cpu;
990
991         for_each_possible_cpu(cpu)
992                 cpufreq_update_policy(cpu);
993 }
994
995 static void intel_pstate_update_max_freq(unsigned int cpu)
996 {
997         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
998         struct cpudata *cpudata;
999
1000         if (!policy)
1001                 return;
1002
1003         cpudata = all_cpu_data[cpu];
1004         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1005                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1006
1007         refresh_frequency_limits(policy);
1008
1009         cpufreq_cpu_release(policy);
1010 }
1011
1012 static void intel_pstate_update_limits(unsigned int cpu)
1013 {
1014         mutex_lock(&intel_pstate_driver_lock);
1015
1016         update_turbo_state();
1017         /*
1018          * If turbo has been turned on or off globally, policy limits for
1019          * all CPUs need to be updated to reflect that.
1020          */
1021         if (global.turbo_disabled_mf != global.turbo_disabled) {
1022                 global.turbo_disabled_mf = global.turbo_disabled;
1023                 arch_set_max_freq_ratio(global.turbo_disabled);
1024                 for_each_possible_cpu(cpu)
1025                         intel_pstate_update_max_freq(cpu);
1026         } else {
1027                 cpufreq_update_policy(cpu);
1028         }
1029
1030         mutex_unlock(&intel_pstate_driver_lock);
1031 }
1032
1033 /************************** sysfs begin ************************/
1034 #define show_one(file_name, object)                                     \
1035         static ssize_t show_##file_name                                 \
1036         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1037         {                                                               \
1038                 return sprintf(buf, "%u\n", global.object);             \
1039         }
1040
1041 static ssize_t intel_pstate_show_status(char *buf);
1042 static int intel_pstate_update_status(const char *buf, size_t size);
1043
1044 static ssize_t show_status(struct kobject *kobj,
1045                            struct kobj_attribute *attr, char *buf)
1046 {
1047         ssize_t ret;
1048
1049         mutex_lock(&intel_pstate_driver_lock);
1050         ret = intel_pstate_show_status(buf);
1051         mutex_unlock(&intel_pstate_driver_lock);
1052
1053         return ret;
1054 }
1055
1056 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1057                             const char *buf, size_t count)
1058 {
1059         char *p = memchr(buf, '\n', count);
1060         int ret;
1061
1062         mutex_lock(&intel_pstate_driver_lock);
1063         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1064         mutex_unlock(&intel_pstate_driver_lock);
1065
1066         return ret < 0 ? ret : count;
1067 }
1068
1069 static ssize_t show_turbo_pct(struct kobject *kobj,
1070                                 struct kobj_attribute *attr, char *buf)
1071 {
1072         struct cpudata *cpu;
1073         int total, no_turbo, turbo_pct;
1074         uint32_t turbo_fp;
1075
1076         mutex_lock(&intel_pstate_driver_lock);
1077
1078         if (!intel_pstate_driver) {
1079                 mutex_unlock(&intel_pstate_driver_lock);
1080                 return -EAGAIN;
1081         }
1082
1083         cpu = all_cpu_data[0];
1084
1085         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1086         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1087         turbo_fp = div_fp(no_turbo, total);
1088         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1089
1090         mutex_unlock(&intel_pstate_driver_lock);
1091
1092         return sprintf(buf, "%u\n", turbo_pct);
1093 }
1094
1095 static ssize_t show_num_pstates(struct kobject *kobj,
1096                                 struct kobj_attribute *attr, char *buf)
1097 {
1098         struct cpudata *cpu;
1099         int total;
1100
1101         mutex_lock(&intel_pstate_driver_lock);
1102
1103         if (!intel_pstate_driver) {
1104                 mutex_unlock(&intel_pstate_driver_lock);
1105                 return -EAGAIN;
1106         }
1107
1108         cpu = all_cpu_data[0];
1109         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1110
1111         mutex_unlock(&intel_pstate_driver_lock);
1112
1113         return sprintf(buf, "%u\n", total);
1114 }
1115
1116 static ssize_t show_no_turbo(struct kobject *kobj,
1117                              struct kobj_attribute *attr, char *buf)
1118 {
1119         ssize_t ret;
1120
1121         mutex_lock(&intel_pstate_driver_lock);
1122
1123         if (!intel_pstate_driver) {
1124                 mutex_unlock(&intel_pstate_driver_lock);
1125                 return -EAGAIN;
1126         }
1127
1128         update_turbo_state();
1129         if (global.turbo_disabled)
1130                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1131         else
1132                 ret = sprintf(buf, "%u\n", global.no_turbo);
1133
1134         mutex_unlock(&intel_pstate_driver_lock);
1135
1136         return ret;
1137 }
1138
1139 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1140                               const char *buf, size_t count)
1141 {
1142         unsigned int input;
1143         int ret;
1144
1145         ret = sscanf(buf, "%u", &input);
1146         if (ret != 1)
1147                 return -EINVAL;
1148
1149         mutex_lock(&intel_pstate_driver_lock);
1150
1151         if (!intel_pstate_driver) {
1152                 mutex_unlock(&intel_pstate_driver_lock);
1153                 return -EAGAIN;
1154         }
1155
1156         mutex_lock(&intel_pstate_limits_lock);
1157
1158         update_turbo_state();
1159         if (global.turbo_disabled) {
1160                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1161                 mutex_unlock(&intel_pstate_limits_lock);
1162                 mutex_unlock(&intel_pstate_driver_lock);
1163                 return -EPERM;
1164         }
1165
1166         global.no_turbo = clamp_t(int, input, 0, 1);
1167
1168         if (global.no_turbo) {
1169                 struct cpudata *cpu = all_cpu_data[0];
1170                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1171
1172                 /* Squash the global minimum into the permitted range. */
1173                 if (global.min_perf_pct > pct)
1174                         global.min_perf_pct = pct;
1175         }
1176
1177         mutex_unlock(&intel_pstate_limits_lock);
1178
1179         intel_pstate_update_policies();
1180
1181         mutex_unlock(&intel_pstate_driver_lock);
1182
1183         return count;
1184 }
1185
1186 static void update_qos_request(enum freq_qos_req_type type)
1187 {
1188         int max_state, turbo_max, freq, i, perf_pct;
1189         struct freq_qos_request *req;
1190         struct cpufreq_policy *policy;
1191
1192         for_each_possible_cpu(i) {
1193                 struct cpudata *cpu = all_cpu_data[i];
1194
1195                 policy = cpufreq_cpu_get(i);
1196                 if (!policy)
1197                         continue;
1198
1199                 req = policy->driver_data;
1200                 cpufreq_cpu_put(policy);
1201
1202                 if (!req)
1203                         continue;
1204
1205                 if (hwp_active)
1206                         intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1207                 else
1208                         turbo_max = cpu->pstate.turbo_pstate;
1209
1210                 if (type == FREQ_QOS_MIN) {
1211                         perf_pct = global.min_perf_pct;
1212                 } else {
1213                         req++;
1214                         perf_pct = global.max_perf_pct;
1215                 }
1216
1217                 freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1218                 freq *= cpu->pstate.scaling;
1219
1220                 if (freq_qos_update_request(req, freq) < 0)
1221                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1222         }
1223 }
1224
1225 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1226                                   const char *buf, size_t count)
1227 {
1228         unsigned int input;
1229         int ret;
1230
1231         ret = sscanf(buf, "%u", &input);
1232         if (ret != 1)
1233                 return -EINVAL;
1234
1235         mutex_lock(&intel_pstate_driver_lock);
1236
1237         if (!intel_pstate_driver) {
1238                 mutex_unlock(&intel_pstate_driver_lock);
1239                 return -EAGAIN;
1240         }
1241
1242         mutex_lock(&intel_pstate_limits_lock);
1243
1244         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1245
1246         mutex_unlock(&intel_pstate_limits_lock);
1247
1248         if (intel_pstate_driver == &intel_pstate)
1249                 intel_pstate_update_policies();
1250         else
1251                 update_qos_request(FREQ_QOS_MAX);
1252
1253         mutex_unlock(&intel_pstate_driver_lock);
1254
1255         return count;
1256 }
1257
1258 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1259                                   const char *buf, size_t count)
1260 {
1261         unsigned int input;
1262         int ret;
1263
1264         ret = sscanf(buf, "%u", &input);
1265         if (ret != 1)
1266                 return -EINVAL;
1267
1268         mutex_lock(&intel_pstate_driver_lock);
1269
1270         if (!intel_pstate_driver) {
1271                 mutex_unlock(&intel_pstate_driver_lock);
1272                 return -EAGAIN;
1273         }
1274
1275         mutex_lock(&intel_pstate_limits_lock);
1276
1277         global.min_perf_pct = clamp_t(int, input,
1278                                       min_perf_pct_min(), global.max_perf_pct);
1279
1280         mutex_unlock(&intel_pstate_limits_lock);
1281
1282         if (intel_pstate_driver == &intel_pstate)
1283                 intel_pstate_update_policies();
1284         else
1285                 update_qos_request(FREQ_QOS_MIN);
1286
1287         mutex_unlock(&intel_pstate_driver_lock);
1288
1289         return count;
1290 }
1291
1292 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1293                                 struct kobj_attribute *attr, char *buf)
1294 {
1295         return sprintf(buf, "%u\n", hwp_boost);
1296 }
1297
1298 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1299                                        struct kobj_attribute *b,
1300                                        const char *buf, size_t count)
1301 {
1302         unsigned int input;
1303         int ret;
1304
1305         ret = kstrtouint(buf, 10, &input);
1306         if (ret)
1307                 return ret;
1308
1309         mutex_lock(&intel_pstate_driver_lock);
1310         hwp_boost = !!input;
1311         intel_pstate_update_policies();
1312         mutex_unlock(&intel_pstate_driver_lock);
1313
1314         return count;
1315 }
1316
1317 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1318                                       char *buf)
1319 {
1320         u64 power_ctl;
1321         int enable;
1322
1323         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1324         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1325         return sprintf(buf, "%d\n", !enable);
1326 }
1327
1328 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1329                                        const char *buf, size_t count)
1330 {
1331         bool input;
1332         int ret;
1333
1334         ret = kstrtobool(buf, &input);
1335         if (ret)
1336                 return ret;
1337
1338         set_power_ctl_ee_state(input);
1339
1340         return count;
1341 }
1342
1343 show_one(max_perf_pct, max_perf_pct);
1344 show_one(min_perf_pct, min_perf_pct);
1345
1346 define_one_global_rw(status);
1347 define_one_global_rw(no_turbo);
1348 define_one_global_rw(max_perf_pct);
1349 define_one_global_rw(min_perf_pct);
1350 define_one_global_ro(turbo_pct);
1351 define_one_global_ro(num_pstates);
1352 define_one_global_rw(hwp_dynamic_boost);
1353 define_one_global_rw(energy_efficiency);
1354
1355 static struct attribute *intel_pstate_attributes[] = {
1356         &status.attr,
1357         &no_turbo.attr,
1358         &turbo_pct.attr,
1359         &num_pstates.attr,
1360         NULL
1361 };
1362
1363 static const struct attribute_group intel_pstate_attr_group = {
1364         .attrs = intel_pstate_attributes,
1365 };
1366
1367 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1368
1369 static struct kobject *intel_pstate_kobject;
1370
1371 static void __init intel_pstate_sysfs_expose_params(void)
1372 {
1373         int rc;
1374
1375         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1376                                                 &cpu_subsys.dev_root->kobj);
1377         if (WARN_ON(!intel_pstate_kobject))
1378                 return;
1379
1380         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1381         if (WARN_ON(rc))
1382                 return;
1383
1384         /*
1385          * If per cpu limits are enforced there are no global limits, so
1386          * return without creating max/min_perf_pct attributes
1387          */
1388         if (per_cpu_limits)
1389                 return;
1390
1391         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1392         WARN_ON(rc);
1393
1394         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1395         WARN_ON(rc);
1396
1397         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1398                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1399                 WARN_ON(rc);
1400         }
1401 }
1402
1403 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1404 {
1405         int rc;
1406
1407         if (!hwp_active)
1408                 return;
1409
1410         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1411         WARN_ON_ONCE(rc);
1412 }
1413
1414 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1415 {
1416         if (!hwp_active)
1417                 return;
1418
1419         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1420 }
1421
1422 /************************** sysfs end ************************/
1423
1424 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1425 {
1426         /* First disable HWP notification interrupt as we don't process them */
1427         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1428                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1429
1430         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1431         cpudata->epp_policy = 0;
1432         if (cpudata->epp_default == -EINVAL)
1433                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1434 }
1435
1436 static int atom_get_min_pstate(void)
1437 {
1438         u64 value;
1439
1440         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1441         return (value >> 8) & 0x7F;
1442 }
1443
1444 static int atom_get_max_pstate(void)
1445 {
1446         u64 value;
1447
1448         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1449         return (value >> 16) & 0x7F;
1450 }
1451
1452 static int atom_get_turbo_pstate(void)
1453 {
1454         u64 value;
1455
1456         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1457         return value & 0x7F;
1458 }
1459
1460 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1461 {
1462         u64 val;
1463         int32_t vid_fp;
1464         u32 vid;
1465
1466         val = (u64)pstate << 8;
1467         if (global.no_turbo && !global.turbo_disabled)
1468                 val |= (u64)1 << 32;
1469
1470         vid_fp = cpudata->vid.min + mul_fp(
1471                 int_tofp(pstate - cpudata->pstate.min_pstate),
1472                 cpudata->vid.ratio);
1473
1474         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1475         vid = ceiling_fp(vid_fp);
1476
1477         if (pstate > cpudata->pstate.max_pstate)
1478                 vid = cpudata->vid.turbo;
1479
1480         return val | vid;
1481 }
1482
1483 static int silvermont_get_scaling(void)
1484 {
1485         u64 value;
1486         int i;
1487         /* Defined in Table 35-6 from SDM (Sept 2015) */
1488         static int silvermont_freq_table[] = {
1489                 83300, 100000, 133300, 116700, 80000};
1490
1491         rdmsrl(MSR_FSB_FREQ, value);
1492         i = value & 0x7;
1493         WARN_ON(i > 4);
1494
1495         return silvermont_freq_table[i];
1496 }
1497
1498 static int airmont_get_scaling(void)
1499 {
1500         u64 value;
1501         int i;
1502         /* Defined in Table 35-10 from SDM (Sept 2015) */
1503         static int airmont_freq_table[] = {
1504                 83300, 100000, 133300, 116700, 80000,
1505                 93300, 90000, 88900, 87500};
1506
1507         rdmsrl(MSR_FSB_FREQ, value);
1508         i = value & 0xF;
1509         WARN_ON(i > 8);
1510
1511         return airmont_freq_table[i];
1512 }
1513
1514 static void atom_get_vid(struct cpudata *cpudata)
1515 {
1516         u64 value;
1517
1518         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1519         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1520         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1521         cpudata->vid.ratio = div_fp(
1522                 cpudata->vid.max - cpudata->vid.min,
1523                 int_tofp(cpudata->pstate.max_pstate -
1524                         cpudata->pstate.min_pstate));
1525
1526         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1527         cpudata->vid.turbo = value & 0x7f;
1528 }
1529
1530 static int core_get_min_pstate(void)
1531 {
1532         u64 value;
1533
1534         rdmsrl(MSR_PLATFORM_INFO, value);
1535         return (value >> 40) & 0xFF;
1536 }
1537
1538 static int core_get_max_pstate_physical(void)
1539 {
1540         u64 value;
1541
1542         rdmsrl(MSR_PLATFORM_INFO, value);
1543         return (value >> 8) & 0xFF;
1544 }
1545
1546 static int core_get_tdp_ratio(u64 plat_info)
1547 {
1548         /* Check how many TDP levels present */
1549         if (plat_info & 0x600000000) {
1550                 u64 tdp_ctrl;
1551                 u64 tdp_ratio;
1552                 int tdp_msr;
1553                 int err;
1554
1555                 /* Get the TDP level (0, 1, 2) to get ratios */
1556                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1557                 if (err)
1558                         return err;
1559
1560                 /* TDP MSR are continuous starting at 0x648 */
1561                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1562                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1563                 if (err)
1564                         return err;
1565
1566                 /* For level 1 and 2, bits[23:16] contain the ratio */
1567                 if (tdp_ctrl & 0x03)
1568                         tdp_ratio >>= 16;
1569
1570                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1571                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1572
1573                 return (int)tdp_ratio;
1574         }
1575
1576         return -ENXIO;
1577 }
1578
1579 static int core_get_max_pstate(void)
1580 {
1581         u64 tar;
1582         u64 plat_info;
1583         int max_pstate;
1584         int tdp_ratio;
1585         int err;
1586
1587         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1588         max_pstate = (plat_info >> 8) & 0xFF;
1589
1590         tdp_ratio = core_get_tdp_ratio(plat_info);
1591         if (tdp_ratio <= 0)
1592                 return max_pstate;
1593
1594         if (hwp_active) {
1595                 /* Turbo activation ratio is not used on HWP platforms */
1596                 return tdp_ratio;
1597         }
1598
1599         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1600         if (!err) {
1601                 int tar_levels;
1602
1603                 /* Do some sanity checking for safety */
1604                 tar_levels = tar & 0xff;
1605                 if (tdp_ratio - 1 == tar_levels) {
1606                         max_pstate = tar_levels;
1607                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1608                 }
1609         }
1610
1611         return max_pstate;
1612 }
1613
1614 static int core_get_turbo_pstate(void)
1615 {
1616         u64 value;
1617         int nont, ret;
1618
1619         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1620         nont = core_get_max_pstate();
1621         ret = (value) & 255;
1622         if (ret <= nont)
1623                 ret = nont;
1624         return ret;
1625 }
1626
1627 static inline int core_get_scaling(void)
1628 {
1629         return 100000;
1630 }
1631
1632 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1633 {
1634         u64 val;
1635
1636         val = (u64)pstate << 8;
1637         if (global.no_turbo && !global.turbo_disabled)
1638                 val |= (u64)1 << 32;
1639
1640         return val;
1641 }
1642
1643 static int knl_get_aperf_mperf_shift(void)
1644 {
1645         return 10;
1646 }
1647
1648 static int knl_get_turbo_pstate(void)
1649 {
1650         u64 value;
1651         int nont, ret;
1652
1653         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1654         nont = core_get_max_pstate();
1655         ret = (((value) >> 8) & 0xFF);
1656         if (ret <= nont)
1657                 ret = nont;
1658         return ret;
1659 }
1660
1661 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1662 {
1663         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1664         cpu->pstate.current_pstate = pstate;
1665         /*
1666          * Generally, there is no guarantee that this code will always run on
1667          * the CPU being updated, so force the register update to run on the
1668          * right CPU.
1669          */
1670         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1671                       pstate_funcs.get_val(cpu, pstate));
1672 }
1673
1674 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1675 {
1676         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1677 }
1678
1679 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1680 {
1681         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1682
1683         update_turbo_state();
1684         intel_pstate_set_pstate(cpu, pstate);
1685 }
1686
1687 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1688 {
1689         cpu->pstate.min_pstate = pstate_funcs.get_min();
1690         cpu->pstate.max_pstate = pstate_funcs.get_max();
1691         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1692         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1693         cpu->pstate.scaling = pstate_funcs.get_scaling();
1694         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1695
1696         if (hwp_active && !hwp_mode_bdw) {
1697                 unsigned int phy_max, current_max;
1698
1699                 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1700                 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1701                 cpu->pstate.turbo_pstate = phy_max;
1702         } else {
1703                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1704         }
1705
1706         if (pstate_funcs.get_aperf_mperf_shift)
1707                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1708
1709         if (pstate_funcs.get_vid)
1710                 pstate_funcs.get_vid(cpu);
1711
1712         intel_pstate_set_min_pstate(cpu);
1713 }
1714
1715 /*
1716  * Long hold time will keep high perf limits for long time,
1717  * which negatively impacts perf/watt for some workloads,
1718  * like specpower. 3ms is based on experiements on some
1719  * workoads.
1720  */
1721 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1722
1723 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1724 {
1725         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1726         u32 max_limit = (hwp_req & 0xff00) >> 8;
1727         u32 min_limit = (hwp_req & 0xff);
1728         u32 boost_level1;
1729
1730         /*
1731          * Cases to consider (User changes via sysfs or boot time):
1732          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1733          *      No boost, return.
1734          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1735          *     Should result in one level boost only for P0.
1736          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1737          *     Should result in two level boost:
1738          *         (min + p1)/2 and P1.
1739          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1740          *     Should result in three level boost:
1741          *        (min + p1)/2, P1 and P0.
1742          */
1743
1744         /* If max and min are equal or already at max, nothing to boost */
1745         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1746                 return;
1747
1748         if (!cpu->hwp_boost_min)
1749                 cpu->hwp_boost_min = min_limit;
1750
1751         /* level at half way mark between min and guranteed */
1752         boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1753
1754         if (cpu->hwp_boost_min < boost_level1)
1755                 cpu->hwp_boost_min = boost_level1;
1756         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1757                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1758         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1759                  max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1760                 cpu->hwp_boost_min = max_limit;
1761         else
1762                 return;
1763
1764         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1765         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1766         cpu->last_update = cpu->sample.time;
1767 }
1768
1769 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1770 {
1771         if (cpu->hwp_boost_min) {
1772                 bool expired;
1773
1774                 /* Check if we are idle for hold time to boost down */
1775                 expired = time_after64(cpu->sample.time, cpu->last_update +
1776                                        hwp_boost_hold_time_ns);
1777                 if (expired) {
1778                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1779                         cpu->hwp_boost_min = 0;
1780                 }
1781         }
1782         cpu->last_update = cpu->sample.time;
1783 }
1784
1785 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1786                                                       u64 time)
1787 {
1788         cpu->sample.time = time;
1789
1790         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1791                 bool do_io = false;
1792
1793                 cpu->sched_flags = 0;
1794                 /*
1795                  * Set iowait_boost flag and update time. Since IO WAIT flag
1796                  * is set all the time, we can't just conclude that there is
1797                  * some IO bound activity is scheduled on this CPU with just
1798                  * one occurrence. If we receive at least two in two
1799                  * consecutive ticks, then we treat as boost candidate.
1800                  */
1801                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1802                         do_io = true;
1803
1804                 cpu->last_io_update = time;
1805
1806                 if (do_io)
1807                         intel_pstate_hwp_boost_up(cpu);
1808
1809         } else {
1810                 intel_pstate_hwp_boost_down(cpu);
1811         }
1812 }
1813
1814 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1815                                                 u64 time, unsigned int flags)
1816 {
1817         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1818
1819         cpu->sched_flags |= flags;
1820
1821         if (smp_processor_id() == cpu->cpu)
1822                 intel_pstate_update_util_hwp_local(cpu, time);
1823 }
1824
1825 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1826 {
1827         struct sample *sample = &cpu->sample;
1828
1829         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1830 }
1831
1832 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1833 {
1834         u64 aperf, mperf;
1835         unsigned long flags;
1836         u64 tsc;
1837
1838         local_irq_save(flags);
1839         rdmsrl(MSR_IA32_APERF, aperf);
1840         rdmsrl(MSR_IA32_MPERF, mperf);
1841         tsc = rdtsc();
1842         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1843                 local_irq_restore(flags);
1844                 return false;
1845         }
1846         local_irq_restore(flags);
1847
1848         cpu->last_sample_time = cpu->sample.time;
1849         cpu->sample.time = time;
1850         cpu->sample.aperf = aperf;
1851         cpu->sample.mperf = mperf;
1852         cpu->sample.tsc =  tsc;
1853         cpu->sample.aperf -= cpu->prev_aperf;
1854         cpu->sample.mperf -= cpu->prev_mperf;
1855         cpu->sample.tsc -= cpu->prev_tsc;
1856
1857         cpu->prev_aperf = aperf;
1858         cpu->prev_mperf = mperf;
1859         cpu->prev_tsc = tsc;
1860         /*
1861          * First time this function is invoked in a given cycle, all of the
1862          * previous sample data fields are equal to zero or stale and they must
1863          * be populated with meaningful numbers for things to work, so assume
1864          * that sample.time will always be reset before setting the utilization
1865          * update hook and make the caller skip the sample then.
1866          */
1867         if (cpu->last_sample_time) {
1868                 intel_pstate_calc_avg_perf(cpu);
1869                 return true;
1870         }
1871         return false;
1872 }
1873
1874 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1875 {
1876         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1877 }
1878
1879 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1880 {
1881         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1882                           cpu->sample.core_avg_perf);
1883 }
1884
1885 static inline int32_t get_target_pstate(struct cpudata *cpu)
1886 {
1887         struct sample *sample = &cpu->sample;
1888         int32_t busy_frac;
1889         int target, avg_pstate;
1890
1891         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1892                            sample->tsc);
1893
1894         if (busy_frac < cpu->iowait_boost)
1895                 busy_frac = cpu->iowait_boost;
1896
1897         sample->busy_scaled = busy_frac * 100;
1898
1899         target = global.no_turbo || global.turbo_disabled ?
1900                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1901         target += target >> 2;
1902         target = mul_fp(target, busy_frac);
1903         if (target < cpu->pstate.min_pstate)
1904                 target = cpu->pstate.min_pstate;
1905
1906         /*
1907          * If the average P-state during the previous cycle was higher than the
1908          * current target, add 50% of the difference to the target to reduce
1909          * possible performance oscillations and offset possible performance
1910          * loss related to moving the workload from one CPU to another within
1911          * a package/module.
1912          */
1913         avg_pstate = get_avg_pstate(cpu);
1914         if (avg_pstate > target)
1915                 target += (avg_pstate - target) >> 1;
1916
1917         return target;
1918 }
1919
1920 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1921 {
1922         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1923         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1924
1925         return clamp_t(int, pstate, min_pstate, max_pstate);
1926 }
1927
1928 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1929 {
1930         if (pstate == cpu->pstate.current_pstate)
1931                 return;
1932
1933         cpu->pstate.current_pstate = pstate;
1934         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1935 }
1936
1937 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1938 {
1939         int from = cpu->pstate.current_pstate;
1940         struct sample *sample;
1941         int target_pstate;
1942
1943         update_turbo_state();
1944
1945         target_pstate = get_target_pstate(cpu);
1946         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1947         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1948         intel_pstate_update_pstate(cpu, target_pstate);
1949
1950         sample = &cpu->sample;
1951         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1952                 fp_toint(sample->busy_scaled),
1953                 from,
1954                 cpu->pstate.current_pstate,
1955                 sample->mperf,
1956                 sample->aperf,
1957                 sample->tsc,
1958                 get_avg_frequency(cpu),
1959                 fp_toint(cpu->iowait_boost * 100));
1960 }
1961
1962 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1963                                      unsigned int flags)
1964 {
1965         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1966         u64 delta_ns;
1967
1968         /* Don't allow remote callbacks */
1969         if (smp_processor_id() != cpu->cpu)
1970                 return;
1971
1972         delta_ns = time - cpu->last_update;
1973         if (flags & SCHED_CPUFREQ_IOWAIT) {
1974                 /* Start over if the CPU may have been idle. */
1975                 if (delta_ns > TICK_NSEC) {
1976                         cpu->iowait_boost = ONE_EIGHTH_FP;
1977                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1978                         cpu->iowait_boost <<= 1;
1979                         if (cpu->iowait_boost > int_tofp(1))
1980                                 cpu->iowait_boost = int_tofp(1);
1981                 } else {
1982                         cpu->iowait_boost = ONE_EIGHTH_FP;
1983                 }
1984         } else if (cpu->iowait_boost) {
1985                 /* Clear iowait_boost if the CPU may have been idle. */
1986                 if (delta_ns > TICK_NSEC)
1987                         cpu->iowait_boost = 0;
1988                 else
1989                         cpu->iowait_boost >>= 1;
1990         }
1991         cpu->last_update = time;
1992         delta_ns = time - cpu->sample.time;
1993         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1994                 return;
1995
1996         if (intel_pstate_sample(cpu, time))
1997                 intel_pstate_adjust_pstate(cpu);
1998 }
1999
2000 static struct pstate_funcs core_funcs = {
2001         .get_max = core_get_max_pstate,
2002         .get_max_physical = core_get_max_pstate_physical,
2003         .get_min = core_get_min_pstate,
2004         .get_turbo = core_get_turbo_pstate,
2005         .get_scaling = core_get_scaling,
2006         .get_val = core_get_val,
2007 };
2008
2009 static const struct pstate_funcs silvermont_funcs = {
2010         .get_max = atom_get_max_pstate,
2011         .get_max_physical = atom_get_max_pstate,
2012         .get_min = atom_get_min_pstate,
2013         .get_turbo = atom_get_turbo_pstate,
2014         .get_val = atom_get_val,
2015         .get_scaling = silvermont_get_scaling,
2016         .get_vid = atom_get_vid,
2017 };
2018
2019 static const struct pstate_funcs airmont_funcs = {
2020         .get_max = atom_get_max_pstate,
2021         .get_max_physical = atom_get_max_pstate,
2022         .get_min = atom_get_min_pstate,
2023         .get_turbo = atom_get_turbo_pstate,
2024         .get_val = atom_get_val,
2025         .get_scaling = airmont_get_scaling,
2026         .get_vid = atom_get_vid,
2027 };
2028
2029 static const struct pstate_funcs knl_funcs = {
2030         .get_max = core_get_max_pstate,
2031         .get_max_physical = core_get_max_pstate_physical,
2032         .get_min = core_get_min_pstate,
2033         .get_turbo = knl_get_turbo_pstate,
2034         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2035         .get_scaling = core_get_scaling,
2036         .get_val = core_get_val,
2037 };
2038
2039 #define X86_MATCH(model, policy)                                         \
2040         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2041                                            X86_FEATURE_APERFMPERF, &policy)
2042
2043 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2044         X86_MATCH(SANDYBRIDGE,          core_funcs),
2045         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
2046         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
2047         X86_MATCH(IVYBRIDGE,            core_funcs),
2048         X86_MATCH(HASWELL,              core_funcs),
2049         X86_MATCH(BROADWELL,            core_funcs),
2050         X86_MATCH(IVYBRIDGE_X,          core_funcs),
2051         X86_MATCH(HASWELL_X,            core_funcs),
2052         X86_MATCH(HASWELL_L,            core_funcs),
2053         X86_MATCH(HASWELL_G,            core_funcs),
2054         X86_MATCH(BROADWELL_G,          core_funcs),
2055         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
2056         X86_MATCH(SKYLAKE_L,            core_funcs),
2057         X86_MATCH(BROADWELL_X,          core_funcs),
2058         X86_MATCH(SKYLAKE,              core_funcs),
2059         X86_MATCH(BROADWELL_D,          core_funcs),
2060         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
2061         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
2062         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
2063         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2064         X86_MATCH(SKYLAKE_X,            core_funcs),
2065         {}
2066 };
2067 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2068
2069 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2070         X86_MATCH(BROADWELL_D,          core_funcs),
2071         X86_MATCH(BROADWELL_X,          core_funcs),
2072         X86_MATCH(SKYLAKE_X,            core_funcs),
2073         {}
2074 };
2075
2076 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2077         X86_MATCH(KABYLAKE,             core_funcs),
2078         {}
2079 };
2080
2081 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2082         X86_MATCH(SKYLAKE_X,            core_funcs),
2083         X86_MATCH(SKYLAKE,              core_funcs),
2084         {}
2085 };
2086
2087 static int intel_pstate_init_cpu(unsigned int cpunum)
2088 {
2089         struct cpudata *cpu;
2090
2091         cpu = all_cpu_data[cpunum];
2092
2093         if (!cpu) {
2094                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2095                 if (!cpu)
2096                         return -ENOMEM;
2097
2098                 all_cpu_data[cpunum] = cpu;
2099
2100                 cpu->epp_default = -EINVAL;
2101                 cpu->epp_powersave = -EINVAL;
2102                 cpu->epp_saved = -EINVAL;
2103         }
2104
2105         cpu = all_cpu_data[cpunum];
2106
2107         cpu->cpu = cpunum;
2108
2109         if (hwp_active) {
2110                 const struct x86_cpu_id *id;
2111
2112                 intel_pstate_hwp_enable(cpu);
2113
2114                 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2115                 if (id && intel_pstate_acpi_pm_profile_server())
2116                         hwp_boost = true;
2117         }
2118
2119         intel_pstate_get_cpu_pstates(cpu);
2120
2121         pr_debug("controlling: cpu %d\n", cpunum);
2122
2123         return 0;
2124 }
2125
2126 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2127 {
2128         struct cpudata *cpu = all_cpu_data[cpu_num];
2129
2130         if (hwp_active && !hwp_boost)
2131                 return;
2132
2133         if (cpu->update_util_set)
2134                 return;
2135
2136         /* Prevent intel_pstate_update_util() from using stale data. */
2137         cpu->sample.time = 0;
2138         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2139                                      (hwp_active ?
2140                                       intel_pstate_update_util_hwp :
2141                                       intel_pstate_update_util));
2142         cpu->update_util_set = true;
2143 }
2144
2145 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2146 {
2147         struct cpudata *cpu_data = all_cpu_data[cpu];
2148
2149         if (!cpu_data->update_util_set)
2150                 return;
2151
2152         cpufreq_remove_update_util_hook(cpu);
2153         cpu_data->update_util_set = false;
2154         synchronize_rcu();
2155 }
2156
2157 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2158 {
2159         return global.turbo_disabled || global.no_turbo ?
2160                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2161 }
2162
2163 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2164                                             unsigned int policy_min,
2165                                             unsigned int policy_max)
2166 {
2167         int max_freq = intel_pstate_get_max_freq(cpu);
2168         int32_t max_policy_perf, min_policy_perf;
2169         int max_state, turbo_max;
2170
2171         /*
2172          * HWP needs some special consideration, because on BDX the
2173          * HWP_REQUEST uses abstract value to represent performance
2174          * rather than pure ratios.
2175          */
2176         if (hwp_active) {
2177                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2178         } else {
2179                 max_state = global.no_turbo || global.turbo_disabled ?
2180                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2181                 turbo_max = cpu->pstate.turbo_pstate;
2182         }
2183
2184         max_policy_perf = max_state * policy_max / max_freq;
2185         if (policy_max == policy_min) {
2186                 min_policy_perf = max_policy_perf;
2187         } else {
2188                 min_policy_perf = max_state * policy_min / max_freq;
2189                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2190                                           0, max_policy_perf);
2191         }
2192
2193         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2194                  cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2195
2196         /* Normalize user input to [min_perf, max_perf] */
2197         if (per_cpu_limits) {
2198                 cpu->min_perf_ratio = min_policy_perf;
2199                 cpu->max_perf_ratio = max_policy_perf;
2200         } else {
2201                 int32_t global_min, global_max;
2202
2203                 /* Global limits are in percent of the maximum turbo P-state. */
2204                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2205                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2206                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2207
2208                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2209                          global_min, global_max);
2210
2211                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2212                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2213                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2214                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2215
2216                 /* Make sure min_perf <= max_perf */
2217                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2218                                           cpu->max_perf_ratio);
2219
2220         }
2221         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2222                  cpu->max_perf_ratio,
2223                  cpu->min_perf_ratio);
2224 }
2225
2226 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2227 {
2228         struct cpudata *cpu;
2229
2230         if (!policy->cpuinfo.max_freq)
2231                 return -ENODEV;
2232
2233         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2234                  policy->cpuinfo.max_freq, policy->max);
2235
2236         cpu = all_cpu_data[policy->cpu];
2237         cpu->policy = policy->policy;
2238
2239         mutex_lock(&intel_pstate_limits_lock);
2240
2241         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2242
2243         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2244                 /*
2245                  * NOHZ_FULL CPUs need this as the governor callback may not
2246                  * be invoked on them.
2247                  */
2248                 intel_pstate_clear_update_util_hook(policy->cpu);
2249                 intel_pstate_max_within_limits(cpu);
2250         } else {
2251                 intel_pstate_set_update_util_hook(policy->cpu);
2252         }
2253
2254         if (hwp_active) {
2255                 /*
2256                  * When hwp_boost was active before and dynamically it
2257                  * was turned off, in that case we need to clear the
2258                  * update util hook.
2259                  */
2260                 if (!hwp_boost)
2261                         intel_pstate_clear_update_util_hook(policy->cpu);
2262                 intel_pstate_hwp_set(policy->cpu);
2263         }
2264
2265         mutex_unlock(&intel_pstate_limits_lock);
2266
2267         return 0;
2268 }
2269
2270 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2271                                            struct cpufreq_policy_data *policy)
2272 {
2273         if (!hwp_active &&
2274             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2275             policy->max < policy->cpuinfo.max_freq &&
2276             policy->max > cpu->pstate.max_freq) {
2277                 pr_debug("policy->max > max non turbo frequency\n");
2278                 policy->max = policy->cpuinfo.max_freq;
2279         }
2280 }
2281
2282 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2283                                            struct cpufreq_policy_data *policy)
2284 {
2285         update_turbo_state();
2286         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2287                                      intel_pstate_get_max_freq(cpu));
2288
2289         intel_pstate_adjust_policy_max(cpu, policy);
2290 }
2291
2292 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2293 {
2294         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2295
2296         return 0;
2297 }
2298
2299 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2300 {
2301         if (hwp_active)
2302                 intel_pstate_hwp_force_min_perf(policy->cpu);
2303         else
2304                 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2305 }
2306
2307 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2308 {
2309         pr_debug("CPU %d exiting\n", policy->cpu);
2310
2311         intel_pstate_clear_update_util_hook(policy->cpu);
2312         if (hwp_active)
2313                 intel_pstate_hwp_save_state(policy);
2314
2315         intel_cpufreq_stop_cpu(policy);
2316 }
2317
2318 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2319 {
2320         intel_pstate_exit_perf_limits(policy);
2321
2322         policy->fast_switch_possible = false;
2323
2324         return 0;
2325 }
2326
2327 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2328 {
2329         struct cpudata *cpu;
2330         int rc;
2331
2332         rc = intel_pstate_init_cpu(policy->cpu);
2333         if (rc)
2334                 return rc;
2335
2336         cpu = all_cpu_data[policy->cpu];
2337
2338         cpu->max_perf_ratio = 0xFF;
2339         cpu->min_perf_ratio = 0;
2340
2341         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2342         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2343
2344         /* cpuinfo and default policy values */
2345         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2346         update_turbo_state();
2347         global.turbo_disabled_mf = global.turbo_disabled;
2348         policy->cpuinfo.max_freq = global.turbo_disabled ?
2349                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2350         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2351
2352         if (hwp_active) {
2353                 unsigned int max_freq;
2354
2355                 max_freq = global.turbo_disabled ?
2356                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2357                 if (max_freq < policy->cpuinfo.max_freq)
2358                         policy->cpuinfo.max_freq = max_freq;
2359         }
2360
2361         intel_pstate_init_acpi_perf_limits(policy);
2362
2363         policy->fast_switch_possible = true;
2364
2365         return 0;
2366 }
2367
2368 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2369 {
2370         int ret = __intel_pstate_cpu_init(policy);
2371
2372         if (ret)
2373                 return ret;
2374
2375         /*
2376          * Set the policy to powersave to provide a valid fallback value in case
2377          * the default cpufreq governor is neither powersave nor performance.
2378          */
2379         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2380
2381         return 0;
2382 }
2383
2384 static struct cpufreq_driver intel_pstate = {
2385         .flags          = CPUFREQ_CONST_LOOPS,
2386         .verify         = intel_pstate_verify_policy,
2387         .setpolicy      = intel_pstate_set_policy,
2388         .suspend        = intel_pstate_hwp_save_state,
2389         .resume         = intel_pstate_resume,
2390         .init           = intel_pstate_cpu_init,
2391         .exit           = intel_pstate_cpu_exit,
2392         .stop_cpu       = intel_pstate_stop_cpu,
2393         .update_limits  = intel_pstate_update_limits,
2394         .name           = "intel_pstate",
2395 };
2396
2397 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2398 {
2399         struct cpudata *cpu = all_cpu_data[policy->cpu];
2400
2401         intel_pstate_verify_cpu_policy(cpu, policy);
2402         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2403
2404         return 0;
2405 }
2406
2407 /* Use of trace in passive mode:
2408  *
2409  * In passive mode the trace core_busy field (also known as the
2410  * performance field, and lablelled as such on the graphs; also known as
2411  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2412  * driver call was via the normal or fast switch path. Various graphs
2413  * output from the intel_pstate_tracer.py utility that include core_busy
2414  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2415  * so we use 10 to indicate the the normal path through the driver, and
2416  * 90 to indicate the fast switch path through the driver.
2417  * The scaled_busy field is not used, and is set to 0.
2418  */
2419
2420 #define INTEL_PSTATE_TRACE_TARGET 10
2421 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2422
2423 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2424 {
2425         struct sample *sample;
2426
2427         if (!trace_pstate_sample_enabled())
2428                 return;
2429
2430         if (!intel_pstate_sample(cpu, ktime_get()))
2431                 return;
2432
2433         sample = &cpu->sample;
2434         trace_pstate_sample(trace_type,
2435                 0,
2436                 old_pstate,
2437                 cpu->pstate.current_pstate,
2438                 sample->mperf,
2439                 sample->aperf,
2440                 sample->tsc,
2441                 get_avg_frequency(cpu),
2442                 fp_toint(cpu->iowait_boost * 100));
2443 }
2444
2445 static void intel_cpufreq_adjust_hwp(struct cpudata *cpu, u32 target_pstate,
2446                                      bool fast_switch)
2447 {
2448         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2449
2450         value &= ~HWP_MIN_PERF(~0L);
2451         value |= HWP_MIN_PERF(target_pstate);
2452
2453         /*
2454          * The entire MSR needs to be updated in order to update the HWP min
2455          * field in it, so opportunistically update the max too if needed.
2456          */
2457         value &= ~HWP_MAX_PERF(~0L);
2458         value |= HWP_MAX_PERF(cpu->max_perf_ratio);
2459
2460         if (value == prev)
2461                 return;
2462
2463         WRITE_ONCE(cpu->hwp_req_cached, value);
2464         if (fast_switch)
2465                 wrmsrl(MSR_HWP_REQUEST, value);
2466         else
2467                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2468 }
2469
2470 static void intel_cpufreq_adjust_perf_ctl(struct cpudata *cpu,
2471                                           u32 target_pstate, bool fast_switch)
2472 {
2473         if (fast_switch)
2474                 wrmsrl(MSR_IA32_PERF_CTL,
2475                        pstate_funcs.get_val(cpu, target_pstate));
2476         else
2477                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2478                               pstate_funcs.get_val(cpu, target_pstate));
2479 }
2480
2481 static int intel_cpufreq_update_pstate(struct cpudata *cpu, int target_pstate,
2482                                        bool fast_switch)
2483 {
2484         int old_pstate = cpu->pstate.current_pstate;
2485
2486         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2487         if (target_pstate != old_pstate) {
2488                 cpu->pstate.current_pstate = target_pstate;
2489                 if (hwp_active)
2490                         intel_cpufreq_adjust_hwp(cpu, target_pstate,
2491                                                  fast_switch);
2492                 else
2493                         intel_cpufreq_adjust_perf_ctl(cpu, target_pstate,
2494                                                       fast_switch);
2495         }
2496
2497         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2498                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2499
2500         return target_pstate;
2501 }
2502
2503 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2504                                 unsigned int target_freq,
2505                                 unsigned int relation)
2506 {
2507         struct cpudata *cpu = all_cpu_data[policy->cpu];
2508         struct cpufreq_freqs freqs;
2509         int target_pstate;
2510
2511         update_turbo_state();
2512
2513         freqs.old = policy->cur;
2514         freqs.new = target_freq;
2515
2516         cpufreq_freq_transition_begin(policy, &freqs);
2517
2518         switch (relation) {
2519         case CPUFREQ_RELATION_L:
2520                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2521                 break;
2522         case CPUFREQ_RELATION_H:
2523                 target_pstate = freqs.new / cpu->pstate.scaling;
2524                 break;
2525         default:
2526                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2527                 break;
2528         }
2529
2530         target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, false);
2531
2532         freqs.new = target_pstate * cpu->pstate.scaling;
2533
2534         cpufreq_freq_transition_end(policy, &freqs, false);
2535
2536         return 0;
2537 }
2538
2539 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2540                                               unsigned int target_freq)
2541 {
2542         struct cpudata *cpu = all_cpu_data[policy->cpu];
2543         int target_pstate;
2544
2545         update_turbo_state();
2546
2547         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2548
2549         target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, true);
2550
2551         return target_pstate * cpu->pstate.scaling;
2552 }
2553
2554 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2555 {
2556         int max_state, turbo_max, min_freq, max_freq, ret;
2557         struct freq_qos_request *req;
2558         struct cpudata *cpu;
2559         struct device *dev;
2560
2561         dev = get_cpu_device(policy->cpu);
2562         if (!dev)
2563                 return -ENODEV;
2564
2565         ret = __intel_pstate_cpu_init(policy);
2566         if (ret)
2567                 return ret;
2568
2569         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2570         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2571         policy->cur = policy->cpuinfo.min_freq;
2572
2573         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2574         if (!req) {
2575                 ret = -ENOMEM;
2576                 goto pstate_exit;
2577         }
2578
2579         cpu = all_cpu_data[policy->cpu];
2580
2581         if (hwp_active) {
2582                 u64 value;
2583
2584                 intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2585                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2586                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2587                 WRITE_ONCE(cpu->hwp_req_cached, value);
2588                 cpu->epp_cached = (value & GENMASK_ULL(31, 24)) >> 24;
2589         } else {
2590                 turbo_max = cpu->pstate.turbo_pstate;
2591                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2592         }
2593
2594         min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2595         min_freq *= cpu->pstate.scaling;
2596         max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2597         max_freq *= cpu->pstate.scaling;
2598
2599         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2600                                    min_freq);
2601         if (ret < 0) {
2602                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2603                 goto free_req;
2604         }
2605
2606         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2607                                    max_freq);
2608         if (ret < 0) {
2609                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2610                 goto remove_min_req;
2611         }
2612
2613         policy->driver_data = req;
2614
2615         return 0;
2616
2617 remove_min_req:
2618         freq_qos_remove_request(req);
2619 free_req:
2620         kfree(req);
2621 pstate_exit:
2622         intel_pstate_exit_perf_limits(policy);
2623
2624         return ret;
2625 }
2626
2627 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2628 {
2629         struct freq_qos_request *req;
2630
2631         req = policy->driver_data;
2632
2633         freq_qos_remove_request(req + 1);
2634         freq_qos_remove_request(req);
2635         kfree(req);
2636
2637         return intel_pstate_cpu_exit(policy);
2638 }
2639
2640 static struct cpufreq_driver intel_cpufreq = {
2641         .flags          = CPUFREQ_CONST_LOOPS,
2642         .verify         = intel_cpufreq_verify_policy,
2643         .target         = intel_cpufreq_target,
2644         .fast_switch    = intel_cpufreq_fast_switch,
2645         .init           = intel_cpufreq_cpu_init,
2646         .exit           = intel_cpufreq_cpu_exit,
2647         .stop_cpu       = intel_cpufreq_stop_cpu,
2648         .update_limits  = intel_pstate_update_limits,
2649         .name           = "intel_cpufreq",
2650 };
2651
2652 static struct cpufreq_driver *default_driver;
2653
2654 static void intel_pstate_driver_cleanup(void)
2655 {
2656         unsigned int cpu;
2657
2658         get_online_cpus();
2659         for_each_online_cpu(cpu) {
2660                 if (all_cpu_data[cpu]) {
2661                         if (intel_pstate_driver == &intel_pstate)
2662                                 intel_pstate_clear_update_util_hook(cpu);
2663
2664                         kfree(all_cpu_data[cpu]);
2665                         all_cpu_data[cpu] = NULL;
2666                 }
2667         }
2668         put_online_cpus();
2669
2670         if (intel_pstate_driver == &intel_pstate)
2671                 intel_pstate_sysfs_hide_hwp_dynamic_boost();
2672
2673         intel_pstate_driver = NULL;
2674 }
2675
2676 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2677 {
2678         int ret;
2679
2680         if (driver == &intel_pstate)
2681                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
2682
2683         memset(&global, 0, sizeof(global));
2684         global.max_perf_pct = 100;
2685
2686         intel_pstate_driver = driver;
2687         ret = cpufreq_register_driver(intel_pstate_driver);
2688         if (ret) {
2689                 intel_pstate_driver_cleanup();
2690                 return ret;
2691         }
2692
2693         global.min_perf_pct = min_perf_pct_min();
2694
2695         return 0;
2696 }
2697
2698 static int intel_pstate_unregister_driver(void)
2699 {
2700         cpufreq_unregister_driver(intel_pstate_driver);
2701         intel_pstate_driver_cleanup();
2702
2703         return 0;
2704 }
2705
2706 static ssize_t intel_pstate_show_status(char *buf)
2707 {
2708         if (!intel_pstate_driver)
2709                 return sprintf(buf, "off\n");
2710
2711         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2712                                         "active" : "passive");
2713 }
2714
2715 static int intel_pstate_update_status(const char *buf, size_t size)
2716 {
2717         int ret;
2718
2719         if (size == 3 && !strncmp(buf, "off", size))
2720                 return intel_pstate_driver ?
2721                         intel_pstate_unregister_driver() : -EINVAL;
2722
2723         if (size == 6 && !strncmp(buf, "active", size)) {
2724                 if (intel_pstate_driver) {
2725                         if (intel_pstate_driver == &intel_pstate)
2726                                 return 0;
2727
2728                         ret = intel_pstate_unregister_driver();
2729                         if (ret)
2730                                 return ret;
2731                 }
2732
2733                 return intel_pstate_register_driver(&intel_pstate);
2734         }
2735
2736         if (size == 7 && !strncmp(buf, "passive", size)) {
2737                 if (intel_pstate_driver) {
2738                         if (intel_pstate_driver == &intel_cpufreq)
2739                                 return 0;
2740
2741                         ret = intel_pstate_unregister_driver();
2742                         if (ret)
2743                                 return ret;
2744                 }
2745
2746                 return intel_pstate_register_driver(&intel_cpufreq);
2747         }
2748
2749         return -EINVAL;
2750 }
2751
2752 static int no_load __initdata;
2753 static int no_hwp __initdata;
2754 static int hwp_only __initdata;
2755 static unsigned int force_load __initdata;
2756
2757 static int __init intel_pstate_msrs_not_valid(void)
2758 {
2759         if (!pstate_funcs.get_max() ||
2760             !pstate_funcs.get_min() ||
2761             !pstate_funcs.get_turbo())
2762                 return -ENODEV;
2763
2764         return 0;
2765 }
2766
2767 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2768 {
2769         pstate_funcs.get_max   = funcs->get_max;
2770         pstate_funcs.get_max_physical = funcs->get_max_physical;
2771         pstate_funcs.get_min   = funcs->get_min;
2772         pstate_funcs.get_turbo = funcs->get_turbo;
2773         pstate_funcs.get_scaling = funcs->get_scaling;
2774         pstate_funcs.get_val   = funcs->get_val;
2775         pstate_funcs.get_vid   = funcs->get_vid;
2776         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2777 }
2778
2779 #ifdef CONFIG_ACPI
2780
2781 static bool __init intel_pstate_no_acpi_pss(void)
2782 {
2783         int i;
2784
2785         for_each_possible_cpu(i) {
2786                 acpi_status status;
2787                 union acpi_object *pss;
2788                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2789                 struct acpi_processor *pr = per_cpu(processors, i);
2790
2791                 if (!pr)
2792                         continue;
2793
2794                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2795                 if (ACPI_FAILURE(status))
2796                         continue;
2797
2798                 pss = buffer.pointer;
2799                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2800                         kfree(pss);
2801                         return false;
2802                 }
2803
2804                 kfree(pss);
2805         }
2806
2807         pr_debug("ACPI _PSS not found\n");
2808         return true;
2809 }
2810
2811 static bool __init intel_pstate_no_acpi_pcch(void)
2812 {
2813         acpi_status status;
2814         acpi_handle handle;
2815
2816         status = acpi_get_handle(NULL, "\\_SB", &handle);
2817         if (ACPI_FAILURE(status))
2818                 goto not_found;
2819
2820         if (acpi_has_method(handle, "PCCH"))
2821                 return false;
2822
2823 not_found:
2824         pr_debug("ACPI PCCH not found\n");
2825         return true;
2826 }
2827
2828 static bool __init intel_pstate_has_acpi_ppc(void)
2829 {
2830         int i;
2831
2832         for_each_possible_cpu(i) {
2833                 struct acpi_processor *pr = per_cpu(processors, i);
2834
2835                 if (!pr)
2836                         continue;
2837                 if (acpi_has_method(pr->handle, "_PPC"))
2838                         return true;
2839         }
2840         pr_debug("ACPI _PPC not found\n");
2841         return false;
2842 }
2843
2844 enum {
2845         PSS,
2846         PPC,
2847 };
2848
2849 /* Hardware vendor-specific info that has its own power management modes */
2850 static struct acpi_platform_list plat_info[] __initdata = {
2851         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
2852         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2853         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2854         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2855         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2856         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2857         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2858         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2859         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2860         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2861         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2862         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2863         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2864         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2865         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2866         { } /* End */
2867 };
2868
2869 #define BITMASK_OOB     (BIT(8) | BIT(18))
2870
2871 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2872 {
2873         const struct x86_cpu_id *id;
2874         u64 misc_pwr;
2875         int idx;
2876
2877         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2878         if (id) {
2879                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2880                 if (misc_pwr & BITMASK_OOB) {
2881                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
2882                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
2883                         return true;
2884                 }
2885         }
2886
2887         idx = acpi_match_platform_list(plat_info);
2888         if (idx < 0)
2889                 return false;
2890
2891         switch (plat_info[idx].data) {
2892         case PSS:
2893                 if (!intel_pstate_no_acpi_pss())
2894                         return false;
2895
2896                 return intel_pstate_no_acpi_pcch();
2897         case PPC:
2898                 return intel_pstate_has_acpi_ppc() && !force_load;
2899         }
2900
2901         return false;
2902 }
2903
2904 static void intel_pstate_request_control_from_smm(void)
2905 {
2906         /*
2907          * It may be unsafe to request P-states control from SMM if _PPC support
2908          * has not been enabled.
2909          */
2910         if (acpi_ppc)
2911                 acpi_processor_pstate_control();
2912 }
2913 #else /* CONFIG_ACPI not enabled */
2914 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2915 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2916 static inline void intel_pstate_request_control_from_smm(void) {}
2917 #endif /* CONFIG_ACPI */
2918
2919 #define INTEL_PSTATE_HWP_BROADWELL      0x01
2920
2921 #define X86_MATCH_HWP(model, hwp_mode)                                  \
2922         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2923                                            X86_FEATURE_HWP, hwp_mode)
2924
2925 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2926         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
2927         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
2928         X86_MATCH_HWP(ANY,              0),
2929         {}
2930 };
2931
2932 static int __init intel_pstate_init(void)
2933 {
2934         const struct x86_cpu_id *id;
2935         int rc;
2936
2937         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2938                 return -ENODEV;
2939
2940         if (no_load)
2941                 return -ENODEV;
2942
2943         id = x86_match_cpu(hwp_support_ids);
2944         if (id) {
2945                 copy_cpu_funcs(&core_funcs);
2946                 /*
2947                  * Avoid enabling HWP for processors without EPP support,
2948                  * because that means incomplete HWP implementation which is a
2949                  * corner case and supporting it is generally problematic.
2950                  */
2951                 if (!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) {
2952                         hwp_active++;
2953                         hwp_mode_bdw = id->driver_data;
2954                         intel_pstate.attr = hwp_cpufreq_attrs;
2955                         intel_cpufreq.attr = hwp_cpufreq_attrs;
2956                         if (!default_driver)
2957                                 default_driver = &intel_pstate;
2958
2959                         goto hwp_cpu_matched;
2960                 }
2961         } else {
2962                 id = x86_match_cpu(intel_pstate_cpu_ids);
2963                 if (!id) {
2964                         pr_info("CPU model not supported\n");
2965                         return -ENODEV;
2966                 }
2967
2968                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2969         }
2970
2971         if (intel_pstate_msrs_not_valid()) {
2972                 pr_info("Invalid MSRs\n");
2973                 return -ENODEV;
2974         }
2975         /* Without HWP start in the passive mode. */
2976         if (!default_driver)
2977                 default_driver = &intel_cpufreq;
2978
2979 hwp_cpu_matched:
2980         /*
2981          * The Intel pstate driver will be ignored if the platform
2982          * firmware has its own power management modes.
2983          */
2984         if (intel_pstate_platform_pwr_mgmt_exists()) {
2985                 pr_info("P-states controlled by the platform\n");
2986                 return -ENODEV;
2987         }
2988
2989         if (!hwp_active && hwp_only)
2990                 return -ENOTSUPP;
2991
2992         pr_info("Intel P-state driver initializing\n");
2993
2994         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2995         if (!all_cpu_data)
2996                 return -ENOMEM;
2997
2998         intel_pstate_request_control_from_smm();
2999
3000         intel_pstate_sysfs_expose_params();
3001
3002         mutex_lock(&intel_pstate_driver_lock);
3003         rc = intel_pstate_register_driver(default_driver);
3004         mutex_unlock(&intel_pstate_driver_lock);
3005         if (rc)
3006                 return rc;
3007
3008         if (hwp_active) {
3009                 const struct x86_cpu_id *id;
3010
3011                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3012                 if (id) {
3013                         set_power_ctl_ee_state(false);
3014                         pr_info("Disabling energy efficiency optimization\n");
3015                 }
3016
3017                 pr_info("HWP enabled\n");
3018         }
3019
3020         return 0;
3021 }
3022 device_initcall(intel_pstate_init);
3023
3024 static int __init intel_pstate_setup(char *str)
3025 {
3026         if (!str)
3027                 return -EINVAL;
3028
3029         if (!strcmp(str, "disable"))
3030                 no_load = 1;
3031         else if (!strcmp(str, "active"))
3032                 default_driver = &intel_pstate;
3033         else if (!strcmp(str, "passive"))
3034                 default_driver = &intel_cpufreq;
3035
3036         if (!strcmp(str, "no_hwp")) {
3037                 pr_info("HWP disabled\n");
3038                 no_hwp = 1;
3039         }
3040         if (!strcmp(str, "force"))
3041                 force_load = 1;
3042         if (!strcmp(str, "hwp_only"))
3043                 hwp_only = 1;
3044         if (!strcmp(str, "per_cpu_perf_limits"))
3045                 per_cpu_limits = true;
3046
3047 #ifdef CONFIG_ACPI
3048         if (!strcmp(str, "support_acpi_ppc"))
3049                 acpi_ppc = true;
3050 #endif
3051
3052         return 0;
3053 }
3054 early_param("intel_pstate", intel_pstate_setup);
3055
3056 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3057 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3058 MODULE_LICENSE("GPL");