scsi: hisi_sas: Reduce HISI_SAS_SGE_PAGE_CNT in size
[linux-2.6-microblaze.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
32
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38
39 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
40
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67         return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
70 static inline int ceiling_fp(int32_t x)
71 {
72         int mask, ret;
73
74         ret = fp_toint(x);
75         mask = (1 << FRAC_BITS) - 1;
76         if (x & mask)
77                 ret += 1;
78         return ret;
79 }
80
81 static inline int32_t percent_fp(int percent)
82 {
83         return div_fp(percent, 100);
84 }
85
86 static inline u64 mul_ext_fp(u64 x, u64 y)
87 {
88         return (x * y) >> EXT_FRAC_BITS;
89 }
90
91 static inline u64 div_ext_fp(u64 x, u64 y)
92 {
93         return div64_u64(x << EXT_FRAC_BITS, y);
94 }
95
96 static inline int32_t percent_ext_fp(int percent)
97 {
98         return div_ext_fp(percent, 100);
99 }
100
101 /**
102  * struct sample -      Store performance sample
103  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
104  *                      performance during last sample period
105  * @busy_scaled:        Scaled busy value which is used to calculate next
106  *                      P state. This can be different than core_avg_perf
107  *                      to account for cpu idle period
108  * @aperf:              Difference of actual performance frequency clock count
109  *                      read from APERF MSR between last and current sample
110  * @mperf:              Difference of maximum performance frequency clock count
111  *                      read from MPERF MSR between last and current sample
112  * @tsc:                Difference of time stamp counter between last and
113  *                      current sample
114  * @time:               Current time from scheduler
115  *
116  * This structure is used in the cpudata structure to store performance sample
117  * data for choosing next P State.
118  */
119 struct sample {
120         int32_t core_avg_perf;
121         int32_t busy_scaled;
122         u64 aperf;
123         u64 mperf;
124         u64 tsc;
125         u64 time;
126 };
127
128 /**
129  * struct pstate_data - Store P state data
130  * @current_pstate:     Current requested P state
131  * @min_pstate:         Min P state possible for this platform
132  * @max_pstate:         Max P state possible for this platform
133  * @max_pstate_physical:This is physical Max P state for a processor
134  *                      This can be higher than the max_pstate which can
135  *                      be limited by platform thermal design power limits
136  * @scaling:            Scaling factor to  convert frequency to cpufreq
137  *                      frequency units
138  * @turbo_pstate:       Max Turbo P state possible for this platform
139  * @max_freq:           @max_pstate frequency in cpufreq units
140  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
141  *
142  * Stores the per cpu model P state limits and current P state.
143  */
144 struct pstate_data {
145         int     current_pstate;
146         int     min_pstate;
147         int     max_pstate;
148         int     max_pstate_physical;
149         int     scaling;
150         int     turbo_pstate;
151         unsigned int max_freq;
152         unsigned int turbo_freq;
153 };
154
155 /**
156  * struct vid_data -    Stores voltage information data
157  * @min:                VID data for this platform corresponding to
158  *                      the lowest P state
159  * @max:                VID data corresponding to the highest P State.
160  * @turbo:              VID data for turbo P state
161  * @ratio:              Ratio of (vid max - vid min) /
162  *                      (max P state - Min P State)
163  *
164  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165  * This data is used in Atom platforms, where in addition to target P state,
166  * the voltage data needs to be specified to select next P State.
167  */
168 struct vid_data {
169         int min;
170         int max;
171         int turbo;
172         int32_t ratio;
173 };
174
175 /**
176  * struct global_params - Global parameters, mostly tunable via sysfs.
177  * @no_turbo:           Whether or not to use turbo P-states.
178  * @turbo_disabled:     Whethet or not turbo P-states are available at all,
179  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
180  *                      not the maximum reported turbo P-state is different from
181  *                      the maximum reported non-turbo one.
182  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
183  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
184  *                      P-state capacity.
185  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
186  *                      P-state capacity.
187  */
188 struct global_params {
189         bool no_turbo;
190         bool turbo_disabled;
191         bool turbo_disabled_mf;
192         int max_perf_pct;
193         int min_perf_pct;
194 };
195
196 /**
197  * struct cpudata -     Per CPU instance data storage
198  * @cpu:                CPU number for this instance data
199  * @policy:             CPUFreq policy value
200  * @update_util:        CPUFreq utility callback information
201  * @update_util_set:    CPUFreq utility callback is set
202  * @iowait_boost:       iowait-related boost fraction
203  * @last_update:        Time of the last update.
204  * @pstate:             Stores P state limits for this CPU
205  * @vid:                Stores VID limits for this CPU
206  * @last_sample_time:   Last Sample time
207  * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
208  *                      This shift is a multiplier to mperf delta to
209  *                      calculate CPU busy.
210  * @prev_aperf:         Last APERF value read from APERF MSR
211  * @prev_mperf:         Last MPERF value read from MPERF MSR
212  * @prev_tsc:           Last timestamp counter (TSC) value
213  * @prev_cummulative_iowait: IO Wait time difference from last and
214  *                      current sample
215  * @sample:             Storage for storing last Sample data
216  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
217  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
218  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
219  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
220  * @epp_powersave:      Last saved HWP energy performance preference
221  *                      (EPP) or energy performance bias (EPB),
222  *                      when policy switched to performance
223  * @epp_policy:         Last saved policy used to set EPP/EPB
224  * @epp_default:        Power on default HWP energy performance
225  *                      preference/bias
226  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
227  *                      operation
228  * @hwp_req_cached:     Cached value of the last HWP Request MSR
229  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
230  * @last_io_update:     Last time when IO wake flag was set
231  * @sched_flags:        Store scheduler flags for possible cross CPU update
232  * @hwp_boost_min:      Last HWP boosted min performance
233  *
234  * This structure stores per CPU instance data for all CPUs.
235  */
236 struct cpudata {
237         int cpu;
238
239         unsigned int policy;
240         struct update_util_data update_util;
241         bool   update_util_set;
242
243         struct pstate_data pstate;
244         struct vid_data vid;
245
246         u64     last_update;
247         u64     last_sample_time;
248         u64     aperf_mperf_shift;
249         u64     prev_aperf;
250         u64     prev_mperf;
251         u64     prev_tsc;
252         u64     prev_cummulative_iowait;
253         struct sample sample;
254         int32_t min_perf_ratio;
255         int32_t max_perf_ratio;
256 #ifdef CONFIG_ACPI
257         struct acpi_processor_performance acpi_perf_data;
258         bool valid_pss_table;
259 #endif
260         unsigned int iowait_boost;
261         s16 epp_powersave;
262         s16 epp_policy;
263         s16 epp_default;
264         s16 epp_saved;
265         u64 hwp_req_cached;
266         u64 hwp_cap_cached;
267         u64 last_io_update;
268         unsigned int sched_flags;
269         u32 hwp_boost_min;
270 };
271
272 static struct cpudata **all_cpu_data;
273
274 /**
275  * struct pstate_funcs - Per CPU model specific callbacks
276  * @get_max:            Callback to get maximum non turbo effective P state
277  * @get_max_physical:   Callback to get maximum non turbo physical P state
278  * @get_min:            Callback to get minimum P state
279  * @get_turbo:          Callback to get turbo P state
280  * @get_scaling:        Callback to get frequency scaling factor
281  * @get_val:            Callback to convert P state to actual MSR write value
282  * @get_vid:            Callback to get VID data for Atom platforms
283  *
284  * Core and Atom CPU models have different way to get P State limits. This
285  * structure is used to store those callbacks.
286  */
287 struct pstate_funcs {
288         int (*get_max)(void);
289         int (*get_max_physical)(void);
290         int (*get_min)(void);
291         int (*get_turbo)(void);
292         int (*get_scaling)(void);
293         int (*get_aperf_mperf_shift)(void);
294         u64 (*get_val)(struct cpudata*, int pstate);
295         void (*get_vid)(struct cpudata *);
296 };
297
298 static struct pstate_funcs pstate_funcs __read_mostly;
299
300 static int hwp_active __read_mostly;
301 static int hwp_mode_bdw __read_mostly;
302 static bool per_cpu_limits __read_mostly;
303 static bool hwp_boost __read_mostly;
304
305 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
306
307 #ifdef CONFIG_ACPI
308 static bool acpi_ppc;
309 #endif
310
311 static struct global_params global;
312
313 static DEFINE_MUTEX(intel_pstate_driver_lock);
314 static DEFINE_MUTEX(intel_pstate_limits_lock);
315
316 #ifdef CONFIG_ACPI
317
318 static bool intel_pstate_acpi_pm_profile_server(void)
319 {
320         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
321             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
322                 return true;
323
324         return false;
325 }
326
327 static bool intel_pstate_get_ppc_enable_status(void)
328 {
329         if (intel_pstate_acpi_pm_profile_server())
330                 return true;
331
332         return acpi_ppc;
333 }
334
335 #ifdef CONFIG_ACPI_CPPC_LIB
336
337 /* The work item is needed to avoid CPU hotplug locking issues */
338 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
339 {
340         sched_set_itmt_support();
341 }
342
343 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
344
345 static void intel_pstate_set_itmt_prio(int cpu)
346 {
347         struct cppc_perf_caps cppc_perf;
348         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
349         int ret;
350
351         ret = cppc_get_perf_caps(cpu, &cppc_perf);
352         if (ret)
353                 return;
354
355         /*
356          * The priorities can be set regardless of whether or not
357          * sched_set_itmt_support(true) has been called and it is valid to
358          * update them at any time after it has been called.
359          */
360         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
361
362         if (max_highest_perf <= min_highest_perf) {
363                 if (cppc_perf.highest_perf > max_highest_perf)
364                         max_highest_perf = cppc_perf.highest_perf;
365
366                 if (cppc_perf.highest_perf < min_highest_perf)
367                         min_highest_perf = cppc_perf.highest_perf;
368
369                 if (max_highest_perf > min_highest_perf) {
370                         /*
371                          * This code can be run during CPU online under the
372                          * CPU hotplug locks, so sched_set_itmt_support()
373                          * cannot be called from here.  Queue up a work item
374                          * to invoke it.
375                          */
376                         schedule_work(&sched_itmt_work);
377                 }
378         }
379 }
380
381 static int intel_pstate_get_cppc_guranteed(int cpu)
382 {
383         struct cppc_perf_caps cppc_perf;
384         int ret;
385
386         ret = cppc_get_perf_caps(cpu, &cppc_perf);
387         if (ret)
388                 return ret;
389
390         if (cppc_perf.guaranteed_perf)
391                 return cppc_perf.guaranteed_perf;
392
393         return cppc_perf.nominal_perf;
394 }
395
396 #else /* CONFIG_ACPI_CPPC_LIB */
397 static void intel_pstate_set_itmt_prio(int cpu)
398 {
399 }
400 #endif /* CONFIG_ACPI_CPPC_LIB */
401
402 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
403 {
404         struct cpudata *cpu;
405         int ret;
406         int i;
407
408         if (hwp_active) {
409                 intel_pstate_set_itmt_prio(policy->cpu);
410                 return;
411         }
412
413         if (!intel_pstate_get_ppc_enable_status())
414                 return;
415
416         cpu = all_cpu_data[policy->cpu];
417
418         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
419                                                   policy->cpu);
420         if (ret)
421                 return;
422
423         /*
424          * Check if the control value in _PSS is for PERF_CTL MSR, which should
425          * guarantee that the states returned by it map to the states in our
426          * list directly.
427          */
428         if (cpu->acpi_perf_data.control_register.space_id !=
429                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
430                 goto err;
431
432         /*
433          * If there is only one entry _PSS, simply ignore _PSS and continue as
434          * usual without taking _PSS into account
435          */
436         if (cpu->acpi_perf_data.state_count < 2)
437                 goto err;
438
439         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
440         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
441                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
442                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
443                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
444                          (u32) cpu->acpi_perf_data.states[i].power,
445                          (u32) cpu->acpi_perf_data.states[i].control);
446         }
447
448         /*
449          * The _PSS table doesn't contain whole turbo frequency range.
450          * This just contains +1 MHZ above the max non turbo frequency,
451          * with control value corresponding to max turbo ratio. But
452          * when cpufreq set policy is called, it will call with this
453          * max frequency, which will cause a reduced performance as
454          * this driver uses real max turbo frequency as the max
455          * frequency. So correct this frequency in _PSS table to
456          * correct max turbo frequency based on the turbo state.
457          * Also need to convert to MHz as _PSS freq is in MHz.
458          */
459         if (!global.turbo_disabled)
460                 cpu->acpi_perf_data.states[0].core_frequency =
461                                         policy->cpuinfo.max_freq / 1000;
462         cpu->valid_pss_table = true;
463         pr_debug("_PPC limits will be enforced\n");
464
465         return;
466
467  err:
468         cpu->valid_pss_table = false;
469         acpi_processor_unregister_performance(policy->cpu);
470 }
471
472 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
473 {
474         struct cpudata *cpu;
475
476         cpu = all_cpu_data[policy->cpu];
477         if (!cpu->valid_pss_table)
478                 return;
479
480         acpi_processor_unregister_performance(policy->cpu);
481 }
482 #else /* CONFIG_ACPI */
483 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
484 {
485 }
486
487 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
488 {
489 }
490
491 static inline bool intel_pstate_acpi_pm_profile_server(void)
492 {
493         return false;
494 }
495 #endif /* CONFIG_ACPI */
496
497 #ifndef CONFIG_ACPI_CPPC_LIB
498 static int intel_pstate_get_cppc_guranteed(int cpu)
499 {
500         return -ENOTSUPP;
501 }
502 #endif /* CONFIG_ACPI_CPPC_LIB */
503
504 static inline void update_turbo_state(void)
505 {
506         u64 misc_en;
507         struct cpudata *cpu;
508
509         cpu = all_cpu_data[0];
510         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
511         global.turbo_disabled =
512                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
513                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
514 }
515
516 static int min_perf_pct_min(void)
517 {
518         struct cpudata *cpu = all_cpu_data[0];
519         int turbo_pstate = cpu->pstate.turbo_pstate;
520
521         return turbo_pstate ?
522                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
523 }
524
525 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
526 {
527         u64 epb;
528         int ret;
529
530         if (!boot_cpu_has(X86_FEATURE_EPB))
531                 return -ENXIO;
532
533         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
534         if (ret)
535                 return (s16)ret;
536
537         return (s16)(epb & 0x0f);
538 }
539
540 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
541 {
542         s16 epp;
543
544         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
545                 /*
546                  * When hwp_req_data is 0, means that caller didn't read
547                  * MSR_HWP_REQUEST, so need to read and get EPP.
548                  */
549                 if (!hwp_req_data) {
550                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
551                                             &hwp_req_data);
552                         if (epp)
553                                 return epp;
554                 }
555                 epp = (hwp_req_data >> 24) & 0xff;
556         } else {
557                 /* When there is no EPP present, HWP uses EPB settings */
558                 epp = intel_pstate_get_epb(cpu_data);
559         }
560
561         return epp;
562 }
563
564 static int intel_pstate_set_epb(int cpu, s16 pref)
565 {
566         u64 epb;
567         int ret;
568
569         if (!boot_cpu_has(X86_FEATURE_EPB))
570                 return -ENXIO;
571
572         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
573         if (ret)
574                 return ret;
575
576         epb = (epb & ~0x0f) | pref;
577         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
578
579         return 0;
580 }
581
582 /*
583  * EPP/EPB display strings corresponding to EPP index in the
584  * energy_perf_strings[]
585  *      index           String
586  *-------------------------------------
587  *      0               default
588  *      1               performance
589  *      2               balance_performance
590  *      3               balance_power
591  *      4               power
592  */
593 static const char * const energy_perf_strings[] = {
594         "default",
595         "performance",
596         "balance_performance",
597         "balance_power",
598         "power",
599         NULL
600 };
601 static const unsigned int epp_values[] = {
602         HWP_EPP_PERFORMANCE,
603         HWP_EPP_BALANCE_PERFORMANCE,
604         HWP_EPP_BALANCE_POWERSAVE,
605         HWP_EPP_POWERSAVE
606 };
607
608 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
609 {
610         s16 epp;
611         int index = -EINVAL;
612
613         epp = intel_pstate_get_epp(cpu_data, 0);
614         if (epp < 0)
615                 return epp;
616
617         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
618                 if (epp == HWP_EPP_PERFORMANCE)
619                         return 1;
620                 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
621                         return 2;
622                 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
623                         return 3;
624                 else
625                         return 4;
626         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
627                 /*
628                  * Range:
629                  *      0x00-0x03       :       Performance
630                  *      0x04-0x07       :       Balance performance
631                  *      0x08-0x0B       :       Balance power
632                  *      0x0C-0x0F       :       Power
633                  * The EPB is a 4 bit value, but our ranges restrict the
634                  * value which can be set. Here only using top two bits
635                  * effectively.
636                  */
637                 index = (epp >> 2) + 1;
638         }
639
640         return index;
641 }
642
643 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
644                                               int pref_index)
645 {
646         int epp = -EINVAL;
647         int ret;
648
649         if (!pref_index)
650                 epp = cpu_data->epp_default;
651
652         mutex_lock(&intel_pstate_limits_lock);
653
654         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
655                 u64 value;
656
657                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
658                 if (ret)
659                         goto return_pref;
660
661                 value &= ~GENMASK_ULL(31, 24);
662
663                 if (epp == -EINVAL)
664                         epp = epp_values[pref_index - 1];
665
666                 value |= (u64)epp << 24;
667                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
668         } else {
669                 if (epp == -EINVAL)
670                         epp = (pref_index - 1) << 2;
671                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
672         }
673 return_pref:
674         mutex_unlock(&intel_pstate_limits_lock);
675
676         return ret;
677 }
678
679 static ssize_t show_energy_performance_available_preferences(
680                                 struct cpufreq_policy *policy, char *buf)
681 {
682         int i = 0;
683         int ret = 0;
684
685         while (energy_perf_strings[i] != NULL)
686                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
687
688         ret += sprintf(&buf[ret], "\n");
689
690         return ret;
691 }
692
693 cpufreq_freq_attr_ro(energy_performance_available_preferences);
694
695 static ssize_t store_energy_performance_preference(
696                 struct cpufreq_policy *policy, const char *buf, size_t count)
697 {
698         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
699         char str_preference[21];
700         int ret;
701
702         ret = sscanf(buf, "%20s", str_preference);
703         if (ret != 1)
704                 return -EINVAL;
705
706         ret = match_string(energy_perf_strings, -1, str_preference);
707         if (ret < 0)
708                 return ret;
709
710         intel_pstate_set_energy_pref_index(cpu_data, ret);
711         return count;
712 }
713
714 static ssize_t show_energy_performance_preference(
715                                 struct cpufreq_policy *policy, char *buf)
716 {
717         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
718         int preference;
719
720         preference = intel_pstate_get_energy_pref_index(cpu_data);
721         if (preference < 0)
722                 return preference;
723
724         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
725 }
726
727 cpufreq_freq_attr_rw(energy_performance_preference);
728
729 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
730 {
731         struct cpudata *cpu;
732         u64 cap;
733         int ratio;
734
735         ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
736         if (ratio <= 0) {
737                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
738                 ratio = HWP_GUARANTEED_PERF(cap);
739         }
740
741         cpu = all_cpu_data[policy->cpu];
742
743         return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
744 }
745
746 cpufreq_freq_attr_ro(base_frequency);
747
748 static struct freq_attr *hwp_cpufreq_attrs[] = {
749         &energy_performance_preference,
750         &energy_performance_available_preferences,
751         &base_frequency,
752         NULL,
753 };
754
755 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
756                                      int *current_max)
757 {
758         u64 cap;
759
760         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
761         WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
762         if (global.no_turbo)
763                 *current_max = HWP_GUARANTEED_PERF(cap);
764         else
765                 *current_max = HWP_HIGHEST_PERF(cap);
766
767         *phy_max = HWP_HIGHEST_PERF(cap);
768 }
769
770 static void intel_pstate_hwp_set(unsigned int cpu)
771 {
772         struct cpudata *cpu_data = all_cpu_data[cpu];
773         int max, min;
774         u64 value;
775         s16 epp;
776
777         max = cpu_data->max_perf_ratio;
778         min = cpu_data->min_perf_ratio;
779
780         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
781                 min = max;
782
783         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
784
785         value &= ~HWP_MIN_PERF(~0L);
786         value |= HWP_MIN_PERF(min);
787
788         value &= ~HWP_MAX_PERF(~0L);
789         value |= HWP_MAX_PERF(max);
790
791         if (cpu_data->epp_policy == cpu_data->policy)
792                 goto skip_epp;
793
794         cpu_data->epp_policy = cpu_data->policy;
795
796         if (cpu_data->epp_saved >= 0) {
797                 epp = cpu_data->epp_saved;
798                 cpu_data->epp_saved = -EINVAL;
799                 goto update_epp;
800         }
801
802         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
803                 epp = intel_pstate_get_epp(cpu_data, value);
804                 cpu_data->epp_powersave = epp;
805                 /* If EPP read was failed, then don't try to write */
806                 if (epp < 0)
807                         goto skip_epp;
808
809                 epp = 0;
810         } else {
811                 /* skip setting EPP, when saved value is invalid */
812                 if (cpu_data->epp_powersave < 0)
813                         goto skip_epp;
814
815                 /*
816                  * No need to restore EPP when it is not zero. This
817                  * means:
818                  *  - Policy is not changed
819                  *  - user has manually changed
820                  *  - Error reading EPB
821                  */
822                 epp = intel_pstate_get_epp(cpu_data, value);
823                 if (epp)
824                         goto skip_epp;
825
826                 epp = cpu_data->epp_powersave;
827         }
828 update_epp:
829         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
830                 value &= ~GENMASK_ULL(31, 24);
831                 value |= (u64)epp << 24;
832         } else {
833                 intel_pstate_set_epb(cpu, epp);
834         }
835 skip_epp:
836         WRITE_ONCE(cpu_data->hwp_req_cached, value);
837         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
838 }
839
840 static void intel_pstate_hwp_force_min_perf(int cpu)
841 {
842         u64 value;
843         int min_perf;
844
845         value = all_cpu_data[cpu]->hwp_req_cached;
846         value &= ~GENMASK_ULL(31, 0);
847         min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
848
849         /* Set hwp_max = hwp_min */
850         value |= HWP_MAX_PERF(min_perf);
851         value |= HWP_MIN_PERF(min_perf);
852
853         /* Set EPP/EPB to min */
854         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
855                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
856         else
857                 intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);
858
859         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
860 }
861
862 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
863 {
864         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
865
866         if (!hwp_active)
867                 return 0;
868
869         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
870
871         return 0;
872 }
873
874 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
875
876 static int intel_pstate_resume(struct cpufreq_policy *policy)
877 {
878         if (!hwp_active)
879                 return 0;
880
881         mutex_lock(&intel_pstate_limits_lock);
882
883         if (policy->cpu == 0)
884                 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
885
886         all_cpu_data[policy->cpu]->epp_policy = 0;
887         intel_pstate_hwp_set(policy->cpu);
888
889         mutex_unlock(&intel_pstate_limits_lock);
890
891         return 0;
892 }
893
894 static void intel_pstate_update_policies(void)
895 {
896         int cpu;
897
898         for_each_possible_cpu(cpu)
899                 cpufreq_update_policy(cpu);
900 }
901
902 static void intel_pstate_update_max_freq(unsigned int cpu)
903 {
904         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
905         struct cpufreq_policy new_policy;
906         struct cpudata *cpudata;
907
908         if (!policy)
909                 return;
910
911         cpudata = all_cpu_data[cpu];
912         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
913                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
914
915         memcpy(&new_policy, policy, sizeof(*policy));
916         new_policy.max = min(policy->user_policy.max, policy->cpuinfo.max_freq);
917         new_policy.min = min(policy->user_policy.min, new_policy.max);
918
919         cpufreq_set_policy(policy, &new_policy);
920
921         cpufreq_cpu_release(policy);
922 }
923
924 static void intel_pstate_update_limits(unsigned int cpu)
925 {
926         mutex_lock(&intel_pstate_driver_lock);
927
928         update_turbo_state();
929         /*
930          * If turbo has been turned on or off globally, policy limits for
931          * all CPUs need to be updated to reflect that.
932          */
933         if (global.turbo_disabled_mf != global.turbo_disabled) {
934                 global.turbo_disabled_mf = global.turbo_disabled;
935                 for_each_possible_cpu(cpu)
936                         intel_pstate_update_max_freq(cpu);
937         } else {
938                 cpufreq_update_policy(cpu);
939         }
940
941         mutex_unlock(&intel_pstate_driver_lock);
942 }
943
944 /************************** sysfs begin ************************/
945 #define show_one(file_name, object)                                     \
946         static ssize_t show_##file_name                                 \
947         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
948         {                                                               \
949                 return sprintf(buf, "%u\n", global.object);             \
950         }
951
952 static ssize_t intel_pstate_show_status(char *buf);
953 static int intel_pstate_update_status(const char *buf, size_t size);
954
955 static ssize_t show_status(struct kobject *kobj,
956                            struct kobj_attribute *attr, char *buf)
957 {
958         ssize_t ret;
959
960         mutex_lock(&intel_pstate_driver_lock);
961         ret = intel_pstate_show_status(buf);
962         mutex_unlock(&intel_pstate_driver_lock);
963
964         return ret;
965 }
966
967 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
968                             const char *buf, size_t count)
969 {
970         char *p = memchr(buf, '\n', count);
971         int ret;
972
973         mutex_lock(&intel_pstate_driver_lock);
974         ret = intel_pstate_update_status(buf, p ? p - buf : count);
975         mutex_unlock(&intel_pstate_driver_lock);
976
977         return ret < 0 ? ret : count;
978 }
979
980 static ssize_t show_turbo_pct(struct kobject *kobj,
981                                 struct kobj_attribute *attr, char *buf)
982 {
983         struct cpudata *cpu;
984         int total, no_turbo, turbo_pct;
985         uint32_t turbo_fp;
986
987         mutex_lock(&intel_pstate_driver_lock);
988
989         if (!intel_pstate_driver) {
990                 mutex_unlock(&intel_pstate_driver_lock);
991                 return -EAGAIN;
992         }
993
994         cpu = all_cpu_data[0];
995
996         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
997         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
998         turbo_fp = div_fp(no_turbo, total);
999         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1000
1001         mutex_unlock(&intel_pstate_driver_lock);
1002
1003         return sprintf(buf, "%u\n", turbo_pct);
1004 }
1005
1006 static ssize_t show_num_pstates(struct kobject *kobj,
1007                                 struct kobj_attribute *attr, char *buf)
1008 {
1009         struct cpudata *cpu;
1010         int total;
1011
1012         mutex_lock(&intel_pstate_driver_lock);
1013
1014         if (!intel_pstate_driver) {
1015                 mutex_unlock(&intel_pstate_driver_lock);
1016                 return -EAGAIN;
1017         }
1018
1019         cpu = all_cpu_data[0];
1020         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1021
1022         mutex_unlock(&intel_pstate_driver_lock);
1023
1024         return sprintf(buf, "%u\n", total);
1025 }
1026
1027 static ssize_t show_no_turbo(struct kobject *kobj,
1028                              struct kobj_attribute *attr, char *buf)
1029 {
1030         ssize_t ret;
1031
1032         mutex_lock(&intel_pstate_driver_lock);
1033
1034         if (!intel_pstate_driver) {
1035                 mutex_unlock(&intel_pstate_driver_lock);
1036                 return -EAGAIN;
1037         }
1038
1039         update_turbo_state();
1040         if (global.turbo_disabled)
1041                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1042         else
1043                 ret = sprintf(buf, "%u\n", global.no_turbo);
1044
1045         mutex_unlock(&intel_pstate_driver_lock);
1046
1047         return ret;
1048 }
1049
1050 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1051                               const char *buf, size_t count)
1052 {
1053         unsigned int input;
1054         int ret;
1055
1056         ret = sscanf(buf, "%u", &input);
1057         if (ret != 1)
1058                 return -EINVAL;
1059
1060         mutex_lock(&intel_pstate_driver_lock);
1061
1062         if (!intel_pstate_driver) {
1063                 mutex_unlock(&intel_pstate_driver_lock);
1064                 return -EAGAIN;
1065         }
1066
1067         mutex_lock(&intel_pstate_limits_lock);
1068
1069         update_turbo_state();
1070         if (global.turbo_disabled) {
1071                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1072                 mutex_unlock(&intel_pstate_limits_lock);
1073                 mutex_unlock(&intel_pstate_driver_lock);
1074                 return -EPERM;
1075         }
1076
1077         global.no_turbo = clamp_t(int, input, 0, 1);
1078
1079         if (global.no_turbo) {
1080                 struct cpudata *cpu = all_cpu_data[0];
1081                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1082
1083                 /* Squash the global minimum into the permitted range. */
1084                 if (global.min_perf_pct > pct)
1085                         global.min_perf_pct = pct;
1086         }
1087
1088         mutex_unlock(&intel_pstate_limits_lock);
1089
1090         intel_pstate_update_policies();
1091
1092         mutex_unlock(&intel_pstate_driver_lock);
1093
1094         return count;
1095 }
1096
1097 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1098                                   const char *buf, size_t count)
1099 {
1100         unsigned int input;
1101         int ret;
1102
1103         ret = sscanf(buf, "%u", &input);
1104         if (ret != 1)
1105                 return -EINVAL;
1106
1107         mutex_lock(&intel_pstate_driver_lock);
1108
1109         if (!intel_pstate_driver) {
1110                 mutex_unlock(&intel_pstate_driver_lock);
1111                 return -EAGAIN;
1112         }
1113
1114         mutex_lock(&intel_pstate_limits_lock);
1115
1116         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1117
1118         mutex_unlock(&intel_pstate_limits_lock);
1119
1120         intel_pstate_update_policies();
1121
1122         mutex_unlock(&intel_pstate_driver_lock);
1123
1124         return count;
1125 }
1126
1127 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1128                                   const char *buf, size_t count)
1129 {
1130         unsigned int input;
1131         int ret;
1132
1133         ret = sscanf(buf, "%u", &input);
1134         if (ret != 1)
1135                 return -EINVAL;
1136
1137         mutex_lock(&intel_pstate_driver_lock);
1138
1139         if (!intel_pstate_driver) {
1140                 mutex_unlock(&intel_pstate_driver_lock);
1141                 return -EAGAIN;
1142         }
1143
1144         mutex_lock(&intel_pstate_limits_lock);
1145
1146         global.min_perf_pct = clamp_t(int, input,
1147                                       min_perf_pct_min(), global.max_perf_pct);
1148
1149         mutex_unlock(&intel_pstate_limits_lock);
1150
1151         intel_pstate_update_policies();
1152
1153         mutex_unlock(&intel_pstate_driver_lock);
1154
1155         return count;
1156 }
1157
1158 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1159                                 struct kobj_attribute *attr, char *buf)
1160 {
1161         return sprintf(buf, "%u\n", hwp_boost);
1162 }
1163
1164 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1165                                        struct kobj_attribute *b,
1166                                        const char *buf, size_t count)
1167 {
1168         unsigned int input;
1169         int ret;
1170
1171         ret = kstrtouint(buf, 10, &input);
1172         if (ret)
1173                 return ret;
1174
1175         mutex_lock(&intel_pstate_driver_lock);
1176         hwp_boost = !!input;
1177         intel_pstate_update_policies();
1178         mutex_unlock(&intel_pstate_driver_lock);
1179
1180         return count;
1181 }
1182
1183 show_one(max_perf_pct, max_perf_pct);
1184 show_one(min_perf_pct, min_perf_pct);
1185
1186 define_one_global_rw(status);
1187 define_one_global_rw(no_turbo);
1188 define_one_global_rw(max_perf_pct);
1189 define_one_global_rw(min_perf_pct);
1190 define_one_global_ro(turbo_pct);
1191 define_one_global_ro(num_pstates);
1192 define_one_global_rw(hwp_dynamic_boost);
1193
1194 static struct attribute *intel_pstate_attributes[] = {
1195         &status.attr,
1196         &no_turbo.attr,
1197         &turbo_pct.attr,
1198         &num_pstates.attr,
1199         NULL
1200 };
1201
1202 static const struct attribute_group intel_pstate_attr_group = {
1203         .attrs = intel_pstate_attributes,
1204 };
1205
1206 static void __init intel_pstate_sysfs_expose_params(void)
1207 {
1208         struct kobject *intel_pstate_kobject;
1209         int rc;
1210
1211         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1212                                                 &cpu_subsys.dev_root->kobj);
1213         if (WARN_ON(!intel_pstate_kobject))
1214                 return;
1215
1216         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1217         if (WARN_ON(rc))
1218                 return;
1219
1220         /*
1221          * If per cpu limits are enforced there are no global limits, so
1222          * return without creating max/min_perf_pct attributes
1223          */
1224         if (per_cpu_limits)
1225                 return;
1226
1227         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1228         WARN_ON(rc);
1229
1230         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1231         WARN_ON(rc);
1232
1233         if (hwp_active) {
1234                 rc = sysfs_create_file(intel_pstate_kobject,
1235                                        &hwp_dynamic_boost.attr);
1236                 WARN_ON(rc);
1237         }
1238 }
1239 /************************** sysfs end ************************/
1240
1241 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1242 {
1243         /* First disable HWP notification interrupt as we don't process them */
1244         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1245                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1246
1247         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1248         cpudata->epp_policy = 0;
1249         if (cpudata->epp_default == -EINVAL)
1250                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1251 }
1252
1253 #define MSR_IA32_POWER_CTL_BIT_EE       19
1254
1255 /* Disable energy efficiency optimization */
1256 static void intel_pstate_disable_ee(int cpu)
1257 {
1258         u64 power_ctl;
1259         int ret;
1260
1261         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1262         if (ret)
1263                 return;
1264
1265         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1266                 pr_info("Disabling energy efficiency optimization\n");
1267                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1268                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1269         }
1270 }
1271
1272 static int atom_get_min_pstate(void)
1273 {
1274         u64 value;
1275
1276         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1277         return (value >> 8) & 0x7F;
1278 }
1279
1280 static int atom_get_max_pstate(void)
1281 {
1282         u64 value;
1283
1284         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1285         return (value >> 16) & 0x7F;
1286 }
1287
1288 static int atom_get_turbo_pstate(void)
1289 {
1290         u64 value;
1291
1292         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1293         return value & 0x7F;
1294 }
1295
1296 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1297 {
1298         u64 val;
1299         int32_t vid_fp;
1300         u32 vid;
1301
1302         val = (u64)pstate << 8;
1303         if (global.no_turbo && !global.turbo_disabled)
1304                 val |= (u64)1 << 32;
1305
1306         vid_fp = cpudata->vid.min + mul_fp(
1307                 int_tofp(pstate - cpudata->pstate.min_pstate),
1308                 cpudata->vid.ratio);
1309
1310         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1311         vid = ceiling_fp(vid_fp);
1312
1313         if (pstate > cpudata->pstate.max_pstate)
1314                 vid = cpudata->vid.turbo;
1315
1316         return val | vid;
1317 }
1318
1319 static int silvermont_get_scaling(void)
1320 {
1321         u64 value;
1322         int i;
1323         /* Defined in Table 35-6 from SDM (Sept 2015) */
1324         static int silvermont_freq_table[] = {
1325                 83300, 100000, 133300, 116700, 80000};
1326
1327         rdmsrl(MSR_FSB_FREQ, value);
1328         i = value & 0x7;
1329         WARN_ON(i > 4);
1330
1331         return silvermont_freq_table[i];
1332 }
1333
1334 static int airmont_get_scaling(void)
1335 {
1336         u64 value;
1337         int i;
1338         /* Defined in Table 35-10 from SDM (Sept 2015) */
1339         static int airmont_freq_table[] = {
1340                 83300, 100000, 133300, 116700, 80000,
1341                 93300, 90000, 88900, 87500};
1342
1343         rdmsrl(MSR_FSB_FREQ, value);
1344         i = value & 0xF;
1345         WARN_ON(i > 8);
1346
1347         return airmont_freq_table[i];
1348 }
1349
1350 static void atom_get_vid(struct cpudata *cpudata)
1351 {
1352         u64 value;
1353
1354         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1355         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1356         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1357         cpudata->vid.ratio = div_fp(
1358                 cpudata->vid.max - cpudata->vid.min,
1359                 int_tofp(cpudata->pstate.max_pstate -
1360                         cpudata->pstate.min_pstate));
1361
1362         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1363         cpudata->vid.turbo = value & 0x7f;
1364 }
1365
1366 static int core_get_min_pstate(void)
1367 {
1368         u64 value;
1369
1370         rdmsrl(MSR_PLATFORM_INFO, value);
1371         return (value >> 40) & 0xFF;
1372 }
1373
1374 static int core_get_max_pstate_physical(void)
1375 {
1376         u64 value;
1377
1378         rdmsrl(MSR_PLATFORM_INFO, value);
1379         return (value >> 8) & 0xFF;
1380 }
1381
1382 static int core_get_tdp_ratio(u64 plat_info)
1383 {
1384         /* Check how many TDP levels present */
1385         if (plat_info & 0x600000000) {
1386                 u64 tdp_ctrl;
1387                 u64 tdp_ratio;
1388                 int tdp_msr;
1389                 int err;
1390
1391                 /* Get the TDP level (0, 1, 2) to get ratios */
1392                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1393                 if (err)
1394                         return err;
1395
1396                 /* TDP MSR are continuous starting at 0x648 */
1397                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1398                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1399                 if (err)
1400                         return err;
1401
1402                 /* For level 1 and 2, bits[23:16] contain the ratio */
1403                 if (tdp_ctrl & 0x03)
1404                         tdp_ratio >>= 16;
1405
1406                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1407                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1408
1409                 return (int)tdp_ratio;
1410         }
1411
1412         return -ENXIO;
1413 }
1414
1415 static int core_get_max_pstate(void)
1416 {
1417         u64 tar;
1418         u64 plat_info;
1419         int max_pstate;
1420         int tdp_ratio;
1421         int err;
1422
1423         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1424         max_pstate = (plat_info >> 8) & 0xFF;
1425
1426         tdp_ratio = core_get_tdp_ratio(plat_info);
1427         if (tdp_ratio <= 0)
1428                 return max_pstate;
1429
1430         if (hwp_active) {
1431                 /* Turbo activation ratio is not used on HWP platforms */
1432                 return tdp_ratio;
1433         }
1434
1435         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1436         if (!err) {
1437                 int tar_levels;
1438
1439                 /* Do some sanity checking for safety */
1440                 tar_levels = tar & 0xff;
1441                 if (tdp_ratio - 1 == tar_levels) {
1442                         max_pstate = tar_levels;
1443                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1444                 }
1445         }
1446
1447         return max_pstate;
1448 }
1449
1450 static int core_get_turbo_pstate(void)
1451 {
1452         u64 value;
1453         int nont, ret;
1454
1455         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1456         nont = core_get_max_pstate();
1457         ret = (value) & 255;
1458         if (ret <= nont)
1459                 ret = nont;
1460         return ret;
1461 }
1462
1463 static inline int core_get_scaling(void)
1464 {
1465         return 100000;
1466 }
1467
1468 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1469 {
1470         u64 val;
1471
1472         val = (u64)pstate << 8;
1473         if (global.no_turbo && !global.turbo_disabled)
1474                 val |= (u64)1 << 32;
1475
1476         return val;
1477 }
1478
1479 static int knl_get_aperf_mperf_shift(void)
1480 {
1481         return 10;
1482 }
1483
1484 static int knl_get_turbo_pstate(void)
1485 {
1486         u64 value;
1487         int nont, ret;
1488
1489         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1490         nont = core_get_max_pstate();
1491         ret = (((value) >> 8) & 0xFF);
1492         if (ret <= nont)
1493                 ret = nont;
1494         return ret;
1495 }
1496
1497 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1498 {
1499         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1500         cpu->pstate.current_pstate = pstate;
1501         /*
1502          * Generally, there is no guarantee that this code will always run on
1503          * the CPU being updated, so force the register update to run on the
1504          * right CPU.
1505          */
1506         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1507                       pstate_funcs.get_val(cpu, pstate));
1508 }
1509
1510 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1511 {
1512         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1513 }
1514
1515 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1516 {
1517         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1518
1519         update_turbo_state();
1520         intel_pstate_set_pstate(cpu, pstate);
1521 }
1522
1523 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1524 {
1525         cpu->pstate.min_pstate = pstate_funcs.get_min();
1526         cpu->pstate.max_pstate = pstate_funcs.get_max();
1527         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1528         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1529         cpu->pstate.scaling = pstate_funcs.get_scaling();
1530         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1531
1532         if (hwp_active && !hwp_mode_bdw) {
1533                 unsigned int phy_max, current_max;
1534
1535                 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1536                 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1537         } else {
1538                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1539         }
1540
1541         if (pstate_funcs.get_aperf_mperf_shift)
1542                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1543
1544         if (pstate_funcs.get_vid)
1545                 pstate_funcs.get_vid(cpu);
1546
1547         intel_pstate_set_min_pstate(cpu);
1548 }
1549
1550 /*
1551  * Long hold time will keep high perf limits for long time,
1552  * which negatively impacts perf/watt for some workloads,
1553  * like specpower. 3ms is based on experiements on some
1554  * workoads.
1555  */
1556 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1557
1558 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1559 {
1560         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1561         u32 max_limit = (hwp_req & 0xff00) >> 8;
1562         u32 min_limit = (hwp_req & 0xff);
1563         u32 boost_level1;
1564
1565         /*
1566          * Cases to consider (User changes via sysfs or boot time):
1567          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1568          *      No boost, return.
1569          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1570          *     Should result in one level boost only for P0.
1571          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1572          *     Should result in two level boost:
1573          *         (min + p1)/2 and P1.
1574          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1575          *     Should result in three level boost:
1576          *        (min + p1)/2, P1 and P0.
1577          */
1578
1579         /* If max and min are equal or already at max, nothing to boost */
1580         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1581                 return;
1582
1583         if (!cpu->hwp_boost_min)
1584                 cpu->hwp_boost_min = min_limit;
1585
1586         /* level at half way mark between min and guranteed */
1587         boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1588
1589         if (cpu->hwp_boost_min < boost_level1)
1590                 cpu->hwp_boost_min = boost_level1;
1591         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1592                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1593         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1594                  max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1595                 cpu->hwp_boost_min = max_limit;
1596         else
1597                 return;
1598
1599         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1600         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1601         cpu->last_update = cpu->sample.time;
1602 }
1603
1604 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1605 {
1606         if (cpu->hwp_boost_min) {
1607                 bool expired;
1608
1609                 /* Check if we are idle for hold time to boost down */
1610                 expired = time_after64(cpu->sample.time, cpu->last_update +
1611                                        hwp_boost_hold_time_ns);
1612                 if (expired) {
1613                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1614                         cpu->hwp_boost_min = 0;
1615                 }
1616         }
1617         cpu->last_update = cpu->sample.time;
1618 }
1619
1620 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1621                                                       u64 time)
1622 {
1623         cpu->sample.time = time;
1624
1625         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1626                 bool do_io = false;
1627
1628                 cpu->sched_flags = 0;
1629                 /*
1630                  * Set iowait_boost flag and update time. Since IO WAIT flag
1631                  * is set all the time, we can't just conclude that there is
1632                  * some IO bound activity is scheduled on this CPU with just
1633                  * one occurrence. If we receive at least two in two
1634                  * consecutive ticks, then we treat as boost candidate.
1635                  */
1636                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1637                         do_io = true;
1638
1639                 cpu->last_io_update = time;
1640
1641                 if (do_io)
1642                         intel_pstate_hwp_boost_up(cpu);
1643
1644         } else {
1645                 intel_pstate_hwp_boost_down(cpu);
1646         }
1647 }
1648
1649 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1650                                                 u64 time, unsigned int flags)
1651 {
1652         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1653
1654         cpu->sched_flags |= flags;
1655
1656         if (smp_processor_id() == cpu->cpu)
1657                 intel_pstate_update_util_hwp_local(cpu, time);
1658 }
1659
1660 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1661 {
1662         struct sample *sample = &cpu->sample;
1663
1664         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1665 }
1666
1667 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1668 {
1669         u64 aperf, mperf;
1670         unsigned long flags;
1671         u64 tsc;
1672
1673         local_irq_save(flags);
1674         rdmsrl(MSR_IA32_APERF, aperf);
1675         rdmsrl(MSR_IA32_MPERF, mperf);
1676         tsc = rdtsc();
1677         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1678                 local_irq_restore(flags);
1679                 return false;
1680         }
1681         local_irq_restore(flags);
1682
1683         cpu->last_sample_time = cpu->sample.time;
1684         cpu->sample.time = time;
1685         cpu->sample.aperf = aperf;
1686         cpu->sample.mperf = mperf;
1687         cpu->sample.tsc =  tsc;
1688         cpu->sample.aperf -= cpu->prev_aperf;
1689         cpu->sample.mperf -= cpu->prev_mperf;
1690         cpu->sample.tsc -= cpu->prev_tsc;
1691
1692         cpu->prev_aperf = aperf;
1693         cpu->prev_mperf = mperf;
1694         cpu->prev_tsc = tsc;
1695         /*
1696          * First time this function is invoked in a given cycle, all of the
1697          * previous sample data fields are equal to zero or stale and they must
1698          * be populated with meaningful numbers for things to work, so assume
1699          * that sample.time will always be reset before setting the utilization
1700          * update hook and make the caller skip the sample then.
1701          */
1702         if (cpu->last_sample_time) {
1703                 intel_pstate_calc_avg_perf(cpu);
1704                 return true;
1705         }
1706         return false;
1707 }
1708
1709 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1710 {
1711         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1712 }
1713
1714 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1715 {
1716         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1717                           cpu->sample.core_avg_perf);
1718 }
1719
1720 static inline int32_t get_target_pstate(struct cpudata *cpu)
1721 {
1722         struct sample *sample = &cpu->sample;
1723         int32_t busy_frac;
1724         int target, avg_pstate;
1725
1726         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1727                            sample->tsc);
1728
1729         if (busy_frac < cpu->iowait_boost)
1730                 busy_frac = cpu->iowait_boost;
1731
1732         sample->busy_scaled = busy_frac * 100;
1733
1734         target = global.no_turbo || global.turbo_disabled ?
1735                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1736         target += target >> 2;
1737         target = mul_fp(target, busy_frac);
1738         if (target < cpu->pstate.min_pstate)
1739                 target = cpu->pstate.min_pstate;
1740
1741         /*
1742          * If the average P-state during the previous cycle was higher than the
1743          * current target, add 50% of the difference to the target to reduce
1744          * possible performance oscillations and offset possible performance
1745          * loss related to moving the workload from one CPU to another within
1746          * a package/module.
1747          */
1748         avg_pstate = get_avg_pstate(cpu);
1749         if (avg_pstate > target)
1750                 target += (avg_pstate - target) >> 1;
1751
1752         return target;
1753 }
1754
1755 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1756 {
1757         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1758         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1759
1760         return clamp_t(int, pstate, min_pstate, max_pstate);
1761 }
1762
1763 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1764 {
1765         if (pstate == cpu->pstate.current_pstate)
1766                 return;
1767
1768         cpu->pstate.current_pstate = pstate;
1769         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1770 }
1771
1772 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1773 {
1774         int from = cpu->pstate.current_pstate;
1775         struct sample *sample;
1776         int target_pstate;
1777
1778         update_turbo_state();
1779
1780         target_pstate = get_target_pstate(cpu);
1781         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1782         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1783         intel_pstate_update_pstate(cpu, target_pstate);
1784
1785         sample = &cpu->sample;
1786         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1787                 fp_toint(sample->busy_scaled),
1788                 from,
1789                 cpu->pstate.current_pstate,
1790                 sample->mperf,
1791                 sample->aperf,
1792                 sample->tsc,
1793                 get_avg_frequency(cpu),
1794                 fp_toint(cpu->iowait_boost * 100));
1795 }
1796
1797 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1798                                      unsigned int flags)
1799 {
1800         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1801         u64 delta_ns;
1802
1803         /* Don't allow remote callbacks */
1804         if (smp_processor_id() != cpu->cpu)
1805                 return;
1806
1807         delta_ns = time - cpu->last_update;
1808         if (flags & SCHED_CPUFREQ_IOWAIT) {
1809                 /* Start over if the CPU may have been idle. */
1810                 if (delta_ns > TICK_NSEC) {
1811                         cpu->iowait_boost = ONE_EIGHTH_FP;
1812                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1813                         cpu->iowait_boost <<= 1;
1814                         if (cpu->iowait_boost > int_tofp(1))
1815                                 cpu->iowait_boost = int_tofp(1);
1816                 } else {
1817                         cpu->iowait_boost = ONE_EIGHTH_FP;
1818                 }
1819         } else if (cpu->iowait_boost) {
1820                 /* Clear iowait_boost if the CPU may have been idle. */
1821                 if (delta_ns > TICK_NSEC)
1822                         cpu->iowait_boost = 0;
1823                 else
1824                         cpu->iowait_boost >>= 1;
1825         }
1826         cpu->last_update = time;
1827         delta_ns = time - cpu->sample.time;
1828         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1829                 return;
1830
1831         if (intel_pstate_sample(cpu, time))
1832                 intel_pstate_adjust_pstate(cpu);
1833 }
1834
1835 static struct pstate_funcs core_funcs = {
1836         .get_max = core_get_max_pstate,
1837         .get_max_physical = core_get_max_pstate_physical,
1838         .get_min = core_get_min_pstate,
1839         .get_turbo = core_get_turbo_pstate,
1840         .get_scaling = core_get_scaling,
1841         .get_val = core_get_val,
1842 };
1843
1844 static const struct pstate_funcs silvermont_funcs = {
1845         .get_max = atom_get_max_pstate,
1846         .get_max_physical = atom_get_max_pstate,
1847         .get_min = atom_get_min_pstate,
1848         .get_turbo = atom_get_turbo_pstate,
1849         .get_val = atom_get_val,
1850         .get_scaling = silvermont_get_scaling,
1851         .get_vid = atom_get_vid,
1852 };
1853
1854 static const struct pstate_funcs airmont_funcs = {
1855         .get_max = atom_get_max_pstate,
1856         .get_max_physical = atom_get_max_pstate,
1857         .get_min = atom_get_min_pstate,
1858         .get_turbo = atom_get_turbo_pstate,
1859         .get_val = atom_get_val,
1860         .get_scaling = airmont_get_scaling,
1861         .get_vid = atom_get_vid,
1862 };
1863
1864 static const struct pstate_funcs knl_funcs = {
1865         .get_max = core_get_max_pstate,
1866         .get_max_physical = core_get_max_pstate_physical,
1867         .get_min = core_get_min_pstate,
1868         .get_turbo = knl_get_turbo_pstate,
1869         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1870         .get_scaling = core_get_scaling,
1871         .get_val = core_get_val,
1872 };
1873
1874 #define ICPU(model, policy) \
1875         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1876                         (unsigned long)&policy }
1877
1878 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1879         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1880         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1881         ICPU(INTEL_FAM6_ATOM_SILVERMONT,        silvermont_funcs),
1882         ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1883         ICPU(INTEL_FAM6_HASWELL_CORE,           core_funcs),
1884         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_funcs),
1885         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1886         ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1887         ICPU(INTEL_FAM6_HASWELL_ULT,            core_funcs),
1888         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_funcs),
1889         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_funcs),
1890         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1891         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_funcs),
1892         ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1893         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_funcs),
1894         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_funcs),
1895         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1896         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1897         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          core_funcs),
1898         ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1899         ICPU(INTEL_FAM6_SKYLAKE_X,              core_funcs),
1900         {}
1901 };
1902 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1903
1904 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1905         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1906         ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1907         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1908         {}
1909 };
1910
1911 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1912         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1913         {}
1914 };
1915
1916 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1917         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1918         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1919         {}
1920 };
1921
1922 static int intel_pstate_init_cpu(unsigned int cpunum)
1923 {
1924         struct cpudata *cpu;
1925
1926         cpu = all_cpu_data[cpunum];
1927
1928         if (!cpu) {
1929                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1930                 if (!cpu)
1931                         return -ENOMEM;
1932
1933                 all_cpu_data[cpunum] = cpu;
1934
1935                 cpu->epp_default = -EINVAL;
1936                 cpu->epp_powersave = -EINVAL;
1937                 cpu->epp_saved = -EINVAL;
1938         }
1939
1940         cpu = all_cpu_data[cpunum];
1941
1942         cpu->cpu = cpunum;
1943
1944         if (hwp_active) {
1945                 const struct x86_cpu_id *id;
1946
1947                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1948                 if (id)
1949                         intel_pstate_disable_ee(cpunum);
1950
1951                 intel_pstate_hwp_enable(cpu);
1952
1953                 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1954                 if (id && intel_pstate_acpi_pm_profile_server())
1955                         hwp_boost = true;
1956         }
1957
1958         intel_pstate_get_cpu_pstates(cpu);
1959
1960         pr_debug("controlling: cpu %d\n", cpunum);
1961
1962         return 0;
1963 }
1964
1965 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1966 {
1967         struct cpudata *cpu = all_cpu_data[cpu_num];
1968
1969         if (hwp_active && !hwp_boost)
1970                 return;
1971
1972         if (cpu->update_util_set)
1973                 return;
1974
1975         /* Prevent intel_pstate_update_util() from using stale data. */
1976         cpu->sample.time = 0;
1977         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1978                                      (hwp_active ?
1979                                       intel_pstate_update_util_hwp :
1980                                       intel_pstate_update_util));
1981         cpu->update_util_set = true;
1982 }
1983
1984 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1985 {
1986         struct cpudata *cpu_data = all_cpu_data[cpu];
1987
1988         if (!cpu_data->update_util_set)
1989                 return;
1990
1991         cpufreq_remove_update_util_hook(cpu);
1992         cpu_data->update_util_set = false;
1993         synchronize_rcu();
1994 }
1995
1996 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1997 {
1998         return global.turbo_disabled || global.no_turbo ?
1999                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2000 }
2001
2002 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2003                                             struct cpudata *cpu)
2004 {
2005         int max_freq = intel_pstate_get_max_freq(cpu);
2006         int32_t max_policy_perf, min_policy_perf;
2007         int max_state, turbo_max;
2008
2009         /*
2010          * HWP needs some special consideration, because on BDX the
2011          * HWP_REQUEST uses abstract value to represent performance
2012          * rather than pure ratios.
2013          */
2014         if (hwp_active) {
2015                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2016         } else {
2017                 max_state = global.no_turbo || global.turbo_disabled ?
2018                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2019                 turbo_max = cpu->pstate.turbo_pstate;
2020         }
2021
2022         max_policy_perf = max_state * policy->max / max_freq;
2023         if (policy->max == policy->min) {
2024                 min_policy_perf = max_policy_perf;
2025         } else {
2026                 min_policy_perf = max_state * policy->min / max_freq;
2027                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2028                                           0, max_policy_perf);
2029         }
2030
2031         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2032                  policy->cpu, max_state,
2033                  min_policy_perf, max_policy_perf);
2034
2035         /* Normalize user input to [min_perf, max_perf] */
2036         if (per_cpu_limits) {
2037                 cpu->min_perf_ratio = min_policy_perf;
2038                 cpu->max_perf_ratio = max_policy_perf;
2039         } else {
2040                 int32_t global_min, global_max;
2041
2042                 /* Global limits are in percent of the maximum turbo P-state. */
2043                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2044                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2045                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2046
2047                 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2048                          global_min, global_max);
2049
2050                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2051                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2052                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2053                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2054
2055                 /* Make sure min_perf <= max_perf */
2056                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2057                                           cpu->max_perf_ratio);
2058
2059         }
2060         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2061                  cpu->max_perf_ratio,
2062                  cpu->min_perf_ratio);
2063 }
2064
2065 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2066 {
2067         struct cpudata *cpu;
2068
2069         if (!policy->cpuinfo.max_freq)
2070                 return -ENODEV;
2071
2072         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2073                  policy->cpuinfo.max_freq, policy->max);
2074
2075         cpu = all_cpu_data[policy->cpu];
2076         cpu->policy = policy->policy;
2077
2078         mutex_lock(&intel_pstate_limits_lock);
2079
2080         intel_pstate_update_perf_limits(policy, cpu);
2081
2082         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2083                 /*
2084                  * NOHZ_FULL CPUs need this as the governor callback may not
2085                  * be invoked on them.
2086                  */
2087                 intel_pstate_clear_update_util_hook(policy->cpu);
2088                 intel_pstate_max_within_limits(cpu);
2089         } else {
2090                 intel_pstate_set_update_util_hook(policy->cpu);
2091         }
2092
2093         if (hwp_active) {
2094                 /*
2095                  * When hwp_boost was active before and dynamically it
2096                  * was turned off, in that case we need to clear the
2097                  * update util hook.
2098                  */
2099                 if (!hwp_boost)
2100                         intel_pstate_clear_update_util_hook(policy->cpu);
2101                 intel_pstate_hwp_set(policy->cpu);
2102         }
2103
2104         mutex_unlock(&intel_pstate_limits_lock);
2105
2106         return 0;
2107 }
2108
2109 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2110                                          struct cpudata *cpu)
2111 {
2112         if (!hwp_active &&
2113             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2114             policy->max < policy->cpuinfo.max_freq &&
2115             policy->max > cpu->pstate.max_freq) {
2116                 pr_debug("policy->max > max non turbo frequency\n");
2117                 policy->max = policy->cpuinfo.max_freq;
2118         }
2119 }
2120
2121 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2122 {
2123         struct cpudata *cpu = all_cpu_data[policy->cpu];
2124
2125         update_turbo_state();
2126         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2127                                      intel_pstate_get_max_freq(cpu));
2128
2129         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2130             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2131                 return -EINVAL;
2132
2133         intel_pstate_adjust_policy_max(policy, cpu);
2134
2135         return 0;
2136 }
2137
2138 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2139 {
2140         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2141 }
2142
2143 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2144 {
2145         pr_debug("CPU %d exiting\n", policy->cpu);
2146
2147         intel_pstate_clear_update_util_hook(policy->cpu);
2148         if (hwp_active) {
2149                 intel_pstate_hwp_save_state(policy);
2150                 intel_pstate_hwp_force_min_perf(policy->cpu);
2151         } else {
2152                 intel_cpufreq_stop_cpu(policy);
2153         }
2154 }
2155
2156 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2157 {
2158         intel_pstate_exit_perf_limits(policy);
2159
2160         policy->fast_switch_possible = false;
2161
2162         return 0;
2163 }
2164
2165 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2166 {
2167         struct cpudata *cpu;
2168         int rc;
2169
2170         rc = intel_pstate_init_cpu(policy->cpu);
2171         if (rc)
2172                 return rc;
2173
2174         cpu = all_cpu_data[policy->cpu];
2175
2176         cpu->max_perf_ratio = 0xFF;
2177         cpu->min_perf_ratio = 0;
2178
2179         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2180         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2181
2182         /* cpuinfo and default policy values */
2183         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2184         update_turbo_state();
2185         global.turbo_disabled_mf = global.turbo_disabled;
2186         policy->cpuinfo.max_freq = global.turbo_disabled ?
2187                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2188         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2189
2190         if (hwp_active) {
2191                 unsigned int max_freq;
2192
2193                 max_freq = global.turbo_disabled ?
2194                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2195                 if (max_freq < policy->cpuinfo.max_freq)
2196                         policy->cpuinfo.max_freq = max_freq;
2197         }
2198
2199         intel_pstate_init_acpi_perf_limits(policy);
2200
2201         policy->fast_switch_possible = true;
2202
2203         return 0;
2204 }
2205
2206 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2207 {
2208         int ret = __intel_pstate_cpu_init(policy);
2209
2210         if (ret)
2211                 return ret;
2212
2213         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2214                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2215         else
2216                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2217
2218         return 0;
2219 }
2220
2221 static struct cpufreq_driver intel_pstate = {
2222         .flags          = CPUFREQ_CONST_LOOPS,
2223         .verify         = intel_pstate_verify_policy,
2224         .setpolicy      = intel_pstate_set_policy,
2225         .suspend        = intel_pstate_hwp_save_state,
2226         .resume         = intel_pstate_resume,
2227         .init           = intel_pstate_cpu_init,
2228         .exit           = intel_pstate_cpu_exit,
2229         .stop_cpu       = intel_pstate_stop_cpu,
2230         .update_limits  = intel_pstate_update_limits,
2231         .name           = "intel_pstate",
2232 };
2233
2234 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2235 {
2236         struct cpudata *cpu = all_cpu_data[policy->cpu];
2237
2238         update_turbo_state();
2239         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2240                                      intel_pstate_get_max_freq(cpu));
2241
2242         intel_pstate_adjust_policy_max(policy, cpu);
2243
2244         intel_pstate_update_perf_limits(policy, cpu);
2245
2246         return 0;
2247 }
2248
2249 /* Use of trace in passive mode:
2250  *
2251  * In passive mode the trace core_busy field (also known as the
2252  * performance field, and lablelled as such on the graphs; also known as
2253  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2254  * driver call was via the normal or fast switch path. Various graphs
2255  * output from the intel_pstate_tracer.py utility that include core_busy
2256  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2257  * so we use 10 to indicate the the normal path through the driver, and
2258  * 90 to indicate the fast switch path through the driver.
2259  * The scaled_busy field is not used, and is set to 0.
2260  */
2261
2262 #define INTEL_PSTATE_TRACE_TARGET 10
2263 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2264
2265 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2266 {
2267         struct sample *sample;
2268
2269         if (!trace_pstate_sample_enabled())
2270                 return;
2271
2272         if (!intel_pstate_sample(cpu, ktime_get()))
2273                 return;
2274
2275         sample = &cpu->sample;
2276         trace_pstate_sample(trace_type,
2277                 0,
2278                 old_pstate,
2279                 cpu->pstate.current_pstate,
2280                 sample->mperf,
2281                 sample->aperf,
2282                 sample->tsc,
2283                 get_avg_frequency(cpu),
2284                 fp_toint(cpu->iowait_boost * 100));
2285 }
2286
2287 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2288                                 unsigned int target_freq,
2289                                 unsigned int relation)
2290 {
2291         struct cpudata *cpu = all_cpu_data[policy->cpu];
2292         struct cpufreq_freqs freqs;
2293         int target_pstate, old_pstate;
2294
2295         update_turbo_state();
2296
2297         freqs.old = policy->cur;
2298         freqs.new = target_freq;
2299
2300         cpufreq_freq_transition_begin(policy, &freqs);
2301         switch (relation) {
2302         case CPUFREQ_RELATION_L:
2303                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2304                 break;
2305         case CPUFREQ_RELATION_H:
2306                 target_pstate = freqs.new / cpu->pstate.scaling;
2307                 break;
2308         default:
2309                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2310                 break;
2311         }
2312         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2313         old_pstate = cpu->pstate.current_pstate;
2314         if (target_pstate != cpu->pstate.current_pstate) {
2315                 cpu->pstate.current_pstate = target_pstate;
2316                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2317                               pstate_funcs.get_val(cpu, target_pstate));
2318         }
2319         freqs.new = target_pstate * cpu->pstate.scaling;
2320         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2321         cpufreq_freq_transition_end(policy, &freqs, false);
2322
2323         return 0;
2324 }
2325
2326 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2327                                               unsigned int target_freq)
2328 {
2329         struct cpudata *cpu = all_cpu_data[policy->cpu];
2330         int target_pstate, old_pstate;
2331
2332         update_turbo_state();
2333
2334         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2335         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2336         old_pstate = cpu->pstate.current_pstate;
2337         intel_pstate_update_pstate(cpu, target_pstate);
2338         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2339         return target_pstate * cpu->pstate.scaling;
2340 }
2341
2342 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2343 {
2344         int ret = __intel_pstate_cpu_init(policy);
2345
2346         if (ret)
2347                 return ret;
2348
2349         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2350         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2351         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2352         policy->cur = policy->cpuinfo.min_freq;
2353
2354         return 0;
2355 }
2356
2357 static struct cpufreq_driver intel_cpufreq = {
2358         .flags          = CPUFREQ_CONST_LOOPS,
2359         .verify         = intel_cpufreq_verify_policy,
2360         .target         = intel_cpufreq_target,
2361         .fast_switch    = intel_cpufreq_fast_switch,
2362         .init           = intel_cpufreq_cpu_init,
2363         .exit           = intel_pstate_cpu_exit,
2364         .stop_cpu       = intel_cpufreq_stop_cpu,
2365         .update_limits  = intel_pstate_update_limits,
2366         .name           = "intel_cpufreq",
2367 };
2368
2369 static struct cpufreq_driver *default_driver = &intel_pstate;
2370
2371 static void intel_pstate_driver_cleanup(void)
2372 {
2373         unsigned int cpu;
2374
2375         get_online_cpus();
2376         for_each_online_cpu(cpu) {
2377                 if (all_cpu_data[cpu]) {
2378                         if (intel_pstate_driver == &intel_pstate)
2379                                 intel_pstate_clear_update_util_hook(cpu);
2380
2381                         kfree(all_cpu_data[cpu]);
2382                         all_cpu_data[cpu] = NULL;
2383                 }
2384         }
2385         put_online_cpus();
2386         intel_pstate_driver = NULL;
2387 }
2388
2389 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2390 {
2391         int ret;
2392
2393         memset(&global, 0, sizeof(global));
2394         global.max_perf_pct = 100;
2395
2396         intel_pstate_driver = driver;
2397         ret = cpufreq_register_driver(intel_pstate_driver);
2398         if (ret) {
2399                 intel_pstate_driver_cleanup();
2400                 return ret;
2401         }
2402
2403         global.min_perf_pct = min_perf_pct_min();
2404
2405         return 0;
2406 }
2407
2408 static int intel_pstate_unregister_driver(void)
2409 {
2410         if (hwp_active)
2411                 return -EBUSY;
2412
2413         cpufreq_unregister_driver(intel_pstate_driver);
2414         intel_pstate_driver_cleanup();
2415
2416         return 0;
2417 }
2418
2419 static ssize_t intel_pstate_show_status(char *buf)
2420 {
2421         if (!intel_pstate_driver)
2422                 return sprintf(buf, "off\n");
2423
2424         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2425                                         "active" : "passive");
2426 }
2427
2428 static int intel_pstate_update_status(const char *buf, size_t size)
2429 {
2430         int ret;
2431
2432         if (size == 3 && !strncmp(buf, "off", size))
2433                 return intel_pstate_driver ?
2434                         intel_pstate_unregister_driver() : -EINVAL;
2435
2436         if (size == 6 && !strncmp(buf, "active", size)) {
2437                 if (intel_pstate_driver) {
2438                         if (intel_pstate_driver == &intel_pstate)
2439                                 return 0;
2440
2441                         ret = intel_pstate_unregister_driver();
2442                         if (ret)
2443                                 return ret;
2444                 }
2445
2446                 return intel_pstate_register_driver(&intel_pstate);
2447         }
2448
2449         if (size == 7 && !strncmp(buf, "passive", size)) {
2450                 if (intel_pstate_driver) {
2451                         if (intel_pstate_driver == &intel_cpufreq)
2452                                 return 0;
2453
2454                         ret = intel_pstate_unregister_driver();
2455                         if (ret)
2456                                 return ret;
2457                 }
2458
2459                 return intel_pstate_register_driver(&intel_cpufreq);
2460         }
2461
2462         return -EINVAL;
2463 }
2464
2465 static int no_load __initdata;
2466 static int no_hwp __initdata;
2467 static int hwp_only __initdata;
2468 static unsigned int force_load __initdata;
2469
2470 static int __init intel_pstate_msrs_not_valid(void)
2471 {
2472         if (!pstate_funcs.get_max() ||
2473             !pstate_funcs.get_min() ||
2474             !pstate_funcs.get_turbo())
2475                 return -ENODEV;
2476
2477         return 0;
2478 }
2479
2480 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2481 {
2482         pstate_funcs.get_max   = funcs->get_max;
2483         pstate_funcs.get_max_physical = funcs->get_max_physical;
2484         pstate_funcs.get_min   = funcs->get_min;
2485         pstate_funcs.get_turbo = funcs->get_turbo;
2486         pstate_funcs.get_scaling = funcs->get_scaling;
2487         pstate_funcs.get_val   = funcs->get_val;
2488         pstate_funcs.get_vid   = funcs->get_vid;
2489         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2490 }
2491
2492 #ifdef CONFIG_ACPI
2493
2494 static bool __init intel_pstate_no_acpi_pss(void)
2495 {
2496         int i;
2497
2498         for_each_possible_cpu(i) {
2499                 acpi_status status;
2500                 union acpi_object *pss;
2501                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2502                 struct acpi_processor *pr = per_cpu(processors, i);
2503
2504                 if (!pr)
2505                         continue;
2506
2507                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2508                 if (ACPI_FAILURE(status))
2509                         continue;
2510
2511                 pss = buffer.pointer;
2512                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2513                         kfree(pss);
2514                         return false;
2515                 }
2516
2517                 kfree(pss);
2518         }
2519
2520         pr_debug("ACPI _PSS not found\n");
2521         return true;
2522 }
2523
2524 static bool __init intel_pstate_no_acpi_pcch(void)
2525 {
2526         acpi_status status;
2527         acpi_handle handle;
2528
2529         status = acpi_get_handle(NULL, "\\_SB", &handle);
2530         if (ACPI_FAILURE(status))
2531                 goto not_found;
2532
2533         if (acpi_has_method(handle, "PCCH"))
2534                 return false;
2535
2536 not_found:
2537         pr_debug("ACPI PCCH not found\n");
2538         return true;
2539 }
2540
2541 static bool __init intel_pstate_has_acpi_ppc(void)
2542 {
2543         int i;
2544
2545         for_each_possible_cpu(i) {
2546                 struct acpi_processor *pr = per_cpu(processors, i);
2547
2548                 if (!pr)
2549                         continue;
2550                 if (acpi_has_method(pr->handle, "_PPC"))
2551                         return true;
2552         }
2553         pr_debug("ACPI _PPC not found\n");
2554         return false;
2555 }
2556
2557 enum {
2558         PSS,
2559         PPC,
2560 };
2561
2562 /* Hardware vendor-specific info that has its own power management modes */
2563 static struct acpi_platform_list plat_info[] __initdata = {
2564         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2565         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2566         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2567         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2568         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2569         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2570         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2571         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2572         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2573         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2574         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2575         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2576         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2577         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2578         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2579         { } /* End */
2580 };
2581
2582 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2583 {
2584         const struct x86_cpu_id *id;
2585         u64 misc_pwr;
2586         int idx;
2587
2588         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2589         if (id) {
2590                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2591                 if (misc_pwr & (1 << 8)) {
2592                         pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2593                         return true;
2594                 }
2595         }
2596
2597         idx = acpi_match_platform_list(plat_info);
2598         if (idx < 0)
2599                 return false;
2600
2601         switch (plat_info[idx].data) {
2602         case PSS:
2603                 if (!intel_pstate_no_acpi_pss())
2604                         return false;
2605
2606                 return intel_pstate_no_acpi_pcch();
2607         case PPC:
2608                 return intel_pstate_has_acpi_ppc() && !force_load;
2609         }
2610
2611         return false;
2612 }
2613
2614 static void intel_pstate_request_control_from_smm(void)
2615 {
2616         /*
2617          * It may be unsafe to request P-states control from SMM if _PPC support
2618          * has not been enabled.
2619          */
2620         if (acpi_ppc)
2621                 acpi_processor_pstate_control();
2622 }
2623 #else /* CONFIG_ACPI not enabled */
2624 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2625 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2626 static inline void intel_pstate_request_control_from_smm(void) {}
2627 #endif /* CONFIG_ACPI */
2628
2629 #define INTEL_PSTATE_HWP_BROADWELL      0x01
2630
2631 #define ICPU_HWP(model, hwp_mode) \
2632         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2633
2634 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2635         ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2636         ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2637         ICPU_HWP(X86_MODEL_ANY, 0),
2638         {}
2639 };
2640
2641 static int __init intel_pstate_init(void)
2642 {
2643         const struct x86_cpu_id *id;
2644         int rc;
2645
2646         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2647                 return -ENODEV;
2648
2649         if (no_load)
2650                 return -ENODEV;
2651
2652         id = x86_match_cpu(hwp_support_ids);
2653         if (id) {
2654                 copy_cpu_funcs(&core_funcs);
2655                 if (!no_hwp) {
2656                         hwp_active++;
2657                         hwp_mode_bdw = id->driver_data;
2658                         intel_pstate.attr = hwp_cpufreq_attrs;
2659                         goto hwp_cpu_matched;
2660                 }
2661         } else {
2662                 id = x86_match_cpu(intel_pstate_cpu_ids);
2663                 if (!id) {
2664                         pr_info("CPU model not supported\n");
2665                         return -ENODEV;
2666                 }
2667
2668                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2669         }
2670
2671         if (intel_pstate_msrs_not_valid()) {
2672                 pr_info("Invalid MSRs\n");
2673                 return -ENODEV;
2674         }
2675
2676 hwp_cpu_matched:
2677         /*
2678          * The Intel pstate driver will be ignored if the platform
2679          * firmware has its own power management modes.
2680          */
2681         if (intel_pstate_platform_pwr_mgmt_exists()) {
2682                 pr_info("P-states controlled by the platform\n");
2683                 return -ENODEV;
2684         }
2685
2686         if (!hwp_active && hwp_only)
2687                 return -ENOTSUPP;
2688
2689         pr_info("Intel P-state driver initializing\n");
2690
2691         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2692         if (!all_cpu_data)
2693                 return -ENOMEM;
2694
2695         intel_pstate_request_control_from_smm();
2696
2697         intel_pstate_sysfs_expose_params();
2698
2699         mutex_lock(&intel_pstate_driver_lock);
2700         rc = intel_pstate_register_driver(default_driver);
2701         mutex_unlock(&intel_pstate_driver_lock);
2702         if (rc)
2703                 return rc;
2704
2705         if (hwp_active)
2706                 pr_info("HWP enabled\n");
2707
2708         return 0;
2709 }
2710 device_initcall(intel_pstate_init);
2711
2712 static int __init intel_pstate_setup(char *str)
2713 {
2714         if (!str)
2715                 return -EINVAL;
2716
2717         if (!strcmp(str, "disable")) {
2718                 no_load = 1;
2719         } else if (!strcmp(str, "passive")) {
2720                 pr_info("Passive mode enabled\n");
2721                 default_driver = &intel_cpufreq;
2722                 no_hwp = 1;
2723         }
2724         if (!strcmp(str, "no_hwp")) {
2725                 pr_info("HWP disabled\n");
2726                 no_hwp = 1;
2727         }
2728         if (!strcmp(str, "force"))
2729                 force_load = 1;
2730         if (!strcmp(str, "hwp_only"))
2731                 hwp_only = 1;
2732         if (!strcmp(str, "per_cpu_perf_limits"))
2733                 per_cpu_limits = true;
2734
2735 #ifdef CONFIG_ACPI
2736         if (!strcmp(str, "support_acpi_ppc"))
2737                 acpi_ppc = true;
2738 #endif
2739
2740         return 0;
2741 }
2742 early_param("intel_pstate", intel_pstate_setup);
2743
2744 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2745 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2746 MODULE_LICENSE("GPL");