cpufreq: intel_pstate: Update cpuinfo.max_freq on HWP_CAP changes
[linux-2.6-microblaze.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35 #include "../drivers/thermal/intel/thermal_interrupt.h"
36
37 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
38
39 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
42
43 #ifdef CONFIG_ACPI
44 #include <acpi/processor.h>
45 #include <acpi/cppc_acpi.h>
46 #endif
47
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51
52 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
53
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66         return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68
69 static inline int ceiling_fp(int32_t x)
70 {
71         int mask, ret;
72
73         ret = fp_toint(x);
74         mask = (1 << FRAC_BITS) - 1;
75         if (x & mask)
76                 ret += 1;
77         return ret;
78 }
79
80 static inline u64 mul_ext_fp(u64 x, u64 y)
81 {
82         return (x * y) >> EXT_FRAC_BITS;
83 }
84
85 static inline u64 div_ext_fp(u64 x, u64 y)
86 {
87         return div64_u64(x << EXT_FRAC_BITS, y);
88 }
89
90 /**
91  * struct sample -      Store performance sample
92  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
93  *                      performance during last sample period
94  * @busy_scaled:        Scaled busy value which is used to calculate next
95  *                      P state. This can be different than core_avg_perf
96  *                      to account for cpu idle period
97  * @aperf:              Difference of actual performance frequency clock count
98  *                      read from APERF MSR between last and current sample
99  * @mperf:              Difference of maximum performance frequency clock count
100  *                      read from MPERF MSR between last and current sample
101  * @tsc:                Difference of time stamp counter between last and
102  *                      current sample
103  * @time:               Current time from scheduler
104  *
105  * This structure is used in the cpudata structure to store performance sample
106  * data for choosing next P State.
107  */
108 struct sample {
109         int32_t core_avg_perf;
110         int32_t busy_scaled;
111         u64 aperf;
112         u64 mperf;
113         u64 tsc;
114         u64 time;
115 };
116
117 /**
118  * struct pstate_data - Store P state data
119  * @current_pstate:     Current requested P state
120  * @min_pstate:         Min P state possible for this platform
121  * @max_pstate:         Max P state possible for this platform
122  * @max_pstate_physical:This is physical Max P state for a processor
123  *                      This can be higher than the max_pstate which can
124  *                      be limited by platform thermal design power limits
125  * @perf_ctl_scaling:   PERF_CTL P-state to frequency scaling factor
126  * @scaling:            Scaling factor between performance and frequency
127  * @turbo_pstate:       Max Turbo P state possible for this platform
128  * @min_freq:           @min_pstate frequency in cpufreq units
129  * @max_freq:           @max_pstate frequency in cpufreq units
130  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
131  *
132  * Stores the per cpu model P state limits and current P state.
133  */
134 struct pstate_data {
135         int     current_pstate;
136         int     min_pstate;
137         int     max_pstate;
138         int     max_pstate_physical;
139         int     perf_ctl_scaling;
140         int     scaling;
141         int     turbo_pstate;
142         unsigned int min_freq;
143         unsigned int max_freq;
144         unsigned int turbo_freq;
145 };
146
147 /**
148  * struct vid_data -    Stores voltage information data
149  * @min:                VID data for this platform corresponding to
150  *                      the lowest P state
151  * @max:                VID data corresponding to the highest P State.
152  * @turbo:              VID data for turbo P state
153  * @ratio:              Ratio of (vid max - vid min) /
154  *                      (max P state - Min P State)
155  *
156  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
157  * This data is used in Atom platforms, where in addition to target P state,
158  * the voltage data needs to be specified to select next P State.
159  */
160 struct vid_data {
161         int min;
162         int max;
163         int turbo;
164         int32_t ratio;
165 };
166
167 /**
168  * struct global_params - Global parameters, mostly tunable via sysfs.
169  * @no_turbo:           Whether or not to use turbo P-states.
170  * @turbo_disabled:     Whether or not turbo P-states are available at all,
171  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
172  *                      not the maximum reported turbo P-state is different from
173  *                      the maximum reported non-turbo one.
174  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
175  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
176  *                      P-state capacity.
177  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
178  *                      P-state capacity.
179  */
180 struct global_params {
181         bool no_turbo;
182         bool turbo_disabled;
183         bool turbo_disabled_mf;
184         int max_perf_pct;
185         int min_perf_pct;
186 };
187
188 /**
189  * struct cpudata -     Per CPU instance data storage
190  * @cpu:                CPU number for this instance data
191  * @policy:             CPUFreq policy value
192  * @update_util:        CPUFreq utility callback information
193  * @update_util_set:    CPUFreq utility callback is set
194  * @iowait_boost:       iowait-related boost fraction
195  * @last_update:        Time of the last update.
196  * @pstate:             Stores P state limits for this CPU
197  * @vid:                Stores VID limits for this CPU
198  * @last_sample_time:   Last Sample time
199  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
200  * @prev_aperf:         Last APERF value read from APERF MSR
201  * @prev_mperf:         Last MPERF value read from MPERF MSR
202  * @prev_tsc:           Last timestamp counter (TSC) value
203  * @prev_cummulative_iowait: IO Wait time difference from last and
204  *                      current sample
205  * @sample:             Storage for storing last Sample data
206  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
207  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
208  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
209  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
210  * @epp_powersave:      Last saved HWP energy performance preference
211  *                      (EPP) or energy performance bias (EPB),
212  *                      when policy switched to performance
213  * @epp_policy:         Last saved policy used to set EPP/EPB
214  * @epp_default:        Power on default HWP energy performance
215  *                      preference/bias
216  * @epp_cached          Cached HWP energy-performance preference value
217  * @hwp_req_cached:     Cached value of the last HWP Request MSR
218  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
219  * @last_io_update:     Last time when IO wake flag was set
220  * @sched_flags:        Store scheduler flags for possible cross CPU update
221  * @hwp_boost_min:      Last HWP boosted min performance
222  * @suspended:          Whether or not the driver has been suspended.
223  * @hwp_notify_work:    workqueue for HWP notifications.
224  *
225  * This structure stores per CPU instance data for all CPUs.
226  */
227 struct cpudata {
228         int cpu;
229
230         unsigned int policy;
231         struct update_util_data update_util;
232         bool   update_util_set;
233
234         struct pstate_data pstate;
235         struct vid_data vid;
236
237         u64     last_update;
238         u64     last_sample_time;
239         u64     aperf_mperf_shift;
240         u64     prev_aperf;
241         u64     prev_mperf;
242         u64     prev_tsc;
243         u64     prev_cummulative_iowait;
244         struct sample sample;
245         int32_t min_perf_ratio;
246         int32_t max_perf_ratio;
247 #ifdef CONFIG_ACPI
248         struct acpi_processor_performance acpi_perf_data;
249         bool valid_pss_table;
250 #endif
251         unsigned int iowait_boost;
252         s16 epp_powersave;
253         s16 epp_policy;
254         s16 epp_default;
255         s16 epp_cached;
256         u64 hwp_req_cached;
257         u64 hwp_cap_cached;
258         u64 last_io_update;
259         unsigned int sched_flags;
260         u32 hwp_boost_min;
261         bool suspended;
262         struct delayed_work hwp_notify_work;
263 };
264
265 static struct cpudata **all_cpu_data;
266
267 /**
268  * struct pstate_funcs - Per CPU model specific callbacks
269  * @get_max:            Callback to get maximum non turbo effective P state
270  * @get_max_physical:   Callback to get maximum non turbo physical P state
271  * @get_min:            Callback to get minimum P state
272  * @get_turbo:          Callback to get turbo P state
273  * @get_scaling:        Callback to get frequency scaling factor
274  * @get_cpu_scaling:    Get frequency scaling factor for a given cpu
275  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
276  * @get_val:            Callback to convert P state to actual MSR write value
277  * @get_vid:            Callback to get VID data for Atom platforms
278  *
279  * Core and Atom CPU models have different way to get P State limits. This
280  * structure is used to store those callbacks.
281  */
282 struct pstate_funcs {
283         int (*get_max)(void);
284         int (*get_max_physical)(void);
285         int (*get_min)(void);
286         int (*get_turbo)(void);
287         int (*get_scaling)(void);
288         int (*get_cpu_scaling)(int cpu);
289         int (*get_aperf_mperf_shift)(void);
290         u64 (*get_val)(struct cpudata*, int pstate);
291         void (*get_vid)(struct cpudata *);
292 };
293
294 static struct pstate_funcs pstate_funcs __read_mostly;
295
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306
307 static struct global_params global;
308
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311
312 #ifdef CONFIG_ACPI
313
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318                 return true;
319
320         return false;
321 }
322
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325         if (intel_pstate_acpi_pm_profile_server())
326                 return true;
327
328         return acpi_ppc;
329 }
330
331 #ifdef CONFIG_ACPI_CPPC_LIB
332
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336         sched_set_itmt_support();
337 }
338
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340
341 #define CPPC_MAX_PERF   U8_MAX
342
343 static void intel_pstate_set_itmt_prio(int cpu)
344 {
345         struct cppc_perf_caps cppc_perf;
346         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
347         int ret;
348
349         ret = cppc_get_perf_caps(cpu, &cppc_perf);
350         if (ret)
351                 return;
352
353         /*
354          * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
355          * In this case we can't use CPPC.highest_perf to enable ITMT.
356          * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
357          */
358         if (cppc_perf.highest_perf == CPPC_MAX_PERF)
359                 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
360
361         /*
362          * The priorities can be set regardless of whether or not
363          * sched_set_itmt_support(true) has been called and it is valid to
364          * update them at any time after it has been called.
365          */
366         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
367
368         if (max_highest_perf <= min_highest_perf) {
369                 if (cppc_perf.highest_perf > max_highest_perf)
370                         max_highest_perf = cppc_perf.highest_perf;
371
372                 if (cppc_perf.highest_perf < min_highest_perf)
373                         min_highest_perf = cppc_perf.highest_perf;
374
375                 if (max_highest_perf > min_highest_perf) {
376                         /*
377                          * This code can be run during CPU online under the
378                          * CPU hotplug locks, so sched_set_itmt_support()
379                          * cannot be called from here.  Queue up a work item
380                          * to invoke it.
381                          */
382                         schedule_work(&sched_itmt_work);
383                 }
384         }
385 }
386
387 static int intel_pstate_get_cppc_guaranteed(int cpu)
388 {
389         struct cppc_perf_caps cppc_perf;
390         int ret;
391
392         ret = cppc_get_perf_caps(cpu, &cppc_perf);
393         if (ret)
394                 return ret;
395
396         if (cppc_perf.guaranteed_perf)
397                 return cppc_perf.guaranteed_perf;
398
399         return cppc_perf.nominal_perf;
400 }
401
402 static u32 intel_pstate_cppc_nominal(int cpu)
403 {
404         u64 nominal_perf;
405
406         if (cppc_get_nominal_perf(cpu, &nominal_perf))
407                 return 0;
408
409         return nominal_perf;
410 }
411 #else /* CONFIG_ACPI_CPPC_LIB */
412 static inline void intel_pstate_set_itmt_prio(int cpu)
413 {
414 }
415 #endif /* CONFIG_ACPI_CPPC_LIB */
416
417 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
418 {
419         struct cpudata *cpu;
420         int ret;
421         int i;
422
423         if (hwp_active) {
424                 intel_pstate_set_itmt_prio(policy->cpu);
425                 return;
426         }
427
428         if (!intel_pstate_get_ppc_enable_status())
429                 return;
430
431         cpu = all_cpu_data[policy->cpu];
432
433         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
434                                                   policy->cpu);
435         if (ret)
436                 return;
437
438         /*
439          * Check if the control value in _PSS is for PERF_CTL MSR, which should
440          * guarantee that the states returned by it map to the states in our
441          * list directly.
442          */
443         if (cpu->acpi_perf_data.control_register.space_id !=
444                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
445                 goto err;
446
447         /*
448          * If there is only one entry _PSS, simply ignore _PSS and continue as
449          * usual without taking _PSS into account
450          */
451         if (cpu->acpi_perf_data.state_count < 2)
452                 goto err;
453
454         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
455         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
456                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
457                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
458                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
459                          (u32) cpu->acpi_perf_data.states[i].power,
460                          (u32) cpu->acpi_perf_data.states[i].control);
461         }
462
463         /*
464          * The _PSS table doesn't contain whole turbo frequency range.
465          * This just contains +1 MHZ above the max non turbo frequency,
466          * with control value corresponding to max turbo ratio. But
467          * when cpufreq set policy is called, it will call with this
468          * max frequency, which will cause a reduced performance as
469          * this driver uses real max turbo frequency as the max
470          * frequency. So correct this frequency in _PSS table to
471          * correct max turbo frequency based on the turbo state.
472          * Also need to convert to MHz as _PSS freq is in MHz.
473          */
474         if (!global.turbo_disabled)
475                 cpu->acpi_perf_data.states[0].core_frequency =
476                                         policy->cpuinfo.max_freq / 1000;
477         cpu->valid_pss_table = true;
478         pr_debug("_PPC limits will be enforced\n");
479
480         return;
481
482  err:
483         cpu->valid_pss_table = false;
484         acpi_processor_unregister_performance(policy->cpu);
485 }
486
487 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
488 {
489         struct cpudata *cpu;
490
491         cpu = all_cpu_data[policy->cpu];
492         if (!cpu->valid_pss_table)
493                 return;
494
495         acpi_processor_unregister_performance(policy->cpu);
496 }
497 #else /* CONFIG_ACPI */
498 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
499 {
500 }
501
502 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
503 {
504 }
505
506 static inline bool intel_pstate_acpi_pm_profile_server(void)
507 {
508         return false;
509 }
510 #endif /* CONFIG_ACPI */
511
512 #ifndef CONFIG_ACPI_CPPC_LIB
513 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
514 {
515         return -ENOTSUPP;
516 }
517 #endif /* CONFIG_ACPI_CPPC_LIB */
518
519 /**
520  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
521  * @cpu: Target CPU.
522  *
523  * On hybrid processors, HWP may expose more performance levels than there are
524  * P-states accessible through the PERF_CTL interface.  If that happens, the
525  * scaling factor between HWP performance levels and CPU frequency will be less
526  * than the scaling factor between P-state values and CPU frequency.
527  *
528  * In that case, adjust the CPU parameters used in computations accordingly.
529  */
530 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
531 {
532         int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
533         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
534         int perf_ctl_turbo = pstate_funcs.get_turbo();
535         int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
536         int scaling = cpu->pstate.scaling;
537
538         pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
539         pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, pstate_funcs.get_max());
540         pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
541         pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
542         pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
543         pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
544         pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
545
546         /*
547          * If the product of the HWP performance scaling factor and the HWP_CAP
548          * highest performance is greater than the maximum turbo frequency
549          * corresponding to the pstate_funcs.get_turbo() return value, the
550          * scaling factor is too high, so recompute it to make the HWP_CAP
551          * highest performance correspond to the maximum turbo frequency.
552          */
553         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
554         if (turbo_freq < cpu->pstate.turbo_freq) {
555                 cpu->pstate.turbo_freq = turbo_freq;
556                 scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
557                 cpu->pstate.scaling = scaling;
558
559                 pr_debug("CPU%d: refined HWP-to-frequency scaling factor: %d\n",
560                          cpu->cpu, scaling);
561         }
562
563         cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
564                                          perf_ctl_scaling);
565
566         cpu->pstate.max_pstate_physical =
567                         DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
568                                      scaling);
569
570         cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
571         /*
572          * Cast the min P-state value retrieved via pstate_funcs.get_min() to
573          * the effective range of HWP performance levels.
574          */
575         cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
576 }
577
578 static inline void update_turbo_state(void)
579 {
580         u64 misc_en;
581         struct cpudata *cpu;
582
583         cpu = all_cpu_data[0];
584         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
585         global.turbo_disabled =
586                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
587                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
588 }
589
590 static int min_perf_pct_min(void)
591 {
592         struct cpudata *cpu = all_cpu_data[0];
593         int turbo_pstate = cpu->pstate.turbo_pstate;
594
595         return turbo_pstate ?
596                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
597 }
598
599 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
600 {
601         u64 epb;
602         int ret;
603
604         if (!boot_cpu_has(X86_FEATURE_EPB))
605                 return -ENXIO;
606
607         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
608         if (ret)
609                 return (s16)ret;
610
611         return (s16)(epb & 0x0f);
612 }
613
614 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
615 {
616         s16 epp;
617
618         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
619                 /*
620                  * When hwp_req_data is 0, means that caller didn't read
621                  * MSR_HWP_REQUEST, so need to read and get EPP.
622                  */
623                 if (!hwp_req_data) {
624                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
625                                             &hwp_req_data);
626                         if (epp)
627                                 return epp;
628                 }
629                 epp = (hwp_req_data >> 24) & 0xff;
630         } else {
631                 /* When there is no EPP present, HWP uses EPB settings */
632                 epp = intel_pstate_get_epb(cpu_data);
633         }
634
635         return epp;
636 }
637
638 static int intel_pstate_set_epb(int cpu, s16 pref)
639 {
640         u64 epb;
641         int ret;
642
643         if (!boot_cpu_has(X86_FEATURE_EPB))
644                 return -ENXIO;
645
646         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
647         if (ret)
648                 return ret;
649
650         epb = (epb & ~0x0f) | pref;
651         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
652
653         return 0;
654 }
655
656 /*
657  * EPP/EPB display strings corresponding to EPP index in the
658  * energy_perf_strings[]
659  *      index           String
660  *-------------------------------------
661  *      0               default
662  *      1               performance
663  *      2               balance_performance
664  *      3               balance_power
665  *      4               power
666  */
667
668 enum energy_perf_value_index {
669         EPP_INDEX_DEFAULT = 0,
670         EPP_INDEX_PERFORMANCE,
671         EPP_INDEX_BALANCE_PERFORMANCE,
672         EPP_INDEX_BALANCE_POWERSAVE,
673         EPP_INDEX_POWERSAVE,
674 };
675
676 static const char * const energy_perf_strings[] = {
677         [EPP_INDEX_DEFAULT] = "default",
678         [EPP_INDEX_PERFORMANCE] = "performance",
679         [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
680         [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
681         [EPP_INDEX_POWERSAVE] = "power",
682         NULL
683 };
684 static unsigned int epp_values[] = {
685         [EPP_INDEX_DEFAULT] = 0, /* Unused index */
686         [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
687         [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
688         [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
689         [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
690 };
691
692 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
693 {
694         s16 epp;
695         int index = -EINVAL;
696
697         *raw_epp = 0;
698         epp = intel_pstate_get_epp(cpu_data, 0);
699         if (epp < 0)
700                 return epp;
701
702         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
703                 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
704                         return EPP_INDEX_PERFORMANCE;
705                 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
706                         return EPP_INDEX_BALANCE_PERFORMANCE;
707                 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
708                         return EPP_INDEX_BALANCE_POWERSAVE;
709                 if (epp == epp_values[EPP_INDEX_POWERSAVE])
710                         return EPP_INDEX_POWERSAVE;
711                 *raw_epp = epp;
712                 return 0;
713         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
714                 /*
715                  * Range:
716                  *      0x00-0x03       :       Performance
717                  *      0x04-0x07       :       Balance performance
718                  *      0x08-0x0B       :       Balance power
719                  *      0x0C-0x0F       :       Power
720                  * The EPB is a 4 bit value, but our ranges restrict the
721                  * value which can be set. Here only using top two bits
722                  * effectively.
723                  */
724                 index = (epp >> 2) + 1;
725         }
726
727         return index;
728 }
729
730 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
731 {
732         int ret;
733
734         /*
735          * Use the cached HWP Request MSR value, because in the active mode the
736          * register itself may be updated by intel_pstate_hwp_boost_up() or
737          * intel_pstate_hwp_boost_down() at any time.
738          */
739         u64 value = READ_ONCE(cpu->hwp_req_cached);
740
741         value &= ~GENMASK_ULL(31, 24);
742         value |= (u64)epp << 24;
743         /*
744          * The only other updater of hwp_req_cached in the active mode,
745          * intel_pstate_hwp_set(), is called under the same lock as this
746          * function, so it cannot run in parallel with the update below.
747          */
748         WRITE_ONCE(cpu->hwp_req_cached, value);
749         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
750         if (!ret)
751                 cpu->epp_cached = epp;
752
753         return ret;
754 }
755
756 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
757                                               int pref_index, bool use_raw,
758                                               u32 raw_epp)
759 {
760         int epp = -EINVAL;
761         int ret;
762
763         if (!pref_index)
764                 epp = cpu_data->epp_default;
765
766         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
767                 if (use_raw)
768                         epp = raw_epp;
769                 else if (epp == -EINVAL)
770                         epp = epp_values[pref_index];
771
772                 /*
773                  * To avoid confusion, refuse to set EPP to any values different
774                  * from 0 (performance) if the current policy is "performance",
775                  * because those values would be overridden.
776                  */
777                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
778                         return -EBUSY;
779
780                 ret = intel_pstate_set_epp(cpu_data, epp);
781         } else {
782                 if (epp == -EINVAL)
783                         epp = (pref_index - 1) << 2;
784                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
785         }
786
787         return ret;
788 }
789
790 static ssize_t show_energy_performance_available_preferences(
791                                 struct cpufreq_policy *policy, char *buf)
792 {
793         int i = 0;
794         int ret = 0;
795
796         while (energy_perf_strings[i] != NULL)
797                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
798
799         ret += sprintf(&buf[ret], "\n");
800
801         return ret;
802 }
803
804 cpufreq_freq_attr_ro(energy_performance_available_preferences);
805
806 static struct cpufreq_driver intel_pstate;
807
808 static ssize_t store_energy_performance_preference(
809                 struct cpufreq_policy *policy, const char *buf, size_t count)
810 {
811         struct cpudata *cpu = all_cpu_data[policy->cpu];
812         char str_preference[21];
813         bool raw = false;
814         ssize_t ret;
815         u32 epp = 0;
816
817         ret = sscanf(buf, "%20s", str_preference);
818         if (ret != 1)
819                 return -EINVAL;
820
821         ret = match_string(energy_perf_strings, -1, str_preference);
822         if (ret < 0) {
823                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
824                         return ret;
825
826                 ret = kstrtouint(buf, 10, &epp);
827                 if (ret)
828                         return ret;
829
830                 if (epp > 255)
831                         return -EINVAL;
832
833                 raw = true;
834         }
835
836         /*
837          * This function runs with the policy R/W semaphore held, which
838          * guarantees that the driver pointer will not change while it is
839          * running.
840          */
841         if (!intel_pstate_driver)
842                 return -EAGAIN;
843
844         mutex_lock(&intel_pstate_limits_lock);
845
846         if (intel_pstate_driver == &intel_pstate) {
847                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
848         } else {
849                 /*
850                  * In the passive mode the governor needs to be stopped on the
851                  * target CPU before the EPP update and restarted after it,
852                  * which is super-heavy-weight, so make sure it is worth doing
853                  * upfront.
854                  */
855                 if (!raw)
856                         epp = ret ? epp_values[ret] : cpu->epp_default;
857
858                 if (cpu->epp_cached != epp) {
859                         int err;
860
861                         cpufreq_stop_governor(policy);
862                         ret = intel_pstate_set_epp(cpu, epp);
863                         err = cpufreq_start_governor(policy);
864                         if (!ret)
865                                 ret = err;
866                 }
867         }
868
869         mutex_unlock(&intel_pstate_limits_lock);
870
871         return ret ?: count;
872 }
873
874 static ssize_t show_energy_performance_preference(
875                                 struct cpufreq_policy *policy, char *buf)
876 {
877         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
878         int preference, raw_epp;
879
880         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
881         if (preference < 0)
882                 return preference;
883
884         if (raw_epp)
885                 return  sprintf(buf, "%d\n", raw_epp);
886         else
887                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
888 }
889
890 cpufreq_freq_attr_rw(energy_performance_preference);
891
892 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
893 {
894         struct cpudata *cpu = all_cpu_data[policy->cpu];
895         int ratio, freq;
896
897         ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
898         if (ratio <= 0) {
899                 u64 cap;
900
901                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
902                 ratio = HWP_GUARANTEED_PERF(cap);
903         }
904
905         freq = ratio * cpu->pstate.scaling;
906         if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
907                 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
908
909         return sprintf(buf, "%d\n", freq);
910 }
911
912 cpufreq_freq_attr_ro(base_frequency);
913
914 static struct freq_attr *hwp_cpufreq_attrs[] = {
915         &energy_performance_preference,
916         &energy_performance_available_preferences,
917         &base_frequency,
918         NULL,
919 };
920
921 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
922 {
923         u64 cap;
924
925         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
926         WRITE_ONCE(cpu->hwp_cap_cached, cap);
927         cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
928         cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
929 }
930
931 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
932 {
933         int scaling = cpu->pstate.scaling;
934
935         __intel_pstate_get_hwp_cap(cpu);
936
937         cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
938         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
939         if (scaling != cpu->pstate.perf_ctl_scaling) {
940                 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
941
942                 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
943                                                  perf_ctl_scaling);
944                 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
945                                                    perf_ctl_scaling);
946         }
947 }
948
949 static void intel_pstate_hwp_set(unsigned int cpu)
950 {
951         struct cpudata *cpu_data = all_cpu_data[cpu];
952         int max, min;
953         u64 value;
954         s16 epp;
955
956         max = cpu_data->max_perf_ratio;
957         min = cpu_data->min_perf_ratio;
958
959         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
960                 min = max;
961
962         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
963
964         value &= ~HWP_MIN_PERF(~0L);
965         value |= HWP_MIN_PERF(min);
966
967         value &= ~HWP_MAX_PERF(~0L);
968         value |= HWP_MAX_PERF(max);
969
970         if (cpu_data->epp_policy == cpu_data->policy)
971                 goto skip_epp;
972
973         cpu_data->epp_policy = cpu_data->policy;
974
975         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
976                 epp = intel_pstate_get_epp(cpu_data, value);
977                 cpu_data->epp_powersave = epp;
978                 /* If EPP read was failed, then don't try to write */
979                 if (epp < 0)
980                         goto skip_epp;
981
982                 epp = 0;
983         } else {
984                 /* skip setting EPP, when saved value is invalid */
985                 if (cpu_data->epp_powersave < 0)
986                         goto skip_epp;
987
988                 /*
989                  * No need to restore EPP when it is not zero. This
990                  * means:
991                  *  - Policy is not changed
992                  *  - user has manually changed
993                  *  - Error reading EPB
994                  */
995                 epp = intel_pstate_get_epp(cpu_data, value);
996                 if (epp)
997                         goto skip_epp;
998
999                 epp = cpu_data->epp_powersave;
1000         }
1001         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1002                 value &= ~GENMASK_ULL(31, 24);
1003                 value |= (u64)epp << 24;
1004         } else {
1005                 intel_pstate_set_epb(cpu, epp);
1006         }
1007 skip_epp:
1008         WRITE_ONCE(cpu_data->hwp_req_cached, value);
1009         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1010 }
1011
1012 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1013
1014 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1015 {
1016         u64 value = READ_ONCE(cpu->hwp_req_cached);
1017         int min_perf;
1018
1019         intel_pstate_disable_hwp_interrupt(cpu);
1020
1021         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1022                 /*
1023                  * In case the EPP has been set to "performance" by the
1024                  * active mode "performance" scaling algorithm, replace that
1025                  * temporary value with the cached EPP one.
1026                  */
1027                 value &= ~GENMASK_ULL(31, 24);
1028                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1029                 /*
1030                  * However, make sure that EPP will be set to "performance" when
1031                  * the CPU is brought back online again and the "performance"
1032                  * scaling algorithm is still in effect.
1033                  */
1034                 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1035         }
1036
1037         /*
1038          * Clear the desired perf field in the cached HWP request value to
1039          * prevent nonzero desired values from being leaked into the active
1040          * mode.
1041          */
1042         value &= ~HWP_DESIRED_PERF(~0L);
1043         WRITE_ONCE(cpu->hwp_req_cached, value);
1044
1045         value &= ~GENMASK_ULL(31, 0);
1046         min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1047
1048         /* Set hwp_max = hwp_min */
1049         value |= HWP_MAX_PERF(min_perf);
1050         value |= HWP_MIN_PERF(min_perf);
1051
1052         /* Set EPP to min */
1053         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1054                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1055
1056         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1057 }
1058
1059 #define POWER_CTL_EE_ENABLE     1
1060 #define POWER_CTL_EE_DISABLE    2
1061
1062 static int power_ctl_ee_state;
1063
1064 static void set_power_ctl_ee_state(bool input)
1065 {
1066         u64 power_ctl;
1067
1068         mutex_lock(&intel_pstate_driver_lock);
1069         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1070         if (input) {
1071                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1072                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1073         } else {
1074                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1075                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1076         }
1077         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1078         mutex_unlock(&intel_pstate_driver_lock);
1079 }
1080
1081 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1082
1083 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1084 {
1085         intel_pstate_hwp_enable(cpu);
1086         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1087 }
1088
1089 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1090 {
1091         struct cpudata *cpu = all_cpu_data[policy->cpu];
1092
1093         pr_debug("CPU %d suspending\n", cpu->cpu);
1094
1095         cpu->suspended = true;
1096
1097         /* disable HWP interrupt and cancel any pending work */
1098         intel_pstate_disable_hwp_interrupt(cpu);
1099
1100         return 0;
1101 }
1102
1103 static int intel_pstate_resume(struct cpufreq_policy *policy)
1104 {
1105         struct cpudata *cpu = all_cpu_data[policy->cpu];
1106
1107         pr_debug("CPU %d resuming\n", cpu->cpu);
1108
1109         /* Only restore if the system default is changed */
1110         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1111                 set_power_ctl_ee_state(true);
1112         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1113                 set_power_ctl_ee_state(false);
1114
1115         if (cpu->suspended && hwp_active) {
1116                 mutex_lock(&intel_pstate_limits_lock);
1117
1118                 /* Re-enable HWP, because "online" has not done that. */
1119                 intel_pstate_hwp_reenable(cpu);
1120
1121                 mutex_unlock(&intel_pstate_limits_lock);
1122         }
1123
1124         cpu->suspended = false;
1125
1126         return 0;
1127 }
1128
1129 static void intel_pstate_update_policies(void)
1130 {
1131         int cpu;
1132
1133         for_each_possible_cpu(cpu)
1134                 cpufreq_update_policy(cpu);
1135 }
1136
1137 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1138                                            struct cpufreq_policy *policy)
1139 {
1140         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1141                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1142         refresh_frequency_limits(policy);
1143 }
1144
1145 static void intel_pstate_update_max_freq(unsigned int cpu)
1146 {
1147         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1148
1149         if (!policy)
1150                 return;
1151
1152         __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1153
1154         cpufreq_cpu_release(policy);
1155 }
1156
1157 static void intel_pstate_update_limits(unsigned int cpu)
1158 {
1159         mutex_lock(&intel_pstate_driver_lock);
1160
1161         update_turbo_state();
1162         /*
1163          * If turbo has been turned on or off globally, policy limits for
1164          * all CPUs need to be updated to reflect that.
1165          */
1166         if (global.turbo_disabled_mf != global.turbo_disabled) {
1167                 global.turbo_disabled_mf = global.turbo_disabled;
1168                 arch_set_max_freq_ratio(global.turbo_disabled);
1169                 for_each_possible_cpu(cpu)
1170                         intel_pstate_update_max_freq(cpu);
1171         } else {
1172                 cpufreq_update_policy(cpu);
1173         }
1174
1175         mutex_unlock(&intel_pstate_driver_lock);
1176 }
1177
1178 /************************** sysfs begin ************************/
1179 #define show_one(file_name, object)                                     \
1180         static ssize_t show_##file_name                                 \
1181         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1182         {                                                               \
1183                 return sprintf(buf, "%u\n", global.object);             \
1184         }
1185
1186 static ssize_t intel_pstate_show_status(char *buf);
1187 static int intel_pstate_update_status(const char *buf, size_t size);
1188
1189 static ssize_t show_status(struct kobject *kobj,
1190                            struct kobj_attribute *attr, char *buf)
1191 {
1192         ssize_t ret;
1193
1194         mutex_lock(&intel_pstate_driver_lock);
1195         ret = intel_pstate_show_status(buf);
1196         mutex_unlock(&intel_pstate_driver_lock);
1197
1198         return ret;
1199 }
1200
1201 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1202                             const char *buf, size_t count)
1203 {
1204         char *p = memchr(buf, '\n', count);
1205         int ret;
1206
1207         mutex_lock(&intel_pstate_driver_lock);
1208         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1209         mutex_unlock(&intel_pstate_driver_lock);
1210
1211         return ret < 0 ? ret : count;
1212 }
1213
1214 static ssize_t show_turbo_pct(struct kobject *kobj,
1215                                 struct kobj_attribute *attr, char *buf)
1216 {
1217         struct cpudata *cpu;
1218         int total, no_turbo, turbo_pct;
1219         uint32_t turbo_fp;
1220
1221         mutex_lock(&intel_pstate_driver_lock);
1222
1223         if (!intel_pstate_driver) {
1224                 mutex_unlock(&intel_pstate_driver_lock);
1225                 return -EAGAIN;
1226         }
1227
1228         cpu = all_cpu_data[0];
1229
1230         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1231         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1232         turbo_fp = div_fp(no_turbo, total);
1233         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1234
1235         mutex_unlock(&intel_pstate_driver_lock);
1236
1237         return sprintf(buf, "%u\n", turbo_pct);
1238 }
1239
1240 static ssize_t show_num_pstates(struct kobject *kobj,
1241                                 struct kobj_attribute *attr, char *buf)
1242 {
1243         struct cpudata *cpu;
1244         int total;
1245
1246         mutex_lock(&intel_pstate_driver_lock);
1247
1248         if (!intel_pstate_driver) {
1249                 mutex_unlock(&intel_pstate_driver_lock);
1250                 return -EAGAIN;
1251         }
1252
1253         cpu = all_cpu_data[0];
1254         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1255
1256         mutex_unlock(&intel_pstate_driver_lock);
1257
1258         return sprintf(buf, "%u\n", total);
1259 }
1260
1261 static ssize_t show_no_turbo(struct kobject *kobj,
1262                              struct kobj_attribute *attr, char *buf)
1263 {
1264         ssize_t ret;
1265
1266         mutex_lock(&intel_pstate_driver_lock);
1267
1268         if (!intel_pstate_driver) {
1269                 mutex_unlock(&intel_pstate_driver_lock);
1270                 return -EAGAIN;
1271         }
1272
1273         update_turbo_state();
1274         if (global.turbo_disabled)
1275                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1276         else
1277                 ret = sprintf(buf, "%u\n", global.no_turbo);
1278
1279         mutex_unlock(&intel_pstate_driver_lock);
1280
1281         return ret;
1282 }
1283
1284 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1285                               const char *buf, size_t count)
1286 {
1287         unsigned int input;
1288         int ret;
1289
1290         ret = sscanf(buf, "%u", &input);
1291         if (ret != 1)
1292                 return -EINVAL;
1293
1294         mutex_lock(&intel_pstate_driver_lock);
1295
1296         if (!intel_pstate_driver) {
1297                 mutex_unlock(&intel_pstate_driver_lock);
1298                 return -EAGAIN;
1299         }
1300
1301         mutex_lock(&intel_pstate_limits_lock);
1302
1303         update_turbo_state();
1304         if (global.turbo_disabled) {
1305                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1306                 mutex_unlock(&intel_pstate_limits_lock);
1307                 mutex_unlock(&intel_pstate_driver_lock);
1308                 return -EPERM;
1309         }
1310
1311         global.no_turbo = clamp_t(int, input, 0, 1);
1312
1313         if (global.no_turbo) {
1314                 struct cpudata *cpu = all_cpu_data[0];
1315                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1316
1317                 /* Squash the global minimum into the permitted range. */
1318                 if (global.min_perf_pct > pct)
1319                         global.min_perf_pct = pct;
1320         }
1321
1322         mutex_unlock(&intel_pstate_limits_lock);
1323
1324         intel_pstate_update_policies();
1325
1326         mutex_unlock(&intel_pstate_driver_lock);
1327
1328         return count;
1329 }
1330
1331 static void update_qos_request(enum freq_qos_req_type type)
1332 {
1333         struct freq_qos_request *req;
1334         struct cpufreq_policy *policy;
1335         int i;
1336
1337         for_each_possible_cpu(i) {
1338                 struct cpudata *cpu = all_cpu_data[i];
1339                 unsigned int freq, perf_pct;
1340
1341                 policy = cpufreq_cpu_get(i);
1342                 if (!policy)
1343                         continue;
1344
1345                 req = policy->driver_data;
1346                 cpufreq_cpu_put(policy);
1347
1348                 if (!req)
1349                         continue;
1350
1351                 if (hwp_active)
1352                         intel_pstate_get_hwp_cap(cpu);
1353
1354                 if (type == FREQ_QOS_MIN) {
1355                         perf_pct = global.min_perf_pct;
1356                 } else {
1357                         req++;
1358                         perf_pct = global.max_perf_pct;
1359                 }
1360
1361                 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1362
1363                 if (freq_qos_update_request(req, freq) < 0)
1364                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1365         }
1366 }
1367
1368 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1369                                   const char *buf, size_t count)
1370 {
1371         unsigned int input;
1372         int ret;
1373
1374         ret = sscanf(buf, "%u", &input);
1375         if (ret != 1)
1376                 return -EINVAL;
1377
1378         mutex_lock(&intel_pstate_driver_lock);
1379
1380         if (!intel_pstate_driver) {
1381                 mutex_unlock(&intel_pstate_driver_lock);
1382                 return -EAGAIN;
1383         }
1384
1385         mutex_lock(&intel_pstate_limits_lock);
1386
1387         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1388
1389         mutex_unlock(&intel_pstate_limits_lock);
1390
1391         if (intel_pstate_driver == &intel_pstate)
1392                 intel_pstate_update_policies();
1393         else
1394                 update_qos_request(FREQ_QOS_MAX);
1395
1396         mutex_unlock(&intel_pstate_driver_lock);
1397
1398         return count;
1399 }
1400
1401 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1402                                   const char *buf, size_t count)
1403 {
1404         unsigned int input;
1405         int ret;
1406
1407         ret = sscanf(buf, "%u", &input);
1408         if (ret != 1)
1409                 return -EINVAL;
1410
1411         mutex_lock(&intel_pstate_driver_lock);
1412
1413         if (!intel_pstate_driver) {
1414                 mutex_unlock(&intel_pstate_driver_lock);
1415                 return -EAGAIN;
1416         }
1417
1418         mutex_lock(&intel_pstate_limits_lock);
1419
1420         global.min_perf_pct = clamp_t(int, input,
1421                                       min_perf_pct_min(), global.max_perf_pct);
1422
1423         mutex_unlock(&intel_pstate_limits_lock);
1424
1425         if (intel_pstate_driver == &intel_pstate)
1426                 intel_pstate_update_policies();
1427         else
1428                 update_qos_request(FREQ_QOS_MIN);
1429
1430         mutex_unlock(&intel_pstate_driver_lock);
1431
1432         return count;
1433 }
1434
1435 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1436                                 struct kobj_attribute *attr, char *buf)
1437 {
1438         return sprintf(buf, "%u\n", hwp_boost);
1439 }
1440
1441 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1442                                        struct kobj_attribute *b,
1443                                        const char *buf, size_t count)
1444 {
1445         unsigned int input;
1446         int ret;
1447
1448         ret = kstrtouint(buf, 10, &input);
1449         if (ret)
1450                 return ret;
1451
1452         mutex_lock(&intel_pstate_driver_lock);
1453         hwp_boost = !!input;
1454         intel_pstate_update_policies();
1455         mutex_unlock(&intel_pstate_driver_lock);
1456
1457         return count;
1458 }
1459
1460 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1461                                       char *buf)
1462 {
1463         u64 power_ctl;
1464         int enable;
1465
1466         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1467         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1468         return sprintf(buf, "%d\n", !enable);
1469 }
1470
1471 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1472                                        const char *buf, size_t count)
1473 {
1474         bool input;
1475         int ret;
1476
1477         ret = kstrtobool(buf, &input);
1478         if (ret)
1479                 return ret;
1480
1481         set_power_ctl_ee_state(input);
1482
1483         return count;
1484 }
1485
1486 show_one(max_perf_pct, max_perf_pct);
1487 show_one(min_perf_pct, min_perf_pct);
1488
1489 define_one_global_rw(status);
1490 define_one_global_rw(no_turbo);
1491 define_one_global_rw(max_perf_pct);
1492 define_one_global_rw(min_perf_pct);
1493 define_one_global_ro(turbo_pct);
1494 define_one_global_ro(num_pstates);
1495 define_one_global_rw(hwp_dynamic_boost);
1496 define_one_global_rw(energy_efficiency);
1497
1498 static struct attribute *intel_pstate_attributes[] = {
1499         &status.attr,
1500         &no_turbo.attr,
1501         NULL
1502 };
1503
1504 static const struct attribute_group intel_pstate_attr_group = {
1505         .attrs = intel_pstate_attributes,
1506 };
1507
1508 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1509
1510 static struct kobject *intel_pstate_kobject;
1511
1512 static void __init intel_pstate_sysfs_expose_params(void)
1513 {
1514         int rc;
1515
1516         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1517                                                 &cpu_subsys.dev_root->kobj);
1518         if (WARN_ON(!intel_pstate_kobject))
1519                 return;
1520
1521         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1522         if (WARN_ON(rc))
1523                 return;
1524
1525         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1526                 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1527                 WARN_ON(rc);
1528
1529                 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1530                 WARN_ON(rc);
1531         }
1532
1533         /*
1534          * If per cpu limits are enforced there are no global limits, so
1535          * return without creating max/min_perf_pct attributes
1536          */
1537         if (per_cpu_limits)
1538                 return;
1539
1540         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1541         WARN_ON(rc);
1542
1543         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1544         WARN_ON(rc);
1545
1546         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1547                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1548                 WARN_ON(rc);
1549         }
1550 }
1551
1552 static void __init intel_pstate_sysfs_remove(void)
1553 {
1554         if (!intel_pstate_kobject)
1555                 return;
1556
1557         sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1558
1559         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1560                 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1561                 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1562         }
1563
1564         if (!per_cpu_limits) {
1565                 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1566                 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1567
1568                 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1569                         sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1570         }
1571
1572         kobject_put(intel_pstate_kobject);
1573 }
1574
1575 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1576 {
1577         int rc;
1578
1579         if (!hwp_active)
1580                 return;
1581
1582         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1583         WARN_ON_ONCE(rc);
1584 }
1585
1586 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1587 {
1588         if (!hwp_active)
1589                 return;
1590
1591         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1592 }
1593
1594 /************************** sysfs end ************************/
1595
1596 static void intel_pstate_notify_work(struct work_struct *work)
1597 {
1598         struct cpudata *cpudata =
1599                 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1600         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1601
1602         if (policy) {
1603                 intel_pstate_get_hwp_cap(cpudata);
1604                 __intel_pstate_update_max_freq(cpudata, policy);
1605
1606                 cpufreq_cpu_release(policy);
1607         }
1608
1609         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1610 }
1611
1612 static DEFINE_SPINLOCK(hwp_notify_lock);
1613 static cpumask_t hwp_intr_enable_mask;
1614
1615 void notify_hwp_interrupt(void)
1616 {
1617         unsigned int this_cpu = smp_processor_id();
1618         struct cpudata *cpudata;
1619         unsigned long flags;
1620         u64 value;
1621
1622         if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1623                 return;
1624
1625         rdmsrl_safe(MSR_HWP_STATUS, &value);
1626         if (!(value & 0x01))
1627                 return;
1628
1629         spin_lock_irqsave(&hwp_notify_lock, flags);
1630
1631         if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1632                 goto ack_intr;
1633
1634         /*
1635          * Currently we never free all_cpu_data. And we can't reach here
1636          * without this allocated. But for safety for future changes, added
1637          * check.
1638          */
1639         if (unlikely(!READ_ONCE(all_cpu_data)))
1640                 goto ack_intr;
1641
1642         /*
1643          * The free is done during cleanup, when cpufreq registry is failed.
1644          * We wouldn't be here if it fails on init or switch status. But for
1645          * future changes, added check.
1646          */
1647         cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1648         if (unlikely(!cpudata))
1649                 goto ack_intr;
1650
1651         schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1652
1653         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1654
1655         return;
1656
1657 ack_intr:
1658         wrmsrl_safe(MSR_HWP_STATUS, 0);
1659         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1660 }
1661
1662 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1663 {
1664         unsigned long flags;
1665
1666         if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1667                 return;
1668
1669         /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1670         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1671
1672         spin_lock_irqsave(&hwp_notify_lock, flags);
1673         if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1674                 cancel_delayed_work(&cpudata->hwp_notify_work);
1675         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1676 }
1677
1678 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1679 {
1680         /* Enable HWP notification interrupt for guaranteed performance change */
1681         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1682                 unsigned long flags;
1683
1684                 spin_lock_irqsave(&hwp_notify_lock, flags);
1685                 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1686                 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1687                 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1688
1689                 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1690                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1691                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1692         }
1693 }
1694
1695 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1696 {
1697         /* First disable HWP notification interrupt till we activate again */
1698         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1699                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1700
1701         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1702
1703         intel_pstate_enable_hwp_interrupt(cpudata);
1704
1705         if (cpudata->epp_default >= 0)
1706                 return;
1707
1708         if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE) {
1709                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1710         } else {
1711                 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1712                 intel_pstate_set_epp(cpudata, cpudata->epp_default);
1713         }
1714 }
1715
1716 static int atom_get_min_pstate(void)
1717 {
1718         u64 value;
1719
1720         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1721         return (value >> 8) & 0x7F;
1722 }
1723
1724 static int atom_get_max_pstate(void)
1725 {
1726         u64 value;
1727
1728         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1729         return (value >> 16) & 0x7F;
1730 }
1731
1732 static int atom_get_turbo_pstate(void)
1733 {
1734         u64 value;
1735
1736         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1737         return value & 0x7F;
1738 }
1739
1740 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1741 {
1742         u64 val;
1743         int32_t vid_fp;
1744         u32 vid;
1745
1746         val = (u64)pstate << 8;
1747         if (global.no_turbo && !global.turbo_disabled)
1748                 val |= (u64)1 << 32;
1749
1750         vid_fp = cpudata->vid.min + mul_fp(
1751                 int_tofp(pstate - cpudata->pstate.min_pstate),
1752                 cpudata->vid.ratio);
1753
1754         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1755         vid = ceiling_fp(vid_fp);
1756
1757         if (pstate > cpudata->pstate.max_pstate)
1758                 vid = cpudata->vid.turbo;
1759
1760         return val | vid;
1761 }
1762
1763 static int silvermont_get_scaling(void)
1764 {
1765         u64 value;
1766         int i;
1767         /* Defined in Table 35-6 from SDM (Sept 2015) */
1768         static int silvermont_freq_table[] = {
1769                 83300, 100000, 133300, 116700, 80000};
1770
1771         rdmsrl(MSR_FSB_FREQ, value);
1772         i = value & 0x7;
1773         WARN_ON(i > 4);
1774
1775         return silvermont_freq_table[i];
1776 }
1777
1778 static int airmont_get_scaling(void)
1779 {
1780         u64 value;
1781         int i;
1782         /* Defined in Table 35-10 from SDM (Sept 2015) */
1783         static int airmont_freq_table[] = {
1784                 83300, 100000, 133300, 116700, 80000,
1785                 93300, 90000, 88900, 87500};
1786
1787         rdmsrl(MSR_FSB_FREQ, value);
1788         i = value & 0xF;
1789         WARN_ON(i > 8);
1790
1791         return airmont_freq_table[i];
1792 }
1793
1794 static void atom_get_vid(struct cpudata *cpudata)
1795 {
1796         u64 value;
1797
1798         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1799         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1800         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1801         cpudata->vid.ratio = div_fp(
1802                 cpudata->vid.max - cpudata->vid.min,
1803                 int_tofp(cpudata->pstate.max_pstate -
1804                         cpudata->pstate.min_pstate));
1805
1806         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1807         cpudata->vid.turbo = value & 0x7f;
1808 }
1809
1810 static int core_get_min_pstate(void)
1811 {
1812         u64 value;
1813
1814         rdmsrl(MSR_PLATFORM_INFO, value);
1815         return (value >> 40) & 0xFF;
1816 }
1817
1818 static int core_get_max_pstate_physical(void)
1819 {
1820         u64 value;
1821
1822         rdmsrl(MSR_PLATFORM_INFO, value);
1823         return (value >> 8) & 0xFF;
1824 }
1825
1826 static int core_get_tdp_ratio(u64 plat_info)
1827 {
1828         /* Check how many TDP levels present */
1829         if (plat_info & 0x600000000) {
1830                 u64 tdp_ctrl;
1831                 u64 tdp_ratio;
1832                 int tdp_msr;
1833                 int err;
1834
1835                 /* Get the TDP level (0, 1, 2) to get ratios */
1836                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1837                 if (err)
1838                         return err;
1839
1840                 /* TDP MSR are continuous starting at 0x648 */
1841                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1842                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1843                 if (err)
1844                         return err;
1845
1846                 /* For level 1 and 2, bits[23:16] contain the ratio */
1847                 if (tdp_ctrl & 0x03)
1848                         tdp_ratio >>= 16;
1849
1850                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1851                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1852
1853                 return (int)tdp_ratio;
1854         }
1855
1856         return -ENXIO;
1857 }
1858
1859 static int core_get_max_pstate(void)
1860 {
1861         u64 tar;
1862         u64 plat_info;
1863         int max_pstate;
1864         int tdp_ratio;
1865         int err;
1866
1867         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1868         max_pstate = (plat_info >> 8) & 0xFF;
1869
1870         tdp_ratio = core_get_tdp_ratio(plat_info);
1871         if (tdp_ratio <= 0)
1872                 return max_pstate;
1873
1874         if (hwp_active) {
1875                 /* Turbo activation ratio is not used on HWP platforms */
1876                 return tdp_ratio;
1877         }
1878
1879         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1880         if (!err) {
1881                 int tar_levels;
1882
1883                 /* Do some sanity checking for safety */
1884                 tar_levels = tar & 0xff;
1885                 if (tdp_ratio - 1 == tar_levels) {
1886                         max_pstate = tar_levels;
1887                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1888                 }
1889         }
1890
1891         return max_pstate;
1892 }
1893
1894 static int core_get_turbo_pstate(void)
1895 {
1896         u64 value;
1897         int nont, ret;
1898
1899         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1900         nont = core_get_max_pstate();
1901         ret = (value) & 255;
1902         if (ret <= nont)
1903                 ret = nont;
1904         return ret;
1905 }
1906
1907 static inline int core_get_scaling(void)
1908 {
1909         return 100000;
1910 }
1911
1912 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1913 {
1914         u64 val;
1915
1916         val = (u64)pstate << 8;
1917         if (global.no_turbo && !global.turbo_disabled)
1918                 val |= (u64)1 << 32;
1919
1920         return val;
1921 }
1922
1923 static int knl_get_aperf_mperf_shift(void)
1924 {
1925         return 10;
1926 }
1927
1928 static int knl_get_turbo_pstate(void)
1929 {
1930         u64 value;
1931         int nont, ret;
1932
1933         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1934         nont = core_get_max_pstate();
1935         ret = (((value) >> 8) & 0xFF);
1936         if (ret <= nont)
1937                 ret = nont;
1938         return ret;
1939 }
1940
1941 #ifdef CONFIG_ACPI_CPPC_LIB
1942 static u32 hybrid_ref_perf;
1943
1944 static int hybrid_get_cpu_scaling(int cpu)
1945 {
1946         return DIV_ROUND_UP(core_get_scaling() * hybrid_ref_perf,
1947                             intel_pstate_cppc_nominal(cpu));
1948 }
1949
1950 static void intel_pstate_cppc_set_cpu_scaling(void)
1951 {
1952         u32 min_nominal_perf = U32_MAX;
1953         int cpu;
1954
1955         for_each_present_cpu(cpu) {
1956                 u32 nominal_perf = intel_pstate_cppc_nominal(cpu);
1957
1958                 if (nominal_perf && nominal_perf < min_nominal_perf)
1959                         min_nominal_perf = nominal_perf;
1960         }
1961
1962         if (min_nominal_perf < U32_MAX) {
1963                 hybrid_ref_perf = min_nominal_perf;
1964                 pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
1965         }
1966 }
1967 #else
1968 static inline void intel_pstate_cppc_set_cpu_scaling(void)
1969 {
1970 }
1971 #endif /* CONFIG_ACPI_CPPC_LIB */
1972
1973 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1974 {
1975         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1976         cpu->pstate.current_pstate = pstate;
1977         /*
1978          * Generally, there is no guarantee that this code will always run on
1979          * the CPU being updated, so force the register update to run on the
1980          * right CPU.
1981          */
1982         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1983                       pstate_funcs.get_val(cpu, pstate));
1984 }
1985
1986 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1987 {
1988         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1989 }
1990
1991 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1992 {
1993         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1994
1995         update_turbo_state();
1996         intel_pstate_set_pstate(cpu, pstate);
1997 }
1998
1999 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2000 {
2001         int perf_ctl_max_phys = pstate_funcs.get_max_physical();
2002         int perf_ctl_scaling = pstate_funcs.get_scaling();
2003
2004         cpu->pstate.min_pstate = pstate_funcs.get_min();
2005         cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2006         cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2007
2008         if (hwp_active && !hwp_mode_bdw) {
2009                 __intel_pstate_get_hwp_cap(cpu);
2010
2011                 if (pstate_funcs.get_cpu_scaling) {
2012                         cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2013                         if (cpu->pstate.scaling != perf_ctl_scaling)
2014                                 intel_pstate_hybrid_hwp_adjust(cpu);
2015                 } else {
2016                         cpu->pstate.scaling = perf_ctl_scaling;
2017                 }
2018         } else {
2019                 cpu->pstate.scaling = perf_ctl_scaling;
2020                 cpu->pstate.max_pstate = pstate_funcs.get_max();
2021                 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
2022         }
2023
2024         if (cpu->pstate.scaling == perf_ctl_scaling) {
2025                 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2026                 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2027                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2028         }
2029
2030         if (pstate_funcs.get_aperf_mperf_shift)
2031                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2032
2033         if (pstate_funcs.get_vid)
2034                 pstate_funcs.get_vid(cpu);
2035
2036         intel_pstate_set_min_pstate(cpu);
2037 }
2038
2039 /*
2040  * Long hold time will keep high perf limits for long time,
2041  * which negatively impacts perf/watt for some workloads,
2042  * like specpower. 3ms is based on experiements on some
2043  * workoads.
2044  */
2045 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2046
2047 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2048 {
2049         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2050         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2051         u32 max_limit = (hwp_req & 0xff00) >> 8;
2052         u32 min_limit = (hwp_req & 0xff);
2053         u32 boost_level1;
2054
2055         /*
2056          * Cases to consider (User changes via sysfs or boot time):
2057          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2058          *      No boost, return.
2059          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2060          *     Should result in one level boost only for P0.
2061          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2062          *     Should result in two level boost:
2063          *         (min + p1)/2 and P1.
2064          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2065          *     Should result in three level boost:
2066          *        (min + p1)/2, P1 and P0.
2067          */
2068
2069         /* If max and min are equal or already at max, nothing to boost */
2070         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2071                 return;
2072
2073         if (!cpu->hwp_boost_min)
2074                 cpu->hwp_boost_min = min_limit;
2075
2076         /* level at half way mark between min and guranteed */
2077         boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2078
2079         if (cpu->hwp_boost_min < boost_level1)
2080                 cpu->hwp_boost_min = boost_level1;
2081         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2082                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2083         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2084                  max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2085                 cpu->hwp_boost_min = max_limit;
2086         else
2087                 return;
2088
2089         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2090         wrmsrl(MSR_HWP_REQUEST, hwp_req);
2091         cpu->last_update = cpu->sample.time;
2092 }
2093
2094 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2095 {
2096         if (cpu->hwp_boost_min) {
2097                 bool expired;
2098
2099                 /* Check if we are idle for hold time to boost down */
2100                 expired = time_after64(cpu->sample.time, cpu->last_update +
2101                                        hwp_boost_hold_time_ns);
2102                 if (expired) {
2103                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2104                         cpu->hwp_boost_min = 0;
2105                 }
2106         }
2107         cpu->last_update = cpu->sample.time;
2108 }
2109
2110 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2111                                                       u64 time)
2112 {
2113         cpu->sample.time = time;
2114
2115         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2116                 bool do_io = false;
2117
2118                 cpu->sched_flags = 0;
2119                 /*
2120                  * Set iowait_boost flag and update time. Since IO WAIT flag
2121                  * is set all the time, we can't just conclude that there is
2122                  * some IO bound activity is scheduled on this CPU with just
2123                  * one occurrence. If we receive at least two in two
2124                  * consecutive ticks, then we treat as boost candidate.
2125                  */
2126                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2127                         do_io = true;
2128
2129                 cpu->last_io_update = time;
2130
2131                 if (do_io)
2132                         intel_pstate_hwp_boost_up(cpu);
2133
2134         } else {
2135                 intel_pstate_hwp_boost_down(cpu);
2136         }
2137 }
2138
2139 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2140                                                 u64 time, unsigned int flags)
2141 {
2142         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2143
2144         cpu->sched_flags |= flags;
2145
2146         if (smp_processor_id() == cpu->cpu)
2147                 intel_pstate_update_util_hwp_local(cpu, time);
2148 }
2149
2150 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2151 {
2152         struct sample *sample = &cpu->sample;
2153
2154         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2155 }
2156
2157 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2158 {
2159         u64 aperf, mperf;
2160         unsigned long flags;
2161         u64 tsc;
2162
2163         local_irq_save(flags);
2164         rdmsrl(MSR_IA32_APERF, aperf);
2165         rdmsrl(MSR_IA32_MPERF, mperf);
2166         tsc = rdtsc();
2167         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2168                 local_irq_restore(flags);
2169                 return false;
2170         }
2171         local_irq_restore(flags);
2172
2173         cpu->last_sample_time = cpu->sample.time;
2174         cpu->sample.time = time;
2175         cpu->sample.aperf = aperf;
2176         cpu->sample.mperf = mperf;
2177         cpu->sample.tsc =  tsc;
2178         cpu->sample.aperf -= cpu->prev_aperf;
2179         cpu->sample.mperf -= cpu->prev_mperf;
2180         cpu->sample.tsc -= cpu->prev_tsc;
2181
2182         cpu->prev_aperf = aperf;
2183         cpu->prev_mperf = mperf;
2184         cpu->prev_tsc = tsc;
2185         /*
2186          * First time this function is invoked in a given cycle, all of the
2187          * previous sample data fields are equal to zero or stale and they must
2188          * be populated with meaningful numbers for things to work, so assume
2189          * that sample.time will always be reset before setting the utilization
2190          * update hook and make the caller skip the sample then.
2191          */
2192         if (cpu->last_sample_time) {
2193                 intel_pstate_calc_avg_perf(cpu);
2194                 return true;
2195         }
2196         return false;
2197 }
2198
2199 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2200 {
2201         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2202 }
2203
2204 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2205 {
2206         return mul_ext_fp(cpu->pstate.max_pstate_physical,
2207                           cpu->sample.core_avg_perf);
2208 }
2209
2210 static inline int32_t get_target_pstate(struct cpudata *cpu)
2211 {
2212         struct sample *sample = &cpu->sample;
2213         int32_t busy_frac;
2214         int target, avg_pstate;
2215
2216         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2217                            sample->tsc);
2218
2219         if (busy_frac < cpu->iowait_boost)
2220                 busy_frac = cpu->iowait_boost;
2221
2222         sample->busy_scaled = busy_frac * 100;
2223
2224         target = global.no_turbo || global.turbo_disabled ?
2225                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2226         target += target >> 2;
2227         target = mul_fp(target, busy_frac);
2228         if (target < cpu->pstate.min_pstate)
2229                 target = cpu->pstate.min_pstate;
2230
2231         /*
2232          * If the average P-state during the previous cycle was higher than the
2233          * current target, add 50% of the difference to the target to reduce
2234          * possible performance oscillations and offset possible performance
2235          * loss related to moving the workload from one CPU to another within
2236          * a package/module.
2237          */
2238         avg_pstate = get_avg_pstate(cpu);
2239         if (avg_pstate > target)
2240                 target += (avg_pstate - target) >> 1;
2241
2242         return target;
2243 }
2244
2245 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2246 {
2247         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2248         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2249
2250         return clamp_t(int, pstate, min_pstate, max_pstate);
2251 }
2252
2253 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2254 {
2255         if (pstate == cpu->pstate.current_pstate)
2256                 return;
2257
2258         cpu->pstate.current_pstate = pstate;
2259         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2260 }
2261
2262 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2263 {
2264         int from = cpu->pstate.current_pstate;
2265         struct sample *sample;
2266         int target_pstate;
2267
2268         update_turbo_state();
2269
2270         target_pstate = get_target_pstate(cpu);
2271         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2272         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2273         intel_pstate_update_pstate(cpu, target_pstate);
2274
2275         sample = &cpu->sample;
2276         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2277                 fp_toint(sample->busy_scaled),
2278                 from,
2279                 cpu->pstate.current_pstate,
2280                 sample->mperf,
2281                 sample->aperf,
2282                 sample->tsc,
2283                 get_avg_frequency(cpu),
2284                 fp_toint(cpu->iowait_boost * 100));
2285 }
2286
2287 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2288                                      unsigned int flags)
2289 {
2290         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2291         u64 delta_ns;
2292
2293         /* Don't allow remote callbacks */
2294         if (smp_processor_id() != cpu->cpu)
2295                 return;
2296
2297         delta_ns = time - cpu->last_update;
2298         if (flags & SCHED_CPUFREQ_IOWAIT) {
2299                 /* Start over if the CPU may have been idle. */
2300                 if (delta_ns > TICK_NSEC) {
2301                         cpu->iowait_boost = ONE_EIGHTH_FP;
2302                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2303                         cpu->iowait_boost <<= 1;
2304                         if (cpu->iowait_boost > int_tofp(1))
2305                                 cpu->iowait_boost = int_tofp(1);
2306                 } else {
2307                         cpu->iowait_boost = ONE_EIGHTH_FP;
2308                 }
2309         } else if (cpu->iowait_boost) {
2310                 /* Clear iowait_boost if the CPU may have been idle. */
2311                 if (delta_ns > TICK_NSEC)
2312                         cpu->iowait_boost = 0;
2313                 else
2314                         cpu->iowait_boost >>= 1;
2315         }
2316         cpu->last_update = time;
2317         delta_ns = time - cpu->sample.time;
2318         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2319                 return;
2320
2321         if (intel_pstate_sample(cpu, time))
2322                 intel_pstate_adjust_pstate(cpu);
2323 }
2324
2325 static struct pstate_funcs core_funcs = {
2326         .get_max = core_get_max_pstate,
2327         .get_max_physical = core_get_max_pstate_physical,
2328         .get_min = core_get_min_pstate,
2329         .get_turbo = core_get_turbo_pstate,
2330         .get_scaling = core_get_scaling,
2331         .get_val = core_get_val,
2332 };
2333
2334 static const struct pstate_funcs silvermont_funcs = {
2335         .get_max = atom_get_max_pstate,
2336         .get_max_physical = atom_get_max_pstate,
2337         .get_min = atom_get_min_pstate,
2338         .get_turbo = atom_get_turbo_pstate,
2339         .get_val = atom_get_val,
2340         .get_scaling = silvermont_get_scaling,
2341         .get_vid = atom_get_vid,
2342 };
2343
2344 static const struct pstate_funcs airmont_funcs = {
2345         .get_max = atom_get_max_pstate,
2346         .get_max_physical = atom_get_max_pstate,
2347         .get_min = atom_get_min_pstate,
2348         .get_turbo = atom_get_turbo_pstate,
2349         .get_val = atom_get_val,
2350         .get_scaling = airmont_get_scaling,
2351         .get_vid = atom_get_vid,
2352 };
2353
2354 static const struct pstate_funcs knl_funcs = {
2355         .get_max = core_get_max_pstate,
2356         .get_max_physical = core_get_max_pstate_physical,
2357         .get_min = core_get_min_pstate,
2358         .get_turbo = knl_get_turbo_pstate,
2359         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2360         .get_scaling = core_get_scaling,
2361         .get_val = core_get_val,
2362 };
2363
2364 #define X86_MATCH(model, policy)                                         \
2365         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2366                                            X86_FEATURE_APERFMPERF, &policy)
2367
2368 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2369         X86_MATCH(SANDYBRIDGE,          core_funcs),
2370         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
2371         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
2372         X86_MATCH(IVYBRIDGE,            core_funcs),
2373         X86_MATCH(HASWELL,              core_funcs),
2374         X86_MATCH(BROADWELL,            core_funcs),
2375         X86_MATCH(IVYBRIDGE_X,          core_funcs),
2376         X86_MATCH(HASWELL_X,            core_funcs),
2377         X86_MATCH(HASWELL_L,            core_funcs),
2378         X86_MATCH(HASWELL_G,            core_funcs),
2379         X86_MATCH(BROADWELL_G,          core_funcs),
2380         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
2381         X86_MATCH(SKYLAKE_L,            core_funcs),
2382         X86_MATCH(BROADWELL_X,          core_funcs),
2383         X86_MATCH(SKYLAKE,              core_funcs),
2384         X86_MATCH(BROADWELL_D,          core_funcs),
2385         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
2386         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
2387         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
2388         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2389         X86_MATCH(SKYLAKE_X,            core_funcs),
2390         X86_MATCH(COMETLAKE,            core_funcs),
2391         X86_MATCH(ICELAKE_X,            core_funcs),
2392         {}
2393 };
2394 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2395
2396 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2397         X86_MATCH(BROADWELL_D,          core_funcs),
2398         X86_MATCH(BROADWELL_X,          core_funcs),
2399         X86_MATCH(SKYLAKE_X,            core_funcs),
2400         X86_MATCH(ICELAKE_X,            core_funcs),
2401         {}
2402 };
2403
2404 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2405         X86_MATCH(KABYLAKE,             core_funcs),
2406         {}
2407 };
2408
2409 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2410         X86_MATCH(SKYLAKE_X,            core_funcs),
2411         X86_MATCH(SKYLAKE,              core_funcs),
2412         {}
2413 };
2414
2415 static int intel_pstate_init_cpu(unsigned int cpunum)
2416 {
2417         struct cpudata *cpu;
2418
2419         cpu = all_cpu_data[cpunum];
2420
2421         if (!cpu) {
2422                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2423                 if (!cpu)
2424                         return -ENOMEM;
2425
2426                 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2427
2428                 cpu->cpu = cpunum;
2429
2430                 cpu->epp_default = -EINVAL;
2431
2432                 if (hwp_active) {
2433                         const struct x86_cpu_id *id;
2434
2435                         intel_pstate_hwp_enable(cpu);
2436
2437                         id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2438                         if (id && intel_pstate_acpi_pm_profile_server())
2439                                 hwp_boost = true;
2440                 }
2441         } else if (hwp_active) {
2442                 /*
2443                  * Re-enable HWP in case this happens after a resume from ACPI
2444                  * S3 if the CPU was offline during the whole system/resume
2445                  * cycle.
2446                  */
2447                 intel_pstate_hwp_reenable(cpu);
2448         }
2449
2450         cpu->epp_powersave = -EINVAL;
2451         cpu->epp_policy = 0;
2452
2453         intel_pstate_get_cpu_pstates(cpu);
2454
2455         pr_debug("controlling: cpu %d\n", cpunum);
2456
2457         return 0;
2458 }
2459
2460 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2461 {
2462         struct cpudata *cpu = all_cpu_data[cpu_num];
2463
2464         if (hwp_active && !hwp_boost)
2465                 return;
2466
2467         if (cpu->update_util_set)
2468                 return;
2469
2470         /* Prevent intel_pstate_update_util() from using stale data. */
2471         cpu->sample.time = 0;
2472         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2473                                      (hwp_active ?
2474                                       intel_pstate_update_util_hwp :
2475                                       intel_pstate_update_util));
2476         cpu->update_util_set = true;
2477 }
2478
2479 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2480 {
2481         struct cpudata *cpu_data = all_cpu_data[cpu];
2482
2483         if (!cpu_data->update_util_set)
2484                 return;
2485
2486         cpufreq_remove_update_util_hook(cpu);
2487         cpu_data->update_util_set = false;
2488         synchronize_rcu();
2489 }
2490
2491 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2492 {
2493         return global.turbo_disabled || global.no_turbo ?
2494                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2495 }
2496
2497 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2498                                             unsigned int policy_min,
2499                                             unsigned int policy_max)
2500 {
2501         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2502         int32_t max_policy_perf, min_policy_perf;
2503
2504         max_policy_perf = policy_max / perf_ctl_scaling;
2505         if (policy_max == policy_min) {
2506                 min_policy_perf = max_policy_perf;
2507         } else {
2508                 min_policy_perf = policy_min / perf_ctl_scaling;
2509                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2510                                           0, max_policy_perf);
2511         }
2512
2513         /*
2514          * HWP needs some special consideration, because HWP_REQUEST uses
2515          * abstract values to represent performance rather than pure ratios.
2516          */
2517         if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2518                 int scaling = cpu->pstate.scaling;
2519                 int freq;
2520
2521                 freq = max_policy_perf * perf_ctl_scaling;
2522                 max_policy_perf = DIV_ROUND_UP(freq, scaling);
2523                 freq = min_policy_perf * perf_ctl_scaling;
2524                 min_policy_perf = DIV_ROUND_UP(freq, scaling);
2525         }
2526
2527         pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2528                  cpu->cpu, min_policy_perf, max_policy_perf);
2529
2530         /* Normalize user input to [min_perf, max_perf] */
2531         if (per_cpu_limits) {
2532                 cpu->min_perf_ratio = min_policy_perf;
2533                 cpu->max_perf_ratio = max_policy_perf;
2534         } else {
2535                 int turbo_max = cpu->pstate.turbo_pstate;
2536                 int32_t global_min, global_max;
2537
2538                 /* Global limits are in percent of the maximum turbo P-state. */
2539                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2540                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2541                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2542
2543                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2544                          global_min, global_max);
2545
2546                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2547                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2548                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2549                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2550
2551                 /* Make sure min_perf <= max_perf */
2552                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2553                                           cpu->max_perf_ratio);
2554
2555         }
2556         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2557                  cpu->max_perf_ratio,
2558                  cpu->min_perf_ratio);
2559 }
2560
2561 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2562 {
2563         struct cpudata *cpu;
2564
2565         if (!policy->cpuinfo.max_freq)
2566                 return -ENODEV;
2567
2568         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2569                  policy->cpuinfo.max_freq, policy->max);
2570
2571         cpu = all_cpu_data[policy->cpu];
2572         cpu->policy = policy->policy;
2573
2574         mutex_lock(&intel_pstate_limits_lock);
2575
2576         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2577
2578         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2579                 /*
2580                  * NOHZ_FULL CPUs need this as the governor callback may not
2581                  * be invoked on them.
2582                  */
2583                 intel_pstate_clear_update_util_hook(policy->cpu);
2584                 intel_pstate_max_within_limits(cpu);
2585         } else {
2586                 intel_pstate_set_update_util_hook(policy->cpu);
2587         }
2588
2589         if (hwp_active) {
2590                 /*
2591                  * When hwp_boost was active before and dynamically it
2592                  * was turned off, in that case we need to clear the
2593                  * update util hook.
2594                  */
2595                 if (!hwp_boost)
2596                         intel_pstate_clear_update_util_hook(policy->cpu);
2597                 intel_pstate_hwp_set(policy->cpu);
2598         }
2599
2600         mutex_unlock(&intel_pstate_limits_lock);
2601
2602         return 0;
2603 }
2604
2605 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2606                                            struct cpufreq_policy_data *policy)
2607 {
2608         if (!hwp_active &&
2609             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2610             policy->max < policy->cpuinfo.max_freq &&
2611             policy->max > cpu->pstate.max_freq) {
2612                 pr_debug("policy->max > max non turbo frequency\n");
2613                 policy->max = policy->cpuinfo.max_freq;
2614         }
2615 }
2616
2617 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2618                                            struct cpufreq_policy_data *policy)
2619 {
2620         int max_freq;
2621
2622         update_turbo_state();
2623         if (hwp_active) {
2624                 intel_pstate_get_hwp_cap(cpu);
2625                 max_freq = global.no_turbo || global.turbo_disabled ?
2626                                 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2627         } else {
2628                 max_freq = intel_pstate_get_max_freq(cpu);
2629         }
2630         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2631
2632         intel_pstate_adjust_policy_max(cpu, policy);
2633 }
2634
2635 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2636 {
2637         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2638
2639         return 0;
2640 }
2641
2642 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2643 {
2644         struct cpudata *cpu = all_cpu_data[policy->cpu];
2645
2646         pr_debug("CPU %d going offline\n", cpu->cpu);
2647
2648         if (cpu->suspended)
2649                 return 0;
2650
2651         /*
2652          * If the CPU is an SMT thread and it goes offline with the performance
2653          * settings different from the minimum, it will prevent its sibling
2654          * from getting to lower performance levels, so force the minimum
2655          * performance on CPU offline to prevent that from happening.
2656          */
2657         if (hwp_active)
2658                 intel_pstate_hwp_offline(cpu);
2659         else
2660                 intel_pstate_set_min_pstate(cpu);
2661
2662         intel_pstate_exit_perf_limits(policy);
2663
2664         return 0;
2665 }
2666
2667 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2668 {
2669         struct cpudata *cpu = all_cpu_data[policy->cpu];
2670
2671         pr_debug("CPU %d going online\n", cpu->cpu);
2672
2673         intel_pstate_init_acpi_perf_limits(policy);
2674
2675         if (hwp_active) {
2676                 /*
2677                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2678                  * know that it need not do that.
2679                  */
2680                 intel_pstate_hwp_reenable(cpu);
2681                 cpu->suspended = false;
2682         }
2683
2684         return 0;
2685 }
2686
2687 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2688 {
2689         intel_pstate_clear_update_util_hook(policy->cpu);
2690
2691         return intel_cpufreq_cpu_offline(policy);
2692 }
2693
2694 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2695 {
2696         pr_debug("CPU %d exiting\n", policy->cpu);
2697
2698         policy->fast_switch_possible = false;
2699
2700         return 0;
2701 }
2702
2703 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2704 {
2705         struct cpudata *cpu;
2706         int rc;
2707
2708         rc = intel_pstate_init_cpu(policy->cpu);
2709         if (rc)
2710                 return rc;
2711
2712         cpu = all_cpu_data[policy->cpu];
2713
2714         cpu->max_perf_ratio = 0xFF;
2715         cpu->min_perf_ratio = 0;
2716
2717         /* cpuinfo and default policy values */
2718         policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2719         update_turbo_state();
2720         global.turbo_disabled_mf = global.turbo_disabled;
2721         policy->cpuinfo.max_freq = global.turbo_disabled ?
2722                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2723
2724         policy->min = policy->cpuinfo.min_freq;
2725         policy->max = policy->cpuinfo.max_freq;
2726
2727         intel_pstate_init_acpi_perf_limits(policy);
2728
2729         policy->fast_switch_possible = true;
2730
2731         return 0;
2732 }
2733
2734 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2735 {
2736         int ret = __intel_pstate_cpu_init(policy);
2737
2738         if (ret)
2739                 return ret;
2740
2741         /*
2742          * Set the policy to powersave to provide a valid fallback value in case
2743          * the default cpufreq governor is neither powersave nor performance.
2744          */
2745         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2746
2747         if (hwp_active) {
2748                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2749
2750                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2751         }
2752
2753         return 0;
2754 }
2755
2756 static struct cpufreq_driver intel_pstate = {
2757         .flags          = CPUFREQ_CONST_LOOPS,
2758         .verify         = intel_pstate_verify_policy,
2759         .setpolicy      = intel_pstate_set_policy,
2760         .suspend        = intel_pstate_suspend,
2761         .resume         = intel_pstate_resume,
2762         .init           = intel_pstate_cpu_init,
2763         .exit           = intel_pstate_cpu_exit,
2764         .offline        = intel_pstate_cpu_offline,
2765         .online         = intel_pstate_cpu_online,
2766         .update_limits  = intel_pstate_update_limits,
2767         .name           = "intel_pstate",
2768 };
2769
2770 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2771 {
2772         struct cpudata *cpu = all_cpu_data[policy->cpu];
2773
2774         intel_pstate_verify_cpu_policy(cpu, policy);
2775         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2776
2777         return 0;
2778 }
2779
2780 /* Use of trace in passive mode:
2781  *
2782  * In passive mode the trace core_busy field (also known as the
2783  * performance field, and lablelled as such on the graphs; also known as
2784  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2785  * driver call was via the normal or fast switch path. Various graphs
2786  * output from the intel_pstate_tracer.py utility that include core_busy
2787  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2788  * so we use 10 to indicate the normal path through the driver, and
2789  * 90 to indicate the fast switch path through the driver.
2790  * The scaled_busy field is not used, and is set to 0.
2791  */
2792
2793 #define INTEL_PSTATE_TRACE_TARGET 10
2794 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2795
2796 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2797 {
2798         struct sample *sample;
2799
2800         if (!trace_pstate_sample_enabled())
2801                 return;
2802
2803         if (!intel_pstate_sample(cpu, ktime_get()))
2804                 return;
2805
2806         sample = &cpu->sample;
2807         trace_pstate_sample(trace_type,
2808                 0,
2809                 old_pstate,
2810                 cpu->pstate.current_pstate,
2811                 sample->mperf,
2812                 sample->aperf,
2813                 sample->tsc,
2814                 get_avg_frequency(cpu),
2815                 fp_toint(cpu->iowait_boost * 100));
2816 }
2817
2818 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2819                                      u32 desired, bool fast_switch)
2820 {
2821         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2822
2823         value &= ~HWP_MIN_PERF(~0L);
2824         value |= HWP_MIN_PERF(min);
2825
2826         value &= ~HWP_MAX_PERF(~0L);
2827         value |= HWP_MAX_PERF(max);
2828
2829         value &= ~HWP_DESIRED_PERF(~0L);
2830         value |= HWP_DESIRED_PERF(desired);
2831
2832         if (value == prev)
2833                 return;
2834
2835         WRITE_ONCE(cpu->hwp_req_cached, value);
2836         if (fast_switch)
2837                 wrmsrl(MSR_HWP_REQUEST, value);
2838         else
2839                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2840 }
2841
2842 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2843                                           u32 target_pstate, bool fast_switch)
2844 {
2845         if (fast_switch)
2846                 wrmsrl(MSR_IA32_PERF_CTL,
2847                        pstate_funcs.get_val(cpu, target_pstate));
2848         else
2849                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2850                               pstate_funcs.get_val(cpu, target_pstate));
2851 }
2852
2853 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2854                                        int target_pstate, bool fast_switch)
2855 {
2856         struct cpudata *cpu = all_cpu_data[policy->cpu];
2857         int old_pstate = cpu->pstate.current_pstate;
2858
2859         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2860         if (hwp_active) {
2861                 int max_pstate = policy->strict_target ?
2862                                         target_pstate : cpu->max_perf_ratio;
2863
2864                 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2865                                          fast_switch);
2866         } else if (target_pstate != old_pstate) {
2867                 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2868         }
2869
2870         cpu->pstate.current_pstate = target_pstate;
2871
2872         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2873                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2874
2875         return target_pstate;
2876 }
2877
2878 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2879                                 unsigned int target_freq,
2880                                 unsigned int relation)
2881 {
2882         struct cpudata *cpu = all_cpu_data[policy->cpu];
2883         struct cpufreq_freqs freqs;
2884         int target_pstate;
2885
2886         update_turbo_state();
2887
2888         freqs.old = policy->cur;
2889         freqs.new = target_freq;
2890
2891         cpufreq_freq_transition_begin(policy, &freqs);
2892
2893         switch (relation) {
2894         case CPUFREQ_RELATION_L:
2895                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2896                 break;
2897         case CPUFREQ_RELATION_H:
2898                 target_pstate = freqs.new / cpu->pstate.scaling;
2899                 break;
2900         default:
2901                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2902                 break;
2903         }
2904
2905         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2906
2907         freqs.new = target_pstate * cpu->pstate.scaling;
2908
2909         cpufreq_freq_transition_end(policy, &freqs, false);
2910
2911         return 0;
2912 }
2913
2914 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2915                                               unsigned int target_freq)
2916 {
2917         struct cpudata *cpu = all_cpu_data[policy->cpu];
2918         int target_pstate;
2919
2920         update_turbo_state();
2921
2922         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2923
2924         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2925
2926         return target_pstate * cpu->pstate.scaling;
2927 }
2928
2929 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2930                                       unsigned long min_perf,
2931                                       unsigned long target_perf,
2932                                       unsigned long capacity)
2933 {
2934         struct cpudata *cpu = all_cpu_data[cpunum];
2935         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2936         int old_pstate = cpu->pstate.current_pstate;
2937         int cap_pstate, min_pstate, max_pstate, target_pstate;
2938
2939         update_turbo_state();
2940         cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2941                                              HWP_HIGHEST_PERF(hwp_cap);
2942
2943         /* Optimization: Avoid unnecessary divisions. */
2944
2945         target_pstate = cap_pstate;
2946         if (target_perf < capacity)
2947                 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2948
2949         min_pstate = cap_pstate;
2950         if (min_perf < capacity)
2951                 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2952
2953         if (min_pstate < cpu->pstate.min_pstate)
2954                 min_pstate = cpu->pstate.min_pstate;
2955
2956         if (min_pstate < cpu->min_perf_ratio)
2957                 min_pstate = cpu->min_perf_ratio;
2958
2959         max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2960         if (max_pstate < min_pstate)
2961                 max_pstate = min_pstate;
2962
2963         target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2964
2965         intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2966
2967         cpu->pstate.current_pstate = target_pstate;
2968         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2969 }
2970
2971 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2972 {
2973         struct freq_qos_request *req;
2974         struct cpudata *cpu;
2975         struct device *dev;
2976         int ret, freq;
2977
2978         dev = get_cpu_device(policy->cpu);
2979         if (!dev)
2980                 return -ENODEV;
2981
2982         ret = __intel_pstate_cpu_init(policy);
2983         if (ret)
2984                 return ret;
2985
2986         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2987         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2988         policy->cur = policy->cpuinfo.min_freq;
2989
2990         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2991         if (!req) {
2992                 ret = -ENOMEM;
2993                 goto pstate_exit;
2994         }
2995
2996         cpu = all_cpu_data[policy->cpu];
2997
2998         if (hwp_active) {
2999                 u64 value;
3000
3001                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3002
3003                 intel_pstate_get_hwp_cap(cpu);
3004
3005                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3006                 WRITE_ONCE(cpu->hwp_req_cached, value);
3007
3008                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3009         } else {
3010                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3011         }
3012
3013         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3014
3015         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3016                                    freq);
3017         if (ret < 0) {
3018                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3019                 goto free_req;
3020         }
3021
3022         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3023
3024         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3025                                    freq);
3026         if (ret < 0) {
3027                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3028                 goto remove_min_req;
3029         }
3030
3031         policy->driver_data = req;
3032
3033         return 0;
3034
3035 remove_min_req:
3036         freq_qos_remove_request(req);
3037 free_req:
3038         kfree(req);
3039 pstate_exit:
3040         intel_pstate_exit_perf_limits(policy);
3041
3042         return ret;
3043 }
3044
3045 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3046 {
3047         struct freq_qos_request *req;
3048
3049         req = policy->driver_data;
3050
3051         freq_qos_remove_request(req + 1);
3052         freq_qos_remove_request(req);
3053         kfree(req);
3054
3055         return intel_pstate_cpu_exit(policy);
3056 }
3057
3058 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3059 {
3060         intel_pstate_suspend(policy);
3061
3062         if (hwp_active) {
3063                 struct cpudata *cpu = all_cpu_data[policy->cpu];
3064                 u64 value = READ_ONCE(cpu->hwp_req_cached);
3065
3066                 /*
3067                  * Clear the desired perf field in MSR_HWP_REQUEST in case
3068                  * intel_cpufreq_adjust_perf() is in use and the last value
3069                  * written by it may not be suitable.
3070                  */
3071                 value &= ~HWP_DESIRED_PERF(~0L);
3072                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3073                 WRITE_ONCE(cpu->hwp_req_cached, value);
3074         }
3075
3076         return 0;
3077 }
3078
3079 static struct cpufreq_driver intel_cpufreq = {
3080         .flags          = CPUFREQ_CONST_LOOPS,
3081         .verify         = intel_cpufreq_verify_policy,
3082         .target         = intel_cpufreq_target,
3083         .fast_switch    = intel_cpufreq_fast_switch,
3084         .init           = intel_cpufreq_cpu_init,
3085         .exit           = intel_cpufreq_cpu_exit,
3086         .offline        = intel_cpufreq_cpu_offline,
3087         .online         = intel_pstate_cpu_online,
3088         .suspend        = intel_cpufreq_suspend,
3089         .resume         = intel_pstate_resume,
3090         .update_limits  = intel_pstate_update_limits,
3091         .name           = "intel_cpufreq",
3092 };
3093
3094 static struct cpufreq_driver *default_driver;
3095
3096 static void intel_pstate_driver_cleanup(void)
3097 {
3098         unsigned int cpu;
3099
3100         cpus_read_lock();
3101         for_each_online_cpu(cpu) {
3102                 if (all_cpu_data[cpu]) {
3103                         if (intel_pstate_driver == &intel_pstate)
3104                                 intel_pstate_clear_update_util_hook(cpu);
3105
3106                         spin_lock(&hwp_notify_lock);
3107                         kfree(all_cpu_data[cpu]);
3108                         WRITE_ONCE(all_cpu_data[cpu], NULL);
3109                         spin_unlock(&hwp_notify_lock);
3110                 }
3111         }
3112         cpus_read_unlock();
3113
3114         intel_pstate_driver = NULL;
3115 }
3116
3117 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3118 {
3119         int ret;
3120
3121         if (driver == &intel_pstate)
3122                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3123
3124         memset(&global, 0, sizeof(global));
3125         global.max_perf_pct = 100;
3126
3127         intel_pstate_driver = driver;
3128         ret = cpufreq_register_driver(intel_pstate_driver);
3129         if (ret) {
3130                 intel_pstate_driver_cleanup();
3131                 return ret;
3132         }
3133
3134         global.min_perf_pct = min_perf_pct_min();
3135
3136         return 0;
3137 }
3138
3139 static ssize_t intel_pstate_show_status(char *buf)
3140 {
3141         if (!intel_pstate_driver)
3142                 return sprintf(buf, "off\n");
3143
3144         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3145                                         "active" : "passive");
3146 }
3147
3148 static int intel_pstate_update_status(const char *buf, size_t size)
3149 {
3150         if (size == 3 && !strncmp(buf, "off", size)) {
3151                 if (!intel_pstate_driver)
3152                         return -EINVAL;
3153
3154                 if (hwp_active)
3155                         return -EBUSY;
3156
3157                 cpufreq_unregister_driver(intel_pstate_driver);
3158                 intel_pstate_driver_cleanup();
3159                 return 0;
3160         }
3161
3162         if (size == 6 && !strncmp(buf, "active", size)) {
3163                 if (intel_pstate_driver) {
3164                         if (intel_pstate_driver == &intel_pstate)
3165                                 return 0;
3166
3167                         cpufreq_unregister_driver(intel_pstate_driver);
3168                 }
3169
3170                 return intel_pstate_register_driver(&intel_pstate);
3171         }
3172
3173         if (size == 7 && !strncmp(buf, "passive", size)) {
3174                 if (intel_pstate_driver) {
3175                         if (intel_pstate_driver == &intel_cpufreq)
3176                                 return 0;
3177
3178                         cpufreq_unregister_driver(intel_pstate_driver);
3179                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
3180                 }
3181
3182                 return intel_pstate_register_driver(&intel_cpufreq);
3183         }
3184
3185         return -EINVAL;
3186 }
3187
3188 static int no_load __initdata;
3189 static int no_hwp __initdata;
3190 static int hwp_only __initdata;
3191 static unsigned int force_load __initdata;
3192
3193 static int __init intel_pstate_msrs_not_valid(void)
3194 {
3195         if (!pstate_funcs.get_max() ||
3196             !pstate_funcs.get_min() ||
3197             !pstate_funcs.get_turbo())
3198                 return -ENODEV;
3199
3200         return 0;
3201 }
3202
3203 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3204 {
3205         pstate_funcs.get_max   = funcs->get_max;
3206         pstate_funcs.get_max_physical = funcs->get_max_physical;
3207         pstate_funcs.get_min   = funcs->get_min;
3208         pstate_funcs.get_turbo = funcs->get_turbo;
3209         pstate_funcs.get_scaling = funcs->get_scaling;
3210         pstate_funcs.get_val   = funcs->get_val;
3211         pstate_funcs.get_vid   = funcs->get_vid;
3212         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3213 }
3214
3215 #ifdef CONFIG_ACPI
3216
3217 static bool __init intel_pstate_no_acpi_pss(void)
3218 {
3219         int i;
3220
3221         for_each_possible_cpu(i) {
3222                 acpi_status status;
3223                 union acpi_object *pss;
3224                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3225                 struct acpi_processor *pr = per_cpu(processors, i);
3226
3227                 if (!pr)
3228                         continue;
3229
3230                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3231                 if (ACPI_FAILURE(status))
3232                         continue;
3233
3234                 pss = buffer.pointer;
3235                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3236                         kfree(pss);
3237                         return false;
3238                 }
3239
3240                 kfree(pss);
3241         }
3242
3243         pr_debug("ACPI _PSS not found\n");
3244         return true;
3245 }
3246
3247 static bool __init intel_pstate_no_acpi_pcch(void)
3248 {
3249         acpi_status status;
3250         acpi_handle handle;
3251
3252         status = acpi_get_handle(NULL, "\\_SB", &handle);
3253         if (ACPI_FAILURE(status))
3254                 goto not_found;
3255
3256         if (acpi_has_method(handle, "PCCH"))
3257                 return false;
3258
3259 not_found:
3260         pr_debug("ACPI PCCH not found\n");
3261         return true;
3262 }
3263
3264 static bool __init intel_pstate_has_acpi_ppc(void)
3265 {
3266         int i;
3267
3268         for_each_possible_cpu(i) {
3269                 struct acpi_processor *pr = per_cpu(processors, i);
3270
3271                 if (!pr)
3272                         continue;
3273                 if (acpi_has_method(pr->handle, "_PPC"))
3274                         return true;
3275         }
3276         pr_debug("ACPI _PPC not found\n");
3277         return false;
3278 }
3279
3280 enum {
3281         PSS,
3282         PPC,
3283 };
3284
3285 /* Hardware vendor-specific info that has its own power management modes */
3286 static struct acpi_platform_list plat_info[] __initdata = {
3287         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3288         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3289         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3290         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3291         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3292         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3293         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3294         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3295         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3296         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3297         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3298         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3299         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3300         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3301         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3302         { } /* End */
3303 };
3304
3305 #define BITMASK_OOB     (BIT(8) | BIT(18))
3306
3307 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3308 {
3309         const struct x86_cpu_id *id;
3310         u64 misc_pwr;
3311         int idx;
3312
3313         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3314         if (id) {
3315                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3316                 if (misc_pwr & BITMASK_OOB) {
3317                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3318                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3319                         return true;
3320                 }
3321         }
3322
3323         idx = acpi_match_platform_list(plat_info);
3324         if (idx < 0)
3325                 return false;
3326
3327         switch (plat_info[idx].data) {
3328         case PSS:
3329                 if (!intel_pstate_no_acpi_pss())
3330                         return false;
3331
3332                 return intel_pstate_no_acpi_pcch();
3333         case PPC:
3334                 return intel_pstate_has_acpi_ppc() && !force_load;
3335         }
3336
3337         return false;
3338 }
3339
3340 static void intel_pstate_request_control_from_smm(void)
3341 {
3342         /*
3343          * It may be unsafe to request P-states control from SMM if _PPC support
3344          * has not been enabled.
3345          */
3346         if (acpi_ppc)
3347                 acpi_processor_pstate_control();
3348 }
3349 #else /* CONFIG_ACPI not enabled */
3350 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3351 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3352 static inline void intel_pstate_request_control_from_smm(void) {}
3353 #endif /* CONFIG_ACPI */
3354
3355 #define INTEL_PSTATE_HWP_BROADWELL      0x01
3356
3357 #define X86_MATCH_HWP(model, hwp_mode)                                  \
3358         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3359                                            X86_FEATURE_HWP, hwp_mode)
3360
3361 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3362         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
3363         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
3364         X86_MATCH_HWP(ANY,              0),
3365         {}
3366 };
3367
3368 static bool intel_pstate_hwp_is_enabled(void)
3369 {
3370         u64 value;
3371
3372         rdmsrl(MSR_PM_ENABLE, value);
3373         return !!(value & 0x1);
3374 }
3375
3376 static const struct x86_cpu_id intel_epp_balance_perf[] = {
3377         /*
3378          * Set EPP value as 102, this is the max suggested EPP
3379          * which can result in one core turbo frequency for
3380          * AlderLake Mobile CPUs.
3381          */
3382         X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3383         {}
3384 };
3385
3386 static int __init intel_pstate_init(void)
3387 {
3388         static struct cpudata **_all_cpu_data;
3389         const struct x86_cpu_id *id;
3390         int rc;
3391
3392         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3393                 return -ENODEV;
3394
3395         id = x86_match_cpu(hwp_support_ids);
3396         if (id) {
3397                 bool hwp_forced = intel_pstate_hwp_is_enabled();
3398
3399                 if (hwp_forced)
3400                         pr_info("HWP enabled by BIOS\n");
3401                 else if (no_load)
3402                         return -ENODEV;
3403
3404                 copy_cpu_funcs(&core_funcs);
3405                 /*
3406                  * Avoid enabling HWP for processors without EPP support,
3407                  * because that means incomplete HWP implementation which is a
3408                  * corner case and supporting it is generally problematic.
3409                  *
3410                  * If HWP is enabled already, though, there is no choice but to
3411                  * deal with it.
3412                  */
3413                 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3414                         WRITE_ONCE(hwp_active, 1);
3415                         hwp_mode_bdw = id->driver_data;
3416                         intel_pstate.attr = hwp_cpufreq_attrs;
3417                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3418                         intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3419                         intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3420                         if (!default_driver)
3421                                 default_driver = &intel_pstate;
3422
3423                         if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
3424                                 intel_pstate_cppc_set_cpu_scaling();
3425
3426                         goto hwp_cpu_matched;
3427                 }
3428                 pr_info("HWP not enabled\n");
3429         } else {
3430                 if (no_load)
3431                         return -ENODEV;
3432
3433                 id = x86_match_cpu(intel_pstate_cpu_ids);
3434                 if (!id) {
3435                         pr_info("CPU model not supported\n");
3436                         return -ENODEV;
3437                 }
3438
3439                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3440         }
3441
3442         if (intel_pstate_msrs_not_valid()) {
3443                 pr_info("Invalid MSRs\n");
3444                 return -ENODEV;
3445         }
3446         /* Without HWP start in the passive mode. */
3447         if (!default_driver)
3448                 default_driver = &intel_cpufreq;
3449
3450 hwp_cpu_matched:
3451         /*
3452          * The Intel pstate driver will be ignored if the platform
3453          * firmware has its own power management modes.
3454          */
3455         if (intel_pstate_platform_pwr_mgmt_exists()) {
3456                 pr_info("P-states controlled by the platform\n");
3457                 return -ENODEV;
3458         }
3459
3460         if (!hwp_active && hwp_only)
3461                 return -ENOTSUPP;
3462
3463         pr_info("Intel P-state driver initializing\n");
3464
3465         _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3466         if (!_all_cpu_data)
3467                 return -ENOMEM;
3468
3469         WRITE_ONCE(all_cpu_data, _all_cpu_data);
3470
3471         intel_pstate_request_control_from_smm();
3472
3473         intel_pstate_sysfs_expose_params();
3474
3475         if (hwp_active) {
3476                 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3477
3478                 if (id)
3479                         epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3480         }
3481
3482         mutex_lock(&intel_pstate_driver_lock);
3483         rc = intel_pstate_register_driver(default_driver);
3484         mutex_unlock(&intel_pstate_driver_lock);
3485         if (rc) {
3486                 intel_pstate_sysfs_remove();
3487                 return rc;
3488         }
3489
3490         if (hwp_active) {
3491                 const struct x86_cpu_id *id;
3492
3493                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3494                 if (id) {
3495                         set_power_ctl_ee_state(false);
3496                         pr_info("Disabling energy efficiency optimization\n");
3497                 }
3498
3499                 pr_info("HWP enabled\n");
3500         } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3501                 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3502         }
3503
3504         return 0;
3505 }
3506 device_initcall(intel_pstate_init);
3507
3508 static int __init intel_pstate_setup(char *str)
3509 {
3510         if (!str)
3511                 return -EINVAL;
3512
3513         if (!strcmp(str, "disable"))
3514                 no_load = 1;
3515         else if (!strcmp(str, "active"))
3516                 default_driver = &intel_pstate;
3517         else if (!strcmp(str, "passive"))
3518                 default_driver = &intel_cpufreq;
3519
3520         if (!strcmp(str, "no_hwp"))
3521                 no_hwp = 1;
3522
3523         if (!strcmp(str, "force"))
3524                 force_load = 1;
3525         if (!strcmp(str, "hwp_only"))
3526                 hwp_only = 1;
3527         if (!strcmp(str, "per_cpu_perf_limits"))
3528                 per_cpu_limits = true;
3529
3530 #ifdef CONFIG_ACPI
3531         if (!strcmp(str, "support_acpi_ppc"))
3532                 acpi_ppc = true;
3533 #endif
3534
3535         return 0;
3536 }
3537 early_param("intel_pstate", intel_pstate_setup);
3538
3539 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3540 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3541 MODULE_LICENSE("GPL");