drm: fix error found in some cases after the patch d1af5cd86997
[linux-2.6-microblaze.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35 #include "../drivers/thermal/intel/thermal_interrupt.h"
36
37 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
38
39 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
42
43 #ifdef CONFIG_ACPI
44 #include <acpi/processor.h>
45 #include <acpi/cppc_acpi.h>
46 #endif
47
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51
52 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
53
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66         return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68
69 static inline int ceiling_fp(int32_t x)
70 {
71         int mask, ret;
72
73         ret = fp_toint(x);
74         mask = (1 << FRAC_BITS) - 1;
75         if (x & mask)
76                 ret += 1;
77         return ret;
78 }
79
80 static inline u64 mul_ext_fp(u64 x, u64 y)
81 {
82         return (x * y) >> EXT_FRAC_BITS;
83 }
84
85 static inline u64 div_ext_fp(u64 x, u64 y)
86 {
87         return div64_u64(x << EXT_FRAC_BITS, y);
88 }
89
90 /**
91  * struct sample -      Store performance sample
92  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
93  *                      performance during last sample period
94  * @busy_scaled:        Scaled busy value which is used to calculate next
95  *                      P state. This can be different than core_avg_perf
96  *                      to account for cpu idle period
97  * @aperf:              Difference of actual performance frequency clock count
98  *                      read from APERF MSR between last and current sample
99  * @mperf:              Difference of maximum performance frequency clock count
100  *                      read from MPERF MSR between last and current sample
101  * @tsc:                Difference of time stamp counter between last and
102  *                      current sample
103  * @time:               Current time from scheduler
104  *
105  * This structure is used in the cpudata structure to store performance sample
106  * data for choosing next P State.
107  */
108 struct sample {
109         int32_t core_avg_perf;
110         int32_t busy_scaled;
111         u64 aperf;
112         u64 mperf;
113         u64 tsc;
114         u64 time;
115 };
116
117 /**
118  * struct pstate_data - Store P state data
119  * @current_pstate:     Current requested P state
120  * @min_pstate:         Min P state possible for this platform
121  * @max_pstate:         Max P state possible for this platform
122  * @max_pstate_physical:This is physical Max P state for a processor
123  *                      This can be higher than the max_pstate which can
124  *                      be limited by platform thermal design power limits
125  * @perf_ctl_scaling:   PERF_CTL P-state to frequency scaling factor
126  * @scaling:            Scaling factor between performance and frequency
127  * @turbo_pstate:       Max Turbo P state possible for this platform
128  * @min_freq:           @min_pstate frequency in cpufreq units
129  * @max_freq:           @max_pstate frequency in cpufreq units
130  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
131  *
132  * Stores the per cpu model P state limits and current P state.
133  */
134 struct pstate_data {
135         int     current_pstate;
136         int     min_pstate;
137         int     max_pstate;
138         int     max_pstate_physical;
139         int     perf_ctl_scaling;
140         int     scaling;
141         int     turbo_pstate;
142         unsigned int min_freq;
143         unsigned int max_freq;
144         unsigned int turbo_freq;
145 };
146
147 /**
148  * struct vid_data -    Stores voltage information data
149  * @min:                VID data for this platform corresponding to
150  *                      the lowest P state
151  * @max:                VID data corresponding to the highest P State.
152  * @turbo:              VID data for turbo P state
153  * @ratio:              Ratio of (vid max - vid min) /
154  *                      (max P state - Min P State)
155  *
156  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
157  * This data is used in Atom platforms, where in addition to target P state,
158  * the voltage data needs to be specified to select next P State.
159  */
160 struct vid_data {
161         int min;
162         int max;
163         int turbo;
164         int32_t ratio;
165 };
166
167 /**
168  * struct global_params - Global parameters, mostly tunable via sysfs.
169  * @no_turbo:           Whether or not to use turbo P-states.
170  * @turbo_disabled:     Whether or not turbo P-states are available at all,
171  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
172  *                      not the maximum reported turbo P-state is different from
173  *                      the maximum reported non-turbo one.
174  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
175  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
176  *                      P-state capacity.
177  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
178  *                      P-state capacity.
179  */
180 struct global_params {
181         bool no_turbo;
182         bool turbo_disabled;
183         bool turbo_disabled_mf;
184         int max_perf_pct;
185         int min_perf_pct;
186 };
187
188 /**
189  * struct cpudata -     Per CPU instance data storage
190  * @cpu:                CPU number for this instance data
191  * @policy:             CPUFreq policy value
192  * @update_util:        CPUFreq utility callback information
193  * @update_util_set:    CPUFreq utility callback is set
194  * @iowait_boost:       iowait-related boost fraction
195  * @last_update:        Time of the last update.
196  * @pstate:             Stores P state limits for this CPU
197  * @vid:                Stores VID limits for this CPU
198  * @last_sample_time:   Last Sample time
199  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
200  * @prev_aperf:         Last APERF value read from APERF MSR
201  * @prev_mperf:         Last MPERF value read from MPERF MSR
202  * @prev_tsc:           Last timestamp counter (TSC) value
203  * @prev_cummulative_iowait: IO Wait time difference from last and
204  *                      current sample
205  * @sample:             Storage for storing last Sample data
206  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
207  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
208  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
209  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
210  * @epp_powersave:      Last saved HWP energy performance preference
211  *                      (EPP) or energy performance bias (EPB),
212  *                      when policy switched to performance
213  * @epp_policy:         Last saved policy used to set EPP/EPB
214  * @epp_default:        Power on default HWP energy performance
215  *                      preference/bias
216  * @epp_cached          Cached HWP energy-performance preference value
217  * @hwp_req_cached:     Cached value of the last HWP Request MSR
218  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
219  * @last_io_update:     Last time when IO wake flag was set
220  * @sched_flags:        Store scheduler flags for possible cross CPU update
221  * @hwp_boost_min:      Last HWP boosted min performance
222  * @suspended:          Whether or not the driver has been suspended.
223  * @hwp_notify_work:    workqueue for HWP notifications.
224  *
225  * This structure stores per CPU instance data for all CPUs.
226  */
227 struct cpudata {
228         int cpu;
229
230         unsigned int policy;
231         struct update_util_data update_util;
232         bool   update_util_set;
233
234         struct pstate_data pstate;
235         struct vid_data vid;
236
237         u64     last_update;
238         u64     last_sample_time;
239         u64     aperf_mperf_shift;
240         u64     prev_aperf;
241         u64     prev_mperf;
242         u64     prev_tsc;
243         u64     prev_cummulative_iowait;
244         struct sample sample;
245         int32_t min_perf_ratio;
246         int32_t max_perf_ratio;
247 #ifdef CONFIG_ACPI
248         struct acpi_processor_performance acpi_perf_data;
249         bool valid_pss_table;
250 #endif
251         unsigned int iowait_boost;
252         s16 epp_powersave;
253         s16 epp_policy;
254         s16 epp_default;
255         s16 epp_cached;
256         u64 hwp_req_cached;
257         u64 hwp_cap_cached;
258         u64 last_io_update;
259         unsigned int sched_flags;
260         u32 hwp_boost_min;
261         bool suspended;
262         struct delayed_work hwp_notify_work;
263 };
264
265 static struct cpudata **all_cpu_data;
266
267 /**
268  * struct pstate_funcs - Per CPU model specific callbacks
269  * @get_max:            Callback to get maximum non turbo effective P state
270  * @get_max_physical:   Callback to get maximum non turbo physical P state
271  * @get_min:            Callback to get minimum P state
272  * @get_turbo:          Callback to get turbo P state
273  * @get_scaling:        Callback to get frequency scaling factor
274  * @get_cpu_scaling:    Get frequency scaling factor for a given cpu
275  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
276  * @get_val:            Callback to convert P state to actual MSR write value
277  * @get_vid:            Callback to get VID data for Atom platforms
278  *
279  * Core and Atom CPU models have different way to get P State limits. This
280  * structure is used to store those callbacks.
281  */
282 struct pstate_funcs {
283         int (*get_max)(void);
284         int (*get_max_physical)(void);
285         int (*get_min)(void);
286         int (*get_turbo)(void);
287         int (*get_scaling)(void);
288         int (*get_cpu_scaling)(int cpu);
289         int (*get_aperf_mperf_shift)(void);
290         u64 (*get_val)(struct cpudata*, int pstate);
291         void (*get_vid)(struct cpudata *);
292 };
293
294 static struct pstate_funcs pstate_funcs __read_mostly;
295
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306
307 static struct global_params global;
308
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311
312 #ifdef CONFIG_ACPI
313
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318                 return true;
319
320         return false;
321 }
322
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325         if (intel_pstate_acpi_pm_profile_server())
326                 return true;
327
328         return acpi_ppc;
329 }
330
331 #ifdef CONFIG_ACPI_CPPC_LIB
332
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336         sched_set_itmt_support();
337 }
338
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340
341 #define CPPC_MAX_PERF   U8_MAX
342
343 static void intel_pstate_set_itmt_prio(int cpu)
344 {
345         struct cppc_perf_caps cppc_perf;
346         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
347         int ret;
348
349         ret = cppc_get_perf_caps(cpu, &cppc_perf);
350         if (ret)
351                 return;
352
353         /*
354          * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
355          * In this case we can't use CPPC.highest_perf to enable ITMT.
356          * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
357          */
358         if (cppc_perf.highest_perf == CPPC_MAX_PERF)
359                 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
360
361         /*
362          * The priorities can be set regardless of whether or not
363          * sched_set_itmt_support(true) has been called and it is valid to
364          * update them at any time after it has been called.
365          */
366         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
367
368         if (max_highest_perf <= min_highest_perf) {
369                 if (cppc_perf.highest_perf > max_highest_perf)
370                         max_highest_perf = cppc_perf.highest_perf;
371
372                 if (cppc_perf.highest_perf < min_highest_perf)
373                         min_highest_perf = cppc_perf.highest_perf;
374
375                 if (max_highest_perf > min_highest_perf) {
376                         /*
377                          * This code can be run during CPU online under the
378                          * CPU hotplug locks, so sched_set_itmt_support()
379                          * cannot be called from here.  Queue up a work item
380                          * to invoke it.
381                          */
382                         schedule_work(&sched_itmt_work);
383                 }
384         }
385 }
386
387 static int intel_pstate_get_cppc_guaranteed(int cpu)
388 {
389         struct cppc_perf_caps cppc_perf;
390         int ret;
391
392         ret = cppc_get_perf_caps(cpu, &cppc_perf);
393         if (ret)
394                 return ret;
395
396         if (cppc_perf.guaranteed_perf)
397                 return cppc_perf.guaranteed_perf;
398
399         return cppc_perf.nominal_perf;
400 }
401
402 static u32 intel_pstate_cppc_nominal(int cpu)
403 {
404         u64 nominal_perf;
405
406         if (cppc_get_nominal_perf(cpu, &nominal_perf))
407                 return 0;
408
409         return nominal_perf;
410 }
411 #else /* CONFIG_ACPI_CPPC_LIB */
412 static inline void intel_pstate_set_itmt_prio(int cpu)
413 {
414 }
415 #endif /* CONFIG_ACPI_CPPC_LIB */
416
417 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
418 {
419         struct cpudata *cpu;
420         int ret;
421         int i;
422
423         if (hwp_active) {
424                 intel_pstate_set_itmt_prio(policy->cpu);
425                 return;
426         }
427
428         if (!intel_pstate_get_ppc_enable_status())
429                 return;
430
431         cpu = all_cpu_data[policy->cpu];
432
433         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
434                                                   policy->cpu);
435         if (ret)
436                 return;
437
438         /*
439          * Check if the control value in _PSS is for PERF_CTL MSR, which should
440          * guarantee that the states returned by it map to the states in our
441          * list directly.
442          */
443         if (cpu->acpi_perf_data.control_register.space_id !=
444                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
445                 goto err;
446
447         /*
448          * If there is only one entry _PSS, simply ignore _PSS and continue as
449          * usual without taking _PSS into account
450          */
451         if (cpu->acpi_perf_data.state_count < 2)
452                 goto err;
453
454         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
455         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
456                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
457                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
458                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
459                          (u32) cpu->acpi_perf_data.states[i].power,
460                          (u32) cpu->acpi_perf_data.states[i].control);
461         }
462
463         /*
464          * The _PSS table doesn't contain whole turbo frequency range.
465          * This just contains +1 MHZ above the max non turbo frequency,
466          * with control value corresponding to max turbo ratio. But
467          * when cpufreq set policy is called, it will call with this
468          * max frequency, which will cause a reduced performance as
469          * this driver uses real max turbo frequency as the max
470          * frequency. So correct this frequency in _PSS table to
471          * correct max turbo frequency based on the turbo state.
472          * Also need to convert to MHz as _PSS freq is in MHz.
473          */
474         if (!global.turbo_disabled)
475                 cpu->acpi_perf_data.states[0].core_frequency =
476                                         policy->cpuinfo.max_freq / 1000;
477         cpu->valid_pss_table = true;
478         pr_debug("_PPC limits will be enforced\n");
479
480         return;
481
482  err:
483         cpu->valid_pss_table = false;
484         acpi_processor_unregister_performance(policy->cpu);
485 }
486
487 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
488 {
489         struct cpudata *cpu;
490
491         cpu = all_cpu_data[policy->cpu];
492         if (!cpu->valid_pss_table)
493                 return;
494
495         acpi_processor_unregister_performance(policy->cpu);
496 }
497 #else /* CONFIG_ACPI */
498 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
499 {
500 }
501
502 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
503 {
504 }
505
506 static inline bool intel_pstate_acpi_pm_profile_server(void)
507 {
508         return false;
509 }
510 #endif /* CONFIG_ACPI */
511
512 #ifndef CONFIG_ACPI_CPPC_LIB
513 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
514 {
515         return -ENOTSUPP;
516 }
517 #endif /* CONFIG_ACPI_CPPC_LIB */
518
519 /**
520  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
521  * @cpu: Target CPU.
522  *
523  * On hybrid processors, HWP may expose more performance levels than there are
524  * P-states accessible through the PERF_CTL interface.  If that happens, the
525  * scaling factor between HWP performance levels and CPU frequency will be less
526  * than the scaling factor between P-state values and CPU frequency.
527  *
528  * In that case, adjust the CPU parameters used in computations accordingly.
529  */
530 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
531 {
532         int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
533         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
534         int perf_ctl_turbo = pstate_funcs.get_turbo();
535         int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
536         int scaling = cpu->pstate.scaling;
537
538         pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
539         pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, pstate_funcs.get_max());
540         pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
541         pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
542         pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
543         pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
544         pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
545
546         /*
547          * If the product of the HWP performance scaling factor and the HWP_CAP
548          * highest performance is greater than the maximum turbo frequency
549          * corresponding to the pstate_funcs.get_turbo() return value, the
550          * scaling factor is too high, so recompute it to make the HWP_CAP
551          * highest performance correspond to the maximum turbo frequency.
552          */
553         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
554         if (turbo_freq < cpu->pstate.turbo_freq) {
555                 cpu->pstate.turbo_freq = turbo_freq;
556                 scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
557                 cpu->pstate.scaling = scaling;
558
559                 pr_debug("CPU%d: refined HWP-to-frequency scaling factor: %d\n",
560                          cpu->cpu, scaling);
561         }
562
563         cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
564                                          perf_ctl_scaling);
565
566         cpu->pstate.max_pstate_physical =
567                         DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
568                                      scaling);
569
570         cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
571         /*
572          * Cast the min P-state value retrieved via pstate_funcs.get_min() to
573          * the effective range of HWP performance levels.
574          */
575         cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
576 }
577
578 static inline void update_turbo_state(void)
579 {
580         u64 misc_en;
581         struct cpudata *cpu;
582
583         cpu = all_cpu_data[0];
584         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
585         global.turbo_disabled =
586                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
587                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
588 }
589
590 static int min_perf_pct_min(void)
591 {
592         struct cpudata *cpu = all_cpu_data[0];
593         int turbo_pstate = cpu->pstate.turbo_pstate;
594
595         return turbo_pstate ?
596                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
597 }
598
599 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
600 {
601         u64 epb;
602         int ret;
603
604         if (!boot_cpu_has(X86_FEATURE_EPB))
605                 return -ENXIO;
606
607         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
608         if (ret)
609                 return (s16)ret;
610
611         return (s16)(epb & 0x0f);
612 }
613
614 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
615 {
616         s16 epp;
617
618         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
619                 /*
620                  * When hwp_req_data is 0, means that caller didn't read
621                  * MSR_HWP_REQUEST, so need to read and get EPP.
622                  */
623                 if (!hwp_req_data) {
624                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
625                                             &hwp_req_data);
626                         if (epp)
627                                 return epp;
628                 }
629                 epp = (hwp_req_data >> 24) & 0xff;
630         } else {
631                 /* When there is no EPP present, HWP uses EPB settings */
632                 epp = intel_pstate_get_epb(cpu_data);
633         }
634
635         return epp;
636 }
637
638 static int intel_pstate_set_epb(int cpu, s16 pref)
639 {
640         u64 epb;
641         int ret;
642
643         if (!boot_cpu_has(X86_FEATURE_EPB))
644                 return -ENXIO;
645
646         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
647         if (ret)
648                 return ret;
649
650         epb = (epb & ~0x0f) | pref;
651         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
652
653         return 0;
654 }
655
656 /*
657  * EPP/EPB display strings corresponding to EPP index in the
658  * energy_perf_strings[]
659  *      index           String
660  *-------------------------------------
661  *      0               default
662  *      1               performance
663  *      2               balance_performance
664  *      3               balance_power
665  *      4               power
666  */
667 static const char * const energy_perf_strings[] = {
668         "default",
669         "performance",
670         "balance_performance",
671         "balance_power",
672         "power",
673         NULL
674 };
675 static const unsigned int epp_values[] = {
676         HWP_EPP_PERFORMANCE,
677         HWP_EPP_BALANCE_PERFORMANCE,
678         HWP_EPP_BALANCE_POWERSAVE,
679         HWP_EPP_POWERSAVE
680 };
681
682 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
683 {
684         s16 epp;
685         int index = -EINVAL;
686
687         *raw_epp = 0;
688         epp = intel_pstate_get_epp(cpu_data, 0);
689         if (epp < 0)
690                 return epp;
691
692         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
693                 if (epp == HWP_EPP_PERFORMANCE)
694                         return 1;
695                 if (epp == HWP_EPP_BALANCE_PERFORMANCE)
696                         return 2;
697                 if (epp == HWP_EPP_BALANCE_POWERSAVE)
698                         return 3;
699                 if (epp == HWP_EPP_POWERSAVE)
700                         return 4;
701                 *raw_epp = epp;
702                 return 0;
703         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
704                 /*
705                  * Range:
706                  *      0x00-0x03       :       Performance
707                  *      0x04-0x07       :       Balance performance
708                  *      0x08-0x0B       :       Balance power
709                  *      0x0C-0x0F       :       Power
710                  * The EPB is a 4 bit value, but our ranges restrict the
711                  * value which can be set. Here only using top two bits
712                  * effectively.
713                  */
714                 index = (epp >> 2) + 1;
715         }
716
717         return index;
718 }
719
720 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
721 {
722         int ret;
723
724         /*
725          * Use the cached HWP Request MSR value, because in the active mode the
726          * register itself may be updated by intel_pstate_hwp_boost_up() or
727          * intel_pstate_hwp_boost_down() at any time.
728          */
729         u64 value = READ_ONCE(cpu->hwp_req_cached);
730
731         value &= ~GENMASK_ULL(31, 24);
732         value |= (u64)epp << 24;
733         /*
734          * The only other updater of hwp_req_cached in the active mode,
735          * intel_pstate_hwp_set(), is called under the same lock as this
736          * function, so it cannot run in parallel with the update below.
737          */
738         WRITE_ONCE(cpu->hwp_req_cached, value);
739         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
740         if (!ret)
741                 cpu->epp_cached = epp;
742
743         return ret;
744 }
745
746 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
747                                               int pref_index, bool use_raw,
748                                               u32 raw_epp)
749 {
750         int epp = -EINVAL;
751         int ret;
752
753         if (!pref_index)
754                 epp = cpu_data->epp_default;
755
756         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
757                 if (use_raw)
758                         epp = raw_epp;
759                 else if (epp == -EINVAL)
760                         epp = epp_values[pref_index - 1];
761
762                 /*
763                  * To avoid confusion, refuse to set EPP to any values different
764                  * from 0 (performance) if the current policy is "performance",
765                  * because those values would be overridden.
766                  */
767                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
768                         return -EBUSY;
769
770                 ret = intel_pstate_set_epp(cpu_data, epp);
771         } else {
772                 if (epp == -EINVAL)
773                         epp = (pref_index - 1) << 2;
774                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
775         }
776
777         return ret;
778 }
779
780 static ssize_t show_energy_performance_available_preferences(
781                                 struct cpufreq_policy *policy, char *buf)
782 {
783         int i = 0;
784         int ret = 0;
785
786         while (energy_perf_strings[i] != NULL)
787                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
788
789         ret += sprintf(&buf[ret], "\n");
790
791         return ret;
792 }
793
794 cpufreq_freq_attr_ro(energy_performance_available_preferences);
795
796 static struct cpufreq_driver intel_pstate;
797
798 static ssize_t store_energy_performance_preference(
799                 struct cpufreq_policy *policy, const char *buf, size_t count)
800 {
801         struct cpudata *cpu = all_cpu_data[policy->cpu];
802         char str_preference[21];
803         bool raw = false;
804         ssize_t ret;
805         u32 epp = 0;
806
807         ret = sscanf(buf, "%20s", str_preference);
808         if (ret != 1)
809                 return -EINVAL;
810
811         ret = match_string(energy_perf_strings, -1, str_preference);
812         if (ret < 0) {
813                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
814                         return ret;
815
816                 ret = kstrtouint(buf, 10, &epp);
817                 if (ret)
818                         return ret;
819
820                 if (epp > 255)
821                         return -EINVAL;
822
823                 raw = true;
824         }
825
826         /*
827          * This function runs with the policy R/W semaphore held, which
828          * guarantees that the driver pointer will not change while it is
829          * running.
830          */
831         if (!intel_pstate_driver)
832                 return -EAGAIN;
833
834         mutex_lock(&intel_pstate_limits_lock);
835
836         if (intel_pstate_driver == &intel_pstate) {
837                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
838         } else {
839                 /*
840                  * In the passive mode the governor needs to be stopped on the
841                  * target CPU before the EPP update and restarted after it,
842                  * which is super-heavy-weight, so make sure it is worth doing
843                  * upfront.
844                  */
845                 if (!raw)
846                         epp = ret ? epp_values[ret - 1] : cpu->epp_default;
847
848                 if (cpu->epp_cached != epp) {
849                         int err;
850
851                         cpufreq_stop_governor(policy);
852                         ret = intel_pstate_set_epp(cpu, epp);
853                         err = cpufreq_start_governor(policy);
854                         if (!ret)
855                                 ret = err;
856                 }
857         }
858
859         mutex_unlock(&intel_pstate_limits_lock);
860
861         return ret ?: count;
862 }
863
864 static ssize_t show_energy_performance_preference(
865                                 struct cpufreq_policy *policy, char *buf)
866 {
867         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
868         int preference, raw_epp;
869
870         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
871         if (preference < 0)
872                 return preference;
873
874         if (raw_epp)
875                 return  sprintf(buf, "%d\n", raw_epp);
876         else
877                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
878 }
879
880 cpufreq_freq_attr_rw(energy_performance_preference);
881
882 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
883 {
884         struct cpudata *cpu = all_cpu_data[policy->cpu];
885         int ratio, freq;
886
887         ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
888         if (ratio <= 0) {
889                 u64 cap;
890
891                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
892                 ratio = HWP_GUARANTEED_PERF(cap);
893         }
894
895         freq = ratio * cpu->pstate.scaling;
896         if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
897                 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
898
899         return sprintf(buf, "%d\n", freq);
900 }
901
902 cpufreq_freq_attr_ro(base_frequency);
903
904 static struct freq_attr *hwp_cpufreq_attrs[] = {
905         &energy_performance_preference,
906         &energy_performance_available_preferences,
907         &base_frequency,
908         NULL,
909 };
910
911 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
912 {
913         u64 cap;
914
915         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
916         WRITE_ONCE(cpu->hwp_cap_cached, cap);
917         cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
918         cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
919 }
920
921 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
922 {
923         int scaling = cpu->pstate.scaling;
924
925         __intel_pstate_get_hwp_cap(cpu);
926
927         cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
928         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
929         if (scaling != cpu->pstate.perf_ctl_scaling) {
930                 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
931
932                 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
933                                                  perf_ctl_scaling);
934                 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
935                                                    perf_ctl_scaling);
936         }
937 }
938
939 static void intel_pstate_hwp_set(unsigned int cpu)
940 {
941         struct cpudata *cpu_data = all_cpu_data[cpu];
942         int max, min;
943         u64 value;
944         s16 epp;
945
946         max = cpu_data->max_perf_ratio;
947         min = cpu_data->min_perf_ratio;
948
949         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
950                 min = max;
951
952         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
953
954         value &= ~HWP_MIN_PERF(~0L);
955         value |= HWP_MIN_PERF(min);
956
957         value &= ~HWP_MAX_PERF(~0L);
958         value |= HWP_MAX_PERF(max);
959
960         if (cpu_data->epp_policy == cpu_data->policy)
961                 goto skip_epp;
962
963         cpu_data->epp_policy = cpu_data->policy;
964
965         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
966                 epp = intel_pstate_get_epp(cpu_data, value);
967                 cpu_data->epp_powersave = epp;
968                 /* If EPP read was failed, then don't try to write */
969                 if (epp < 0)
970                         goto skip_epp;
971
972                 epp = 0;
973         } else {
974                 /* skip setting EPP, when saved value is invalid */
975                 if (cpu_data->epp_powersave < 0)
976                         goto skip_epp;
977
978                 /*
979                  * No need to restore EPP when it is not zero. This
980                  * means:
981                  *  - Policy is not changed
982                  *  - user has manually changed
983                  *  - Error reading EPB
984                  */
985                 epp = intel_pstate_get_epp(cpu_data, value);
986                 if (epp)
987                         goto skip_epp;
988
989                 epp = cpu_data->epp_powersave;
990         }
991         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
992                 value &= ~GENMASK_ULL(31, 24);
993                 value |= (u64)epp << 24;
994         } else {
995                 intel_pstate_set_epb(cpu, epp);
996         }
997 skip_epp:
998         WRITE_ONCE(cpu_data->hwp_req_cached, value);
999         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1000 }
1001
1002 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1003
1004 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1005 {
1006         u64 value = READ_ONCE(cpu->hwp_req_cached);
1007         int min_perf;
1008
1009         intel_pstate_disable_hwp_interrupt(cpu);
1010
1011         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1012                 /*
1013                  * In case the EPP has been set to "performance" by the
1014                  * active mode "performance" scaling algorithm, replace that
1015                  * temporary value with the cached EPP one.
1016                  */
1017                 value &= ~GENMASK_ULL(31, 24);
1018                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1019                 /*
1020                  * However, make sure that EPP will be set to "performance" when
1021                  * the CPU is brought back online again and the "performance"
1022                  * scaling algorithm is still in effect.
1023                  */
1024                 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1025         }
1026
1027         /*
1028          * Clear the desired perf field in the cached HWP request value to
1029          * prevent nonzero desired values from being leaked into the active
1030          * mode.
1031          */
1032         value &= ~HWP_DESIRED_PERF(~0L);
1033         WRITE_ONCE(cpu->hwp_req_cached, value);
1034
1035         value &= ~GENMASK_ULL(31, 0);
1036         min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1037
1038         /* Set hwp_max = hwp_min */
1039         value |= HWP_MAX_PERF(min_perf);
1040         value |= HWP_MIN_PERF(min_perf);
1041
1042         /* Set EPP to min */
1043         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1044                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1045
1046         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1047 }
1048
1049 #define POWER_CTL_EE_ENABLE     1
1050 #define POWER_CTL_EE_DISABLE    2
1051
1052 static int power_ctl_ee_state;
1053
1054 static void set_power_ctl_ee_state(bool input)
1055 {
1056         u64 power_ctl;
1057
1058         mutex_lock(&intel_pstate_driver_lock);
1059         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1060         if (input) {
1061                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1062                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1063         } else {
1064                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1065                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1066         }
1067         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1068         mutex_unlock(&intel_pstate_driver_lock);
1069 }
1070
1071 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1072
1073 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1074 {
1075         intel_pstate_hwp_enable(cpu);
1076         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1077 }
1078
1079 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1080 {
1081         struct cpudata *cpu = all_cpu_data[policy->cpu];
1082
1083         pr_debug("CPU %d suspending\n", cpu->cpu);
1084
1085         cpu->suspended = true;
1086
1087         /* disable HWP interrupt and cancel any pending work */
1088         intel_pstate_disable_hwp_interrupt(cpu);
1089
1090         return 0;
1091 }
1092
1093 static int intel_pstate_resume(struct cpufreq_policy *policy)
1094 {
1095         struct cpudata *cpu = all_cpu_data[policy->cpu];
1096
1097         pr_debug("CPU %d resuming\n", cpu->cpu);
1098
1099         /* Only restore if the system default is changed */
1100         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1101                 set_power_ctl_ee_state(true);
1102         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1103                 set_power_ctl_ee_state(false);
1104
1105         if (cpu->suspended && hwp_active) {
1106                 mutex_lock(&intel_pstate_limits_lock);
1107
1108                 /* Re-enable HWP, because "online" has not done that. */
1109                 intel_pstate_hwp_reenable(cpu);
1110
1111                 mutex_unlock(&intel_pstate_limits_lock);
1112         }
1113
1114         cpu->suspended = false;
1115
1116         return 0;
1117 }
1118
1119 static void intel_pstate_update_policies(void)
1120 {
1121         int cpu;
1122
1123         for_each_possible_cpu(cpu)
1124                 cpufreq_update_policy(cpu);
1125 }
1126
1127 static void intel_pstate_update_max_freq(unsigned int cpu)
1128 {
1129         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1130         struct cpudata *cpudata;
1131
1132         if (!policy)
1133                 return;
1134
1135         cpudata = all_cpu_data[cpu];
1136         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1137                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1138
1139         refresh_frequency_limits(policy);
1140
1141         cpufreq_cpu_release(policy);
1142 }
1143
1144 static void intel_pstate_update_limits(unsigned int cpu)
1145 {
1146         mutex_lock(&intel_pstate_driver_lock);
1147
1148         update_turbo_state();
1149         /*
1150          * If turbo has been turned on or off globally, policy limits for
1151          * all CPUs need to be updated to reflect that.
1152          */
1153         if (global.turbo_disabled_mf != global.turbo_disabled) {
1154                 global.turbo_disabled_mf = global.turbo_disabled;
1155                 arch_set_max_freq_ratio(global.turbo_disabled);
1156                 for_each_possible_cpu(cpu)
1157                         intel_pstate_update_max_freq(cpu);
1158         } else {
1159                 cpufreq_update_policy(cpu);
1160         }
1161
1162         mutex_unlock(&intel_pstate_driver_lock);
1163 }
1164
1165 /************************** sysfs begin ************************/
1166 #define show_one(file_name, object)                                     \
1167         static ssize_t show_##file_name                                 \
1168         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1169         {                                                               \
1170                 return sprintf(buf, "%u\n", global.object);             \
1171         }
1172
1173 static ssize_t intel_pstate_show_status(char *buf);
1174 static int intel_pstate_update_status(const char *buf, size_t size);
1175
1176 static ssize_t show_status(struct kobject *kobj,
1177                            struct kobj_attribute *attr, char *buf)
1178 {
1179         ssize_t ret;
1180
1181         mutex_lock(&intel_pstate_driver_lock);
1182         ret = intel_pstate_show_status(buf);
1183         mutex_unlock(&intel_pstate_driver_lock);
1184
1185         return ret;
1186 }
1187
1188 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1189                             const char *buf, size_t count)
1190 {
1191         char *p = memchr(buf, '\n', count);
1192         int ret;
1193
1194         mutex_lock(&intel_pstate_driver_lock);
1195         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1196         mutex_unlock(&intel_pstate_driver_lock);
1197
1198         return ret < 0 ? ret : count;
1199 }
1200
1201 static ssize_t show_turbo_pct(struct kobject *kobj,
1202                                 struct kobj_attribute *attr, char *buf)
1203 {
1204         struct cpudata *cpu;
1205         int total, no_turbo, turbo_pct;
1206         uint32_t turbo_fp;
1207
1208         mutex_lock(&intel_pstate_driver_lock);
1209
1210         if (!intel_pstate_driver) {
1211                 mutex_unlock(&intel_pstate_driver_lock);
1212                 return -EAGAIN;
1213         }
1214
1215         cpu = all_cpu_data[0];
1216
1217         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1218         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1219         turbo_fp = div_fp(no_turbo, total);
1220         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1221
1222         mutex_unlock(&intel_pstate_driver_lock);
1223
1224         return sprintf(buf, "%u\n", turbo_pct);
1225 }
1226
1227 static ssize_t show_num_pstates(struct kobject *kobj,
1228                                 struct kobj_attribute *attr, char *buf)
1229 {
1230         struct cpudata *cpu;
1231         int total;
1232
1233         mutex_lock(&intel_pstate_driver_lock);
1234
1235         if (!intel_pstate_driver) {
1236                 mutex_unlock(&intel_pstate_driver_lock);
1237                 return -EAGAIN;
1238         }
1239
1240         cpu = all_cpu_data[0];
1241         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1242
1243         mutex_unlock(&intel_pstate_driver_lock);
1244
1245         return sprintf(buf, "%u\n", total);
1246 }
1247
1248 static ssize_t show_no_turbo(struct kobject *kobj,
1249                              struct kobj_attribute *attr, char *buf)
1250 {
1251         ssize_t ret;
1252
1253         mutex_lock(&intel_pstate_driver_lock);
1254
1255         if (!intel_pstate_driver) {
1256                 mutex_unlock(&intel_pstate_driver_lock);
1257                 return -EAGAIN;
1258         }
1259
1260         update_turbo_state();
1261         if (global.turbo_disabled)
1262                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1263         else
1264                 ret = sprintf(buf, "%u\n", global.no_turbo);
1265
1266         mutex_unlock(&intel_pstate_driver_lock);
1267
1268         return ret;
1269 }
1270
1271 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1272                               const char *buf, size_t count)
1273 {
1274         unsigned int input;
1275         int ret;
1276
1277         ret = sscanf(buf, "%u", &input);
1278         if (ret != 1)
1279                 return -EINVAL;
1280
1281         mutex_lock(&intel_pstate_driver_lock);
1282
1283         if (!intel_pstate_driver) {
1284                 mutex_unlock(&intel_pstate_driver_lock);
1285                 return -EAGAIN;
1286         }
1287
1288         mutex_lock(&intel_pstate_limits_lock);
1289
1290         update_turbo_state();
1291         if (global.turbo_disabled) {
1292                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1293                 mutex_unlock(&intel_pstate_limits_lock);
1294                 mutex_unlock(&intel_pstate_driver_lock);
1295                 return -EPERM;
1296         }
1297
1298         global.no_turbo = clamp_t(int, input, 0, 1);
1299
1300         if (global.no_turbo) {
1301                 struct cpudata *cpu = all_cpu_data[0];
1302                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1303
1304                 /* Squash the global minimum into the permitted range. */
1305                 if (global.min_perf_pct > pct)
1306                         global.min_perf_pct = pct;
1307         }
1308
1309         mutex_unlock(&intel_pstate_limits_lock);
1310
1311         intel_pstate_update_policies();
1312
1313         mutex_unlock(&intel_pstate_driver_lock);
1314
1315         return count;
1316 }
1317
1318 static void update_qos_request(enum freq_qos_req_type type)
1319 {
1320         struct freq_qos_request *req;
1321         struct cpufreq_policy *policy;
1322         int i;
1323
1324         for_each_possible_cpu(i) {
1325                 struct cpudata *cpu = all_cpu_data[i];
1326                 unsigned int freq, perf_pct;
1327
1328                 policy = cpufreq_cpu_get(i);
1329                 if (!policy)
1330                         continue;
1331
1332                 req = policy->driver_data;
1333                 cpufreq_cpu_put(policy);
1334
1335                 if (!req)
1336                         continue;
1337
1338                 if (hwp_active)
1339                         intel_pstate_get_hwp_cap(cpu);
1340
1341                 if (type == FREQ_QOS_MIN) {
1342                         perf_pct = global.min_perf_pct;
1343                 } else {
1344                         req++;
1345                         perf_pct = global.max_perf_pct;
1346                 }
1347
1348                 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1349
1350                 if (freq_qos_update_request(req, freq) < 0)
1351                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1352         }
1353 }
1354
1355 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1356                                   const char *buf, size_t count)
1357 {
1358         unsigned int input;
1359         int ret;
1360
1361         ret = sscanf(buf, "%u", &input);
1362         if (ret != 1)
1363                 return -EINVAL;
1364
1365         mutex_lock(&intel_pstate_driver_lock);
1366
1367         if (!intel_pstate_driver) {
1368                 mutex_unlock(&intel_pstate_driver_lock);
1369                 return -EAGAIN;
1370         }
1371
1372         mutex_lock(&intel_pstate_limits_lock);
1373
1374         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1375
1376         mutex_unlock(&intel_pstate_limits_lock);
1377
1378         if (intel_pstate_driver == &intel_pstate)
1379                 intel_pstate_update_policies();
1380         else
1381                 update_qos_request(FREQ_QOS_MAX);
1382
1383         mutex_unlock(&intel_pstate_driver_lock);
1384
1385         return count;
1386 }
1387
1388 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1389                                   const char *buf, size_t count)
1390 {
1391         unsigned int input;
1392         int ret;
1393
1394         ret = sscanf(buf, "%u", &input);
1395         if (ret != 1)
1396                 return -EINVAL;
1397
1398         mutex_lock(&intel_pstate_driver_lock);
1399
1400         if (!intel_pstate_driver) {
1401                 mutex_unlock(&intel_pstate_driver_lock);
1402                 return -EAGAIN;
1403         }
1404
1405         mutex_lock(&intel_pstate_limits_lock);
1406
1407         global.min_perf_pct = clamp_t(int, input,
1408                                       min_perf_pct_min(), global.max_perf_pct);
1409
1410         mutex_unlock(&intel_pstate_limits_lock);
1411
1412         if (intel_pstate_driver == &intel_pstate)
1413                 intel_pstate_update_policies();
1414         else
1415                 update_qos_request(FREQ_QOS_MIN);
1416
1417         mutex_unlock(&intel_pstate_driver_lock);
1418
1419         return count;
1420 }
1421
1422 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1423                                 struct kobj_attribute *attr, char *buf)
1424 {
1425         return sprintf(buf, "%u\n", hwp_boost);
1426 }
1427
1428 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1429                                        struct kobj_attribute *b,
1430                                        const char *buf, size_t count)
1431 {
1432         unsigned int input;
1433         int ret;
1434
1435         ret = kstrtouint(buf, 10, &input);
1436         if (ret)
1437                 return ret;
1438
1439         mutex_lock(&intel_pstate_driver_lock);
1440         hwp_boost = !!input;
1441         intel_pstate_update_policies();
1442         mutex_unlock(&intel_pstate_driver_lock);
1443
1444         return count;
1445 }
1446
1447 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1448                                       char *buf)
1449 {
1450         u64 power_ctl;
1451         int enable;
1452
1453         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1454         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1455         return sprintf(buf, "%d\n", !enable);
1456 }
1457
1458 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1459                                        const char *buf, size_t count)
1460 {
1461         bool input;
1462         int ret;
1463
1464         ret = kstrtobool(buf, &input);
1465         if (ret)
1466                 return ret;
1467
1468         set_power_ctl_ee_state(input);
1469
1470         return count;
1471 }
1472
1473 show_one(max_perf_pct, max_perf_pct);
1474 show_one(min_perf_pct, min_perf_pct);
1475
1476 define_one_global_rw(status);
1477 define_one_global_rw(no_turbo);
1478 define_one_global_rw(max_perf_pct);
1479 define_one_global_rw(min_perf_pct);
1480 define_one_global_ro(turbo_pct);
1481 define_one_global_ro(num_pstates);
1482 define_one_global_rw(hwp_dynamic_boost);
1483 define_one_global_rw(energy_efficiency);
1484
1485 static struct attribute *intel_pstate_attributes[] = {
1486         &status.attr,
1487         &no_turbo.attr,
1488         NULL
1489 };
1490
1491 static const struct attribute_group intel_pstate_attr_group = {
1492         .attrs = intel_pstate_attributes,
1493 };
1494
1495 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1496
1497 static struct kobject *intel_pstate_kobject;
1498
1499 static void __init intel_pstate_sysfs_expose_params(void)
1500 {
1501         int rc;
1502
1503         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1504                                                 &cpu_subsys.dev_root->kobj);
1505         if (WARN_ON(!intel_pstate_kobject))
1506                 return;
1507
1508         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1509         if (WARN_ON(rc))
1510                 return;
1511
1512         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1513                 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1514                 WARN_ON(rc);
1515
1516                 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1517                 WARN_ON(rc);
1518         }
1519
1520         /*
1521          * If per cpu limits are enforced there are no global limits, so
1522          * return without creating max/min_perf_pct attributes
1523          */
1524         if (per_cpu_limits)
1525                 return;
1526
1527         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1528         WARN_ON(rc);
1529
1530         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1531         WARN_ON(rc);
1532
1533         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1534                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1535                 WARN_ON(rc);
1536         }
1537 }
1538
1539 static void __init intel_pstate_sysfs_remove(void)
1540 {
1541         if (!intel_pstate_kobject)
1542                 return;
1543
1544         sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1545
1546         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1547                 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1548                 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1549         }
1550
1551         if (!per_cpu_limits) {
1552                 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1553                 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1554
1555                 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1556                         sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1557         }
1558
1559         kobject_put(intel_pstate_kobject);
1560 }
1561
1562 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1563 {
1564         int rc;
1565
1566         if (!hwp_active)
1567                 return;
1568
1569         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1570         WARN_ON_ONCE(rc);
1571 }
1572
1573 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1574 {
1575         if (!hwp_active)
1576                 return;
1577
1578         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1579 }
1580
1581 /************************** sysfs end ************************/
1582
1583 static void intel_pstate_notify_work(struct work_struct *work)
1584 {
1585         struct cpudata *cpudata =
1586                 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1587
1588         cpufreq_update_policy(cpudata->cpu);
1589         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1590 }
1591
1592 static DEFINE_SPINLOCK(hwp_notify_lock);
1593 static cpumask_t hwp_intr_enable_mask;
1594
1595 void notify_hwp_interrupt(void)
1596 {
1597         unsigned int this_cpu = smp_processor_id();
1598         struct cpudata *cpudata;
1599         unsigned long flags;
1600         u64 value;
1601
1602         if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1603                 return;
1604
1605         rdmsrl_safe(MSR_HWP_STATUS, &value);
1606         if (!(value & 0x01))
1607                 return;
1608
1609         spin_lock_irqsave(&hwp_notify_lock, flags);
1610
1611         if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1612                 goto ack_intr;
1613
1614         /*
1615          * Currently we never free all_cpu_data. And we can't reach here
1616          * without this allocated. But for safety for future changes, added
1617          * check.
1618          */
1619         if (unlikely(!READ_ONCE(all_cpu_data)))
1620                 goto ack_intr;
1621
1622         /*
1623          * The free is done during cleanup, when cpufreq registry is failed.
1624          * We wouldn't be here if it fails on init or switch status. But for
1625          * future changes, added check.
1626          */
1627         cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1628         if (unlikely(!cpudata))
1629                 goto ack_intr;
1630
1631         schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1632
1633         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1634
1635         return;
1636
1637 ack_intr:
1638         wrmsrl_safe(MSR_HWP_STATUS, 0);
1639         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1640 }
1641
1642 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1643 {
1644         unsigned long flags;
1645
1646         if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1647                 return;
1648
1649         /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1650         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1651
1652         spin_lock_irqsave(&hwp_notify_lock, flags);
1653         if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1654                 cancel_delayed_work(&cpudata->hwp_notify_work);
1655         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1656 }
1657
1658 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1659 {
1660         /* Enable HWP notification interrupt for guaranteed performance change */
1661         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1662                 unsigned long flags;
1663
1664                 spin_lock_irqsave(&hwp_notify_lock, flags);
1665                 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1666                 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1667                 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1668
1669                 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1670                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1671                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1672         }
1673 }
1674
1675 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1676 {
1677         /* First disable HWP notification interrupt till we activate again */
1678         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1679                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1680
1681         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1682         if (cpudata->epp_default == -EINVAL)
1683                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1684
1685         intel_pstate_enable_hwp_interrupt(cpudata);
1686 }
1687
1688 static int atom_get_min_pstate(void)
1689 {
1690         u64 value;
1691
1692         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1693         return (value >> 8) & 0x7F;
1694 }
1695
1696 static int atom_get_max_pstate(void)
1697 {
1698         u64 value;
1699
1700         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1701         return (value >> 16) & 0x7F;
1702 }
1703
1704 static int atom_get_turbo_pstate(void)
1705 {
1706         u64 value;
1707
1708         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1709         return value & 0x7F;
1710 }
1711
1712 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1713 {
1714         u64 val;
1715         int32_t vid_fp;
1716         u32 vid;
1717
1718         val = (u64)pstate << 8;
1719         if (global.no_turbo && !global.turbo_disabled)
1720                 val |= (u64)1 << 32;
1721
1722         vid_fp = cpudata->vid.min + mul_fp(
1723                 int_tofp(pstate - cpudata->pstate.min_pstate),
1724                 cpudata->vid.ratio);
1725
1726         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1727         vid = ceiling_fp(vid_fp);
1728
1729         if (pstate > cpudata->pstate.max_pstate)
1730                 vid = cpudata->vid.turbo;
1731
1732         return val | vid;
1733 }
1734
1735 static int silvermont_get_scaling(void)
1736 {
1737         u64 value;
1738         int i;
1739         /* Defined in Table 35-6 from SDM (Sept 2015) */
1740         static int silvermont_freq_table[] = {
1741                 83300, 100000, 133300, 116700, 80000};
1742
1743         rdmsrl(MSR_FSB_FREQ, value);
1744         i = value & 0x7;
1745         WARN_ON(i > 4);
1746
1747         return silvermont_freq_table[i];
1748 }
1749
1750 static int airmont_get_scaling(void)
1751 {
1752         u64 value;
1753         int i;
1754         /* Defined in Table 35-10 from SDM (Sept 2015) */
1755         static int airmont_freq_table[] = {
1756                 83300, 100000, 133300, 116700, 80000,
1757                 93300, 90000, 88900, 87500};
1758
1759         rdmsrl(MSR_FSB_FREQ, value);
1760         i = value & 0xF;
1761         WARN_ON(i > 8);
1762
1763         return airmont_freq_table[i];
1764 }
1765
1766 static void atom_get_vid(struct cpudata *cpudata)
1767 {
1768         u64 value;
1769
1770         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1771         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1772         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1773         cpudata->vid.ratio = div_fp(
1774                 cpudata->vid.max - cpudata->vid.min,
1775                 int_tofp(cpudata->pstate.max_pstate -
1776                         cpudata->pstate.min_pstate));
1777
1778         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1779         cpudata->vid.turbo = value & 0x7f;
1780 }
1781
1782 static int core_get_min_pstate(void)
1783 {
1784         u64 value;
1785
1786         rdmsrl(MSR_PLATFORM_INFO, value);
1787         return (value >> 40) & 0xFF;
1788 }
1789
1790 static int core_get_max_pstate_physical(void)
1791 {
1792         u64 value;
1793
1794         rdmsrl(MSR_PLATFORM_INFO, value);
1795         return (value >> 8) & 0xFF;
1796 }
1797
1798 static int core_get_tdp_ratio(u64 plat_info)
1799 {
1800         /* Check how many TDP levels present */
1801         if (plat_info & 0x600000000) {
1802                 u64 tdp_ctrl;
1803                 u64 tdp_ratio;
1804                 int tdp_msr;
1805                 int err;
1806
1807                 /* Get the TDP level (0, 1, 2) to get ratios */
1808                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1809                 if (err)
1810                         return err;
1811
1812                 /* TDP MSR are continuous starting at 0x648 */
1813                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1814                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1815                 if (err)
1816                         return err;
1817
1818                 /* For level 1 and 2, bits[23:16] contain the ratio */
1819                 if (tdp_ctrl & 0x03)
1820                         tdp_ratio >>= 16;
1821
1822                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1823                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1824
1825                 return (int)tdp_ratio;
1826         }
1827
1828         return -ENXIO;
1829 }
1830
1831 static int core_get_max_pstate(void)
1832 {
1833         u64 tar;
1834         u64 plat_info;
1835         int max_pstate;
1836         int tdp_ratio;
1837         int err;
1838
1839         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1840         max_pstate = (plat_info >> 8) & 0xFF;
1841
1842         tdp_ratio = core_get_tdp_ratio(plat_info);
1843         if (tdp_ratio <= 0)
1844                 return max_pstate;
1845
1846         if (hwp_active) {
1847                 /* Turbo activation ratio is not used on HWP platforms */
1848                 return tdp_ratio;
1849         }
1850
1851         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1852         if (!err) {
1853                 int tar_levels;
1854
1855                 /* Do some sanity checking for safety */
1856                 tar_levels = tar & 0xff;
1857                 if (tdp_ratio - 1 == tar_levels) {
1858                         max_pstate = tar_levels;
1859                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1860                 }
1861         }
1862
1863         return max_pstate;
1864 }
1865
1866 static int core_get_turbo_pstate(void)
1867 {
1868         u64 value;
1869         int nont, ret;
1870
1871         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1872         nont = core_get_max_pstate();
1873         ret = (value) & 255;
1874         if (ret <= nont)
1875                 ret = nont;
1876         return ret;
1877 }
1878
1879 static inline int core_get_scaling(void)
1880 {
1881         return 100000;
1882 }
1883
1884 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1885 {
1886         u64 val;
1887
1888         val = (u64)pstate << 8;
1889         if (global.no_turbo && !global.turbo_disabled)
1890                 val |= (u64)1 << 32;
1891
1892         return val;
1893 }
1894
1895 static int knl_get_aperf_mperf_shift(void)
1896 {
1897         return 10;
1898 }
1899
1900 static int knl_get_turbo_pstate(void)
1901 {
1902         u64 value;
1903         int nont, ret;
1904
1905         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1906         nont = core_get_max_pstate();
1907         ret = (((value) >> 8) & 0xFF);
1908         if (ret <= nont)
1909                 ret = nont;
1910         return ret;
1911 }
1912
1913 #ifdef CONFIG_ACPI_CPPC_LIB
1914 static u32 hybrid_ref_perf;
1915
1916 static int hybrid_get_cpu_scaling(int cpu)
1917 {
1918         return DIV_ROUND_UP(core_get_scaling() * hybrid_ref_perf,
1919                             intel_pstate_cppc_nominal(cpu));
1920 }
1921
1922 static void intel_pstate_cppc_set_cpu_scaling(void)
1923 {
1924         u32 min_nominal_perf = U32_MAX;
1925         int cpu;
1926
1927         for_each_present_cpu(cpu) {
1928                 u32 nominal_perf = intel_pstate_cppc_nominal(cpu);
1929
1930                 if (nominal_perf && nominal_perf < min_nominal_perf)
1931                         min_nominal_perf = nominal_perf;
1932         }
1933
1934         if (min_nominal_perf < U32_MAX) {
1935                 hybrid_ref_perf = min_nominal_perf;
1936                 pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
1937         }
1938 }
1939 #else
1940 static inline void intel_pstate_cppc_set_cpu_scaling(void)
1941 {
1942 }
1943 #endif /* CONFIG_ACPI_CPPC_LIB */
1944
1945 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1946 {
1947         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1948         cpu->pstate.current_pstate = pstate;
1949         /*
1950          * Generally, there is no guarantee that this code will always run on
1951          * the CPU being updated, so force the register update to run on the
1952          * right CPU.
1953          */
1954         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1955                       pstate_funcs.get_val(cpu, pstate));
1956 }
1957
1958 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1959 {
1960         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1961 }
1962
1963 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1964 {
1965         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1966
1967         update_turbo_state();
1968         intel_pstate_set_pstate(cpu, pstate);
1969 }
1970
1971 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1972 {
1973         int perf_ctl_max_phys = pstate_funcs.get_max_physical();
1974         int perf_ctl_scaling = pstate_funcs.get_scaling();
1975
1976         cpu->pstate.min_pstate = pstate_funcs.get_min();
1977         cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1978         cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1979
1980         if (hwp_active && !hwp_mode_bdw) {
1981                 __intel_pstate_get_hwp_cap(cpu);
1982
1983                 if (pstate_funcs.get_cpu_scaling) {
1984                         cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
1985                         if (cpu->pstate.scaling != perf_ctl_scaling)
1986                                 intel_pstate_hybrid_hwp_adjust(cpu);
1987                 } else {
1988                         cpu->pstate.scaling = perf_ctl_scaling;
1989                 }
1990         } else {
1991                 cpu->pstate.scaling = perf_ctl_scaling;
1992                 cpu->pstate.max_pstate = pstate_funcs.get_max();
1993                 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1994         }
1995
1996         if (cpu->pstate.scaling == perf_ctl_scaling) {
1997                 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
1998                 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
1999                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2000         }
2001
2002         if (pstate_funcs.get_aperf_mperf_shift)
2003                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2004
2005         if (pstate_funcs.get_vid)
2006                 pstate_funcs.get_vid(cpu);
2007
2008         intel_pstate_set_min_pstate(cpu);
2009 }
2010
2011 /*
2012  * Long hold time will keep high perf limits for long time,
2013  * which negatively impacts perf/watt for some workloads,
2014  * like specpower. 3ms is based on experiements on some
2015  * workoads.
2016  */
2017 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2018
2019 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2020 {
2021         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2022         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2023         u32 max_limit = (hwp_req & 0xff00) >> 8;
2024         u32 min_limit = (hwp_req & 0xff);
2025         u32 boost_level1;
2026
2027         /*
2028          * Cases to consider (User changes via sysfs or boot time):
2029          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2030          *      No boost, return.
2031          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2032          *     Should result in one level boost only for P0.
2033          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2034          *     Should result in two level boost:
2035          *         (min + p1)/2 and P1.
2036          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2037          *     Should result in three level boost:
2038          *        (min + p1)/2, P1 and P0.
2039          */
2040
2041         /* If max and min are equal or already at max, nothing to boost */
2042         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2043                 return;
2044
2045         if (!cpu->hwp_boost_min)
2046                 cpu->hwp_boost_min = min_limit;
2047
2048         /* level at half way mark between min and guranteed */
2049         boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2050
2051         if (cpu->hwp_boost_min < boost_level1)
2052                 cpu->hwp_boost_min = boost_level1;
2053         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2054                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2055         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2056                  max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2057                 cpu->hwp_boost_min = max_limit;
2058         else
2059                 return;
2060
2061         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2062         wrmsrl(MSR_HWP_REQUEST, hwp_req);
2063         cpu->last_update = cpu->sample.time;
2064 }
2065
2066 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2067 {
2068         if (cpu->hwp_boost_min) {
2069                 bool expired;
2070
2071                 /* Check if we are idle for hold time to boost down */
2072                 expired = time_after64(cpu->sample.time, cpu->last_update +
2073                                        hwp_boost_hold_time_ns);
2074                 if (expired) {
2075                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2076                         cpu->hwp_boost_min = 0;
2077                 }
2078         }
2079         cpu->last_update = cpu->sample.time;
2080 }
2081
2082 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2083                                                       u64 time)
2084 {
2085         cpu->sample.time = time;
2086
2087         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2088                 bool do_io = false;
2089
2090                 cpu->sched_flags = 0;
2091                 /*
2092                  * Set iowait_boost flag and update time. Since IO WAIT flag
2093                  * is set all the time, we can't just conclude that there is
2094                  * some IO bound activity is scheduled on this CPU with just
2095                  * one occurrence. If we receive at least two in two
2096                  * consecutive ticks, then we treat as boost candidate.
2097                  */
2098                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2099                         do_io = true;
2100
2101                 cpu->last_io_update = time;
2102
2103                 if (do_io)
2104                         intel_pstate_hwp_boost_up(cpu);
2105
2106         } else {
2107                 intel_pstate_hwp_boost_down(cpu);
2108         }
2109 }
2110
2111 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2112                                                 u64 time, unsigned int flags)
2113 {
2114         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2115
2116         cpu->sched_flags |= flags;
2117
2118         if (smp_processor_id() == cpu->cpu)
2119                 intel_pstate_update_util_hwp_local(cpu, time);
2120 }
2121
2122 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2123 {
2124         struct sample *sample = &cpu->sample;
2125
2126         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2127 }
2128
2129 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2130 {
2131         u64 aperf, mperf;
2132         unsigned long flags;
2133         u64 tsc;
2134
2135         local_irq_save(flags);
2136         rdmsrl(MSR_IA32_APERF, aperf);
2137         rdmsrl(MSR_IA32_MPERF, mperf);
2138         tsc = rdtsc();
2139         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2140                 local_irq_restore(flags);
2141                 return false;
2142         }
2143         local_irq_restore(flags);
2144
2145         cpu->last_sample_time = cpu->sample.time;
2146         cpu->sample.time = time;
2147         cpu->sample.aperf = aperf;
2148         cpu->sample.mperf = mperf;
2149         cpu->sample.tsc =  tsc;
2150         cpu->sample.aperf -= cpu->prev_aperf;
2151         cpu->sample.mperf -= cpu->prev_mperf;
2152         cpu->sample.tsc -= cpu->prev_tsc;
2153
2154         cpu->prev_aperf = aperf;
2155         cpu->prev_mperf = mperf;
2156         cpu->prev_tsc = tsc;
2157         /*
2158          * First time this function is invoked in a given cycle, all of the
2159          * previous sample data fields are equal to zero or stale and they must
2160          * be populated with meaningful numbers for things to work, so assume
2161          * that sample.time will always be reset before setting the utilization
2162          * update hook and make the caller skip the sample then.
2163          */
2164         if (cpu->last_sample_time) {
2165                 intel_pstate_calc_avg_perf(cpu);
2166                 return true;
2167         }
2168         return false;
2169 }
2170
2171 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2172 {
2173         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2174 }
2175
2176 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2177 {
2178         return mul_ext_fp(cpu->pstate.max_pstate_physical,
2179                           cpu->sample.core_avg_perf);
2180 }
2181
2182 static inline int32_t get_target_pstate(struct cpudata *cpu)
2183 {
2184         struct sample *sample = &cpu->sample;
2185         int32_t busy_frac;
2186         int target, avg_pstate;
2187
2188         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2189                            sample->tsc);
2190
2191         if (busy_frac < cpu->iowait_boost)
2192                 busy_frac = cpu->iowait_boost;
2193
2194         sample->busy_scaled = busy_frac * 100;
2195
2196         target = global.no_turbo || global.turbo_disabled ?
2197                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2198         target += target >> 2;
2199         target = mul_fp(target, busy_frac);
2200         if (target < cpu->pstate.min_pstate)
2201                 target = cpu->pstate.min_pstate;
2202
2203         /*
2204          * If the average P-state during the previous cycle was higher than the
2205          * current target, add 50% of the difference to the target to reduce
2206          * possible performance oscillations and offset possible performance
2207          * loss related to moving the workload from one CPU to another within
2208          * a package/module.
2209          */
2210         avg_pstate = get_avg_pstate(cpu);
2211         if (avg_pstate > target)
2212                 target += (avg_pstate - target) >> 1;
2213
2214         return target;
2215 }
2216
2217 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2218 {
2219         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2220         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2221
2222         return clamp_t(int, pstate, min_pstate, max_pstate);
2223 }
2224
2225 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2226 {
2227         if (pstate == cpu->pstate.current_pstate)
2228                 return;
2229
2230         cpu->pstate.current_pstate = pstate;
2231         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2232 }
2233
2234 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2235 {
2236         int from = cpu->pstate.current_pstate;
2237         struct sample *sample;
2238         int target_pstate;
2239
2240         update_turbo_state();
2241
2242         target_pstate = get_target_pstate(cpu);
2243         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2244         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2245         intel_pstate_update_pstate(cpu, target_pstate);
2246
2247         sample = &cpu->sample;
2248         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2249                 fp_toint(sample->busy_scaled),
2250                 from,
2251                 cpu->pstate.current_pstate,
2252                 sample->mperf,
2253                 sample->aperf,
2254                 sample->tsc,
2255                 get_avg_frequency(cpu),
2256                 fp_toint(cpu->iowait_boost * 100));
2257 }
2258
2259 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2260                                      unsigned int flags)
2261 {
2262         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2263         u64 delta_ns;
2264
2265         /* Don't allow remote callbacks */
2266         if (smp_processor_id() != cpu->cpu)
2267                 return;
2268
2269         delta_ns = time - cpu->last_update;
2270         if (flags & SCHED_CPUFREQ_IOWAIT) {
2271                 /* Start over if the CPU may have been idle. */
2272                 if (delta_ns > TICK_NSEC) {
2273                         cpu->iowait_boost = ONE_EIGHTH_FP;
2274                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2275                         cpu->iowait_boost <<= 1;
2276                         if (cpu->iowait_boost > int_tofp(1))
2277                                 cpu->iowait_boost = int_tofp(1);
2278                 } else {
2279                         cpu->iowait_boost = ONE_EIGHTH_FP;
2280                 }
2281         } else if (cpu->iowait_boost) {
2282                 /* Clear iowait_boost if the CPU may have been idle. */
2283                 if (delta_ns > TICK_NSEC)
2284                         cpu->iowait_boost = 0;
2285                 else
2286                         cpu->iowait_boost >>= 1;
2287         }
2288         cpu->last_update = time;
2289         delta_ns = time - cpu->sample.time;
2290         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2291                 return;
2292
2293         if (intel_pstate_sample(cpu, time))
2294                 intel_pstate_adjust_pstate(cpu);
2295 }
2296
2297 static struct pstate_funcs core_funcs = {
2298         .get_max = core_get_max_pstate,
2299         .get_max_physical = core_get_max_pstate_physical,
2300         .get_min = core_get_min_pstate,
2301         .get_turbo = core_get_turbo_pstate,
2302         .get_scaling = core_get_scaling,
2303         .get_val = core_get_val,
2304 };
2305
2306 static const struct pstate_funcs silvermont_funcs = {
2307         .get_max = atom_get_max_pstate,
2308         .get_max_physical = atom_get_max_pstate,
2309         .get_min = atom_get_min_pstate,
2310         .get_turbo = atom_get_turbo_pstate,
2311         .get_val = atom_get_val,
2312         .get_scaling = silvermont_get_scaling,
2313         .get_vid = atom_get_vid,
2314 };
2315
2316 static const struct pstate_funcs airmont_funcs = {
2317         .get_max = atom_get_max_pstate,
2318         .get_max_physical = atom_get_max_pstate,
2319         .get_min = atom_get_min_pstate,
2320         .get_turbo = atom_get_turbo_pstate,
2321         .get_val = atom_get_val,
2322         .get_scaling = airmont_get_scaling,
2323         .get_vid = atom_get_vid,
2324 };
2325
2326 static const struct pstate_funcs knl_funcs = {
2327         .get_max = core_get_max_pstate,
2328         .get_max_physical = core_get_max_pstate_physical,
2329         .get_min = core_get_min_pstate,
2330         .get_turbo = knl_get_turbo_pstate,
2331         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2332         .get_scaling = core_get_scaling,
2333         .get_val = core_get_val,
2334 };
2335
2336 #define X86_MATCH(model, policy)                                         \
2337         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2338                                            X86_FEATURE_APERFMPERF, &policy)
2339
2340 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2341         X86_MATCH(SANDYBRIDGE,          core_funcs),
2342         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
2343         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
2344         X86_MATCH(IVYBRIDGE,            core_funcs),
2345         X86_MATCH(HASWELL,              core_funcs),
2346         X86_MATCH(BROADWELL,            core_funcs),
2347         X86_MATCH(IVYBRIDGE_X,          core_funcs),
2348         X86_MATCH(HASWELL_X,            core_funcs),
2349         X86_MATCH(HASWELL_L,            core_funcs),
2350         X86_MATCH(HASWELL_G,            core_funcs),
2351         X86_MATCH(BROADWELL_G,          core_funcs),
2352         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
2353         X86_MATCH(SKYLAKE_L,            core_funcs),
2354         X86_MATCH(BROADWELL_X,          core_funcs),
2355         X86_MATCH(SKYLAKE,              core_funcs),
2356         X86_MATCH(BROADWELL_D,          core_funcs),
2357         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
2358         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
2359         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
2360         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2361         X86_MATCH(SKYLAKE_X,            core_funcs),
2362         X86_MATCH(COMETLAKE,            core_funcs),
2363         X86_MATCH(ICELAKE_X,            core_funcs),
2364         {}
2365 };
2366 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2367
2368 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2369         X86_MATCH(BROADWELL_D,          core_funcs),
2370         X86_MATCH(BROADWELL_X,          core_funcs),
2371         X86_MATCH(SKYLAKE_X,            core_funcs),
2372         X86_MATCH(ICELAKE_X,            core_funcs),
2373         {}
2374 };
2375
2376 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2377         X86_MATCH(KABYLAKE,             core_funcs),
2378         {}
2379 };
2380
2381 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2382         X86_MATCH(SKYLAKE_X,            core_funcs),
2383         X86_MATCH(SKYLAKE,              core_funcs),
2384         {}
2385 };
2386
2387 static int intel_pstate_init_cpu(unsigned int cpunum)
2388 {
2389         struct cpudata *cpu;
2390
2391         cpu = all_cpu_data[cpunum];
2392
2393         if (!cpu) {
2394                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2395                 if (!cpu)
2396                         return -ENOMEM;
2397
2398                 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2399
2400                 cpu->cpu = cpunum;
2401
2402                 cpu->epp_default = -EINVAL;
2403
2404                 if (hwp_active) {
2405                         const struct x86_cpu_id *id;
2406
2407                         intel_pstate_hwp_enable(cpu);
2408
2409                         id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2410                         if (id && intel_pstate_acpi_pm_profile_server())
2411                                 hwp_boost = true;
2412                 }
2413         } else if (hwp_active) {
2414                 /*
2415                  * Re-enable HWP in case this happens after a resume from ACPI
2416                  * S3 if the CPU was offline during the whole system/resume
2417                  * cycle.
2418                  */
2419                 intel_pstate_hwp_reenable(cpu);
2420         }
2421
2422         cpu->epp_powersave = -EINVAL;
2423         cpu->epp_policy = 0;
2424
2425         intel_pstate_get_cpu_pstates(cpu);
2426
2427         pr_debug("controlling: cpu %d\n", cpunum);
2428
2429         return 0;
2430 }
2431
2432 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2433 {
2434         struct cpudata *cpu = all_cpu_data[cpu_num];
2435
2436         if (hwp_active && !hwp_boost)
2437                 return;
2438
2439         if (cpu->update_util_set)
2440                 return;
2441
2442         /* Prevent intel_pstate_update_util() from using stale data. */
2443         cpu->sample.time = 0;
2444         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2445                                      (hwp_active ?
2446                                       intel_pstate_update_util_hwp :
2447                                       intel_pstate_update_util));
2448         cpu->update_util_set = true;
2449 }
2450
2451 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2452 {
2453         struct cpudata *cpu_data = all_cpu_data[cpu];
2454
2455         if (!cpu_data->update_util_set)
2456                 return;
2457
2458         cpufreq_remove_update_util_hook(cpu);
2459         cpu_data->update_util_set = false;
2460         synchronize_rcu();
2461 }
2462
2463 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2464 {
2465         return global.turbo_disabled || global.no_turbo ?
2466                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2467 }
2468
2469 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2470                                             unsigned int policy_min,
2471                                             unsigned int policy_max)
2472 {
2473         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2474         int32_t max_policy_perf, min_policy_perf;
2475
2476         max_policy_perf = policy_max / perf_ctl_scaling;
2477         if (policy_max == policy_min) {
2478                 min_policy_perf = max_policy_perf;
2479         } else {
2480                 min_policy_perf = policy_min / perf_ctl_scaling;
2481                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2482                                           0, max_policy_perf);
2483         }
2484
2485         /*
2486          * HWP needs some special consideration, because HWP_REQUEST uses
2487          * abstract values to represent performance rather than pure ratios.
2488          */
2489         if (hwp_active) {
2490                 intel_pstate_get_hwp_cap(cpu);
2491
2492                 if (cpu->pstate.scaling != perf_ctl_scaling) {
2493                         int scaling = cpu->pstate.scaling;
2494                         int freq;
2495
2496                         freq = max_policy_perf * perf_ctl_scaling;
2497                         max_policy_perf = DIV_ROUND_UP(freq, scaling);
2498                         freq = min_policy_perf * perf_ctl_scaling;
2499                         min_policy_perf = DIV_ROUND_UP(freq, scaling);
2500                 }
2501         }
2502
2503         pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2504                  cpu->cpu, min_policy_perf, max_policy_perf);
2505
2506         /* Normalize user input to [min_perf, max_perf] */
2507         if (per_cpu_limits) {
2508                 cpu->min_perf_ratio = min_policy_perf;
2509                 cpu->max_perf_ratio = max_policy_perf;
2510         } else {
2511                 int turbo_max = cpu->pstate.turbo_pstate;
2512                 int32_t global_min, global_max;
2513
2514                 /* Global limits are in percent of the maximum turbo P-state. */
2515                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2516                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2517                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2518
2519                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2520                          global_min, global_max);
2521
2522                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2523                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2524                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2525                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2526
2527                 /* Make sure min_perf <= max_perf */
2528                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2529                                           cpu->max_perf_ratio);
2530
2531         }
2532         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2533                  cpu->max_perf_ratio,
2534                  cpu->min_perf_ratio);
2535 }
2536
2537 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2538 {
2539         struct cpudata *cpu;
2540
2541         if (!policy->cpuinfo.max_freq)
2542                 return -ENODEV;
2543
2544         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2545                  policy->cpuinfo.max_freq, policy->max);
2546
2547         cpu = all_cpu_data[policy->cpu];
2548         cpu->policy = policy->policy;
2549
2550         mutex_lock(&intel_pstate_limits_lock);
2551
2552         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2553
2554         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2555                 /*
2556                  * NOHZ_FULL CPUs need this as the governor callback may not
2557                  * be invoked on them.
2558                  */
2559                 intel_pstate_clear_update_util_hook(policy->cpu);
2560                 intel_pstate_max_within_limits(cpu);
2561         } else {
2562                 intel_pstate_set_update_util_hook(policy->cpu);
2563         }
2564
2565         if (hwp_active) {
2566                 /*
2567                  * When hwp_boost was active before and dynamically it
2568                  * was turned off, in that case we need to clear the
2569                  * update util hook.
2570                  */
2571                 if (!hwp_boost)
2572                         intel_pstate_clear_update_util_hook(policy->cpu);
2573                 intel_pstate_hwp_set(policy->cpu);
2574         }
2575
2576         mutex_unlock(&intel_pstate_limits_lock);
2577
2578         return 0;
2579 }
2580
2581 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2582                                            struct cpufreq_policy_data *policy)
2583 {
2584         if (!hwp_active &&
2585             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2586             policy->max < policy->cpuinfo.max_freq &&
2587             policy->max > cpu->pstate.max_freq) {
2588                 pr_debug("policy->max > max non turbo frequency\n");
2589                 policy->max = policy->cpuinfo.max_freq;
2590         }
2591 }
2592
2593 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2594                                            struct cpufreq_policy_data *policy)
2595 {
2596         int max_freq;
2597
2598         update_turbo_state();
2599         if (hwp_active) {
2600                 intel_pstate_get_hwp_cap(cpu);
2601                 max_freq = global.no_turbo || global.turbo_disabled ?
2602                                 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2603         } else {
2604                 max_freq = intel_pstate_get_max_freq(cpu);
2605         }
2606         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2607
2608         intel_pstate_adjust_policy_max(cpu, policy);
2609 }
2610
2611 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2612 {
2613         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2614
2615         return 0;
2616 }
2617
2618 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2619 {
2620         struct cpudata *cpu = all_cpu_data[policy->cpu];
2621
2622         pr_debug("CPU %d going offline\n", cpu->cpu);
2623
2624         if (cpu->suspended)
2625                 return 0;
2626
2627         /*
2628          * If the CPU is an SMT thread and it goes offline with the performance
2629          * settings different from the minimum, it will prevent its sibling
2630          * from getting to lower performance levels, so force the minimum
2631          * performance on CPU offline to prevent that from happening.
2632          */
2633         if (hwp_active)
2634                 intel_pstate_hwp_offline(cpu);
2635         else
2636                 intel_pstate_set_min_pstate(cpu);
2637
2638         intel_pstate_exit_perf_limits(policy);
2639
2640         return 0;
2641 }
2642
2643 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2644 {
2645         struct cpudata *cpu = all_cpu_data[policy->cpu];
2646
2647         pr_debug("CPU %d going online\n", cpu->cpu);
2648
2649         intel_pstate_init_acpi_perf_limits(policy);
2650
2651         if (hwp_active) {
2652                 /*
2653                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2654                  * know that it need not do that.
2655                  */
2656                 intel_pstate_hwp_reenable(cpu);
2657                 cpu->suspended = false;
2658         }
2659
2660         return 0;
2661 }
2662
2663 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2664 {
2665         intel_pstate_clear_update_util_hook(policy->cpu);
2666
2667         return intel_cpufreq_cpu_offline(policy);
2668 }
2669
2670 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2671 {
2672         pr_debug("CPU %d exiting\n", policy->cpu);
2673
2674         policy->fast_switch_possible = false;
2675
2676         return 0;
2677 }
2678
2679 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2680 {
2681         struct cpudata *cpu;
2682         int rc;
2683
2684         rc = intel_pstate_init_cpu(policy->cpu);
2685         if (rc)
2686                 return rc;
2687
2688         cpu = all_cpu_data[policy->cpu];
2689
2690         cpu->max_perf_ratio = 0xFF;
2691         cpu->min_perf_ratio = 0;
2692
2693         /* cpuinfo and default policy values */
2694         policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2695         update_turbo_state();
2696         global.turbo_disabled_mf = global.turbo_disabled;
2697         policy->cpuinfo.max_freq = global.turbo_disabled ?
2698                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2699
2700         policy->min = policy->cpuinfo.min_freq;
2701         policy->max = policy->cpuinfo.max_freq;
2702
2703         intel_pstate_init_acpi_perf_limits(policy);
2704
2705         policy->fast_switch_possible = true;
2706
2707         return 0;
2708 }
2709
2710 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2711 {
2712         int ret = __intel_pstate_cpu_init(policy);
2713
2714         if (ret)
2715                 return ret;
2716
2717         /*
2718          * Set the policy to powersave to provide a valid fallback value in case
2719          * the default cpufreq governor is neither powersave nor performance.
2720          */
2721         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2722
2723         if (hwp_active) {
2724                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2725
2726                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2727         }
2728
2729         return 0;
2730 }
2731
2732 static struct cpufreq_driver intel_pstate = {
2733         .flags          = CPUFREQ_CONST_LOOPS,
2734         .verify         = intel_pstate_verify_policy,
2735         .setpolicy      = intel_pstate_set_policy,
2736         .suspend        = intel_pstate_suspend,
2737         .resume         = intel_pstate_resume,
2738         .init           = intel_pstate_cpu_init,
2739         .exit           = intel_pstate_cpu_exit,
2740         .offline        = intel_pstate_cpu_offline,
2741         .online         = intel_pstate_cpu_online,
2742         .update_limits  = intel_pstate_update_limits,
2743         .name           = "intel_pstate",
2744 };
2745
2746 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2747 {
2748         struct cpudata *cpu = all_cpu_data[policy->cpu];
2749
2750         intel_pstate_verify_cpu_policy(cpu, policy);
2751         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2752
2753         return 0;
2754 }
2755
2756 /* Use of trace in passive mode:
2757  *
2758  * In passive mode the trace core_busy field (also known as the
2759  * performance field, and lablelled as such on the graphs; also known as
2760  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2761  * driver call was via the normal or fast switch path. Various graphs
2762  * output from the intel_pstate_tracer.py utility that include core_busy
2763  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2764  * so we use 10 to indicate the normal path through the driver, and
2765  * 90 to indicate the fast switch path through the driver.
2766  * The scaled_busy field is not used, and is set to 0.
2767  */
2768
2769 #define INTEL_PSTATE_TRACE_TARGET 10
2770 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2771
2772 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2773 {
2774         struct sample *sample;
2775
2776         if (!trace_pstate_sample_enabled())
2777                 return;
2778
2779         if (!intel_pstate_sample(cpu, ktime_get()))
2780                 return;
2781
2782         sample = &cpu->sample;
2783         trace_pstate_sample(trace_type,
2784                 0,
2785                 old_pstate,
2786                 cpu->pstate.current_pstate,
2787                 sample->mperf,
2788                 sample->aperf,
2789                 sample->tsc,
2790                 get_avg_frequency(cpu),
2791                 fp_toint(cpu->iowait_boost * 100));
2792 }
2793
2794 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2795                                      u32 desired, bool fast_switch)
2796 {
2797         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2798
2799         value &= ~HWP_MIN_PERF(~0L);
2800         value |= HWP_MIN_PERF(min);
2801
2802         value &= ~HWP_MAX_PERF(~0L);
2803         value |= HWP_MAX_PERF(max);
2804
2805         value &= ~HWP_DESIRED_PERF(~0L);
2806         value |= HWP_DESIRED_PERF(desired);
2807
2808         if (value == prev)
2809                 return;
2810
2811         WRITE_ONCE(cpu->hwp_req_cached, value);
2812         if (fast_switch)
2813                 wrmsrl(MSR_HWP_REQUEST, value);
2814         else
2815                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2816 }
2817
2818 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2819                                           u32 target_pstate, bool fast_switch)
2820 {
2821         if (fast_switch)
2822                 wrmsrl(MSR_IA32_PERF_CTL,
2823                        pstate_funcs.get_val(cpu, target_pstate));
2824         else
2825                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2826                               pstate_funcs.get_val(cpu, target_pstate));
2827 }
2828
2829 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2830                                        int target_pstate, bool fast_switch)
2831 {
2832         struct cpudata *cpu = all_cpu_data[policy->cpu];
2833         int old_pstate = cpu->pstate.current_pstate;
2834
2835         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2836         if (hwp_active) {
2837                 int max_pstate = policy->strict_target ?
2838                                         target_pstate : cpu->max_perf_ratio;
2839
2840                 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2841                                          fast_switch);
2842         } else if (target_pstate != old_pstate) {
2843                 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2844         }
2845
2846         cpu->pstate.current_pstate = target_pstate;
2847
2848         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2849                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2850
2851         return target_pstate;
2852 }
2853
2854 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2855                                 unsigned int target_freq,
2856                                 unsigned int relation)
2857 {
2858         struct cpudata *cpu = all_cpu_data[policy->cpu];
2859         struct cpufreq_freqs freqs;
2860         int target_pstate;
2861
2862         update_turbo_state();
2863
2864         freqs.old = policy->cur;
2865         freqs.new = target_freq;
2866
2867         cpufreq_freq_transition_begin(policy, &freqs);
2868
2869         switch (relation) {
2870         case CPUFREQ_RELATION_L:
2871                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2872                 break;
2873         case CPUFREQ_RELATION_H:
2874                 target_pstate = freqs.new / cpu->pstate.scaling;
2875                 break;
2876         default:
2877                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2878                 break;
2879         }
2880
2881         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2882
2883         freqs.new = target_pstate * cpu->pstate.scaling;
2884
2885         cpufreq_freq_transition_end(policy, &freqs, false);
2886
2887         return 0;
2888 }
2889
2890 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2891                                               unsigned int target_freq)
2892 {
2893         struct cpudata *cpu = all_cpu_data[policy->cpu];
2894         int target_pstate;
2895
2896         update_turbo_state();
2897
2898         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2899
2900         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2901
2902         return target_pstate * cpu->pstate.scaling;
2903 }
2904
2905 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2906                                       unsigned long min_perf,
2907                                       unsigned long target_perf,
2908                                       unsigned long capacity)
2909 {
2910         struct cpudata *cpu = all_cpu_data[cpunum];
2911         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2912         int old_pstate = cpu->pstate.current_pstate;
2913         int cap_pstate, min_pstate, max_pstate, target_pstate;
2914
2915         update_turbo_state();
2916         cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2917                                              HWP_HIGHEST_PERF(hwp_cap);
2918
2919         /* Optimization: Avoid unnecessary divisions. */
2920
2921         target_pstate = cap_pstate;
2922         if (target_perf < capacity)
2923                 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2924
2925         min_pstate = cap_pstate;
2926         if (min_perf < capacity)
2927                 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2928
2929         if (min_pstate < cpu->pstate.min_pstate)
2930                 min_pstate = cpu->pstate.min_pstate;
2931
2932         if (min_pstate < cpu->min_perf_ratio)
2933                 min_pstate = cpu->min_perf_ratio;
2934
2935         max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2936         if (max_pstate < min_pstate)
2937                 max_pstate = min_pstate;
2938
2939         target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2940
2941         intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2942
2943         cpu->pstate.current_pstate = target_pstate;
2944         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2945 }
2946
2947 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2948 {
2949         struct freq_qos_request *req;
2950         struct cpudata *cpu;
2951         struct device *dev;
2952         int ret, freq;
2953
2954         dev = get_cpu_device(policy->cpu);
2955         if (!dev)
2956                 return -ENODEV;
2957
2958         ret = __intel_pstate_cpu_init(policy);
2959         if (ret)
2960                 return ret;
2961
2962         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2963         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2964         policy->cur = policy->cpuinfo.min_freq;
2965
2966         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2967         if (!req) {
2968                 ret = -ENOMEM;
2969                 goto pstate_exit;
2970         }
2971
2972         cpu = all_cpu_data[policy->cpu];
2973
2974         if (hwp_active) {
2975                 u64 value;
2976
2977                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2978
2979                 intel_pstate_get_hwp_cap(cpu);
2980
2981                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2982                 WRITE_ONCE(cpu->hwp_req_cached, value);
2983
2984                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2985         } else {
2986                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2987         }
2988
2989         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2990
2991         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2992                                    freq);
2993         if (ret < 0) {
2994                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2995                 goto free_req;
2996         }
2997
2998         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
2999
3000         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3001                                    freq);
3002         if (ret < 0) {
3003                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3004                 goto remove_min_req;
3005         }
3006
3007         policy->driver_data = req;
3008
3009         return 0;
3010
3011 remove_min_req:
3012         freq_qos_remove_request(req);
3013 free_req:
3014         kfree(req);
3015 pstate_exit:
3016         intel_pstate_exit_perf_limits(policy);
3017
3018         return ret;
3019 }
3020
3021 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3022 {
3023         struct freq_qos_request *req;
3024
3025         req = policy->driver_data;
3026
3027         freq_qos_remove_request(req + 1);
3028         freq_qos_remove_request(req);
3029         kfree(req);
3030
3031         return intel_pstate_cpu_exit(policy);
3032 }
3033
3034 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3035 {
3036         intel_pstate_suspend(policy);
3037
3038         if (hwp_active) {
3039                 struct cpudata *cpu = all_cpu_data[policy->cpu];
3040                 u64 value = READ_ONCE(cpu->hwp_req_cached);
3041
3042                 /*
3043                  * Clear the desired perf field in MSR_HWP_REQUEST in case
3044                  * intel_cpufreq_adjust_perf() is in use and the last value
3045                  * written by it may not be suitable.
3046                  */
3047                 value &= ~HWP_DESIRED_PERF(~0L);
3048                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3049                 WRITE_ONCE(cpu->hwp_req_cached, value);
3050         }
3051
3052         return 0;
3053 }
3054
3055 static struct cpufreq_driver intel_cpufreq = {
3056         .flags          = CPUFREQ_CONST_LOOPS,
3057         .verify         = intel_cpufreq_verify_policy,
3058         .target         = intel_cpufreq_target,
3059         .fast_switch    = intel_cpufreq_fast_switch,
3060         .init           = intel_cpufreq_cpu_init,
3061         .exit           = intel_cpufreq_cpu_exit,
3062         .offline        = intel_cpufreq_cpu_offline,
3063         .online         = intel_pstate_cpu_online,
3064         .suspend        = intel_cpufreq_suspend,
3065         .resume         = intel_pstate_resume,
3066         .update_limits  = intel_pstate_update_limits,
3067         .name           = "intel_cpufreq",
3068 };
3069
3070 static struct cpufreq_driver *default_driver;
3071
3072 static void intel_pstate_driver_cleanup(void)
3073 {
3074         unsigned int cpu;
3075
3076         cpus_read_lock();
3077         for_each_online_cpu(cpu) {
3078                 if (all_cpu_data[cpu]) {
3079                         if (intel_pstate_driver == &intel_pstate)
3080                                 intel_pstate_clear_update_util_hook(cpu);
3081
3082                         spin_lock(&hwp_notify_lock);
3083                         kfree(all_cpu_data[cpu]);
3084                         WRITE_ONCE(all_cpu_data[cpu], NULL);
3085                         spin_unlock(&hwp_notify_lock);
3086                 }
3087         }
3088         cpus_read_unlock();
3089
3090         intel_pstate_driver = NULL;
3091 }
3092
3093 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3094 {
3095         int ret;
3096
3097         if (driver == &intel_pstate)
3098                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3099
3100         memset(&global, 0, sizeof(global));
3101         global.max_perf_pct = 100;
3102
3103         intel_pstate_driver = driver;
3104         ret = cpufreq_register_driver(intel_pstate_driver);
3105         if (ret) {
3106                 intel_pstate_driver_cleanup();
3107                 return ret;
3108         }
3109
3110         global.min_perf_pct = min_perf_pct_min();
3111
3112         return 0;
3113 }
3114
3115 static ssize_t intel_pstate_show_status(char *buf)
3116 {
3117         if (!intel_pstate_driver)
3118                 return sprintf(buf, "off\n");
3119
3120         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3121                                         "active" : "passive");
3122 }
3123
3124 static int intel_pstate_update_status(const char *buf, size_t size)
3125 {
3126         if (size == 3 && !strncmp(buf, "off", size)) {
3127                 if (!intel_pstate_driver)
3128                         return -EINVAL;
3129
3130                 if (hwp_active)
3131                         return -EBUSY;
3132
3133                 cpufreq_unregister_driver(intel_pstate_driver);
3134                 intel_pstate_driver_cleanup();
3135                 return 0;
3136         }
3137
3138         if (size == 6 && !strncmp(buf, "active", size)) {
3139                 if (intel_pstate_driver) {
3140                         if (intel_pstate_driver == &intel_pstate)
3141                                 return 0;
3142
3143                         cpufreq_unregister_driver(intel_pstate_driver);
3144                 }
3145
3146                 return intel_pstate_register_driver(&intel_pstate);
3147         }
3148
3149         if (size == 7 && !strncmp(buf, "passive", size)) {
3150                 if (intel_pstate_driver) {
3151                         if (intel_pstate_driver == &intel_cpufreq)
3152                                 return 0;
3153
3154                         cpufreq_unregister_driver(intel_pstate_driver);
3155                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
3156                 }
3157
3158                 return intel_pstate_register_driver(&intel_cpufreq);
3159         }
3160
3161         return -EINVAL;
3162 }
3163
3164 static int no_load __initdata;
3165 static int no_hwp __initdata;
3166 static int hwp_only __initdata;
3167 static unsigned int force_load __initdata;
3168
3169 static int __init intel_pstate_msrs_not_valid(void)
3170 {
3171         if (!pstate_funcs.get_max() ||
3172             !pstate_funcs.get_min() ||
3173             !pstate_funcs.get_turbo())
3174                 return -ENODEV;
3175
3176         return 0;
3177 }
3178
3179 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3180 {
3181         pstate_funcs.get_max   = funcs->get_max;
3182         pstate_funcs.get_max_physical = funcs->get_max_physical;
3183         pstate_funcs.get_min   = funcs->get_min;
3184         pstate_funcs.get_turbo = funcs->get_turbo;
3185         pstate_funcs.get_scaling = funcs->get_scaling;
3186         pstate_funcs.get_val   = funcs->get_val;
3187         pstate_funcs.get_vid   = funcs->get_vid;
3188         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3189 }
3190
3191 #ifdef CONFIG_ACPI
3192
3193 static bool __init intel_pstate_no_acpi_pss(void)
3194 {
3195         int i;
3196
3197         for_each_possible_cpu(i) {
3198                 acpi_status status;
3199                 union acpi_object *pss;
3200                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3201                 struct acpi_processor *pr = per_cpu(processors, i);
3202
3203                 if (!pr)
3204                         continue;
3205
3206                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3207                 if (ACPI_FAILURE(status))
3208                         continue;
3209
3210                 pss = buffer.pointer;
3211                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3212                         kfree(pss);
3213                         return false;
3214                 }
3215
3216                 kfree(pss);
3217         }
3218
3219         pr_debug("ACPI _PSS not found\n");
3220         return true;
3221 }
3222
3223 static bool __init intel_pstate_no_acpi_pcch(void)
3224 {
3225         acpi_status status;
3226         acpi_handle handle;
3227
3228         status = acpi_get_handle(NULL, "\\_SB", &handle);
3229         if (ACPI_FAILURE(status))
3230                 goto not_found;
3231
3232         if (acpi_has_method(handle, "PCCH"))
3233                 return false;
3234
3235 not_found:
3236         pr_debug("ACPI PCCH not found\n");
3237         return true;
3238 }
3239
3240 static bool __init intel_pstate_has_acpi_ppc(void)
3241 {
3242         int i;
3243
3244         for_each_possible_cpu(i) {
3245                 struct acpi_processor *pr = per_cpu(processors, i);
3246
3247                 if (!pr)
3248                         continue;
3249                 if (acpi_has_method(pr->handle, "_PPC"))
3250                         return true;
3251         }
3252         pr_debug("ACPI _PPC not found\n");
3253         return false;
3254 }
3255
3256 enum {
3257         PSS,
3258         PPC,
3259 };
3260
3261 /* Hardware vendor-specific info that has its own power management modes */
3262 static struct acpi_platform_list plat_info[] __initdata = {
3263         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3264         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3265         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3266         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3267         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3268         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3269         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3270         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3271         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3272         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3273         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3274         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3275         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3276         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3277         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3278         { } /* End */
3279 };
3280
3281 #define BITMASK_OOB     (BIT(8) | BIT(18))
3282
3283 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3284 {
3285         const struct x86_cpu_id *id;
3286         u64 misc_pwr;
3287         int idx;
3288
3289         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3290         if (id) {
3291                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3292                 if (misc_pwr & BITMASK_OOB) {
3293                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3294                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3295                         return true;
3296                 }
3297         }
3298
3299         idx = acpi_match_platform_list(plat_info);
3300         if (idx < 0)
3301                 return false;
3302
3303         switch (plat_info[idx].data) {
3304         case PSS:
3305                 if (!intel_pstate_no_acpi_pss())
3306                         return false;
3307
3308                 return intel_pstate_no_acpi_pcch();
3309         case PPC:
3310                 return intel_pstate_has_acpi_ppc() && !force_load;
3311         }
3312
3313         return false;
3314 }
3315
3316 static void intel_pstate_request_control_from_smm(void)
3317 {
3318         /*
3319          * It may be unsafe to request P-states control from SMM if _PPC support
3320          * has not been enabled.
3321          */
3322         if (acpi_ppc)
3323                 acpi_processor_pstate_control();
3324 }
3325 #else /* CONFIG_ACPI not enabled */
3326 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3327 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3328 static inline void intel_pstate_request_control_from_smm(void) {}
3329 #endif /* CONFIG_ACPI */
3330
3331 #define INTEL_PSTATE_HWP_BROADWELL      0x01
3332
3333 #define X86_MATCH_HWP(model, hwp_mode)                                  \
3334         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3335                                            X86_FEATURE_HWP, hwp_mode)
3336
3337 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3338         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
3339         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
3340         X86_MATCH_HWP(ANY,              0),
3341         {}
3342 };
3343
3344 static bool intel_pstate_hwp_is_enabled(void)
3345 {
3346         u64 value;
3347
3348         rdmsrl(MSR_PM_ENABLE, value);
3349         return !!(value & 0x1);
3350 }
3351
3352 static int __init intel_pstate_init(void)
3353 {
3354         static struct cpudata **_all_cpu_data;
3355         const struct x86_cpu_id *id;
3356         int rc;
3357
3358         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3359                 return -ENODEV;
3360
3361         id = x86_match_cpu(hwp_support_ids);
3362         if (id) {
3363                 bool hwp_forced = intel_pstate_hwp_is_enabled();
3364
3365                 if (hwp_forced)
3366                         pr_info("HWP enabled by BIOS\n");
3367                 else if (no_load)
3368                         return -ENODEV;
3369
3370                 copy_cpu_funcs(&core_funcs);
3371                 /*
3372                  * Avoid enabling HWP for processors without EPP support,
3373                  * because that means incomplete HWP implementation which is a
3374                  * corner case and supporting it is generally problematic.
3375                  *
3376                  * If HWP is enabled already, though, there is no choice but to
3377                  * deal with it.
3378                  */
3379                 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3380                         WRITE_ONCE(hwp_active, 1);
3381                         hwp_mode_bdw = id->driver_data;
3382                         intel_pstate.attr = hwp_cpufreq_attrs;
3383                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3384                         intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3385                         intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3386                         if (!default_driver)
3387                                 default_driver = &intel_pstate;
3388
3389                         if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
3390                                 intel_pstate_cppc_set_cpu_scaling();
3391
3392                         goto hwp_cpu_matched;
3393                 }
3394                 pr_info("HWP not enabled\n");
3395         } else {
3396                 if (no_load)
3397                         return -ENODEV;
3398
3399                 id = x86_match_cpu(intel_pstate_cpu_ids);
3400                 if (!id) {
3401                         pr_info("CPU model not supported\n");
3402                         return -ENODEV;
3403                 }
3404
3405                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3406         }
3407
3408         if (intel_pstate_msrs_not_valid()) {
3409                 pr_info("Invalid MSRs\n");
3410                 return -ENODEV;
3411         }
3412         /* Without HWP start in the passive mode. */
3413         if (!default_driver)
3414                 default_driver = &intel_cpufreq;
3415
3416 hwp_cpu_matched:
3417         /*
3418          * The Intel pstate driver will be ignored if the platform
3419          * firmware has its own power management modes.
3420          */
3421         if (intel_pstate_platform_pwr_mgmt_exists()) {
3422                 pr_info("P-states controlled by the platform\n");
3423                 return -ENODEV;
3424         }
3425
3426         if (!hwp_active && hwp_only)
3427                 return -ENOTSUPP;
3428
3429         pr_info("Intel P-state driver initializing\n");
3430
3431         _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3432         if (!_all_cpu_data)
3433                 return -ENOMEM;
3434
3435         WRITE_ONCE(all_cpu_data, _all_cpu_data);
3436
3437         intel_pstate_request_control_from_smm();
3438
3439         intel_pstate_sysfs_expose_params();
3440
3441         mutex_lock(&intel_pstate_driver_lock);
3442         rc = intel_pstate_register_driver(default_driver);
3443         mutex_unlock(&intel_pstate_driver_lock);
3444         if (rc) {
3445                 intel_pstate_sysfs_remove();
3446                 return rc;
3447         }
3448
3449         if (hwp_active) {
3450                 const struct x86_cpu_id *id;
3451
3452                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3453                 if (id) {
3454                         set_power_ctl_ee_state(false);
3455                         pr_info("Disabling energy efficiency optimization\n");
3456                 }
3457
3458                 pr_info("HWP enabled\n");
3459         } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3460                 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3461         }
3462
3463         return 0;
3464 }
3465 device_initcall(intel_pstate_init);
3466
3467 static int __init intel_pstate_setup(char *str)
3468 {
3469         if (!str)
3470                 return -EINVAL;
3471
3472         if (!strcmp(str, "disable"))
3473                 no_load = 1;
3474         else if (!strcmp(str, "active"))
3475                 default_driver = &intel_pstate;
3476         else if (!strcmp(str, "passive"))
3477                 default_driver = &intel_cpufreq;
3478
3479         if (!strcmp(str, "no_hwp"))
3480                 no_hwp = 1;
3481
3482         if (!strcmp(str, "force"))
3483                 force_load = 1;
3484         if (!strcmp(str, "hwp_only"))
3485                 hwp_only = 1;
3486         if (!strcmp(str, "per_cpu_perf_limits"))
3487                 per_cpu_limits = true;
3488
3489 #ifdef CONFIG_ACPI
3490         if (!strcmp(str, "support_acpi_ppc"))
3491                 acpi_ppc = true;
3492 #endif
3493
3494         return 0;
3495 }
3496 early_param("intel_pstate", intel_pstate_setup);
3497
3498 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3499 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3500 MODULE_LICENSE("GPL");