x86/asm: Add DB flag to 32-bit percpu GDT entry
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31
32 #include <asm/apic.h>
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/debugreg.h>
37 #include <asm/kvm_para.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/spec-ctrl.h>
40 #include <asm/cpu_device_id.h>
41 #include <asm/traps.h>
42 #include <asm/reboot.h>
43 #include <asm/fpu/api.h>
44
45 #include <trace/events/ipi.h>
46
47 #include "trace.h"
48
49 #include "svm.h"
50 #include "svm_ops.h"
51
52 #include "kvm_onhyperv.h"
53 #include "svm_onhyperv.h"
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57
58 #ifdef MODULE
59 static const struct x86_cpu_id svm_cpu_id[] = {
60         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
61         {}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64 #endif
65
66 #define SEG_TYPE_LDT 2
67 #define SEG_TYPE_BUSY_TSS16 3
68
69 static bool erratum_383_found __read_mostly;
70
71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
72
73 /*
74  * Set osvw_len to higher value when updated Revision Guides
75  * are published and we know what the new status bits are
76  */
77 static uint64_t osvw_len = 4, osvw_status;
78
79 static DEFINE_PER_CPU(u64, current_tsc_ratio);
80
81 #define X2APIC_MSR(x)   (APIC_BASE_MSR + (x >> 4))
82
83 static const struct svm_direct_access_msrs {
84         u32 index;   /* Index of the MSR */
85         bool always; /* True if intercept is initially cleared */
86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
87         { .index = MSR_STAR,                            .always = true  },
88         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
89         { .index = MSR_IA32_SYSENTER_EIP,               .always = false },
90         { .index = MSR_IA32_SYSENTER_ESP,               .always = false },
91 #ifdef CONFIG_X86_64
92         { .index = MSR_GS_BASE,                         .always = true  },
93         { .index = MSR_FS_BASE,                         .always = true  },
94         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
95         { .index = MSR_LSTAR,                           .always = true  },
96         { .index = MSR_CSTAR,                           .always = true  },
97         { .index = MSR_SYSCALL_MASK,                    .always = true  },
98 #endif
99         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
100         { .index = MSR_IA32_PRED_CMD,                   .always = false },
101         { .index = MSR_IA32_FLUSH_CMD,                  .always = false },
102         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
103         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
104         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
105         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
106         { .index = MSR_EFER,                            .always = false },
107         { .index = MSR_IA32_CR_PAT,                     .always = false },
108         { .index = MSR_AMD64_SEV_ES_GHCB,               .always = true  },
109         { .index = MSR_TSC_AUX,                         .always = false },
110         { .index = X2APIC_MSR(APIC_ID),                 .always = false },
111         { .index = X2APIC_MSR(APIC_LVR),                .always = false },
112         { .index = X2APIC_MSR(APIC_TASKPRI),            .always = false },
113         { .index = X2APIC_MSR(APIC_ARBPRI),             .always = false },
114         { .index = X2APIC_MSR(APIC_PROCPRI),            .always = false },
115         { .index = X2APIC_MSR(APIC_EOI),                .always = false },
116         { .index = X2APIC_MSR(APIC_RRR),                .always = false },
117         { .index = X2APIC_MSR(APIC_LDR),                .always = false },
118         { .index = X2APIC_MSR(APIC_DFR),                .always = false },
119         { .index = X2APIC_MSR(APIC_SPIV),               .always = false },
120         { .index = X2APIC_MSR(APIC_ISR),                .always = false },
121         { .index = X2APIC_MSR(APIC_TMR),                .always = false },
122         { .index = X2APIC_MSR(APIC_IRR),                .always = false },
123         { .index = X2APIC_MSR(APIC_ESR),                .always = false },
124         { .index = X2APIC_MSR(APIC_ICR),                .always = false },
125         { .index = X2APIC_MSR(APIC_ICR2),               .always = false },
126
127         /*
128          * Note:
129          * AMD does not virtualize APIC TSC-deadline timer mode, but it is
130          * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
131          * the AVIC hardware would generate GP fault. Therefore, always
132          * intercept the MSR 0x832, and do not setup direct_access_msr.
133          */
134         { .index = X2APIC_MSR(APIC_LVTTHMR),            .always = false },
135         { .index = X2APIC_MSR(APIC_LVTPC),              .always = false },
136         { .index = X2APIC_MSR(APIC_LVT0),               .always = false },
137         { .index = X2APIC_MSR(APIC_LVT1),               .always = false },
138         { .index = X2APIC_MSR(APIC_LVTERR),             .always = false },
139         { .index = X2APIC_MSR(APIC_TMICT),              .always = false },
140         { .index = X2APIC_MSR(APIC_TMCCT),              .always = false },
141         { .index = X2APIC_MSR(APIC_TDCR),               .always = false },
142         { .index = MSR_INVALID,                         .always = false },
143 };
144
145 /*
146  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
147  * pause_filter_count: On processors that support Pause filtering(indicated
148  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
149  *      count value. On VMRUN this value is loaded into an internal counter.
150  *      Each time a pause instruction is executed, this counter is decremented
151  *      until it reaches zero at which time a #VMEXIT is generated if pause
152  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
153  *      Intercept Filtering for more details.
154  *      This also indicate if ple logic enabled.
155  *
156  * pause_filter_thresh: In addition, some processor families support advanced
157  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
158  *      the amount of time a guest is allowed to execute in a pause loop.
159  *      In this mode, a 16-bit pause filter threshold field is added in the
160  *      VMCB. The threshold value is a cycle count that is used to reset the
161  *      pause counter. As with simple pause filtering, VMRUN loads the pause
162  *      count value from VMCB into an internal counter. Then, on each pause
163  *      instruction the hardware checks the elapsed number of cycles since
164  *      the most recent pause instruction against the pause filter threshold.
165  *      If the elapsed cycle count is greater than the pause filter threshold,
166  *      then the internal pause count is reloaded from the VMCB and execution
167  *      continues. If the elapsed cycle count is less than the pause filter
168  *      threshold, then the internal pause count is decremented. If the count
169  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
170  *      triggered. If advanced pause filtering is supported and pause filter
171  *      threshold field is set to zero, the filter will operate in the simpler,
172  *      count only mode.
173  */
174
175 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
176 module_param(pause_filter_thresh, ushort, 0444);
177
178 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
179 module_param(pause_filter_count, ushort, 0444);
180
181 /* Default doubles per-vcpu window every exit. */
182 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
183 module_param(pause_filter_count_grow, ushort, 0444);
184
185 /* Default resets per-vcpu window every exit to pause_filter_count. */
186 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
187 module_param(pause_filter_count_shrink, ushort, 0444);
188
189 /* Default is to compute the maximum so we can never overflow. */
190 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
191 module_param(pause_filter_count_max, ushort, 0444);
192
193 /*
194  * Use nested page tables by default.  Note, NPT may get forced off by
195  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
196  */
197 bool npt_enabled = true;
198 module_param_named(npt, npt_enabled, bool, 0444);
199
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, 0444);
203
204 /* enable/disable Next RIP Save */
205 int nrips = true;
206 module_param(nrips, int, 0444);
207
208 /* enable/disable Virtual VMLOAD VMSAVE */
209 static int vls = true;
210 module_param(vls, int, 0444);
211
212 /* enable/disable Virtual GIF */
213 int vgif = true;
214 module_param(vgif, int, 0444);
215
216 /* enable/disable LBR virtualization */
217 static int lbrv = true;
218 module_param(lbrv, int, 0444);
219
220 static int tsc_scaling = true;
221 module_param(tsc_scaling, int, 0444);
222
223 /*
224  * enable / disable AVIC.  Because the defaults differ for APICv
225  * support between VMX and SVM we cannot use module_param_named.
226  */
227 static bool avic;
228 module_param(avic, bool, 0444);
229
230 bool __read_mostly dump_invalid_vmcb;
231 module_param(dump_invalid_vmcb, bool, 0644);
232
233
234 bool intercept_smi = true;
235 module_param(intercept_smi, bool, 0444);
236
237 bool vnmi = true;
238 module_param(vnmi, bool, 0444);
239
240 static bool svm_gp_erratum_intercept = true;
241
242 static u8 rsm_ins_bytes[] = "\x0f\xaa";
243
244 static unsigned long iopm_base;
245
246 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
247
248 /*
249  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
250  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
251  *
252  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
253  * defer the restoration of TSC_AUX until the CPU returns to userspace.
254  */
255 static int tsc_aux_uret_slot __read_mostly = -1;
256
257 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
258
259 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
260 #define MSRS_RANGE_SIZE 2048
261 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
262
263 u32 svm_msrpm_offset(u32 msr)
264 {
265         u32 offset;
266         int i;
267
268         for (i = 0; i < NUM_MSR_MAPS; i++) {
269                 if (msr < msrpm_ranges[i] ||
270                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
271                         continue;
272
273                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
274                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
275
276                 /* Now we have the u8 offset - but need the u32 offset */
277                 return offset / 4;
278         }
279
280         /* MSR not in any range */
281         return MSR_INVALID;
282 }
283
284 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
285
286 static int get_npt_level(void)
287 {
288 #ifdef CONFIG_X86_64
289         return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
290 #else
291         return PT32E_ROOT_LEVEL;
292 #endif
293 }
294
295 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
296 {
297         struct vcpu_svm *svm = to_svm(vcpu);
298         u64 old_efer = vcpu->arch.efer;
299         vcpu->arch.efer = efer;
300
301         if (!npt_enabled) {
302                 /* Shadow paging assumes NX to be available.  */
303                 efer |= EFER_NX;
304
305                 if (!(efer & EFER_LMA))
306                         efer &= ~EFER_LME;
307         }
308
309         if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
310                 if (!(efer & EFER_SVME)) {
311                         svm_leave_nested(vcpu);
312                         svm_set_gif(svm, true);
313                         /* #GP intercept is still needed for vmware backdoor */
314                         if (!enable_vmware_backdoor)
315                                 clr_exception_intercept(svm, GP_VECTOR);
316
317                         /*
318                          * Free the nested guest state, unless we are in SMM.
319                          * In this case we will return to the nested guest
320                          * as soon as we leave SMM.
321                          */
322                         if (!is_smm(vcpu))
323                                 svm_free_nested(svm);
324
325                 } else {
326                         int ret = svm_allocate_nested(svm);
327
328                         if (ret) {
329                                 vcpu->arch.efer = old_efer;
330                                 return ret;
331                         }
332
333                         /*
334                          * Never intercept #GP for SEV guests, KVM can't
335                          * decrypt guest memory to workaround the erratum.
336                          */
337                         if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
338                                 set_exception_intercept(svm, GP_VECTOR);
339                 }
340         }
341
342         svm->vmcb->save.efer = efer | EFER_SVME;
343         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
344         return 0;
345 }
346
347 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
348 {
349         struct vcpu_svm *svm = to_svm(vcpu);
350         u32 ret = 0;
351
352         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
353                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
354         return ret;
355 }
356
357 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
358 {
359         struct vcpu_svm *svm = to_svm(vcpu);
360
361         if (mask == 0)
362                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
363         else
364                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
365
366 }
367
368 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
369                                            bool commit_side_effects)
370 {
371         struct vcpu_svm *svm = to_svm(vcpu);
372         unsigned long old_rflags;
373
374         /*
375          * SEV-ES does not expose the next RIP. The RIP update is controlled by
376          * the type of exit and the #VC handler in the guest.
377          */
378         if (sev_es_guest(vcpu->kvm))
379                 goto done;
380
381         if (nrips && svm->vmcb->control.next_rip != 0) {
382                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
383                 svm->next_rip = svm->vmcb->control.next_rip;
384         }
385
386         if (!svm->next_rip) {
387                 if (unlikely(!commit_side_effects))
388                         old_rflags = svm->vmcb->save.rflags;
389
390                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
391                         return 0;
392
393                 if (unlikely(!commit_side_effects))
394                         svm->vmcb->save.rflags = old_rflags;
395         } else {
396                 kvm_rip_write(vcpu, svm->next_rip);
397         }
398
399 done:
400         if (likely(commit_side_effects))
401                 svm_set_interrupt_shadow(vcpu, 0);
402
403         return 1;
404 }
405
406 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
407 {
408         return __svm_skip_emulated_instruction(vcpu, true);
409 }
410
411 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
412 {
413         unsigned long rip, old_rip = kvm_rip_read(vcpu);
414         struct vcpu_svm *svm = to_svm(vcpu);
415
416         /*
417          * Due to architectural shortcomings, the CPU doesn't always provide
418          * NextRIP, e.g. if KVM intercepted an exception that occurred while
419          * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
420          * the instruction even if NextRIP is supported to acquire the next
421          * RIP so that it can be shoved into the NextRIP field, otherwise
422          * hardware will fail to advance guest RIP during event injection.
423          * Drop the exception/interrupt if emulation fails and effectively
424          * retry the instruction, it's the least awful option.  If NRIPS is
425          * in use, the skip must not commit any side effects such as clearing
426          * the interrupt shadow or RFLAGS.RF.
427          */
428         if (!__svm_skip_emulated_instruction(vcpu, !nrips))
429                 return -EIO;
430
431         rip = kvm_rip_read(vcpu);
432
433         /*
434          * Save the injection information, even when using next_rip, as the
435          * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
436          * doesn't complete due to a VM-Exit occurring while the CPU is
437          * vectoring the event.   Decoding the instruction isn't guaranteed to
438          * work as there may be no backing instruction, e.g. if the event is
439          * being injected by L1 for L2, or if the guest is patching INT3 into
440          * a different instruction.
441          */
442         svm->soft_int_injected = true;
443         svm->soft_int_csbase = svm->vmcb->save.cs.base;
444         svm->soft_int_old_rip = old_rip;
445         svm->soft_int_next_rip = rip;
446
447         if (nrips)
448                 kvm_rip_write(vcpu, old_rip);
449
450         if (static_cpu_has(X86_FEATURE_NRIPS))
451                 svm->vmcb->control.next_rip = rip;
452
453         return 0;
454 }
455
456 static void svm_inject_exception(struct kvm_vcpu *vcpu)
457 {
458         struct kvm_queued_exception *ex = &vcpu->arch.exception;
459         struct vcpu_svm *svm = to_svm(vcpu);
460
461         kvm_deliver_exception_payload(vcpu, ex);
462
463         if (kvm_exception_is_soft(ex->vector) &&
464             svm_update_soft_interrupt_rip(vcpu))
465                 return;
466
467         svm->vmcb->control.event_inj = ex->vector
468                 | SVM_EVTINJ_VALID
469                 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
470                 | SVM_EVTINJ_TYPE_EXEPT;
471         svm->vmcb->control.event_inj_err = ex->error_code;
472 }
473
474 static void svm_init_erratum_383(void)
475 {
476         u32 low, high;
477         int err;
478         u64 val;
479
480         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
481                 return;
482
483         /* Use _safe variants to not break nested virtualization */
484         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
485         if (err)
486                 return;
487
488         val |= (1ULL << 47);
489
490         low  = lower_32_bits(val);
491         high = upper_32_bits(val);
492
493         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
494
495         erratum_383_found = true;
496 }
497
498 static void svm_init_osvw(struct kvm_vcpu *vcpu)
499 {
500         /*
501          * Guests should see errata 400 and 415 as fixed (assuming that
502          * HLT and IO instructions are intercepted).
503          */
504         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
505         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
506
507         /*
508          * By increasing VCPU's osvw.length to 3 we are telling the guest that
509          * all osvw.status bits inside that length, including bit 0 (which is
510          * reserved for erratum 298), are valid. However, if host processor's
511          * osvw_len is 0 then osvw_status[0] carries no information. We need to
512          * be conservative here and therefore we tell the guest that erratum 298
513          * is present (because we really don't know).
514          */
515         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
516                 vcpu->arch.osvw.status |= 1;
517 }
518
519 static bool __kvm_is_svm_supported(void)
520 {
521         int cpu = smp_processor_id();
522         struct cpuinfo_x86 *c = &cpu_data(cpu);
523
524         if (c->x86_vendor != X86_VENDOR_AMD &&
525             c->x86_vendor != X86_VENDOR_HYGON) {
526                 pr_err("CPU %d isn't AMD or Hygon\n", cpu);
527                 return false;
528         }
529
530         if (!cpu_has(c, X86_FEATURE_SVM)) {
531                 pr_err("SVM not supported by CPU %d\n", cpu);
532                 return false;
533         }
534
535         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
536                 pr_info("KVM is unsupported when running as an SEV guest\n");
537                 return false;
538         }
539
540         return true;
541 }
542
543 static bool kvm_is_svm_supported(void)
544 {
545         bool supported;
546
547         migrate_disable();
548         supported = __kvm_is_svm_supported();
549         migrate_enable();
550
551         return supported;
552 }
553
554 static int svm_check_processor_compat(void)
555 {
556         if (!__kvm_is_svm_supported())
557                 return -EIO;
558
559         return 0;
560 }
561
562 static void __svm_write_tsc_multiplier(u64 multiplier)
563 {
564         if (multiplier == __this_cpu_read(current_tsc_ratio))
565                 return;
566
567         wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
568         __this_cpu_write(current_tsc_ratio, multiplier);
569 }
570
571 static inline void kvm_cpu_svm_disable(void)
572 {
573         uint64_t efer;
574
575         wrmsrl(MSR_VM_HSAVE_PA, 0);
576         rdmsrl(MSR_EFER, efer);
577         if (efer & EFER_SVME) {
578                 /*
579                  * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
580                  * NMI aren't blocked.
581                  */
582                 stgi();
583                 wrmsrl(MSR_EFER, efer & ~EFER_SVME);
584         }
585 }
586
587 static void svm_emergency_disable(void)
588 {
589         kvm_rebooting = true;
590
591         kvm_cpu_svm_disable();
592 }
593
594 static void svm_hardware_disable(void)
595 {
596         /* Make sure we clean up behind us */
597         if (tsc_scaling)
598                 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
599
600         kvm_cpu_svm_disable();
601
602         amd_pmu_disable_virt();
603 }
604
605 static int svm_hardware_enable(void)
606 {
607
608         struct svm_cpu_data *sd;
609         uint64_t efer;
610         int me = raw_smp_processor_id();
611
612         rdmsrl(MSR_EFER, efer);
613         if (efer & EFER_SVME)
614                 return -EBUSY;
615
616         sd = per_cpu_ptr(&svm_data, me);
617         sd->asid_generation = 1;
618         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
619         sd->next_asid = sd->max_asid + 1;
620         sd->min_asid = max_sev_asid + 1;
621
622         wrmsrl(MSR_EFER, efer | EFER_SVME);
623
624         wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
625
626         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
627                 /*
628                  * Set the default value, even if we don't use TSC scaling
629                  * to avoid having stale value in the msr
630                  */
631                 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
632         }
633
634
635         /*
636          * Get OSVW bits.
637          *
638          * Note that it is possible to have a system with mixed processor
639          * revisions and therefore different OSVW bits. If bits are not the same
640          * on different processors then choose the worst case (i.e. if erratum
641          * is present on one processor and not on another then assume that the
642          * erratum is present everywhere).
643          */
644         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
645                 uint64_t len, status = 0;
646                 int err;
647
648                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
649                 if (!err)
650                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
651                                                       &err);
652
653                 if (err)
654                         osvw_status = osvw_len = 0;
655                 else {
656                         if (len < osvw_len)
657                                 osvw_len = len;
658                         osvw_status |= status;
659                         osvw_status &= (1ULL << osvw_len) - 1;
660                 }
661         } else
662                 osvw_status = osvw_len = 0;
663
664         svm_init_erratum_383();
665
666         amd_pmu_enable_virt();
667
668         /*
669          * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
670          * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
671          * Since Linux does not change the value of TSC_AUX once set, prime the
672          * TSC_AUX field now to avoid a RDMSR on every vCPU run.
673          */
674         if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
675                 struct sev_es_save_area *hostsa;
676                 u32 __maybe_unused msr_hi;
677
678                 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
679
680                 rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi);
681         }
682
683         return 0;
684 }
685
686 static void svm_cpu_uninit(int cpu)
687 {
688         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
689
690         if (!sd->save_area)
691                 return;
692
693         kfree(sd->sev_vmcbs);
694         __free_page(sd->save_area);
695         sd->save_area_pa = 0;
696         sd->save_area = NULL;
697 }
698
699 static int svm_cpu_init(int cpu)
700 {
701         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
702         int ret = -ENOMEM;
703
704         memset(sd, 0, sizeof(struct svm_cpu_data));
705         sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
706         if (!sd->save_area)
707                 return ret;
708
709         ret = sev_cpu_init(sd);
710         if (ret)
711                 goto free_save_area;
712
713         sd->save_area_pa = __sme_page_pa(sd->save_area);
714         return 0;
715
716 free_save_area:
717         __free_page(sd->save_area);
718         sd->save_area = NULL;
719         return ret;
720
721 }
722
723 static void set_dr_intercepts(struct vcpu_svm *svm)
724 {
725         struct vmcb *vmcb = svm->vmcb01.ptr;
726
727         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
728         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
729         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
730         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
731         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
732         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
733         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
734         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
735         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
736         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
737         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
738         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
739         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
740         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
741         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
742         vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
743
744         recalc_intercepts(svm);
745 }
746
747 static void clr_dr_intercepts(struct vcpu_svm *svm)
748 {
749         struct vmcb *vmcb = svm->vmcb01.ptr;
750
751         vmcb->control.intercepts[INTERCEPT_DR] = 0;
752
753         recalc_intercepts(svm);
754 }
755
756 static int direct_access_msr_slot(u32 msr)
757 {
758         u32 i;
759
760         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
761                 if (direct_access_msrs[i].index == msr)
762                         return i;
763
764         return -ENOENT;
765 }
766
767 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
768                                      int write)
769 {
770         struct vcpu_svm *svm = to_svm(vcpu);
771         int slot = direct_access_msr_slot(msr);
772
773         if (slot == -ENOENT)
774                 return;
775
776         /* Set the shadow bitmaps to the desired intercept states */
777         if (read)
778                 set_bit(slot, svm->shadow_msr_intercept.read);
779         else
780                 clear_bit(slot, svm->shadow_msr_intercept.read);
781
782         if (write)
783                 set_bit(slot, svm->shadow_msr_intercept.write);
784         else
785                 clear_bit(slot, svm->shadow_msr_intercept.write);
786 }
787
788 static bool valid_msr_intercept(u32 index)
789 {
790         return direct_access_msr_slot(index) != -ENOENT;
791 }
792
793 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
794 {
795         u8 bit_write;
796         unsigned long tmp;
797         u32 offset;
798         u32 *msrpm;
799
800         /*
801          * For non-nested case:
802          * If the L01 MSR bitmap does not intercept the MSR, then we need to
803          * save it.
804          *
805          * For nested case:
806          * If the L02 MSR bitmap does not intercept the MSR, then we need to
807          * save it.
808          */
809         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
810                                       to_svm(vcpu)->msrpm;
811
812         offset    = svm_msrpm_offset(msr);
813         bit_write = 2 * (msr & 0x0f) + 1;
814         tmp       = msrpm[offset];
815
816         BUG_ON(offset == MSR_INVALID);
817
818         return test_bit(bit_write, &tmp);
819 }
820
821 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
822                                         u32 msr, int read, int write)
823 {
824         struct vcpu_svm *svm = to_svm(vcpu);
825         u8 bit_read, bit_write;
826         unsigned long tmp;
827         u32 offset;
828
829         /*
830          * If this warning triggers extend the direct_access_msrs list at the
831          * beginning of the file
832          */
833         WARN_ON(!valid_msr_intercept(msr));
834
835         /* Enforce non allowed MSRs to trap */
836         if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
837                 read = 0;
838
839         if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
840                 write = 0;
841
842         offset    = svm_msrpm_offset(msr);
843         bit_read  = 2 * (msr & 0x0f);
844         bit_write = 2 * (msr & 0x0f) + 1;
845         tmp       = msrpm[offset];
846
847         BUG_ON(offset == MSR_INVALID);
848
849         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
850         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
851
852         msrpm[offset] = tmp;
853
854         svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
855         svm->nested.force_msr_bitmap_recalc = true;
856 }
857
858 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
859                           int read, int write)
860 {
861         set_shadow_msr_intercept(vcpu, msr, read, write);
862         set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
863 }
864
865 u32 *svm_vcpu_alloc_msrpm(void)
866 {
867         unsigned int order = get_order(MSRPM_SIZE);
868         struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
869         u32 *msrpm;
870
871         if (!pages)
872                 return NULL;
873
874         msrpm = page_address(pages);
875         memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
876
877         return msrpm;
878 }
879
880 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
881 {
882         int i;
883
884         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
885                 if (!direct_access_msrs[i].always)
886                         continue;
887                 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
888         }
889 }
890
891 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
892 {
893         int i;
894
895         if (intercept == svm->x2avic_msrs_intercepted)
896                 return;
897
898         if (!x2avic_enabled)
899                 return;
900
901         for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
902                 int index = direct_access_msrs[i].index;
903
904                 if ((index < APIC_BASE_MSR) ||
905                     (index > APIC_BASE_MSR + 0xff))
906                         continue;
907                 set_msr_interception(&svm->vcpu, svm->msrpm, index,
908                                      !intercept, !intercept);
909         }
910
911         svm->x2avic_msrs_intercepted = intercept;
912 }
913
914 void svm_vcpu_free_msrpm(u32 *msrpm)
915 {
916         __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
917 }
918
919 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
920 {
921         struct vcpu_svm *svm = to_svm(vcpu);
922         u32 i;
923
924         /*
925          * Set intercept permissions for all direct access MSRs again. They
926          * will automatically get filtered through the MSR filter, so we are
927          * back in sync after this.
928          */
929         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
930                 u32 msr = direct_access_msrs[i].index;
931                 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
932                 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
933
934                 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
935         }
936 }
937
938 static void add_msr_offset(u32 offset)
939 {
940         int i;
941
942         for (i = 0; i < MSRPM_OFFSETS; ++i) {
943
944                 /* Offset already in list? */
945                 if (msrpm_offsets[i] == offset)
946                         return;
947
948                 /* Slot used by another offset? */
949                 if (msrpm_offsets[i] != MSR_INVALID)
950                         continue;
951
952                 /* Add offset to list */
953                 msrpm_offsets[i] = offset;
954
955                 return;
956         }
957
958         /*
959          * If this BUG triggers the msrpm_offsets table has an overflow. Just
960          * increase MSRPM_OFFSETS in this case.
961          */
962         BUG();
963 }
964
965 static void init_msrpm_offsets(void)
966 {
967         int i;
968
969         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
970
971         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
972                 u32 offset;
973
974                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
975                 BUG_ON(offset == MSR_INVALID);
976
977                 add_msr_offset(offset);
978         }
979 }
980
981 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
982 {
983         to_vmcb->save.dbgctl            = from_vmcb->save.dbgctl;
984         to_vmcb->save.br_from           = from_vmcb->save.br_from;
985         to_vmcb->save.br_to             = from_vmcb->save.br_to;
986         to_vmcb->save.last_excp_from    = from_vmcb->save.last_excp_from;
987         to_vmcb->save.last_excp_to      = from_vmcb->save.last_excp_to;
988
989         vmcb_mark_dirty(to_vmcb, VMCB_LBR);
990 }
991
992 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
993 {
994         struct vcpu_svm *svm = to_svm(vcpu);
995
996         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
997         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
998         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
999         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1000         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1001
1002         /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1003         if (is_guest_mode(vcpu))
1004                 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1005 }
1006
1007 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1008 {
1009         struct vcpu_svm *svm = to_svm(vcpu);
1010
1011         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1012         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1013         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1014         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1015         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1016
1017         /*
1018          * Move the LBR msrs back to the vmcb01 to avoid copying them
1019          * on nested guest entries.
1020          */
1021         if (is_guest_mode(vcpu))
1022                 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1023 }
1024
1025 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1026 {
1027         /*
1028          * If LBR virtualization is disabled, the LBR MSRs are always kept in
1029          * vmcb01.  If LBR virtualization is enabled and L1 is running VMs of
1030          * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1031          */
1032         return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1033                                                                    svm->vmcb01.ptr;
1034 }
1035
1036 void svm_update_lbrv(struct kvm_vcpu *vcpu)
1037 {
1038         struct vcpu_svm *svm = to_svm(vcpu);
1039         bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1040         bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1041                             (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
1042                             (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1043
1044         if (enable_lbrv == current_enable_lbrv)
1045                 return;
1046
1047         if (enable_lbrv)
1048                 svm_enable_lbrv(vcpu);
1049         else
1050                 svm_disable_lbrv(vcpu);
1051 }
1052
1053 void disable_nmi_singlestep(struct vcpu_svm *svm)
1054 {
1055         svm->nmi_singlestep = false;
1056
1057         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1058                 /* Clear our flags if they were not set by the guest */
1059                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1060                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1061                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1062                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1063         }
1064 }
1065
1066 static void grow_ple_window(struct kvm_vcpu *vcpu)
1067 {
1068         struct vcpu_svm *svm = to_svm(vcpu);
1069         struct vmcb_control_area *control = &svm->vmcb->control;
1070         int old = control->pause_filter_count;
1071
1072         if (kvm_pause_in_guest(vcpu->kvm))
1073                 return;
1074
1075         control->pause_filter_count = __grow_ple_window(old,
1076                                                         pause_filter_count,
1077                                                         pause_filter_count_grow,
1078                                                         pause_filter_count_max);
1079
1080         if (control->pause_filter_count != old) {
1081                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1082                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1083                                             control->pause_filter_count, old);
1084         }
1085 }
1086
1087 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1088 {
1089         struct vcpu_svm *svm = to_svm(vcpu);
1090         struct vmcb_control_area *control = &svm->vmcb->control;
1091         int old = control->pause_filter_count;
1092
1093         if (kvm_pause_in_guest(vcpu->kvm))
1094                 return;
1095
1096         control->pause_filter_count =
1097                                 __shrink_ple_window(old,
1098                                                     pause_filter_count,
1099                                                     pause_filter_count_shrink,
1100                                                     pause_filter_count);
1101         if (control->pause_filter_count != old) {
1102                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1103                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1104                                             control->pause_filter_count, old);
1105         }
1106 }
1107
1108 static void svm_hardware_unsetup(void)
1109 {
1110         int cpu;
1111
1112         sev_hardware_unsetup();
1113
1114         for_each_possible_cpu(cpu)
1115                 svm_cpu_uninit(cpu);
1116
1117         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1118         get_order(IOPM_SIZE));
1119         iopm_base = 0;
1120 }
1121
1122 static void init_seg(struct vmcb_seg *seg)
1123 {
1124         seg->selector = 0;
1125         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1126                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1127         seg->limit = 0xffff;
1128         seg->base = 0;
1129 }
1130
1131 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1132 {
1133         seg->selector = 0;
1134         seg->attrib = SVM_SELECTOR_P_MASK | type;
1135         seg->limit = 0xffff;
1136         seg->base = 0;
1137 }
1138
1139 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1140 {
1141         struct vcpu_svm *svm = to_svm(vcpu);
1142
1143         return svm->nested.ctl.tsc_offset;
1144 }
1145
1146 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1147 {
1148         struct vcpu_svm *svm = to_svm(vcpu);
1149
1150         return svm->tsc_ratio_msr;
1151 }
1152
1153 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1154 {
1155         struct vcpu_svm *svm = to_svm(vcpu);
1156
1157         svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1158         svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1159         vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1160 }
1161
1162 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1163 {
1164         preempt_disable();
1165         if (to_svm(vcpu)->guest_state_loaded)
1166                 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1167         preempt_enable();
1168 }
1169
1170 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1171 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1172                                               struct vcpu_svm *svm)
1173 {
1174         /*
1175          * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1176          * roots, or if INVPCID is disabled in the guest to inject #UD.
1177          */
1178         if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1179                 if (!npt_enabled ||
1180                     !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1181                         svm_set_intercept(svm, INTERCEPT_INVPCID);
1182                 else
1183                         svm_clr_intercept(svm, INTERCEPT_INVPCID);
1184         }
1185
1186         if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1187                 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1188                         svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1189                 else
1190                         svm_set_intercept(svm, INTERCEPT_RDTSCP);
1191         }
1192 }
1193
1194 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1195 {
1196         struct vcpu_svm *svm = to_svm(vcpu);
1197
1198         if (guest_cpuid_is_intel(vcpu)) {
1199                 /*
1200                  * We must intercept SYSENTER_EIP and SYSENTER_ESP
1201                  * accesses because the processor only stores 32 bits.
1202                  * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1203                  */
1204                 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1205                 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1206                 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1207
1208                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1209                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1210         } else {
1211                 /*
1212                  * If hardware supports Virtual VMLOAD VMSAVE then enable it
1213                  * in VMCB and clear intercepts to avoid #VMEXIT.
1214                  */
1215                 if (vls) {
1216                         svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1217                         svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1218                         svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1219                 }
1220                 /* No need to intercept these MSRs */
1221                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1222                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1223         }
1224 }
1225
1226 static void init_vmcb(struct kvm_vcpu *vcpu)
1227 {
1228         struct vcpu_svm *svm = to_svm(vcpu);
1229         struct vmcb *vmcb = svm->vmcb01.ptr;
1230         struct vmcb_control_area *control = &vmcb->control;
1231         struct vmcb_save_area *save = &vmcb->save;
1232
1233         svm_set_intercept(svm, INTERCEPT_CR0_READ);
1234         svm_set_intercept(svm, INTERCEPT_CR3_READ);
1235         svm_set_intercept(svm, INTERCEPT_CR4_READ);
1236         svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1237         svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1238         svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1239         if (!kvm_vcpu_apicv_active(vcpu))
1240                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1241
1242         set_dr_intercepts(svm);
1243
1244         set_exception_intercept(svm, PF_VECTOR);
1245         set_exception_intercept(svm, UD_VECTOR);
1246         set_exception_intercept(svm, MC_VECTOR);
1247         set_exception_intercept(svm, AC_VECTOR);
1248         set_exception_intercept(svm, DB_VECTOR);
1249         /*
1250          * Guest access to VMware backdoor ports could legitimately
1251          * trigger #GP because of TSS I/O permission bitmap.
1252          * We intercept those #GP and allow access to them anyway
1253          * as VMware does.
1254          */
1255         if (enable_vmware_backdoor)
1256                 set_exception_intercept(svm, GP_VECTOR);
1257
1258         svm_set_intercept(svm, INTERCEPT_INTR);
1259         svm_set_intercept(svm, INTERCEPT_NMI);
1260
1261         if (intercept_smi)
1262                 svm_set_intercept(svm, INTERCEPT_SMI);
1263
1264         svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1265         svm_set_intercept(svm, INTERCEPT_RDPMC);
1266         svm_set_intercept(svm, INTERCEPT_CPUID);
1267         svm_set_intercept(svm, INTERCEPT_INVD);
1268         svm_set_intercept(svm, INTERCEPT_INVLPG);
1269         svm_set_intercept(svm, INTERCEPT_INVLPGA);
1270         svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1271         svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1272         svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1273         svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1274         svm_set_intercept(svm, INTERCEPT_VMRUN);
1275         svm_set_intercept(svm, INTERCEPT_VMMCALL);
1276         svm_set_intercept(svm, INTERCEPT_VMLOAD);
1277         svm_set_intercept(svm, INTERCEPT_VMSAVE);
1278         svm_set_intercept(svm, INTERCEPT_STGI);
1279         svm_set_intercept(svm, INTERCEPT_CLGI);
1280         svm_set_intercept(svm, INTERCEPT_SKINIT);
1281         svm_set_intercept(svm, INTERCEPT_WBINVD);
1282         svm_set_intercept(svm, INTERCEPT_XSETBV);
1283         svm_set_intercept(svm, INTERCEPT_RDPRU);
1284         svm_set_intercept(svm, INTERCEPT_RSM);
1285
1286         if (!kvm_mwait_in_guest(vcpu->kvm)) {
1287                 svm_set_intercept(svm, INTERCEPT_MONITOR);
1288                 svm_set_intercept(svm, INTERCEPT_MWAIT);
1289         }
1290
1291         if (!kvm_hlt_in_guest(vcpu->kvm))
1292                 svm_set_intercept(svm, INTERCEPT_HLT);
1293
1294         control->iopm_base_pa = __sme_set(iopm_base);
1295         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1296         control->int_ctl = V_INTR_MASKING_MASK;
1297
1298         init_seg(&save->es);
1299         init_seg(&save->ss);
1300         init_seg(&save->ds);
1301         init_seg(&save->fs);
1302         init_seg(&save->gs);
1303
1304         save->cs.selector = 0xf000;
1305         save->cs.base = 0xffff0000;
1306         /* Executable/Readable Code Segment */
1307         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1308                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1309         save->cs.limit = 0xffff;
1310
1311         save->gdtr.base = 0;
1312         save->gdtr.limit = 0xffff;
1313         save->idtr.base = 0;
1314         save->idtr.limit = 0xffff;
1315
1316         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1317         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1318
1319         if (npt_enabled) {
1320                 /* Setup VMCB for Nested Paging */
1321                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1322                 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1323                 clr_exception_intercept(svm, PF_VECTOR);
1324                 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1325                 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1326                 save->g_pat = vcpu->arch.pat;
1327                 save->cr3 = 0;
1328         }
1329         svm->current_vmcb->asid_generation = 0;
1330         svm->asid = 0;
1331
1332         svm->nested.vmcb12_gpa = INVALID_GPA;
1333         svm->nested.last_vmcb12_gpa = INVALID_GPA;
1334
1335         if (!kvm_pause_in_guest(vcpu->kvm)) {
1336                 control->pause_filter_count = pause_filter_count;
1337                 if (pause_filter_thresh)
1338                         control->pause_filter_thresh = pause_filter_thresh;
1339                 svm_set_intercept(svm, INTERCEPT_PAUSE);
1340         } else {
1341                 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1342         }
1343
1344         svm_recalc_instruction_intercepts(vcpu, svm);
1345
1346         /*
1347          * If the host supports V_SPEC_CTRL then disable the interception
1348          * of MSR_IA32_SPEC_CTRL.
1349          */
1350         if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1351                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1352
1353         if (kvm_vcpu_apicv_active(vcpu))
1354                 avic_init_vmcb(svm, vmcb);
1355
1356         if (vnmi)
1357                 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1358
1359         if (vgif) {
1360                 svm_clr_intercept(svm, INTERCEPT_STGI);
1361                 svm_clr_intercept(svm, INTERCEPT_CLGI);
1362                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1363         }
1364
1365         if (sev_guest(vcpu->kvm))
1366                 sev_init_vmcb(svm);
1367
1368         svm_hv_init_vmcb(vmcb);
1369         init_vmcb_after_set_cpuid(vcpu);
1370
1371         vmcb_mark_all_dirty(vmcb);
1372
1373         enable_gif(svm);
1374 }
1375
1376 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1377 {
1378         struct vcpu_svm *svm = to_svm(vcpu);
1379
1380         svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1381
1382         svm_init_osvw(vcpu);
1383         vcpu->arch.microcode_version = 0x01000065;
1384         svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1385
1386         svm->nmi_masked = false;
1387         svm->awaiting_iret_completion = false;
1388
1389         if (sev_es_guest(vcpu->kvm))
1390                 sev_es_vcpu_reset(svm);
1391 }
1392
1393 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1394 {
1395         struct vcpu_svm *svm = to_svm(vcpu);
1396
1397         svm->spec_ctrl = 0;
1398         svm->virt_spec_ctrl = 0;
1399
1400         init_vmcb(vcpu);
1401
1402         if (!init_event)
1403                 __svm_vcpu_reset(vcpu);
1404 }
1405
1406 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1407 {
1408         svm->current_vmcb = target_vmcb;
1409         svm->vmcb = target_vmcb->ptr;
1410 }
1411
1412 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1413 {
1414         struct vcpu_svm *svm;
1415         struct page *vmcb01_page;
1416         struct page *vmsa_page = NULL;
1417         int err;
1418
1419         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1420         svm = to_svm(vcpu);
1421
1422         err = -ENOMEM;
1423         vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1424         if (!vmcb01_page)
1425                 goto out;
1426
1427         if (sev_es_guest(vcpu->kvm)) {
1428                 /*
1429                  * SEV-ES guests require a separate VMSA page used to contain
1430                  * the encrypted register state of the guest.
1431                  */
1432                 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1433                 if (!vmsa_page)
1434                         goto error_free_vmcb_page;
1435
1436                 /*
1437                  * SEV-ES guests maintain an encrypted version of their FPU
1438                  * state which is restored and saved on VMRUN and VMEXIT.
1439                  * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1440                  * do xsave/xrstor on it.
1441                  */
1442                 fpstate_set_confidential(&vcpu->arch.guest_fpu);
1443         }
1444
1445         err = avic_init_vcpu(svm);
1446         if (err)
1447                 goto error_free_vmsa_page;
1448
1449         svm->msrpm = svm_vcpu_alloc_msrpm();
1450         if (!svm->msrpm) {
1451                 err = -ENOMEM;
1452                 goto error_free_vmsa_page;
1453         }
1454
1455         svm->x2avic_msrs_intercepted = true;
1456
1457         svm->vmcb01.ptr = page_address(vmcb01_page);
1458         svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1459         svm_switch_vmcb(svm, &svm->vmcb01);
1460
1461         if (vmsa_page)
1462                 svm->sev_es.vmsa = page_address(vmsa_page);
1463
1464         svm->guest_state_loaded = false;
1465
1466         return 0;
1467
1468 error_free_vmsa_page:
1469         if (vmsa_page)
1470                 __free_page(vmsa_page);
1471 error_free_vmcb_page:
1472         __free_page(vmcb01_page);
1473 out:
1474         return err;
1475 }
1476
1477 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1478 {
1479         int i;
1480
1481         for_each_online_cpu(i)
1482                 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1483 }
1484
1485 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1486 {
1487         struct vcpu_svm *svm = to_svm(vcpu);
1488
1489         /*
1490          * The vmcb page can be recycled, causing a false negative in
1491          * svm_vcpu_load(). So, ensure that no logical CPU has this
1492          * vmcb page recorded as its current vmcb.
1493          */
1494         svm_clear_current_vmcb(svm->vmcb);
1495
1496         svm_leave_nested(vcpu);
1497         svm_free_nested(svm);
1498
1499         sev_free_vcpu(vcpu);
1500
1501         __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1502         __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1503 }
1504
1505 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1506 {
1507         struct vcpu_svm *svm = to_svm(vcpu);
1508         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1509
1510         if (sev_es_guest(vcpu->kvm))
1511                 sev_es_unmap_ghcb(svm);
1512
1513         if (svm->guest_state_loaded)
1514                 return;
1515
1516         /*
1517          * Save additional host state that will be restored on VMEXIT (sev-es)
1518          * or subsequent vmload of host save area.
1519          */
1520         vmsave(sd->save_area_pa);
1521         if (sev_es_guest(vcpu->kvm)) {
1522                 struct sev_es_save_area *hostsa;
1523                 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1524
1525                 sev_es_prepare_switch_to_guest(hostsa);
1526         }
1527
1528         if (tsc_scaling)
1529                 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1530
1531         /*
1532          * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1533          * available. The user return MSR support is not required in this case
1534          * because TSC_AUX is restored on #VMEXIT from the host save area
1535          * (which has been initialized in svm_hardware_enable()).
1536          */
1537         if (likely(tsc_aux_uret_slot >= 0) &&
1538             (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1539                 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1540
1541         svm->guest_state_loaded = true;
1542 }
1543
1544 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1545 {
1546         to_svm(vcpu)->guest_state_loaded = false;
1547 }
1548
1549 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1550 {
1551         struct vcpu_svm *svm = to_svm(vcpu);
1552         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1553
1554         if (sd->current_vmcb != svm->vmcb) {
1555                 sd->current_vmcb = svm->vmcb;
1556
1557                 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
1558                         indirect_branch_prediction_barrier();
1559         }
1560         if (kvm_vcpu_apicv_active(vcpu))
1561                 avic_vcpu_load(vcpu, cpu);
1562 }
1563
1564 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1565 {
1566         if (kvm_vcpu_apicv_active(vcpu))
1567                 avic_vcpu_put(vcpu);
1568
1569         svm_prepare_host_switch(vcpu);
1570
1571         ++vcpu->stat.host_state_reload;
1572 }
1573
1574 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1575 {
1576         struct vcpu_svm *svm = to_svm(vcpu);
1577         unsigned long rflags = svm->vmcb->save.rflags;
1578
1579         if (svm->nmi_singlestep) {
1580                 /* Hide our flags if they were not set by the guest */
1581                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1582                         rflags &= ~X86_EFLAGS_TF;
1583                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1584                         rflags &= ~X86_EFLAGS_RF;
1585         }
1586         return rflags;
1587 }
1588
1589 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1590 {
1591         if (to_svm(vcpu)->nmi_singlestep)
1592                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1593
1594        /*
1595         * Any change of EFLAGS.VM is accompanied by a reload of SS
1596         * (caused by either a task switch or an inter-privilege IRET),
1597         * so we do not need to update the CPL here.
1598         */
1599         to_svm(vcpu)->vmcb->save.rflags = rflags;
1600 }
1601
1602 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1603 {
1604         struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1605
1606         return sev_es_guest(vcpu->kvm)
1607                 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1608                 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1609 }
1610
1611 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1612 {
1613         kvm_register_mark_available(vcpu, reg);
1614
1615         switch (reg) {
1616         case VCPU_EXREG_PDPTR:
1617                 /*
1618                  * When !npt_enabled, mmu->pdptrs[] is already available since
1619                  * it is always updated per SDM when moving to CRs.
1620                  */
1621                 if (npt_enabled)
1622                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1623                 break;
1624         default:
1625                 KVM_BUG_ON(1, vcpu->kvm);
1626         }
1627 }
1628
1629 static void svm_set_vintr(struct vcpu_svm *svm)
1630 {
1631         struct vmcb_control_area *control;
1632
1633         /*
1634          * The following fields are ignored when AVIC is enabled
1635          */
1636         WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1637
1638         svm_set_intercept(svm, INTERCEPT_VINTR);
1639
1640         /*
1641          * Recalculating intercepts may have cleared the VINTR intercept.  If
1642          * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1643          * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1644          * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1645          * interrupts will never be unblocked while L2 is running.
1646          */
1647         if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1648                 return;
1649
1650         /*
1651          * This is just a dummy VINTR to actually cause a vmexit to happen.
1652          * Actual injection of virtual interrupts happens through EVENTINJ.
1653          */
1654         control = &svm->vmcb->control;
1655         control->int_vector = 0x0;
1656         control->int_ctl &= ~V_INTR_PRIO_MASK;
1657         control->int_ctl |= V_IRQ_MASK |
1658                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1659         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1660 }
1661
1662 static void svm_clear_vintr(struct vcpu_svm *svm)
1663 {
1664         svm_clr_intercept(svm, INTERCEPT_VINTR);
1665
1666         /* Drop int_ctl fields related to VINTR injection.  */
1667         svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1668         if (is_guest_mode(&svm->vcpu)) {
1669                 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1670
1671                 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1672                         (svm->nested.ctl.int_ctl & V_TPR_MASK));
1673
1674                 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1675                         V_IRQ_INJECTION_BITS_MASK;
1676
1677                 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1678         }
1679
1680         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1681 }
1682
1683 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1684 {
1685         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1686         struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1687
1688         switch (seg) {
1689         case VCPU_SREG_CS: return &save->cs;
1690         case VCPU_SREG_DS: return &save->ds;
1691         case VCPU_SREG_ES: return &save->es;
1692         case VCPU_SREG_FS: return &save01->fs;
1693         case VCPU_SREG_GS: return &save01->gs;
1694         case VCPU_SREG_SS: return &save->ss;
1695         case VCPU_SREG_TR: return &save01->tr;
1696         case VCPU_SREG_LDTR: return &save01->ldtr;
1697         }
1698         BUG();
1699         return NULL;
1700 }
1701
1702 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1703 {
1704         struct vmcb_seg *s = svm_seg(vcpu, seg);
1705
1706         return s->base;
1707 }
1708
1709 static void svm_get_segment(struct kvm_vcpu *vcpu,
1710                             struct kvm_segment *var, int seg)
1711 {
1712         struct vmcb_seg *s = svm_seg(vcpu, seg);
1713
1714         var->base = s->base;
1715         var->limit = s->limit;
1716         var->selector = s->selector;
1717         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1718         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1719         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1720         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1721         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1722         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1723         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1724
1725         /*
1726          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1727          * However, the SVM spec states that the G bit is not observed by the
1728          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1729          * So let's synthesize a legal G bit for all segments, this helps
1730          * running KVM nested. It also helps cross-vendor migration, because
1731          * Intel's vmentry has a check on the 'G' bit.
1732          */
1733         var->g = s->limit > 0xfffff;
1734
1735         /*
1736          * AMD's VMCB does not have an explicit unusable field, so emulate it
1737          * for cross vendor migration purposes by "not present"
1738          */
1739         var->unusable = !var->present;
1740
1741         switch (seg) {
1742         case VCPU_SREG_TR:
1743                 /*
1744                  * Work around a bug where the busy flag in the tr selector
1745                  * isn't exposed
1746                  */
1747                 var->type |= 0x2;
1748                 break;
1749         case VCPU_SREG_DS:
1750         case VCPU_SREG_ES:
1751         case VCPU_SREG_FS:
1752         case VCPU_SREG_GS:
1753                 /*
1754                  * The accessed bit must always be set in the segment
1755                  * descriptor cache, although it can be cleared in the
1756                  * descriptor, the cached bit always remains at 1. Since
1757                  * Intel has a check on this, set it here to support
1758                  * cross-vendor migration.
1759                  */
1760                 if (!var->unusable)
1761                         var->type |= 0x1;
1762                 break;
1763         case VCPU_SREG_SS:
1764                 /*
1765                  * On AMD CPUs sometimes the DB bit in the segment
1766                  * descriptor is left as 1, although the whole segment has
1767                  * been made unusable. Clear it here to pass an Intel VMX
1768                  * entry check when cross vendor migrating.
1769                  */
1770                 if (var->unusable)
1771                         var->db = 0;
1772                 /* This is symmetric with svm_set_segment() */
1773                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1774                 break;
1775         }
1776 }
1777
1778 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1779 {
1780         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1781
1782         return save->cpl;
1783 }
1784
1785 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1786 {
1787         struct kvm_segment cs;
1788
1789         svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1790         *db = cs.db;
1791         *l = cs.l;
1792 }
1793
1794 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1795 {
1796         struct vcpu_svm *svm = to_svm(vcpu);
1797
1798         dt->size = svm->vmcb->save.idtr.limit;
1799         dt->address = svm->vmcb->save.idtr.base;
1800 }
1801
1802 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1803 {
1804         struct vcpu_svm *svm = to_svm(vcpu);
1805
1806         svm->vmcb->save.idtr.limit = dt->size;
1807         svm->vmcb->save.idtr.base = dt->address ;
1808         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1809 }
1810
1811 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1812 {
1813         struct vcpu_svm *svm = to_svm(vcpu);
1814
1815         dt->size = svm->vmcb->save.gdtr.limit;
1816         dt->address = svm->vmcb->save.gdtr.base;
1817 }
1818
1819 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1820 {
1821         struct vcpu_svm *svm = to_svm(vcpu);
1822
1823         svm->vmcb->save.gdtr.limit = dt->size;
1824         svm->vmcb->save.gdtr.base = dt->address ;
1825         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1826 }
1827
1828 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1829 {
1830         struct vcpu_svm *svm = to_svm(vcpu);
1831
1832         /*
1833          * For guests that don't set guest_state_protected, the cr3 update is
1834          * handled via kvm_mmu_load() while entering the guest. For guests
1835          * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1836          * VMCB save area now, since the save area will become the initial
1837          * contents of the VMSA, and future VMCB save area updates won't be
1838          * seen.
1839          */
1840         if (sev_es_guest(vcpu->kvm)) {
1841                 svm->vmcb->save.cr3 = cr3;
1842                 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1843         }
1844 }
1845
1846 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1847 {
1848         return true;
1849 }
1850
1851 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1852 {
1853         struct vcpu_svm *svm = to_svm(vcpu);
1854         u64 hcr0 = cr0;
1855         bool old_paging = is_paging(vcpu);
1856
1857 #ifdef CONFIG_X86_64
1858         if (vcpu->arch.efer & EFER_LME) {
1859                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1860                         vcpu->arch.efer |= EFER_LMA;
1861                         if (!vcpu->arch.guest_state_protected)
1862                                 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1863                 }
1864
1865                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1866                         vcpu->arch.efer &= ~EFER_LMA;
1867                         if (!vcpu->arch.guest_state_protected)
1868                                 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1869                 }
1870         }
1871 #endif
1872         vcpu->arch.cr0 = cr0;
1873
1874         if (!npt_enabled) {
1875                 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1876                 if (old_paging != is_paging(vcpu))
1877                         svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1878         }
1879
1880         /*
1881          * re-enable caching here because the QEMU bios
1882          * does not do it - this results in some delay at
1883          * reboot
1884          */
1885         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1886                 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1887
1888         svm->vmcb->save.cr0 = hcr0;
1889         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1890
1891         /*
1892          * SEV-ES guests must always keep the CR intercepts cleared. CR
1893          * tracking is done using the CR write traps.
1894          */
1895         if (sev_es_guest(vcpu->kvm))
1896                 return;
1897
1898         if (hcr0 == cr0) {
1899                 /* Selective CR0 write remains on.  */
1900                 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1901                 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1902         } else {
1903                 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1904                 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1905         }
1906 }
1907
1908 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1909 {
1910         return true;
1911 }
1912
1913 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1914 {
1915         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1916         unsigned long old_cr4 = vcpu->arch.cr4;
1917
1918         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1919                 svm_flush_tlb_current(vcpu);
1920
1921         vcpu->arch.cr4 = cr4;
1922         if (!npt_enabled) {
1923                 cr4 |= X86_CR4_PAE;
1924
1925                 if (!is_paging(vcpu))
1926                         cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1927         }
1928         cr4 |= host_cr4_mce;
1929         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1930         vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1931
1932         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1933                 kvm_update_cpuid_runtime(vcpu);
1934 }
1935
1936 static void svm_set_segment(struct kvm_vcpu *vcpu,
1937                             struct kvm_segment *var, int seg)
1938 {
1939         struct vcpu_svm *svm = to_svm(vcpu);
1940         struct vmcb_seg *s = svm_seg(vcpu, seg);
1941
1942         s->base = var->base;
1943         s->limit = var->limit;
1944         s->selector = var->selector;
1945         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1946         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1947         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1948         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1949         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1950         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1951         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1952         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1953
1954         /*
1955          * This is always accurate, except if SYSRET returned to a segment
1956          * with SS.DPL != 3.  Intel does not have this quirk, and always
1957          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1958          * would entail passing the CPL to userspace and back.
1959          */
1960         if (seg == VCPU_SREG_SS)
1961                 /* This is symmetric with svm_get_segment() */
1962                 svm->vmcb->save.cpl = (var->dpl & 3);
1963
1964         vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1965 }
1966
1967 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1968 {
1969         struct vcpu_svm *svm = to_svm(vcpu);
1970
1971         clr_exception_intercept(svm, BP_VECTOR);
1972
1973         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1974                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1975                         set_exception_intercept(svm, BP_VECTOR);
1976         }
1977 }
1978
1979 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1980 {
1981         if (sd->next_asid > sd->max_asid) {
1982                 ++sd->asid_generation;
1983                 sd->next_asid = sd->min_asid;
1984                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1985                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1986         }
1987
1988         svm->current_vmcb->asid_generation = sd->asid_generation;
1989         svm->asid = sd->next_asid++;
1990 }
1991
1992 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1993 {
1994         struct vmcb *vmcb = svm->vmcb;
1995
1996         if (svm->vcpu.arch.guest_state_protected)
1997                 return;
1998
1999         if (unlikely(value != vmcb->save.dr6)) {
2000                 vmcb->save.dr6 = value;
2001                 vmcb_mark_dirty(vmcb, VMCB_DR);
2002         }
2003 }
2004
2005 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2006 {
2007         struct vcpu_svm *svm = to_svm(vcpu);
2008
2009         if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2010                 return;
2011
2012         get_debugreg(vcpu->arch.db[0], 0);
2013         get_debugreg(vcpu->arch.db[1], 1);
2014         get_debugreg(vcpu->arch.db[2], 2);
2015         get_debugreg(vcpu->arch.db[3], 3);
2016         /*
2017          * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2018          * because db_interception might need it.  We can do it before vmentry.
2019          */
2020         vcpu->arch.dr6 = svm->vmcb->save.dr6;
2021         vcpu->arch.dr7 = svm->vmcb->save.dr7;
2022         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2023         set_dr_intercepts(svm);
2024 }
2025
2026 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2027 {
2028         struct vcpu_svm *svm = to_svm(vcpu);
2029
2030         if (vcpu->arch.guest_state_protected)
2031                 return;
2032
2033         svm->vmcb->save.dr7 = value;
2034         vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2035 }
2036
2037 static int pf_interception(struct kvm_vcpu *vcpu)
2038 {
2039         struct vcpu_svm *svm = to_svm(vcpu);
2040
2041         u64 fault_address = svm->vmcb->control.exit_info_2;
2042         u64 error_code = svm->vmcb->control.exit_info_1;
2043
2044         return kvm_handle_page_fault(vcpu, error_code, fault_address,
2045                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2046                         svm->vmcb->control.insn_bytes : NULL,
2047                         svm->vmcb->control.insn_len);
2048 }
2049
2050 static int npf_interception(struct kvm_vcpu *vcpu)
2051 {
2052         struct vcpu_svm *svm = to_svm(vcpu);
2053
2054         u64 fault_address = svm->vmcb->control.exit_info_2;
2055         u64 error_code = svm->vmcb->control.exit_info_1;
2056
2057         trace_kvm_page_fault(vcpu, fault_address, error_code);
2058         return kvm_mmu_page_fault(vcpu, fault_address, error_code,
2059                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2060                         svm->vmcb->control.insn_bytes : NULL,
2061                         svm->vmcb->control.insn_len);
2062 }
2063
2064 static int db_interception(struct kvm_vcpu *vcpu)
2065 {
2066         struct kvm_run *kvm_run = vcpu->run;
2067         struct vcpu_svm *svm = to_svm(vcpu);
2068
2069         if (!(vcpu->guest_debug &
2070               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2071                 !svm->nmi_singlestep) {
2072                 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2073                 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2074                 return 1;
2075         }
2076
2077         if (svm->nmi_singlestep) {
2078                 disable_nmi_singlestep(svm);
2079                 /* Make sure we check for pending NMIs upon entry */
2080                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2081         }
2082
2083         if (vcpu->guest_debug &
2084             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2085                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2086                 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2087                 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2088                 kvm_run->debug.arch.pc =
2089                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2090                 kvm_run->debug.arch.exception = DB_VECTOR;
2091                 return 0;
2092         }
2093
2094         return 1;
2095 }
2096
2097 static int bp_interception(struct kvm_vcpu *vcpu)
2098 {
2099         struct vcpu_svm *svm = to_svm(vcpu);
2100         struct kvm_run *kvm_run = vcpu->run;
2101
2102         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2103         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2104         kvm_run->debug.arch.exception = BP_VECTOR;
2105         return 0;
2106 }
2107
2108 static int ud_interception(struct kvm_vcpu *vcpu)
2109 {
2110         return handle_ud(vcpu);
2111 }
2112
2113 static int ac_interception(struct kvm_vcpu *vcpu)
2114 {
2115         kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2116         return 1;
2117 }
2118
2119 static bool is_erratum_383(void)
2120 {
2121         int err, i;
2122         u64 value;
2123
2124         if (!erratum_383_found)
2125                 return false;
2126
2127         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2128         if (err)
2129                 return false;
2130
2131         /* Bit 62 may or may not be set for this mce */
2132         value &= ~(1ULL << 62);
2133
2134         if (value != 0xb600000000010015ULL)
2135                 return false;
2136
2137         /* Clear MCi_STATUS registers */
2138         for (i = 0; i < 6; ++i)
2139                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2140
2141         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2142         if (!err) {
2143                 u32 low, high;
2144
2145                 value &= ~(1ULL << 2);
2146                 low    = lower_32_bits(value);
2147                 high   = upper_32_bits(value);
2148
2149                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2150         }
2151
2152         /* Flush tlb to evict multi-match entries */
2153         __flush_tlb_all();
2154
2155         return true;
2156 }
2157
2158 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2159 {
2160         if (is_erratum_383()) {
2161                 /*
2162                  * Erratum 383 triggered. Guest state is corrupt so kill the
2163                  * guest.
2164                  */
2165                 pr_err("Guest triggered AMD Erratum 383\n");
2166
2167                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2168
2169                 return;
2170         }
2171
2172         /*
2173          * On an #MC intercept the MCE handler is not called automatically in
2174          * the host. So do it by hand here.
2175          */
2176         kvm_machine_check();
2177 }
2178
2179 static int mc_interception(struct kvm_vcpu *vcpu)
2180 {
2181         return 1;
2182 }
2183
2184 static int shutdown_interception(struct kvm_vcpu *vcpu)
2185 {
2186         struct kvm_run *kvm_run = vcpu->run;
2187         struct vcpu_svm *svm = to_svm(vcpu);
2188
2189
2190         /*
2191          * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2192          * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2193          * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2194          * userspace.  At a platform view, INIT is acceptable behavior as
2195          * there exist bare metal platforms that automatically INIT the CPU
2196          * in response to shutdown.
2197          *
2198          * The VM save area for SEV-ES guests has already been encrypted so it
2199          * cannot be reinitialized, i.e. synthesizing INIT is futile.
2200          */
2201         if (!sev_es_guest(vcpu->kvm)) {
2202                 clear_page(svm->vmcb);
2203                 kvm_vcpu_reset(vcpu, true);
2204         }
2205
2206         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2207         return 0;
2208 }
2209
2210 static int io_interception(struct kvm_vcpu *vcpu)
2211 {
2212         struct vcpu_svm *svm = to_svm(vcpu);
2213         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2214         int size, in, string;
2215         unsigned port;
2216
2217         ++vcpu->stat.io_exits;
2218         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2219         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2220         port = io_info >> 16;
2221         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2222
2223         if (string) {
2224                 if (sev_es_guest(vcpu->kvm))
2225                         return sev_es_string_io(svm, size, port, in);
2226                 else
2227                         return kvm_emulate_instruction(vcpu, 0);
2228         }
2229
2230         svm->next_rip = svm->vmcb->control.exit_info_2;
2231
2232         return kvm_fast_pio(vcpu, size, port, in);
2233 }
2234
2235 static int nmi_interception(struct kvm_vcpu *vcpu)
2236 {
2237         return 1;
2238 }
2239
2240 static int smi_interception(struct kvm_vcpu *vcpu)
2241 {
2242         return 1;
2243 }
2244
2245 static int intr_interception(struct kvm_vcpu *vcpu)
2246 {
2247         ++vcpu->stat.irq_exits;
2248         return 1;
2249 }
2250
2251 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2252 {
2253         struct vcpu_svm *svm = to_svm(vcpu);
2254         struct vmcb *vmcb12;
2255         struct kvm_host_map map;
2256         int ret;
2257
2258         if (nested_svm_check_permissions(vcpu))
2259                 return 1;
2260
2261         ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2262         if (ret) {
2263                 if (ret == -EINVAL)
2264                         kvm_inject_gp(vcpu, 0);
2265                 return 1;
2266         }
2267
2268         vmcb12 = map.hva;
2269
2270         ret = kvm_skip_emulated_instruction(vcpu);
2271
2272         if (vmload) {
2273                 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2274                 svm->sysenter_eip_hi = 0;
2275                 svm->sysenter_esp_hi = 0;
2276         } else {
2277                 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2278         }
2279
2280         kvm_vcpu_unmap(vcpu, &map, true);
2281
2282         return ret;
2283 }
2284
2285 static int vmload_interception(struct kvm_vcpu *vcpu)
2286 {
2287         return vmload_vmsave_interception(vcpu, true);
2288 }
2289
2290 static int vmsave_interception(struct kvm_vcpu *vcpu)
2291 {
2292         return vmload_vmsave_interception(vcpu, false);
2293 }
2294
2295 static int vmrun_interception(struct kvm_vcpu *vcpu)
2296 {
2297         if (nested_svm_check_permissions(vcpu))
2298                 return 1;
2299
2300         return nested_svm_vmrun(vcpu);
2301 }
2302
2303 enum {
2304         NONE_SVM_INSTR,
2305         SVM_INSTR_VMRUN,
2306         SVM_INSTR_VMLOAD,
2307         SVM_INSTR_VMSAVE,
2308 };
2309
2310 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2311 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2312 {
2313         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2314
2315         if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2316                 return NONE_SVM_INSTR;
2317
2318         switch (ctxt->modrm) {
2319         case 0xd8: /* VMRUN */
2320                 return SVM_INSTR_VMRUN;
2321         case 0xda: /* VMLOAD */
2322                 return SVM_INSTR_VMLOAD;
2323         case 0xdb: /* VMSAVE */
2324                 return SVM_INSTR_VMSAVE;
2325         default:
2326                 break;
2327         }
2328
2329         return NONE_SVM_INSTR;
2330 }
2331
2332 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2333 {
2334         const int guest_mode_exit_codes[] = {
2335                 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2336                 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2337                 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2338         };
2339         int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2340                 [SVM_INSTR_VMRUN] = vmrun_interception,
2341                 [SVM_INSTR_VMLOAD] = vmload_interception,
2342                 [SVM_INSTR_VMSAVE] = vmsave_interception,
2343         };
2344         struct vcpu_svm *svm = to_svm(vcpu);
2345         int ret;
2346
2347         if (is_guest_mode(vcpu)) {
2348                 /* Returns '1' or -errno on failure, '0' on success. */
2349                 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2350                 if (ret)
2351                         return ret;
2352                 return 1;
2353         }
2354         return svm_instr_handlers[opcode](vcpu);
2355 }
2356
2357 /*
2358  * #GP handling code. Note that #GP can be triggered under the following two
2359  * cases:
2360  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2361  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2362  *      regions (e.g. SMM memory on host).
2363  *   2) VMware backdoor
2364  */
2365 static int gp_interception(struct kvm_vcpu *vcpu)
2366 {
2367         struct vcpu_svm *svm = to_svm(vcpu);
2368         u32 error_code = svm->vmcb->control.exit_info_1;
2369         int opcode;
2370
2371         /* Both #GP cases have zero error_code */
2372         if (error_code)
2373                 goto reinject;
2374
2375         /* Decode the instruction for usage later */
2376         if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2377                 goto reinject;
2378
2379         opcode = svm_instr_opcode(vcpu);
2380
2381         if (opcode == NONE_SVM_INSTR) {
2382                 if (!enable_vmware_backdoor)
2383                         goto reinject;
2384
2385                 /*
2386                  * VMware backdoor emulation on #GP interception only handles
2387                  * IN{S}, OUT{S}, and RDPMC.
2388                  */
2389                 if (!is_guest_mode(vcpu))
2390                         return kvm_emulate_instruction(vcpu,
2391                                 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2392         } else {
2393                 /* All SVM instructions expect page aligned RAX */
2394                 if (svm->vmcb->save.rax & ~PAGE_MASK)
2395                         goto reinject;
2396
2397                 return emulate_svm_instr(vcpu, opcode);
2398         }
2399
2400 reinject:
2401         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2402         return 1;
2403 }
2404
2405 void svm_set_gif(struct vcpu_svm *svm, bool value)
2406 {
2407         if (value) {
2408                 /*
2409                  * If VGIF is enabled, the STGI intercept is only added to
2410                  * detect the opening of the SMI/NMI window; remove it now.
2411                  * Likewise, clear the VINTR intercept, we will set it
2412                  * again while processing KVM_REQ_EVENT if needed.
2413                  */
2414                 if (vgif)
2415                         svm_clr_intercept(svm, INTERCEPT_STGI);
2416                 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2417                         svm_clear_vintr(svm);
2418
2419                 enable_gif(svm);
2420                 if (svm->vcpu.arch.smi_pending ||
2421                     svm->vcpu.arch.nmi_pending ||
2422                     kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2423                     kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2424                         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2425         } else {
2426                 disable_gif(svm);
2427
2428                 /*
2429                  * After a CLGI no interrupts should come.  But if vGIF is
2430                  * in use, we still rely on the VINTR intercept (rather than
2431                  * STGI) to detect an open interrupt window.
2432                 */
2433                 if (!vgif)
2434                         svm_clear_vintr(svm);
2435         }
2436 }
2437
2438 static int stgi_interception(struct kvm_vcpu *vcpu)
2439 {
2440         int ret;
2441
2442         if (nested_svm_check_permissions(vcpu))
2443                 return 1;
2444
2445         ret = kvm_skip_emulated_instruction(vcpu);
2446         svm_set_gif(to_svm(vcpu), true);
2447         return ret;
2448 }
2449
2450 static int clgi_interception(struct kvm_vcpu *vcpu)
2451 {
2452         int ret;
2453
2454         if (nested_svm_check_permissions(vcpu))
2455                 return 1;
2456
2457         ret = kvm_skip_emulated_instruction(vcpu);
2458         svm_set_gif(to_svm(vcpu), false);
2459         return ret;
2460 }
2461
2462 static int invlpga_interception(struct kvm_vcpu *vcpu)
2463 {
2464         gva_t gva = kvm_rax_read(vcpu);
2465         u32 asid = kvm_rcx_read(vcpu);
2466
2467         /* FIXME: Handle an address size prefix. */
2468         if (!is_long_mode(vcpu))
2469                 gva = (u32)gva;
2470
2471         trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2472
2473         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2474         kvm_mmu_invlpg(vcpu, gva);
2475
2476         return kvm_skip_emulated_instruction(vcpu);
2477 }
2478
2479 static int skinit_interception(struct kvm_vcpu *vcpu)
2480 {
2481         trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2482
2483         kvm_queue_exception(vcpu, UD_VECTOR);
2484         return 1;
2485 }
2486
2487 static int task_switch_interception(struct kvm_vcpu *vcpu)
2488 {
2489         struct vcpu_svm *svm = to_svm(vcpu);
2490         u16 tss_selector;
2491         int reason;
2492         int int_type = svm->vmcb->control.exit_int_info &
2493                 SVM_EXITINTINFO_TYPE_MASK;
2494         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2495         uint32_t type =
2496                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2497         uint32_t idt_v =
2498                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2499         bool has_error_code = false;
2500         u32 error_code = 0;
2501
2502         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2503
2504         if (svm->vmcb->control.exit_info_2 &
2505             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2506                 reason = TASK_SWITCH_IRET;
2507         else if (svm->vmcb->control.exit_info_2 &
2508                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2509                 reason = TASK_SWITCH_JMP;
2510         else if (idt_v)
2511                 reason = TASK_SWITCH_GATE;
2512         else
2513                 reason = TASK_SWITCH_CALL;
2514
2515         if (reason == TASK_SWITCH_GATE) {
2516                 switch (type) {
2517                 case SVM_EXITINTINFO_TYPE_NMI:
2518                         vcpu->arch.nmi_injected = false;
2519                         break;
2520                 case SVM_EXITINTINFO_TYPE_EXEPT:
2521                         if (svm->vmcb->control.exit_info_2 &
2522                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2523                                 has_error_code = true;
2524                                 error_code =
2525                                         (u32)svm->vmcb->control.exit_info_2;
2526                         }
2527                         kvm_clear_exception_queue(vcpu);
2528                         break;
2529                 case SVM_EXITINTINFO_TYPE_INTR:
2530                 case SVM_EXITINTINFO_TYPE_SOFT:
2531                         kvm_clear_interrupt_queue(vcpu);
2532                         break;
2533                 default:
2534                         break;
2535                 }
2536         }
2537
2538         if (reason != TASK_SWITCH_GATE ||
2539             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2540             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2541              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2542                 if (!svm_skip_emulated_instruction(vcpu))
2543                         return 0;
2544         }
2545
2546         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2547                 int_vec = -1;
2548
2549         return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2550                                has_error_code, error_code);
2551 }
2552
2553 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2554 {
2555         if (!sev_es_guest(svm->vcpu.kvm))
2556                 svm_clr_intercept(svm, INTERCEPT_IRET);
2557 }
2558
2559 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2560 {
2561         if (!sev_es_guest(svm->vcpu.kvm))
2562                 svm_set_intercept(svm, INTERCEPT_IRET);
2563 }
2564
2565 static int iret_interception(struct kvm_vcpu *vcpu)
2566 {
2567         struct vcpu_svm *svm = to_svm(vcpu);
2568
2569         WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2570
2571         ++vcpu->stat.nmi_window_exits;
2572         svm->awaiting_iret_completion = true;
2573
2574         svm_clr_iret_intercept(svm);
2575         svm->nmi_iret_rip = kvm_rip_read(vcpu);
2576
2577         kvm_make_request(KVM_REQ_EVENT, vcpu);
2578         return 1;
2579 }
2580
2581 static int invlpg_interception(struct kvm_vcpu *vcpu)
2582 {
2583         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2584                 return kvm_emulate_instruction(vcpu, 0);
2585
2586         kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2587         return kvm_skip_emulated_instruction(vcpu);
2588 }
2589
2590 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2591 {
2592         return kvm_emulate_instruction(vcpu, 0);
2593 }
2594
2595 static int rsm_interception(struct kvm_vcpu *vcpu)
2596 {
2597         return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2598 }
2599
2600 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2601                                             unsigned long val)
2602 {
2603         struct vcpu_svm *svm = to_svm(vcpu);
2604         unsigned long cr0 = vcpu->arch.cr0;
2605         bool ret = false;
2606
2607         if (!is_guest_mode(vcpu) ||
2608             (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2609                 return false;
2610
2611         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2612         val &= ~SVM_CR0_SELECTIVE_MASK;
2613
2614         if (cr0 ^ val) {
2615                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2616                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2617         }
2618
2619         return ret;
2620 }
2621
2622 #define CR_VALID (1ULL << 63)
2623
2624 static int cr_interception(struct kvm_vcpu *vcpu)
2625 {
2626         struct vcpu_svm *svm = to_svm(vcpu);
2627         int reg, cr;
2628         unsigned long val;
2629         int err;
2630
2631         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2632                 return emulate_on_interception(vcpu);
2633
2634         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2635                 return emulate_on_interception(vcpu);
2636
2637         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2638         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2639                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2640         else
2641                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2642
2643         err = 0;
2644         if (cr >= 16) { /* mov to cr */
2645                 cr -= 16;
2646                 val = kvm_register_read(vcpu, reg);
2647                 trace_kvm_cr_write(cr, val);
2648                 switch (cr) {
2649                 case 0:
2650                         if (!check_selective_cr0_intercepted(vcpu, val))
2651                                 err = kvm_set_cr0(vcpu, val);
2652                         else
2653                                 return 1;
2654
2655                         break;
2656                 case 3:
2657                         err = kvm_set_cr3(vcpu, val);
2658                         break;
2659                 case 4:
2660                         err = kvm_set_cr4(vcpu, val);
2661                         break;
2662                 case 8:
2663                         err = kvm_set_cr8(vcpu, val);
2664                         break;
2665                 default:
2666                         WARN(1, "unhandled write to CR%d", cr);
2667                         kvm_queue_exception(vcpu, UD_VECTOR);
2668                         return 1;
2669                 }
2670         } else { /* mov from cr */
2671                 switch (cr) {
2672                 case 0:
2673                         val = kvm_read_cr0(vcpu);
2674                         break;
2675                 case 2:
2676                         val = vcpu->arch.cr2;
2677                         break;
2678                 case 3:
2679                         val = kvm_read_cr3(vcpu);
2680                         break;
2681                 case 4:
2682                         val = kvm_read_cr4(vcpu);
2683                         break;
2684                 case 8:
2685                         val = kvm_get_cr8(vcpu);
2686                         break;
2687                 default:
2688                         WARN(1, "unhandled read from CR%d", cr);
2689                         kvm_queue_exception(vcpu, UD_VECTOR);
2690                         return 1;
2691                 }
2692                 kvm_register_write(vcpu, reg, val);
2693                 trace_kvm_cr_read(cr, val);
2694         }
2695         return kvm_complete_insn_gp(vcpu, err);
2696 }
2697
2698 static int cr_trap(struct kvm_vcpu *vcpu)
2699 {
2700         struct vcpu_svm *svm = to_svm(vcpu);
2701         unsigned long old_value, new_value;
2702         unsigned int cr;
2703         int ret = 0;
2704
2705         new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2706
2707         cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2708         switch (cr) {
2709         case 0:
2710                 old_value = kvm_read_cr0(vcpu);
2711                 svm_set_cr0(vcpu, new_value);
2712
2713                 kvm_post_set_cr0(vcpu, old_value, new_value);
2714                 break;
2715         case 4:
2716                 old_value = kvm_read_cr4(vcpu);
2717                 svm_set_cr4(vcpu, new_value);
2718
2719                 kvm_post_set_cr4(vcpu, old_value, new_value);
2720                 break;
2721         case 8:
2722                 ret = kvm_set_cr8(vcpu, new_value);
2723                 break;
2724         default:
2725                 WARN(1, "unhandled CR%d write trap", cr);
2726                 kvm_queue_exception(vcpu, UD_VECTOR);
2727                 return 1;
2728         }
2729
2730         return kvm_complete_insn_gp(vcpu, ret);
2731 }
2732
2733 static int dr_interception(struct kvm_vcpu *vcpu)
2734 {
2735         struct vcpu_svm *svm = to_svm(vcpu);
2736         int reg, dr;
2737         unsigned long val;
2738         int err = 0;
2739
2740         /*
2741          * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2742          * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2743          */
2744         if (sev_es_guest(vcpu->kvm))
2745                 return 1;
2746
2747         if (vcpu->guest_debug == 0) {
2748                 /*
2749                  * No more DR vmexits; force a reload of the debug registers
2750                  * and reenter on this instruction.  The next vmexit will
2751                  * retrieve the full state of the debug registers.
2752                  */
2753                 clr_dr_intercepts(svm);
2754                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2755                 return 1;
2756         }
2757
2758         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2759                 return emulate_on_interception(vcpu);
2760
2761         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2762         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2763         if (dr >= 16) { /* mov to DRn  */
2764                 dr -= 16;
2765                 val = kvm_register_read(vcpu, reg);
2766                 err = kvm_set_dr(vcpu, dr, val);
2767         } else {
2768                 kvm_get_dr(vcpu, dr, &val);
2769                 kvm_register_write(vcpu, reg, val);
2770         }
2771
2772         return kvm_complete_insn_gp(vcpu, err);
2773 }
2774
2775 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2776 {
2777         int r;
2778
2779         u8 cr8_prev = kvm_get_cr8(vcpu);
2780         /* instruction emulation calls kvm_set_cr8() */
2781         r = cr_interception(vcpu);
2782         if (lapic_in_kernel(vcpu))
2783                 return r;
2784         if (cr8_prev <= kvm_get_cr8(vcpu))
2785                 return r;
2786         vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2787         return 0;
2788 }
2789
2790 static int efer_trap(struct kvm_vcpu *vcpu)
2791 {
2792         struct msr_data msr_info;
2793         int ret;
2794
2795         /*
2796          * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2797          * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2798          * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2799          * the guest doesn't have X86_FEATURE_SVM.
2800          */
2801         msr_info.host_initiated = false;
2802         msr_info.index = MSR_EFER;
2803         msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2804         ret = kvm_set_msr_common(vcpu, &msr_info);
2805
2806         return kvm_complete_insn_gp(vcpu, ret);
2807 }
2808
2809 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2810 {
2811         msr->data = 0;
2812
2813         switch (msr->index) {
2814         case MSR_AMD64_DE_CFG:
2815                 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2816                         msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2817                 break;
2818         default:
2819                 return KVM_MSR_RET_INVALID;
2820         }
2821
2822         return 0;
2823 }
2824
2825 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2826 {
2827         struct vcpu_svm *svm = to_svm(vcpu);
2828
2829         switch (msr_info->index) {
2830         case MSR_AMD64_TSC_RATIO:
2831                 if (!msr_info->host_initiated &&
2832                     !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
2833                         return 1;
2834                 msr_info->data = svm->tsc_ratio_msr;
2835                 break;
2836         case MSR_STAR:
2837                 msr_info->data = svm->vmcb01.ptr->save.star;
2838                 break;
2839 #ifdef CONFIG_X86_64
2840         case MSR_LSTAR:
2841                 msr_info->data = svm->vmcb01.ptr->save.lstar;
2842                 break;
2843         case MSR_CSTAR:
2844                 msr_info->data = svm->vmcb01.ptr->save.cstar;
2845                 break;
2846         case MSR_KERNEL_GS_BASE:
2847                 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2848                 break;
2849         case MSR_SYSCALL_MASK:
2850                 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2851                 break;
2852 #endif
2853         case MSR_IA32_SYSENTER_CS:
2854                 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2855                 break;
2856         case MSR_IA32_SYSENTER_EIP:
2857                 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2858                 if (guest_cpuid_is_intel(vcpu))
2859                         msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2860                 break;
2861         case MSR_IA32_SYSENTER_ESP:
2862                 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2863                 if (guest_cpuid_is_intel(vcpu))
2864                         msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2865                 break;
2866         case MSR_TSC_AUX:
2867                 msr_info->data = svm->tsc_aux;
2868                 break;
2869         case MSR_IA32_DEBUGCTLMSR:
2870                 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2871                 break;
2872         case MSR_IA32_LASTBRANCHFROMIP:
2873                 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2874                 break;
2875         case MSR_IA32_LASTBRANCHTOIP:
2876                 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2877                 break;
2878         case MSR_IA32_LASTINTFROMIP:
2879                 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2880                 break;
2881         case MSR_IA32_LASTINTTOIP:
2882                 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2883                 break;
2884         case MSR_VM_HSAVE_PA:
2885                 msr_info->data = svm->nested.hsave_msr;
2886                 break;
2887         case MSR_VM_CR:
2888                 msr_info->data = svm->nested.vm_cr_msr;
2889                 break;
2890         case MSR_IA32_SPEC_CTRL:
2891                 if (!msr_info->host_initiated &&
2892                     !guest_has_spec_ctrl_msr(vcpu))
2893                         return 1;
2894
2895                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2896                         msr_info->data = svm->vmcb->save.spec_ctrl;
2897                 else
2898                         msr_info->data = svm->spec_ctrl;
2899                 break;
2900         case MSR_AMD64_VIRT_SPEC_CTRL:
2901                 if (!msr_info->host_initiated &&
2902                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2903                         return 1;
2904
2905                 msr_info->data = svm->virt_spec_ctrl;
2906                 break;
2907         case MSR_F15H_IC_CFG: {
2908
2909                 int family, model;
2910
2911                 family = guest_cpuid_family(vcpu);
2912                 model  = guest_cpuid_model(vcpu);
2913
2914                 if (family < 0 || model < 0)
2915                         return kvm_get_msr_common(vcpu, msr_info);
2916
2917                 msr_info->data = 0;
2918
2919                 if (family == 0x15 &&
2920                     (model >= 0x2 && model < 0x20))
2921                         msr_info->data = 0x1E;
2922                 }
2923                 break;
2924         case MSR_AMD64_DE_CFG:
2925                 msr_info->data = svm->msr_decfg;
2926                 break;
2927         default:
2928                 return kvm_get_msr_common(vcpu, msr_info);
2929         }
2930         return 0;
2931 }
2932
2933 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2934 {
2935         struct vcpu_svm *svm = to_svm(vcpu);
2936         if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2937                 return kvm_complete_insn_gp(vcpu, err);
2938
2939         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2940         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2941                                 X86_TRAP_GP |
2942                                 SVM_EVTINJ_TYPE_EXEPT |
2943                                 SVM_EVTINJ_VALID);
2944         return 1;
2945 }
2946
2947 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2948 {
2949         struct vcpu_svm *svm = to_svm(vcpu);
2950         int svm_dis, chg_mask;
2951
2952         if (data & ~SVM_VM_CR_VALID_MASK)
2953                 return 1;
2954
2955         chg_mask = SVM_VM_CR_VALID_MASK;
2956
2957         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2958                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2959
2960         svm->nested.vm_cr_msr &= ~chg_mask;
2961         svm->nested.vm_cr_msr |= (data & chg_mask);
2962
2963         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2964
2965         /* check for svm_disable while efer.svme is set */
2966         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2967                 return 1;
2968
2969         return 0;
2970 }
2971
2972 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2973 {
2974         struct vcpu_svm *svm = to_svm(vcpu);
2975         int ret = 0;
2976
2977         u32 ecx = msr->index;
2978         u64 data = msr->data;
2979         switch (ecx) {
2980         case MSR_AMD64_TSC_RATIO:
2981
2982                 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
2983
2984                         if (!msr->host_initiated)
2985                                 return 1;
2986                         /*
2987                          * In case TSC scaling is not enabled, always
2988                          * leave this MSR at the default value.
2989                          *
2990                          * Due to bug in qemu 6.2.0, it would try to set
2991                          * this msr to 0 if tsc scaling is not enabled.
2992                          * Ignore this value as well.
2993                          */
2994                         if (data != 0 && data != svm->tsc_ratio_msr)
2995                                 return 1;
2996                         break;
2997                 }
2998
2999                 if (data & SVM_TSC_RATIO_RSVD)
3000                         return 1;
3001
3002                 svm->tsc_ratio_msr = data;
3003
3004                 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
3005                     is_guest_mode(vcpu))
3006                         nested_svm_update_tsc_ratio_msr(vcpu);
3007
3008                 break;
3009         case MSR_IA32_CR_PAT:
3010                 ret = kvm_set_msr_common(vcpu, msr);
3011                 if (ret)
3012                         break;
3013
3014                 svm->vmcb01.ptr->save.g_pat = data;
3015                 if (is_guest_mode(vcpu))
3016                         nested_vmcb02_compute_g_pat(svm);
3017                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3018                 break;
3019         case MSR_IA32_SPEC_CTRL:
3020                 if (!msr->host_initiated &&
3021                     !guest_has_spec_ctrl_msr(vcpu))
3022                         return 1;
3023
3024                 if (kvm_spec_ctrl_test_value(data))
3025                         return 1;
3026
3027                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3028                         svm->vmcb->save.spec_ctrl = data;
3029                 else
3030                         svm->spec_ctrl = data;
3031                 if (!data)
3032                         break;
3033
3034                 /*
3035                  * For non-nested:
3036                  * When it's written (to non-zero) for the first time, pass
3037                  * it through.
3038                  *
3039                  * For nested:
3040                  * The handling of the MSR bitmap for L2 guests is done in
3041                  * nested_svm_vmrun_msrpm.
3042                  * We update the L1 MSR bit as well since it will end up
3043                  * touching the MSR anyway now.
3044                  */
3045                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3046                 break;
3047         case MSR_AMD64_VIRT_SPEC_CTRL:
3048                 if (!msr->host_initiated &&
3049                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3050                         return 1;
3051
3052                 if (data & ~SPEC_CTRL_SSBD)
3053                         return 1;
3054
3055                 svm->virt_spec_ctrl = data;
3056                 break;
3057         case MSR_STAR:
3058                 svm->vmcb01.ptr->save.star = data;
3059                 break;
3060 #ifdef CONFIG_X86_64
3061         case MSR_LSTAR:
3062                 svm->vmcb01.ptr->save.lstar = data;
3063                 break;
3064         case MSR_CSTAR:
3065                 svm->vmcb01.ptr->save.cstar = data;
3066                 break;
3067         case MSR_KERNEL_GS_BASE:
3068                 svm->vmcb01.ptr->save.kernel_gs_base = data;
3069                 break;
3070         case MSR_SYSCALL_MASK:
3071                 svm->vmcb01.ptr->save.sfmask = data;
3072                 break;
3073 #endif
3074         case MSR_IA32_SYSENTER_CS:
3075                 svm->vmcb01.ptr->save.sysenter_cs = data;
3076                 break;
3077         case MSR_IA32_SYSENTER_EIP:
3078                 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3079                 /*
3080                  * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3081                  * when we spoof an Intel vendor ID (for cross vendor migration).
3082                  * In this case we use this intercept to track the high
3083                  * 32 bit part of these msrs to support Intel's
3084                  * implementation of SYSENTER/SYSEXIT.
3085                  */
3086                 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3087                 break;
3088         case MSR_IA32_SYSENTER_ESP:
3089                 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3090                 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3091                 break;
3092         case MSR_TSC_AUX:
3093                 /*
3094                  * TSC_AUX is always virtualized for SEV-ES guests when the
3095                  * feature is available. The user return MSR support is not
3096                  * required in this case because TSC_AUX is restored on #VMEXIT
3097                  * from the host save area (which has been initialized in
3098                  * svm_hardware_enable()).
3099                  */
3100                 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3101                         break;
3102
3103                 /*
3104                  * TSC_AUX is usually changed only during boot and never read
3105                  * directly.  Intercept TSC_AUX instead of exposing it to the
3106                  * guest via direct_access_msrs, and switch it via user return.
3107                  */
3108                 preempt_disable();
3109                 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3110                 preempt_enable();
3111                 if (ret)
3112                         break;
3113
3114                 svm->tsc_aux = data;
3115                 break;
3116         case MSR_IA32_DEBUGCTLMSR:
3117                 if (!lbrv) {
3118                         kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3119                         break;
3120                 }
3121                 if (data & DEBUGCTL_RESERVED_BITS)
3122                         return 1;
3123
3124                 svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3125                 svm_update_lbrv(vcpu);
3126                 break;
3127         case MSR_VM_HSAVE_PA:
3128                 /*
3129                  * Old kernels did not validate the value written to
3130                  * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3131                  * value to allow live migrating buggy or malicious guests
3132                  * originating from those kernels.
3133                  */
3134                 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3135                         return 1;
3136
3137                 svm->nested.hsave_msr = data & PAGE_MASK;
3138                 break;
3139         case MSR_VM_CR:
3140                 return svm_set_vm_cr(vcpu, data);
3141         case MSR_VM_IGNNE:
3142                 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3143                 break;
3144         case MSR_AMD64_DE_CFG: {
3145                 struct kvm_msr_entry msr_entry;
3146
3147                 msr_entry.index = msr->index;
3148                 if (svm_get_msr_feature(&msr_entry))
3149                         return 1;
3150
3151                 /* Check the supported bits */
3152                 if (data & ~msr_entry.data)
3153                         return 1;
3154
3155                 /* Don't allow the guest to change a bit, #GP */
3156                 if (!msr->host_initiated && (data ^ msr_entry.data))
3157                         return 1;
3158
3159                 svm->msr_decfg = data;
3160                 break;
3161         }
3162         default:
3163                 return kvm_set_msr_common(vcpu, msr);
3164         }
3165         return ret;
3166 }
3167
3168 static int msr_interception(struct kvm_vcpu *vcpu)
3169 {
3170         if (to_svm(vcpu)->vmcb->control.exit_info_1)
3171                 return kvm_emulate_wrmsr(vcpu);
3172         else
3173                 return kvm_emulate_rdmsr(vcpu);
3174 }
3175
3176 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3177 {
3178         kvm_make_request(KVM_REQ_EVENT, vcpu);
3179         svm_clear_vintr(to_svm(vcpu));
3180
3181         /*
3182          * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3183          * In this case AVIC was temporarily disabled for
3184          * requesting the IRQ window and we have to re-enable it.
3185          *
3186          * If running nested, still remove the VM wide AVIC inhibit to
3187          * support case in which the interrupt window was requested when the
3188          * vCPU was not running nested.
3189
3190          * All vCPUs which run still run nested, will remain to have their
3191          * AVIC still inhibited due to per-cpu AVIC inhibition.
3192          */
3193         kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3194
3195         ++vcpu->stat.irq_window_exits;
3196         return 1;
3197 }
3198
3199 static int pause_interception(struct kvm_vcpu *vcpu)
3200 {
3201         bool in_kernel;
3202         /*
3203          * CPL is not made available for an SEV-ES guest, therefore
3204          * vcpu->arch.preempted_in_kernel can never be true.  Just
3205          * set in_kernel to false as well.
3206          */
3207         in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3208
3209         grow_ple_window(vcpu);
3210
3211         kvm_vcpu_on_spin(vcpu, in_kernel);
3212         return kvm_skip_emulated_instruction(vcpu);
3213 }
3214
3215 static int invpcid_interception(struct kvm_vcpu *vcpu)
3216 {
3217         struct vcpu_svm *svm = to_svm(vcpu);
3218         unsigned long type;
3219         gva_t gva;
3220
3221         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3222                 kvm_queue_exception(vcpu, UD_VECTOR);
3223                 return 1;
3224         }
3225
3226         /*
3227          * For an INVPCID intercept:
3228          * EXITINFO1 provides the linear address of the memory operand.
3229          * EXITINFO2 provides the contents of the register operand.
3230          */
3231         type = svm->vmcb->control.exit_info_2;
3232         gva = svm->vmcb->control.exit_info_1;
3233
3234         return kvm_handle_invpcid(vcpu, type, gva);
3235 }
3236
3237 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3238         [SVM_EXIT_READ_CR0]                     = cr_interception,
3239         [SVM_EXIT_READ_CR3]                     = cr_interception,
3240         [SVM_EXIT_READ_CR4]                     = cr_interception,
3241         [SVM_EXIT_READ_CR8]                     = cr_interception,
3242         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3243         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3244         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3245         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3246         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3247         [SVM_EXIT_READ_DR0]                     = dr_interception,
3248         [SVM_EXIT_READ_DR1]                     = dr_interception,
3249         [SVM_EXIT_READ_DR2]                     = dr_interception,
3250         [SVM_EXIT_READ_DR3]                     = dr_interception,
3251         [SVM_EXIT_READ_DR4]                     = dr_interception,
3252         [SVM_EXIT_READ_DR5]                     = dr_interception,
3253         [SVM_EXIT_READ_DR6]                     = dr_interception,
3254         [SVM_EXIT_READ_DR7]                     = dr_interception,
3255         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3256         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3257         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3258         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3259         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3260         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3261         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3262         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3263         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3264         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3265         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3266         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3267         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3268         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
3269         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
3270         [SVM_EXIT_INTR]                         = intr_interception,
3271         [SVM_EXIT_NMI]                          = nmi_interception,
3272         [SVM_EXIT_SMI]                          = smi_interception,
3273         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3274         [SVM_EXIT_RDPMC]                        = kvm_emulate_rdpmc,
3275         [SVM_EXIT_CPUID]                        = kvm_emulate_cpuid,
3276         [SVM_EXIT_IRET]                         = iret_interception,
3277         [SVM_EXIT_INVD]                         = kvm_emulate_invd,
3278         [SVM_EXIT_PAUSE]                        = pause_interception,
3279         [SVM_EXIT_HLT]                          = kvm_emulate_halt,
3280         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3281         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3282         [SVM_EXIT_IOIO]                         = io_interception,
3283         [SVM_EXIT_MSR]                          = msr_interception,
3284         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3285         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3286         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3287         [SVM_EXIT_VMMCALL]                      = kvm_emulate_hypercall,
3288         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3289         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3290         [SVM_EXIT_STGI]                         = stgi_interception,
3291         [SVM_EXIT_CLGI]                         = clgi_interception,
3292         [SVM_EXIT_SKINIT]                       = skinit_interception,
3293         [SVM_EXIT_RDTSCP]                       = kvm_handle_invalid_op,
3294         [SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3295         [SVM_EXIT_MONITOR]                      = kvm_emulate_monitor,
3296         [SVM_EXIT_MWAIT]                        = kvm_emulate_mwait,
3297         [SVM_EXIT_XSETBV]                       = kvm_emulate_xsetbv,
3298         [SVM_EXIT_RDPRU]                        = kvm_handle_invalid_op,
3299         [SVM_EXIT_EFER_WRITE_TRAP]              = efer_trap,
3300         [SVM_EXIT_CR0_WRITE_TRAP]               = cr_trap,
3301         [SVM_EXIT_CR4_WRITE_TRAP]               = cr_trap,
3302         [SVM_EXIT_CR8_WRITE_TRAP]               = cr_trap,
3303         [SVM_EXIT_INVPCID]                      = invpcid_interception,
3304         [SVM_EXIT_NPF]                          = npf_interception,
3305         [SVM_EXIT_RSM]                          = rsm_interception,
3306         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
3307         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
3308         [SVM_EXIT_VMGEXIT]                      = sev_handle_vmgexit,
3309 };
3310
3311 static void dump_vmcb(struct kvm_vcpu *vcpu)
3312 {
3313         struct vcpu_svm *svm = to_svm(vcpu);
3314         struct vmcb_control_area *control = &svm->vmcb->control;
3315         struct vmcb_save_area *save = &svm->vmcb->save;
3316         struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3317
3318         if (!dump_invalid_vmcb) {
3319                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3320                 return;
3321         }
3322
3323         pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3324                svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3325         pr_err("VMCB Control Area:\n");
3326         pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3327         pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3328         pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3329         pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3330         pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3331         pr_err("%-20s%08x %08x\n", "intercepts:",
3332               control->intercepts[INTERCEPT_WORD3],
3333                control->intercepts[INTERCEPT_WORD4]);
3334         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3335         pr_err("%-20s%d\n", "pause filter threshold:",
3336                control->pause_filter_thresh);
3337         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3338         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3339         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3340         pr_err("%-20s%d\n", "asid:", control->asid);
3341         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3342         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3343         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3344         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3345         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3346         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3347         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3348         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3349         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3350         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3351         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3352         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3353         pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3354         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3355         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3356         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3357         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3358         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3359         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3360         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3361         pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3362         pr_err("VMCB State Save Area:\n");
3363         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3364                "es:",
3365                save->es.selector, save->es.attrib,
3366                save->es.limit, save->es.base);
3367         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3368                "cs:",
3369                save->cs.selector, save->cs.attrib,
3370                save->cs.limit, save->cs.base);
3371         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3372                "ss:",
3373                save->ss.selector, save->ss.attrib,
3374                save->ss.limit, save->ss.base);
3375         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3376                "ds:",
3377                save->ds.selector, save->ds.attrib,
3378                save->ds.limit, save->ds.base);
3379         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3380                "fs:",
3381                save01->fs.selector, save01->fs.attrib,
3382                save01->fs.limit, save01->fs.base);
3383         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3384                "gs:",
3385                save01->gs.selector, save01->gs.attrib,
3386                save01->gs.limit, save01->gs.base);
3387         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3388                "gdtr:",
3389                save->gdtr.selector, save->gdtr.attrib,
3390                save->gdtr.limit, save->gdtr.base);
3391         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3392                "ldtr:",
3393                save01->ldtr.selector, save01->ldtr.attrib,
3394                save01->ldtr.limit, save01->ldtr.base);
3395         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3396                "idtr:",
3397                save->idtr.selector, save->idtr.attrib,
3398                save->idtr.limit, save->idtr.base);
3399         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3400                "tr:",
3401                save01->tr.selector, save01->tr.attrib,
3402                save01->tr.limit, save01->tr.base);
3403         pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3404                save->vmpl, save->cpl, save->efer);
3405         pr_err("%-15s %016llx %-13s %016llx\n",
3406                "cr0:", save->cr0, "cr2:", save->cr2);
3407         pr_err("%-15s %016llx %-13s %016llx\n",
3408                "cr3:", save->cr3, "cr4:", save->cr4);
3409         pr_err("%-15s %016llx %-13s %016llx\n",
3410                "dr6:", save->dr6, "dr7:", save->dr7);
3411         pr_err("%-15s %016llx %-13s %016llx\n",
3412                "rip:", save->rip, "rflags:", save->rflags);
3413         pr_err("%-15s %016llx %-13s %016llx\n",
3414                "rsp:", save->rsp, "rax:", save->rax);
3415         pr_err("%-15s %016llx %-13s %016llx\n",
3416                "star:", save01->star, "lstar:", save01->lstar);
3417         pr_err("%-15s %016llx %-13s %016llx\n",
3418                "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3419         pr_err("%-15s %016llx %-13s %016llx\n",
3420                "kernel_gs_base:", save01->kernel_gs_base,
3421                "sysenter_cs:", save01->sysenter_cs);
3422         pr_err("%-15s %016llx %-13s %016llx\n",
3423                "sysenter_esp:", save01->sysenter_esp,
3424                "sysenter_eip:", save01->sysenter_eip);
3425         pr_err("%-15s %016llx %-13s %016llx\n",
3426                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3427         pr_err("%-15s %016llx %-13s %016llx\n",
3428                "br_from:", save->br_from, "br_to:", save->br_to);
3429         pr_err("%-15s %016llx %-13s %016llx\n",
3430                "excp_from:", save->last_excp_from,
3431                "excp_to:", save->last_excp_to);
3432 }
3433
3434 static bool svm_check_exit_valid(u64 exit_code)
3435 {
3436         return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3437                 svm_exit_handlers[exit_code]);
3438 }
3439
3440 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3441 {
3442         vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3443         dump_vmcb(vcpu);
3444         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3445         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3446         vcpu->run->internal.ndata = 2;
3447         vcpu->run->internal.data[0] = exit_code;
3448         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3449         return 0;
3450 }
3451
3452 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3453 {
3454         if (!svm_check_exit_valid(exit_code))
3455                 return svm_handle_invalid_exit(vcpu, exit_code);
3456
3457 #ifdef CONFIG_RETPOLINE
3458         if (exit_code == SVM_EXIT_MSR)
3459                 return msr_interception(vcpu);
3460         else if (exit_code == SVM_EXIT_VINTR)
3461                 return interrupt_window_interception(vcpu);
3462         else if (exit_code == SVM_EXIT_INTR)
3463                 return intr_interception(vcpu);
3464         else if (exit_code == SVM_EXIT_HLT)
3465                 return kvm_emulate_halt(vcpu);
3466         else if (exit_code == SVM_EXIT_NPF)
3467                 return npf_interception(vcpu);
3468 #endif
3469         return svm_exit_handlers[exit_code](vcpu);
3470 }
3471
3472 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3473                               u64 *info1, u64 *info2,
3474                               u32 *intr_info, u32 *error_code)
3475 {
3476         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3477
3478         *reason = control->exit_code;
3479         *info1 = control->exit_info_1;
3480         *info2 = control->exit_info_2;
3481         *intr_info = control->exit_int_info;
3482         if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3483             (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3484                 *error_code = control->exit_int_info_err;
3485         else
3486                 *error_code = 0;
3487 }
3488
3489 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3490 {
3491         struct vcpu_svm *svm = to_svm(vcpu);
3492         struct kvm_run *kvm_run = vcpu->run;
3493         u32 exit_code = svm->vmcb->control.exit_code;
3494
3495         /* SEV-ES guests must use the CR write traps to track CR registers. */
3496         if (!sev_es_guest(vcpu->kvm)) {
3497                 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3498                         vcpu->arch.cr0 = svm->vmcb->save.cr0;
3499                 if (npt_enabled)
3500                         vcpu->arch.cr3 = svm->vmcb->save.cr3;
3501         }
3502
3503         if (is_guest_mode(vcpu)) {
3504                 int vmexit;
3505
3506                 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3507
3508                 vmexit = nested_svm_exit_special(svm);
3509
3510                 if (vmexit == NESTED_EXIT_CONTINUE)
3511                         vmexit = nested_svm_exit_handled(svm);
3512
3513                 if (vmexit == NESTED_EXIT_DONE)
3514                         return 1;
3515         }
3516
3517         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3518                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3519                 kvm_run->fail_entry.hardware_entry_failure_reason
3520                         = svm->vmcb->control.exit_code;
3521                 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3522                 dump_vmcb(vcpu);
3523                 return 0;
3524         }
3525
3526         if (exit_fastpath != EXIT_FASTPATH_NONE)
3527                 return 1;
3528
3529         return svm_invoke_exit_handler(vcpu, exit_code);
3530 }
3531
3532 static void pre_svm_run(struct kvm_vcpu *vcpu)
3533 {
3534         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3535         struct vcpu_svm *svm = to_svm(vcpu);
3536
3537         /*
3538          * If the previous vmrun of the vmcb occurred on a different physical
3539          * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3540          * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3541          */
3542         if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3543                 svm->current_vmcb->asid_generation = 0;
3544                 vmcb_mark_all_dirty(svm->vmcb);
3545                 svm->current_vmcb->cpu = vcpu->cpu;
3546         }
3547
3548         if (sev_guest(vcpu->kvm))
3549                 return pre_sev_run(svm, vcpu->cpu);
3550
3551         /* FIXME: handle wraparound of asid_generation */
3552         if (svm->current_vmcb->asid_generation != sd->asid_generation)
3553                 new_asid(svm, sd);
3554 }
3555
3556 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3557 {
3558         struct vcpu_svm *svm = to_svm(vcpu);
3559
3560         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3561
3562         if (svm->nmi_l1_to_l2)
3563                 return;
3564
3565         svm->nmi_masked = true;
3566         svm_set_iret_intercept(svm);
3567         ++vcpu->stat.nmi_injections;
3568 }
3569
3570 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3571 {
3572         struct vcpu_svm *svm = to_svm(vcpu);
3573
3574         if (!is_vnmi_enabled(svm))
3575                 return false;
3576
3577         return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3578 }
3579
3580 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3581 {
3582         struct vcpu_svm *svm = to_svm(vcpu);
3583
3584         if (!is_vnmi_enabled(svm))
3585                 return false;
3586
3587         if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3588                 return false;
3589
3590         svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3591         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3592
3593         /*
3594          * Because the pending NMI is serviced by hardware, KVM can't know when
3595          * the NMI is "injected", but for all intents and purposes, passing the
3596          * NMI off to hardware counts as injection.
3597          */
3598         ++vcpu->stat.nmi_injections;
3599
3600         return true;
3601 }
3602
3603 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3604 {
3605         struct vcpu_svm *svm = to_svm(vcpu);
3606         u32 type;
3607
3608         if (vcpu->arch.interrupt.soft) {
3609                 if (svm_update_soft_interrupt_rip(vcpu))
3610                         return;
3611
3612                 type = SVM_EVTINJ_TYPE_SOFT;
3613         } else {
3614                 type = SVM_EVTINJ_TYPE_INTR;
3615         }
3616
3617         trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3618                            vcpu->arch.interrupt.soft, reinjected);
3619         ++vcpu->stat.irq_injections;
3620
3621         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3622                                        SVM_EVTINJ_VALID | type;
3623 }
3624
3625 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3626                                      int trig_mode, int vector)
3627 {
3628         /*
3629          * apic->apicv_active must be read after vcpu->mode.
3630          * Pairs with smp_store_release in vcpu_enter_guest.
3631          */
3632         bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3633
3634         /* Note, this is called iff the local APIC is in-kernel. */
3635         if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3636                 /* Process the interrupt via kvm_check_and_inject_events(). */
3637                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3638                 kvm_vcpu_kick(vcpu);
3639                 return;
3640         }
3641
3642         trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3643         if (in_guest_mode) {
3644                 /*
3645                  * Signal the doorbell to tell hardware to inject the IRQ.  If
3646                  * the vCPU exits the guest before the doorbell chimes, hardware
3647                  * will automatically process AVIC interrupts at the next VMRUN.
3648                  */
3649                 avic_ring_doorbell(vcpu);
3650         } else {
3651                 /*
3652                  * Wake the vCPU if it was blocking.  KVM will then detect the
3653                  * pending IRQ when checking if the vCPU has a wake event.
3654                  */
3655                 kvm_vcpu_wake_up(vcpu);
3656         }
3657 }
3658
3659 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3660                                   int trig_mode, int vector)
3661 {
3662         kvm_lapic_set_irr(vector, apic);
3663
3664         /*
3665          * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3666          * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3667          * the read of guest_mode.  This guarantees that either VMRUN will see
3668          * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3669          * will signal the doorbell if the CPU has already entered the guest.
3670          */
3671         smp_mb__after_atomic();
3672         svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3673 }
3674
3675 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3676 {
3677         struct vcpu_svm *svm = to_svm(vcpu);
3678
3679         /*
3680          * SEV-ES guests must always keep the CR intercepts cleared. CR
3681          * tracking is done using the CR write traps.
3682          */
3683         if (sev_es_guest(vcpu->kvm))
3684                 return;
3685
3686         if (nested_svm_virtualize_tpr(vcpu))
3687                 return;
3688
3689         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3690
3691         if (irr == -1)
3692                 return;
3693
3694         if (tpr >= irr)
3695                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3696 }
3697
3698 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3699 {
3700         struct vcpu_svm *svm = to_svm(vcpu);
3701
3702         if (is_vnmi_enabled(svm))
3703                 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3704         else
3705                 return svm->nmi_masked;
3706 }
3707
3708 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3709 {
3710         struct vcpu_svm *svm = to_svm(vcpu);
3711
3712         if (is_vnmi_enabled(svm)) {
3713                 if (masked)
3714                         svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3715                 else
3716                         svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3717
3718         } else {
3719                 svm->nmi_masked = masked;
3720                 if (masked)
3721                         svm_set_iret_intercept(svm);
3722                 else
3723                         svm_clr_iret_intercept(svm);
3724         }
3725 }
3726
3727 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3728 {
3729         struct vcpu_svm *svm = to_svm(vcpu);
3730         struct vmcb *vmcb = svm->vmcb;
3731
3732         if (!gif_set(svm))
3733                 return true;
3734
3735         if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3736                 return false;
3737
3738         if (svm_get_nmi_mask(vcpu))
3739                 return true;
3740
3741         return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3742 }
3743
3744 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3745 {
3746         struct vcpu_svm *svm = to_svm(vcpu);
3747         if (svm->nested.nested_run_pending)
3748                 return -EBUSY;
3749
3750         if (svm_nmi_blocked(vcpu))
3751                 return 0;
3752
3753         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3754         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3755                 return -EBUSY;
3756         return 1;
3757 }
3758
3759 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3760 {
3761         struct vcpu_svm *svm = to_svm(vcpu);
3762         struct vmcb *vmcb = svm->vmcb;
3763
3764         if (!gif_set(svm))
3765                 return true;
3766
3767         if (is_guest_mode(vcpu)) {
3768                 /* As long as interrupts are being delivered...  */
3769                 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3770                     ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3771                     : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3772                         return true;
3773
3774                 /* ... vmexits aren't blocked by the interrupt shadow  */
3775                 if (nested_exit_on_intr(svm))
3776                         return false;
3777         } else {
3778                 if (!svm_get_if_flag(vcpu))
3779                         return true;
3780         }
3781
3782         return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3783 }
3784
3785 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3786 {
3787         struct vcpu_svm *svm = to_svm(vcpu);
3788
3789         if (svm->nested.nested_run_pending)
3790                 return -EBUSY;
3791
3792         if (svm_interrupt_blocked(vcpu))
3793                 return 0;
3794
3795         /*
3796          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3797          * e.g. if the IRQ arrived asynchronously after checking nested events.
3798          */
3799         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3800                 return -EBUSY;
3801
3802         return 1;
3803 }
3804
3805 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3806 {
3807         struct vcpu_svm *svm = to_svm(vcpu);
3808
3809         /*
3810          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3811          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3812          * get that intercept, this function will be called again though and
3813          * we'll get the vintr intercept. However, if the vGIF feature is
3814          * enabled, the STGI interception will not occur. Enable the irq
3815          * window under the assumption that the hardware will set the GIF.
3816          */
3817         if (vgif || gif_set(svm)) {
3818                 /*
3819                  * IRQ window is not needed when AVIC is enabled,
3820                  * unless we have pending ExtINT since it cannot be injected
3821                  * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3822                  * and fallback to injecting IRQ via V_IRQ.
3823                  *
3824                  * If running nested, AVIC is already locally inhibited
3825                  * on this vCPU, therefore there is no need to request
3826                  * the VM wide AVIC inhibition.
3827                  */
3828                 if (!is_guest_mode(vcpu))
3829                         kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3830
3831                 svm_set_vintr(svm);
3832         }
3833 }
3834
3835 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3836 {
3837         struct vcpu_svm *svm = to_svm(vcpu);
3838
3839         /*
3840          * KVM should never request an NMI window when vNMI is enabled, as KVM
3841          * allows at most one to-be-injected NMI and one pending NMI, i.e. if
3842          * two NMIs arrive simultaneously, KVM will inject one and set
3843          * V_NMI_PENDING for the other.  WARN, but continue with the standard
3844          * single-step approach to try and salvage the pending NMI.
3845          */
3846         WARN_ON_ONCE(is_vnmi_enabled(svm));
3847
3848         if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion)
3849                 return; /* IRET will cause a vm exit */
3850
3851         /*
3852          * SEV-ES guests are responsible for signaling when a vCPU is ready to
3853          * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3854          * KVM can't intercept and single-step IRET to detect when NMIs are
3855          * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3856          *
3857          * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3858          * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3859          * supported NAEs in the GHCB protocol.
3860          */
3861         if (sev_es_guest(vcpu->kvm))
3862                 return;
3863
3864         if (!gif_set(svm)) {
3865                 if (vgif)
3866                         svm_set_intercept(svm, INTERCEPT_STGI);
3867                 return; /* STGI will cause a vm exit */
3868         }
3869
3870         /*
3871          * Something prevents NMI from been injected. Single step over possible
3872          * problem (IRET or exception injection or interrupt shadow)
3873          */
3874         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3875         svm->nmi_singlestep = true;
3876         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3877 }
3878
3879 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3880 {
3881         struct vcpu_svm *svm = to_svm(vcpu);
3882
3883         /*
3884          * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3885          * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3886          * entries, and thus is a superset of Hyper-V's fine grained flushing.
3887          */
3888         kvm_hv_vcpu_purge_flush_tlb(vcpu);
3889
3890         /*
3891          * Flush only the current ASID even if the TLB flush was invoked via
3892          * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3893          * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3894          * unconditionally does a TLB flush on both nested VM-Enter and nested
3895          * VM-Exit (via kvm_mmu_reset_context()).
3896          */
3897         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3898                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3899         else
3900                 svm->current_vmcb->asid_generation--;
3901 }
3902
3903 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3904 {
3905         hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3906
3907         /*
3908          * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3909          * flush the NPT mappings via hypercall as flushing the ASID only
3910          * affects virtual to physical mappings, it does not invalidate guest
3911          * physical to host physical mappings.
3912          */
3913         if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3914                 hyperv_flush_guest_mapping(root_tdp);
3915
3916         svm_flush_tlb_asid(vcpu);
3917 }
3918
3919 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3920 {
3921         /*
3922          * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3923          * flushes should be routed to hv_flush_remote_tlbs() without requesting
3924          * a "regular" remote flush.  Reaching this point means either there's
3925          * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3926          * which might be fatal to the guest.  Yell, but try to recover.
3927          */
3928         if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3929                 hv_flush_remote_tlbs(vcpu->kvm);
3930
3931         svm_flush_tlb_asid(vcpu);
3932 }
3933
3934 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3935 {
3936         struct vcpu_svm *svm = to_svm(vcpu);
3937
3938         invlpga(gva, svm->vmcb->control.asid);
3939 }
3940
3941 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3942 {
3943         struct vcpu_svm *svm = to_svm(vcpu);
3944
3945         if (nested_svm_virtualize_tpr(vcpu))
3946                 return;
3947
3948         if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3949                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3950                 kvm_set_cr8(vcpu, cr8);
3951         }
3952 }
3953
3954 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3955 {
3956         struct vcpu_svm *svm = to_svm(vcpu);
3957         u64 cr8;
3958
3959         if (nested_svm_virtualize_tpr(vcpu) ||
3960             kvm_vcpu_apicv_active(vcpu))
3961                 return;
3962
3963         cr8 = kvm_get_cr8(vcpu);
3964         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3965         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3966 }
3967
3968 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3969                                         int type)
3970 {
3971         bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3972         bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3973         struct vcpu_svm *svm = to_svm(vcpu);
3974
3975         /*
3976          * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3977          * associated with the original soft exception/interrupt.  next_rip is
3978          * cleared on all exits that can occur while vectoring an event, so KVM
3979          * needs to manually set next_rip for re-injection.  Unlike the !nrips
3980          * case below, this needs to be done if and only if KVM is re-injecting
3981          * the same event, i.e. if the event is a soft exception/interrupt,
3982          * otherwise next_rip is unused on VMRUN.
3983          */
3984         if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3985             kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3986                 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3987         /*
3988          * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3989          * injecting the soft exception/interrupt.  That advancement needs to
3990          * be unwound if vectoring didn't complete.  Note, the new event may
3991          * not be the injected event, e.g. if KVM injected an INTn, the INTn
3992          * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3993          * be the reported vectored event, but RIP still needs to be unwound.
3994          */
3995         else if (!nrips && (is_soft || is_exception) &&
3996                  kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
3997                 kvm_rip_write(vcpu, svm->soft_int_old_rip);
3998 }
3999
4000 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4001 {
4002         struct vcpu_svm *svm = to_svm(vcpu);
4003         u8 vector;
4004         int type;
4005         u32 exitintinfo = svm->vmcb->control.exit_int_info;
4006         bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4007         bool soft_int_injected = svm->soft_int_injected;
4008
4009         svm->nmi_l1_to_l2 = false;
4010         svm->soft_int_injected = false;
4011
4012         /*
4013          * If we've made progress since setting awaiting_iret_completion, we've
4014          * executed an IRET and can allow NMI injection.
4015          */
4016         if (svm->awaiting_iret_completion &&
4017             kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4018                 svm->awaiting_iret_completion = false;
4019                 svm->nmi_masked = false;
4020                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4021         }
4022
4023         vcpu->arch.nmi_injected = false;
4024         kvm_clear_exception_queue(vcpu);
4025         kvm_clear_interrupt_queue(vcpu);
4026
4027         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4028                 return;
4029
4030         kvm_make_request(KVM_REQ_EVENT, vcpu);
4031
4032         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4033         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4034
4035         if (soft_int_injected)
4036                 svm_complete_soft_interrupt(vcpu, vector, type);
4037
4038         switch (type) {
4039         case SVM_EXITINTINFO_TYPE_NMI:
4040                 vcpu->arch.nmi_injected = true;
4041                 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4042                 break;
4043         case SVM_EXITINTINFO_TYPE_EXEPT:
4044                 /*
4045                  * Never re-inject a #VC exception.
4046                  */
4047                 if (vector == X86_TRAP_VC)
4048                         break;
4049
4050                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4051                         u32 err = svm->vmcb->control.exit_int_info_err;
4052                         kvm_requeue_exception_e(vcpu, vector, err);
4053
4054                 } else
4055                         kvm_requeue_exception(vcpu, vector);
4056                 break;
4057         case SVM_EXITINTINFO_TYPE_INTR:
4058                 kvm_queue_interrupt(vcpu, vector, false);
4059                 break;
4060         case SVM_EXITINTINFO_TYPE_SOFT:
4061                 kvm_queue_interrupt(vcpu, vector, true);
4062                 break;
4063         default:
4064                 break;
4065         }
4066
4067 }
4068
4069 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4070 {
4071         struct vcpu_svm *svm = to_svm(vcpu);
4072         struct vmcb_control_area *control = &svm->vmcb->control;
4073
4074         control->exit_int_info = control->event_inj;
4075         control->exit_int_info_err = control->event_inj_err;
4076         control->event_inj = 0;
4077         svm_complete_interrupts(vcpu);
4078 }
4079
4080 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4081 {
4082         return 1;
4083 }
4084
4085 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4086 {
4087         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
4088             to_svm(vcpu)->vmcb->control.exit_info_1)
4089                 return handle_fastpath_set_msr_irqoff(vcpu);
4090
4091         return EXIT_FASTPATH_NONE;
4092 }
4093
4094 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4095 {
4096         struct vcpu_svm *svm = to_svm(vcpu);
4097
4098         guest_state_enter_irqoff();
4099
4100         amd_clear_divider();
4101
4102         if (sev_es_guest(vcpu->kvm))
4103                 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
4104         else
4105                 __svm_vcpu_run(svm, spec_ctrl_intercepted);
4106
4107         guest_state_exit_irqoff();
4108 }
4109
4110 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
4111 {
4112         struct vcpu_svm *svm = to_svm(vcpu);
4113         bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4114
4115         trace_kvm_entry(vcpu);
4116
4117         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4118         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4119         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4120
4121         /*
4122          * Disable singlestep if we're injecting an interrupt/exception.
4123          * We don't want our modified rflags to be pushed on the stack where
4124          * we might not be able to easily reset them if we disabled NMI
4125          * singlestep later.
4126          */
4127         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4128                 /*
4129                  * Event injection happens before external interrupts cause a
4130                  * vmexit and interrupts are disabled here, so smp_send_reschedule
4131                  * is enough to force an immediate vmexit.
4132                  */
4133                 disable_nmi_singlestep(svm);
4134                 smp_send_reschedule(vcpu->cpu);
4135         }
4136
4137         pre_svm_run(vcpu);
4138
4139         sync_lapic_to_cr8(vcpu);
4140
4141         if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4142                 svm->vmcb->control.asid = svm->asid;
4143                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4144         }
4145         svm->vmcb->save.cr2 = vcpu->arch.cr2;
4146
4147         svm_hv_update_vp_id(svm->vmcb, vcpu);
4148
4149         /*
4150          * Run with all-zero DR6 unless needed, so that we can get the exact cause
4151          * of a #DB.
4152          */
4153         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4154                 svm_set_dr6(svm, vcpu->arch.dr6);
4155         else
4156                 svm_set_dr6(svm, DR6_ACTIVE_LOW);
4157
4158         clgi();
4159         kvm_load_guest_xsave_state(vcpu);
4160
4161         kvm_wait_lapic_expire(vcpu);
4162
4163         /*
4164          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4165          * it's non-zero. Since vmentry is serialising on affected CPUs, there
4166          * is no need to worry about the conditional branch over the wrmsr
4167          * being speculatively taken.
4168          */
4169         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4170                 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4171
4172         svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4173
4174         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4175                 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4176
4177         if (!sev_es_guest(vcpu->kvm)) {
4178                 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4179                 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4180                 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4181                 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4182         }
4183         vcpu->arch.regs_dirty = 0;
4184
4185         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4186                 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4187
4188         kvm_load_host_xsave_state(vcpu);
4189         stgi();
4190
4191         /* Any pending NMI will happen here */
4192
4193         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4194                 kvm_after_interrupt(vcpu);
4195
4196         sync_cr8_to_lapic(vcpu);
4197
4198         svm->next_rip = 0;
4199         if (is_guest_mode(vcpu)) {
4200                 nested_sync_control_from_vmcb02(svm);
4201
4202                 /* Track VMRUNs that have made past consistency checking */
4203                 if (svm->nested.nested_run_pending &&
4204                     svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4205                         ++vcpu->stat.nested_run;
4206
4207                 svm->nested.nested_run_pending = 0;
4208         }
4209
4210         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4211         vmcb_mark_all_clean(svm->vmcb);
4212
4213         /* if exit due to PF check for async PF */
4214         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4215                 vcpu->arch.apf.host_apf_flags =
4216                         kvm_read_and_reset_apf_flags();
4217
4218         vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4219
4220         /*
4221          * We need to handle MC intercepts here before the vcpu has a chance to
4222          * change the physical cpu
4223          */
4224         if (unlikely(svm->vmcb->control.exit_code ==
4225                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4226                 svm_handle_mce(vcpu);
4227
4228         trace_kvm_exit(vcpu, KVM_ISA_SVM);
4229
4230         svm_complete_interrupts(vcpu);
4231
4232         if (is_guest_mode(vcpu))
4233                 return EXIT_FASTPATH_NONE;
4234
4235         return svm_exit_handlers_fastpath(vcpu);
4236 }
4237
4238 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4239                              int root_level)
4240 {
4241         struct vcpu_svm *svm = to_svm(vcpu);
4242         unsigned long cr3;
4243
4244         if (npt_enabled) {
4245                 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4246                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4247
4248                 hv_track_root_tdp(vcpu, root_hpa);
4249
4250                 cr3 = vcpu->arch.cr3;
4251         } else if (root_level >= PT64_ROOT_4LEVEL) {
4252                 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4253         } else {
4254                 /* PCID in the guest should be impossible with a 32-bit MMU. */
4255                 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4256                 cr3 = root_hpa;
4257         }
4258
4259         svm->vmcb->save.cr3 = cr3;
4260         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4261 }
4262
4263 static void
4264 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4265 {
4266         /*
4267          * Patch in the VMMCALL instruction:
4268          */
4269         hypercall[0] = 0x0f;
4270         hypercall[1] = 0x01;
4271         hypercall[2] = 0xd9;
4272 }
4273
4274 /*
4275  * The kvm parameter can be NULL (module initialization, or invocation before
4276  * VM creation). Be sure to check the kvm parameter before using it.
4277  */
4278 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4279 {
4280         switch (index) {
4281         case MSR_IA32_MCG_EXT_CTL:
4282         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4283                 return false;
4284         case MSR_IA32_SMBASE:
4285                 if (!IS_ENABLED(CONFIG_KVM_SMM))
4286                         return false;
4287                 /* SEV-ES guests do not support SMM, so report false */
4288                 if (kvm && sev_es_guest(kvm))
4289                         return false;
4290                 break;
4291         default:
4292                 break;
4293         }
4294
4295         return true;
4296 }
4297
4298 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4299 {
4300         struct vcpu_svm *svm = to_svm(vcpu);
4301
4302         /*
4303          * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4304          * can only disable all variants of by disallowing CR4.OSXSAVE from
4305          * being set.  As a result, if the host has XSAVE and XSAVES, and the
4306          * guest has XSAVE enabled, the guest can execute XSAVES without
4307          * faulting.  Treat XSAVES as enabled in this case regardless of
4308          * whether it's advertised to the guest so that KVM context switches
4309          * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4310          * the guest read/write access to the host's XSS.
4311          */
4312         if (boot_cpu_has(X86_FEATURE_XSAVE) &&
4313             boot_cpu_has(X86_FEATURE_XSAVES) &&
4314             guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
4315                 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
4316
4317         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
4318         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
4319         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
4320
4321         /*
4322          * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that
4323          * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4324          * SVM on Intel is bonkers and extremely unlikely to work).
4325          */
4326         if (!guest_cpuid_is_intel(vcpu))
4327                 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4328
4329         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
4330         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
4331         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
4332         kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
4333
4334         svm_recalc_instruction_intercepts(vcpu, svm);
4335
4336         if (boot_cpu_has(X86_FEATURE_IBPB))
4337                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4338                                      !!guest_has_pred_cmd_msr(vcpu));
4339
4340         if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4341                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4342                                      !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4343
4344         if (sev_guest(vcpu->kvm))
4345                 sev_vcpu_after_set_cpuid(svm);
4346
4347         init_vmcb_after_set_cpuid(vcpu);
4348 }
4349
4350 static bool svm_has_wbinvd_exit(void)
4351 {
4352         return true;
4353 }
4354
4355 #define PRE_EX(exit)  { .exit_code = (exit), \
4356                         .stage = X86_ICPT_PRE_EXCEPT, }
4357 #define POST_EX(exit) { .exit_code = (exit), \
4358                         .stage = X86_ICPT_POST_EXCEPT, }
4359 #define POST_MEM(exit) { .exit_code = (exit), \
4360                         .stage = X86_ICPT_POST_MEMACCESS, }
4361
4362 static const struct __x86_intercept {
4363         u32 exit_code;
4364         enum x86_intercept_stage stage;
4365 } x86_intercept_map[] = {
4366         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4367         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4368         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4369         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4370         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4371         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4372         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4373         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4374         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4375         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4376         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4377         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4378         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4379         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4380         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4381         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4382         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4383         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4384         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4385         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4386         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4387         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4388         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4389         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4390         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4391         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4392         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4393         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4394         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4395         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4396         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4397         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4398         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4399         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4400         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4401         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4402         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4403         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4404         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4405         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4406         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4407         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4408         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4409         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4410         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4411         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4412         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
4413 };
4414
4415 #undef PRE_EX
4416 #undef POST_EX
4417 #undef POST_MEM
4418
4419 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4420                                struct x86_instruction_info *info,
4421                                enum x86_intercept_stage stage,
4422                                struct x86_exception *exception)
4423 {
4424         struct vcpu_svm *svm = to_svm(vcpu);
4425         int vmexit, ret = X86EMUL_CONTINUE;
4426         struct __x86_intercept icpt_info;
4427         struct vmcb *vmcb = svm->vmcb;
4428
4429         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4430                 goto out;
4431
4432         icpt_info = x86_intercept_map[info->intercept];
4433
4434         if (stage != icpt_info.stage)
4435                 goto out;
4436
4437         switch (icpt_info.exit_code) {
4438         case SVM_EXIT_READ_CR0:
4439                 if (info->intercept == x86_intercept_cr_read)
4440                         icpt_info.exit_code += info->modrm_reg;
4441                 break;
4442         case SVM_EXIT_WRITE_CR0: {
4443                 unsigned long cr0, val;
4444
4445                 if (info->intercept == x86_intercept_cr_write)
4446                         icpt_info.exit_code += info->modrm_reg;
4447
4448                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4449                     info->intercept == x86_intercept_clts)
4450                         break;
4451
4452                 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4453                                         INTERCEPT_SELECTIVE_CR0)))
4454                         break;
4455
4456                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4457                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4458
4459                 if (info->intercept == x86_intercept_lmsw) {
4460                         cr0 &= 0xfUL;
4461                         val &= 0xfUL;
4462                         /* lmsw can't clear PE - catch this here */
4463                         if (cr0 & X86_CR0_PE)
4464                                 val |= X86_CR0_PE;
4465                 }
4466
4467                 if (cr0 ^ val)
4468                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4469
4470                 break;
4471         }
4472         case SVM_EXIT_READ_DR0:
4473         case SVM_EXIT_WRITE_DR0:
4474                 icpt_info.exit_code += info->modrm_reg;
4475                 break;
4476         case SVM_EXIT_MSR:
4477                 if (info->intercept == x86_intercept_wrmsr)
4478                         vmcb->control.exit_info_1 = 1;
4479                 else
4480                         vmcb->control.exit_info_1 = 0;
4481                 break;
4482         case SVM_EXIT_PAUSE:
4483                 /*
4484                  * We get this for NOP only, but pause
4485                  * is rep not, check this here
4486                  */
4487                 if (info->rep_prefix != REPE_PREFIX)
4488                         goto out;
4489                 break;
4490         case SVM_EXIT_IOIO: {
4491                 u64 exit_info;
4492                 u32 bytes;
4493
4494                 if (info->intercept == x86_intercept_in ||
4495                     info->intercept == x86_intercept_ins) {
4496                         exit_info = ((info->src_val & 0xffff) << 16) |
4497                                 SVM_IOIO_TYPE_MASK;
4498                         bytes = info->dst_bytes;
4499                 } else {
4500                         exit_info = (info->dst_val & 0xffff) << 16;
4501                         bytes = info->src_bytes;
4502                 }
4503
4504                 if (info->intercept == x86_intercept_outs ||
4505                     info->intercept == x86_intercept_ins)
4506                         exit_info |= SVM_IOIO_STR_MASK;
4507
4508                 if (info->rep_prefix)
4509                         exit_info |= SVM_IOIO_REP_MASK;
4510
4511                 bytes = min(bytes, 4u);
4512
4513                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4514
4515                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4516
4517                 vmcb->control.exit_info_1 = exit_info;
4518                 vmcb->control.exit_info_2 = info->next_rip;
4519
4520                 break;
4521         }
4522         default:
4523                 break;
4524         }
4525
4526         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4527         if (static_cpu_has(X86_FEATURE_NRIPS))
4528                 vmcb->control.next_rip  = info->next_rip;
4529         vmcb->control.exit_code = icpt_info.exit_code;
4530         vmexit = nested_svm_exit_handled(svm);
4531
4532         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4533                                            : X86EMUL_CONTINUE;
4534
4535 out:
4536         return ret;
4537 }
4538
4539 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4540 {
4541         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4542                 vcpu->arch.at_instruction_boundary = true;
4543 }
4544
4545 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4546 {
4547         if (!kvm_pause_in_guest(vcpu->kvm))
4548                 shrink_ple_window(vcpu);
4549 }
4550
4551 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4552 {
4553         /* [63:9] are reserved. */
4554         vcpu->arch.mcg_cap &= 0x1ff;
4555 }
4556
4557 #ifdef CONFIG_KVM_SMM
4558 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4559 {
4560         struct vcpu_svm *svm = to_svm(vcpu);
4561
4562         /* Per APM Vol.2 15.22.2 "Response to SMI" */
4563         if (!gif_set(svm))
4564                 return true;
4565
4566         return is_smm(vcpu);
4567 }
4568
4569 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4570 {
4571         struct vcpu_svm *svm = to_svm(vcpu);
4572         if (svm->nested.nested_run_pending)
4573                 return -EBUSY;
4574
4575         if (svm_smi_blocked(vcpu))
4576                 return 0;
4577
4578         /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4579         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4580                 return -EBUSY;
4581
4582         return 1;
4583 }
4584
4585 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4586 {
4587         struct vcpu_svm *svm = to_svm(vcpu);
4588         struct kvm_host_map map_save;
4589         int ret;
4590
4591         if (!is_guest_mode(vcpu))
4592                 return 0;
4593
4594         /*
4595          * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4596          * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4597          */
4598
4599         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4600                 return 1;
4601
4602         smram->smram64.svm_guest_flag = 1;
4603         smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4604
4605         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4606         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4607         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4608
4609         ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4610         if (ret)
4611                 return ret;
4612
4613         /*
4614          * KVM uses VMCB01 to store L1 host state while L2 runs but
4615          * VMCB01 is going to be used during SMM and thus the state will
4616          * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4617          * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4618          * format of the area is identical to guest save area offsetted
4619          * by 0x400 (matches the offset of 'struct vmcb_save_area'
4620          * within 'struct vmcb'). Note: HSAVE area may also be used by
4621          * L1 hypervisor to save additional host context (e.g. KVM does
4622          * that, see svm_prepare_switch_to_guest()) which must be
4623          * preserved.
4624          */
4625         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4626                 return 1;
4627
4628         BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4629
4630         svm_copy_vmrun_state(map_save.hva + 0x400,
4631                              &svm->vmcb01.ptr->save);
4632
4633         kvm_vcpu_unmap(vcpu, &map_save, true);
4634         return 0;
4635 }
4636
4637 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4638 {
4639         struct vcpu_svm *svm = to_svm(vcpu);
4640         struct kvm_host_map map, map_save;
4641         struct vmcb *vmcb12;
4642         int ret;
4643
4644         const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4645
4646         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4647                 return 0;
4648
4649         /* Non-zero if SMI arrived while vCPU was in guest mode. */
4650         if (!smram64->svm_guest_flag)
4651                 return 0;
4652
4653         if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4654                 return 1;
4655
4656         if (!(smram64->efer & EFER_SVME))
4657                 return 1;
4658
4659         if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4660                 return 1;
4661
4662         ret = 1;
4663         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4664                 goto unmap_map;
4665
4666         if (svm_allocate_nested(svm))
4667                 goto unmap_save;
4668
4669         /*
4670          * Restore L1 host state from L1 HSAVE area as VMCB01 was
4671          * used during SMM (see svm_enter_smm())
4672          */
4673
4674         svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4675
4676         /*
4677          * Enter the nested guest now
4678          */
4679
4680         vmcb_mark_all_dirty(svm->vmcb01.ptr);
4681
4682         vmcb12 = map.hva;
4683         nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4684         nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4685         ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4686
4687         if (ret)
4688                 goto unmap_save;
4689
4690         svm->nested.nested_run_pending = 1;
4691
4692 unmap_save:
4693         kvm_vcpu_unmap(vcpu, &map_save, true);
4694 unmap_map:
4695         kvm_vcpu_unmap(vcpu, &map, true);
4696         return ret;
4697 }
4698
4699 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4700 {
4701         struct vcpu_svm *svm = to_svm(vcpu);
4702
4703         if (!gif_set(svm)) {
4704                 if (vgif)
4705                         svm_set_intercept(svm, INTERCEPT_STGI);
4706                 /* STGI will cause a vm exit */
4707         } else {
4708                 /* We must be in SMM; RSM will cause a vmexit anyway.  */
4709         }
4710 }
4711 #endif
4712
4713 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4714                                          void *insn, int insn_len)
4715 {
4716         bool smep, smap, is_user;
4717         u64 error_code;
4718
4719         /* Emulation is always possible when KVM has access to all guest state. */
4720         if (!sev_guest(vcpu->kvm))
4721                 return X86EMUL_CONTINUE;
4722
4723         /* #UD and #GP should never be intercepted for SEV guests. */
4724         WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4725                                   EMULTYPE_TRAP_UD_FORCED |
4726                                   EMULTYPE_VMWARE_GP));
4727
4728         /*
4729          * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4730          * to guest register state.
4731          */
4732         if (sev_es_guest(vcpu->kvm))
4733                 return X86EMUL_RETRY_INSTR;
4734
4735         /*
4736          * Emulation is possible if the instruction is already decoded, e.g.
4737          * when completing I/O after returning from userspace.
4738          */
4739         if (emul_type & EMULTYPE_NO_DECODE)
4740                 return X86EMUL_CONTINUE;
4741
4742         /*
4743          * Emulation is possible for SEV guests if and only if a prefilled
4744          * buffer containing the bytes of the intercepted instruction is
4745          * available. SEV guest memory is encrypted with a guest specific key
4746          * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4747          * decode garbage.
4748          *
4749          * If KVM is NOT trying to simply skip an instruction, inject #UD if
4750          * KVM reached this point without an instruction buffer.  In practice,
4751          * this path should never be hit by a well-behaved guest, e.g. KVM
4752          * doesn't intercept #UD or #GP for SEV guests, but this path is still
4753          * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4754          * access, and needs to be handled by KVM to avoid putting the guest
4755          * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4756          * its the least awful option given lack of insight into the guest.
4757          *
4758          * If KVM is trying to skip an instruction, simply resume the guest.
4759          * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4760          * will attempt to re-inject the INT3/INTO and skip the instruction.
4761          * In that scenario, retrying the INT3/INTO and hoping the guest will
4762          * make forward progress is the only option that has a chance of
4763          * success (and in practice it will work the vast majority of the time).
4764          */
4765         if (unlikely(!insn)) {
4766                 if (emul_type & EMULTYPE_SKIP)
4767                         return X86EMUL_UNHANDLEABLE;
4768
4769                 kvm_queue_exception(vcpu, UD_VECTOR);
4770                 return X86EMUL_PROPAGATE_FAULT;
4771         }
4772
4773         /*
4774          * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4775          * will be empty if the DecodeAssist microcode cannot fetch bytes for
4776          * the faulting instruction because the code fetch itself faulted, e.g.
4777          * the guest attempted to fetch from emulated MMIO or a guest page
4778          * table used to translate CS:RIP resides in emulated MMIO.
4779          */
4780         if (likely(insn_len))
4781                 return X86EMUL_CONTINUE;
4782
4783         /*
4784          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4785          *
4786          * Errata:
4787          * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4788          * possible that CPU microcode implementing DecodeAssist will fail to
4789          * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4790          * be '0'.  This happens because microcode reads CS:RIP using a _data_
4791          * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4792          * gives up and does not fill the instruction bytes buffer.
4793          *
4794          * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4795          * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4796          * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4797          * GuestIntrBytes field of the VMCB.
4798          *
4799          * This does _not_ mean that the erratum has been encountered, as the
4800          * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4801          * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4802          * encountered a reserved/not-present #PF.
4803          *
4804          * To hit the erratum, the following conditions must be true:
4805          *    1. CR4.SMAP=1 (obviously).
4806          *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4807          *       have been hit as the guest would have encountered a SMEP
4808          *       violation #PF, not a #NPF.
4809          *    3. The #NPF is not due to a code fetch, in which case failure to
4810          *       retrieve the instruction bytes is legitimate (see abvoe).
4811          *
4812          * In addition, don't apply the erratum workaround if the #NPF occurred
4813          * while translating guest page tables (see below).
4814          */
4815         error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4816         if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4817                 goto resume_guest;
4818
4819         smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4820         smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4821         is_user = svm_get_cpl(vcpu) == 3;
4822         if (smap && (!smep || is_user)) {
4823                 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4824
4825                 /*
4826                  * If the fault occurred in userspace, arbitrarily inject #GP
4827                  * to avoid killing the guest and to hopefully avoid confusing
4828                  * the guest kernel too much, e.g. injecting #PF would not be
4829                  * coherent with respect to the guest's page tables.  Request
4830                  * triple fault if the fault occurred in the kernel as there's
4831                  * no fault that KVM can inject without confusing the guest.
4832                  * In practice, the triple fault is moot as no sane SEV kernel
4833                  * will execute from user memory while also running with SMAP=1.
4834                  */
4835                 if (is_user)
4836                         kvm_inject_gp(vcpu, 0);
4837                 else
4838                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4839                 return X86EMUL_PROPAGATE_FAULT;
4840         }
4841
4842 resume_guest:
4843         /*
4844          * If the erratum was not hit, simply resume the guest and let it fault
4845          * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4846          * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4847          * userspace will kill the guest, and letting the emulator read garbage
4848          * will yield random behavior and potentially corrupt the guest.
4849          *
4850          * Simply resuming the guest is technically not a violation of the SEV
4851          * architecture.  AMD's APM states that all code fetches and page table
4852          * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4853          * APM also states that encrypted accesses to MMIO are "ignored", but
4854          * doesn't explicitly define "ignored", i.e. doing nothing and letting
4855          * the guest spin is technically "ignoring" the access.
4856          */
4857         return X86EMUL_RETRY_INSTR;
4858 }
4859
4860 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4861 {
4862         struct vcpu_svm *svm = to_svm(vcpu);
4863
4864         return !gif_set(svm);
4865 }
4866
4867 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4868 {
4869         if (!sev_es_guest(vcpu->kvm))
4870                 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4871
4872         sev_vcpu_deliver_sipi_vector(vcpu, vector);
4873 }
4874
4875 static void svm_vm_destroy(struct kvm *kvm)
4876 {
4877         avic_vm_destroy(kvm);
4878         sev_vm_destroy(kvm);
4879 }
4880
4881 static int svm_vm_init(struct kvm *kvm)
4882 {
4883         if (!pause_filter_count || !pause_filter_thresh)
4884                 kvm->arch.pause_in_guest = true;
4885
4886         if (enable_apicv) {
4887                 int ret = avic_vm_init(kvm);
4888                 if (ret)
4889                         return ret;
4890         }
4891
4892         return 0;
4893 }
4894
4895 static struct kvm_x86_ops svm_x86_ops __initdata = {
4896         .name = KBUILD_MODNAME,
4897
4898         .check_processor_compatibility = svm_check_processor_compat,
4899
4900         .hardware_unsetup = svm_hardware_unsetup,
4901         .hardware_enable = svm_hardware_enable,
4902         .hardware_disable = svm_hardware_disable,
4903         .has_emulated_msr = svm_has_emulated_msr,
4904
4905         .vcpu_create = svm_vcpu_create,
4906         .vcpu_free = svm_vcpu_free,
4907         .vcpu_reset = svm_vcpu_reset,
4908
4909         .vm_size = sizeof(struct kvm_svm),
4910         .vm_init = svm_vm_init,
4911         .vm_destroy = svm_vm_destroy,
4912
4913         .prepare_switch_to_guest = svm_prepare_switch_to_guest,
4914         .vcpu_load = svm_vcpu_load,
4915         .vcpu_put = svm_vcpu_put,
4916         .vcpu_blocking = avic_vcpu_blocking,
4917         .vcpu_unblocking = avic_vcpu_unblocking,
4918
4919         .update_exception_bitmap = svm_update_exception_bitmap,
4920         .get_msr_feature = svm_get_msr_feature,
4921         .get_msr = svm_get_msr,
4922         .set_msr = svm_set_msr,
4923         .get_segment_base = svm_get_segment_base,
4924         .get_segment = svm_get_segment,
4925         .set_segment = svm_set_segment,
4926         .get_cpl = svm_get_cpl,
4927         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
4928         .is_valid_cr0 = svm_is_valid_cr0,
4929         .set_cr0 = svm_set_cr0,
4930         .post_set_cr3 = sev_post_set_cr3,
4931         .is_valid_cr4 = svm_is_valid_cr4,
4932         .set_cr4 = svm_set_cr4,
4933         .set_efer = svm_set_efer,
4934         .get_idt = svm_get_idt,
4935         .set_idt = svm_set_idt,
4936         .get_gdt = svm_get_gdt,
4937         .set_gdt = svm_set_gdt,
4938         .set_dr7 = svm_set_dr7,
4939         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4940         .cache_reg = svm_cache_reg,
4941         .get_rflags = svm_get_rflags,
4942         .set_rflags = svm_set_rflags,
4943         .get_if_flag = svm_get_if_flag,
4944
4945         .flush_tlb_all = svm_flush_tlb_all,
4946         .flush_tlb_current = svm_flush_tlb_current,
4947         .flush_tlb_gva = svm_flush_tlb_gva,
4948         .flush_tlb_guest = svm_flush_tlb_asid,
4949
4950         .vcpu_pre_run = svm_vcpu_pre_run,
4951         .vcpu_run = svm_vcpu_run,
4952         .handle_exit = svm_handle_exit,
4953         .skip_emulated_instruction = svm_skip_emulated_instruction,
4954         .update_emulated_instruction = NULL,
4955         .set_interrupt_shadow = svm_set_interrupt_shadow,
4956         .get_interrupt_shadow = svm_get_interrupt_shadow,
4957         .patch_hypercall = svm_patch_hypercall,
4958         .inject_irq = svm_inject_irq,
4959         .inject_nmi = svm_inject_nmi,
4960         .is_vnmi_pending = svm_is_vnmi_pending,
4961         .set_vnmi_pending = svm_set_vnmi_pending,
4962         .inject_exception = svm_inject_exception,
4963         .cancel_injection = svm_cancel_injection,
4964         .interrupt_allowed = svm_interrupt_allowed,
4965         .nmi_allowed = svm_nmi_allowed,
4966         .get_nmi_mask = svm_get_nmi_mask,
4967         .set_nmi_mask = svm_set_nmi_mask,
4968         .enable_nmi_window = svm_enable_nmi_window,
4969         .enable_irq_window = svm_enable_irq_window,
4970         .update_cr8_intercept = svm_update_cr8_intercept,
4971         .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
4972         .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4973         .apicv_post_state_restore = avic_apicv_post_state_restore,
4974         .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
4975
4976         .get_exit_info = svm_get_exit_info,
4977
4978         .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4979
4980         .has_wbinvd_exit = svm_has_wbinvd_exit,
4981
4982         .get_l2_tsc_offset = svm_get_l2_tsc_offset,
4983         .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4984         .write_tsc_offset = svm_write_tsc_offset,
4985         .write_tsc_multiplier = svm_write_tsc_multiplier,
4986
4987         .load_mmu_pgd = svm_load_mmu_pgd,
4988
4989         .check_intercept = svm_check_intercept,
4990         .handle_exit_irqoff = svm_handle_exit_irqoff,
4991
4992         .request_immediate_exit = __kvm_request_immediate_exit,
4993
4994         .sched_in = svm_sched_in,
4995
4996         .nested_ops = &svm_nested_ops,
4997
4998         .deliver_interrupt = svm_deliver_interrupt,
4999         .pi_update_irte = avic_pi_update_irte,
5000         .setup_mce = svm_setup_mce,
5001
5002 #ifdef CONFIG_KVM_SMM
5003         .smi_allowed = svm_smi_allowed,
5004         .enter_smm = svm_enter_smm,
5005         .leave_smm = svm_leave_smm,
5006         .enable_smi_window = svm_enable_smi_window,
5007 #endif
5008
5009         .mem_enc_ioctl = sev_mem_enc_ioctl,
5010         .mem_enc_register_region = sev_mem_enc_register_region,
5011         .mem_enc_unregister_region = sev_mem_enc_unregister_region,
5012         .guest_memory_reclaimed = sev_guest_memory_reclaimed,
5013
5014         .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5015         .vm_move_enc_context_from = sev_vm_move_enc_context_from,
5016
5017         .check_emulate_instruction = svm_check_emulate_instruction,
5018
5019         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
5020
5021         .msr_filter_changed = svm_msr_filter_changed,
5022         .complete_emulated_msr = svm_complete_emulated_msr,
5023
5024         .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5025         .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5026 };
5027
5028 /*
5029  * The default MMIO mask is a single bit (excluding the present bit),
5030  * which could conflict with the memory encryption bit. Check for
5031  * memory encryption support and override the default MMIO mask if
5032  * memory encryption is enabled.
5033  */
5034 static __init void svm_adjust_mmio_mask(void)
5035 {
5036         unsigned int enc_bit, mask_bit;
5037         u64 msr, mask;
5038
5039         /* If there is no memory encryption support, use existing mask */
5040         if (cpuid_eax(0x80000000) < 0x8000001f)
5041                 return;
5042
5043         /* If memory encryption is not enabled, use existing mask */
5044         rdmsrl(MSR_AMD64_SYSCFG, msr);
5045         if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5046                 return;
5047
5048         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5049         mask_bit = boot_cpu_data.x86_phys_bits;
5050
5051         /* Increment the mask bit if it is the same as the encryption bit */
5052         if (enc_bit == mask_bit)
5053                 mask_bit++;
5054
5055         /*
5056          * If the mask bit location is below 52, then some bits above the
5057          * physical addressing limit will always be reserved, so use the
5058          * rsvd_bits() function to generate the mask. This mask, along with
5059          * the present bit, will be used to generate a page fault with
5060          * PFER.RSV = 1.
5061          *
5062          * If the mask bit location is 52 (or above), then clear the mask.
5063          */
5064         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5065
5066         kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5067 }
5068
5069 static __init void svm_set_cpu_caps(void)
5070 {
5071         kvm_set_cpu_caps();
5072
5073         kvm_caps.supported_perf_cap = 0;
5074         kvm_caps.supported_xss = 0;
5075
5076         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
5077         if (nested) {
5078                 kvm_cpu_cap_set(X86_FEATURE_SVM);
5079                 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5080
5081                 if (nrips)
5082                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5083
5084                 if (npt_enabled)
5085                         kvm_cpu_cap_set(X86_FEATURE_NPT);
5086
5087                 if (tsc_scaling)
5088                         kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5089
5090                 if (vls)
5091                         kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5092                 if (lbrv)
5093                         kvm_cpu_cap_set(X86_FEATURE_LBRV);
5094
5095                 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5096                         kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5097
5098                 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5099                         kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5100
5101                 if (vgif)
5102                         kvm_cpu_cap_set(X86_FEATURE_VGIF);
5103
5104                 if (vnmi)
5105                         kvm_cpu_cap_set(X86_FEATURE_VNMI);
5106
5107                 /* Nested VM can receive #VMEXIT instead of triggering #GP */
5108                 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5109         }
5110
5111         /* CPUID 0x80000008 */
5112         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5113             boot_cpu_has(X86_FEATURE_AMD_SSBD))
5114                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5115
5116         if (enable_pmu) {
5117                 /*
5118                  * Enumerate support for PERFCTR_CORE if and only if KVM has
5119                  * access to enough counters to virtualize "core" support,
5120                  * otherwise limit vPMU support to the legacy number of counters.
5121                  */
5122                 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5123                         kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5124                                                           kvm_pmu_cap.num_counters_gp);
5125                 else
5126                         kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5127
5128                 if (kvm_pmu_cap.version != 2 ||
5129                     !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5130                         kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5131         }
5132
5133         /* CPUID 0x8000001F (SME/SEV features) */
5134         sev_set_cpu_caps();
5135 }
5136
5137 static __init int svm_hardware_setup(void)
5138 {
5139         int cpu;
5140         struct page *iopm_pages;
5141         void *iopm_va;
5142         int r;
5143         unsigned int order = get_order(IOPM_SIZE);
5144
5145         /*
5146          * NX is required for shadow paging and for NPT if the NX huge pages
5147          * mitigation is enabled.
5148          */
5149         if (!boot_cpu_has(X86_FEATURE_NX)) {
5150                 pr_err_ratelimited("NX (Execute Disable) not supported\n");
5151                 return -EOPNOTSUPP;
5152         }
5153         kvm_enable_efer_bits(EFER_NX);
5154
5155         iopm_pages = alloc_pages(GFP_KERNEL, order);
5156
5157         if (!iopm_pages)
5158                 return -ENOMEM;
5159
5160         iopm_va = page_address(iopm_pages);
5161         memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5162         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
5163
5164         init_msrpm_offsets();
5165
5166         kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5167                                      XFEATURE_MASK_BNDCSR);
5168
5169         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5170                 kvm_enable_efer_bits(EFER_FFXSR);
5171
5172         if (tsc_scaling) {
5173                 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5174                         tsc_scaling = false;
5175                 } else {
5176                         pr_info("TSC scaling supported\n");
5177                         kvm_caps.has_tsc_control = true;
5178                 }
5179         }
5180         kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5181         kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5182
5183         tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5184
5185         if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5186                 kvm_enable_efer_bits(EFER_AUTOIBRS);
5187
5188         /* Check for pause filtering support */
5189         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5190                 pause_filter_count = 0;
5191                 pause_filter_thresh = 0;
5192         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5193                 pause_filter_thresh = 0;
5194         }
5195
5196         if (nested) {
5197                 pr_info("Nested Virtualization enabled\n");
5198                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5199         }
5200
5201         /*
5202          * KVM's MMU doesn't support using 2-level paging for itself, and thus
5203          * NPT isn't supported if the host is using 2-level paging since host
5204          * CR4 is unchanged on VMRUN.
5205          */
5206         if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5207                 npt_enabled = false;
5208
5209         if (!boot_cpu_has(X86_FEATURE_NPT))
5210                 npt_enabled = false;
5211
5212         /* Force VM NPT level equal to the host's paging level */
5213         kvm_configure_mmu(npt_enabled, get_npt_level(),
5214                           get_npt_level(), PG_LEVEL_1G);
5215         pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5216
5217         /* Setup shadow_me_value and shadow_me_mask */
5218         kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5219
5220         svm_adjust_mmio_mask();
5221
5222         nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5223
5224         /*
5225          * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5226          * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5227          */
5228         sev_hardware_setup();
5229
5230         svm_hv_hardware_setup();
5231
5232         for_each_possible_cpu(cpu) {
5233                 r = svm_cpu_init(cpu);
5234                 if (r)
5235                         goto err;
5236         }
5237
5238         enable_apicv = avic = avic && avic_hardware_setup();
5239
5240         if (!enable_apicv) {
5241                 svm_x86_ops.vcpu_blocking = NULL;
5242                 svm_x86_ops.vcpu_unblocking = NULL;
5243                 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5244         } else if (!x2avic_enabled) {
5245                 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5246         }
5247
5248         if (vls) {
5249                 if (!npt_enabled ||
5250                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5251                     !IS_ENABLED(CONFIG_X86_64)) {
5252                         vls = false;
5253                 } else {
5254                         pr_info("Virtual VMLOAD VMSAVE supported\n");
5255                 }
5256         }
5257
5258         if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5259                 svm_gp_erratum_intercept = false;
5260
5261         if (vgif) {
5262                 if (!boot_cpu_has(X86_FEATURE_VGIF))
5263                         vgif = false;
5264                 else
5265                         pr_info("Virtual GIF supported\n");
5266         }
5267
5268         vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5269         if (vnmi)
5270                 pr_info("Virtual NMI enabled\n");
5271
5272         if (!vnmi) {
5273                 svm_x86_ops.is_vnmi_pending = NULL;
5274                 svm_x86_ops.set_vnmi_pending = NULL;
5275         }
5276
5277
5278         if (lbrv) {
5279                 if (!boot_cpu_has(X86_FEATURE_LBRV))
5280                         lbrv = false;
5281                 else
5282                         pr_info("LBR virtualization supported\n");
5283         }
5284
5285         if (!enable_pmu)
5286                 pr_info("PMU virtualization is disabled\n");
5287
5288         svm_set_cpu_caps();
5289
5290         /*
5291          * It seems that on AMD processors PTE's accessed bit is
5292          * being set by the CPU hardware before the NPF vmexit.
5293          * This is not expected behaviour and our tests fail because
5294          * of it.
5295          * A workaround here is to disable support for
5296          * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5297          * In this case userspace can know if there is support using
5298          * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5299          * it
5300          * If future AMD CPU models change the behaviour described above,
5301          * this variable can be changed accordingly
5302          */
5303         allow_smaller_maxphyaddr = !npt_enabled;
5304
5305         return 0;
5306
5307 err:
5308         svm_hardware_unsetup();
5309         return r;
5310 }
5311
5312
5313 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5314         .hardware_setup = svm_hardware_setup,
5315
5316         .runtime_ops = &svm_x86_ops,
5317         .pmu_ops = &amd_pmu_ops,
5318 };
5319
5320 static void __svm_exit(void)
5321 {
5322         kvm_x86_vendor_exit();
5323
5324         cpu_emergency_unregister_virt_callback(svm_emergency_disable);
5325 }
5326
5327 static int __init svm_init(void)
5328 {
5329         int r;
5330
5331         __unused_size_checks();
5332
5333         if (!kvm_is_svm_supported())
5334                 return -EOPNOTSUPP;
5335
5336         r = kvm_x86_vendor_init(&svm_init_ops);
5337         if (r)
5338                 return r;
5339
5340         cpu_emergency_register_virt_callback(svm_emergency_disable);
5341
5342         /*
5343          * Common KVM initialization _must_ come last, after this, /dev/kvm is
5344          * exposed to userspace!
5345          */
5346         r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5347                      THIS_MODULE);
5348         if (r)
5349                 goto err_kvm_init;
5350
5351         return 0;
5352
5353 err_kvm_init:
5354         __svm_exit();
5355         return r;
5356 }
5357
5358 static void __exit svm_exit(void)
5359 {
5360         kvm_exit();
5361         __svm_exit();
5362 }
5363
5364 module_init(svm_init)
5365 module_exit(svm_exit)