KVM: x86: Move "flush guest's TLB" logic to separate kvm_x86_ops hook
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/frame.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
38
39 #include <asm/virtext.h>
40 #include "trace.h"
41
42 #include "svm.h"
43
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48
49 #ifdef MODULE
50 static const struct x86_cpu_id svm_cpu_id[] = {
51         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
52         {}
53 };
54 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
55 #endif
56
57 #define IOPM_ALLOC_ORDER 2
58 #define MSRPM_ALLOC_ORDER 1
59
60 #define SEG_TYPE_LDT 2
61 #define SEG_TYPE_BUSY_TSS16 3
62
63 #define SVM_FEATURE_LBRV           (1 <<  1)
64 #define SVM_FEATURE_SVML           (1 <<  2)
65 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
66 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
67 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
68 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
69 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
70
71 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
72
73 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
74 #define TSC_RATIO_MIN           0x0000000000000001ULL
75 #define TSC_RATIO_MAX           0x000000ffffffffffULL
76
77 static bool erratum_383_found __read_mostly;
78
79 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
80
81 /*
82  * Set osvw_len to higher value when updated Revision Guides
83  * are published and we know what the new status bits are
84  */
85 static uint64_t osvw_len = 4, osvw_status;
86
87 static DEFINE_PER_CPU(u64, current_tsc_ratio);
88 #define TSC_RATIO_DEFAULT       0x0100000000ULL
89
90 static const struct svm_direct_access_msrs {
91         u32 index;   /* Index of the MSR */
92         bool always; /* True if intercept is always on */
93 } direct_access_msrs[] = {
94         { .index = MSR_STAR,                            .always = true  },
95         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
96 #ifdef CONFIG_X86_64
97         { .index = MSR_GS_BASE,                         .always = true  },
98         { .index = MSR_FS_BASE,                         .always = true  },
99         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
100         { .index = MSR_LSTAR,                           .always = true  },
101         { .index = MSR_CSTAR,                           .always = true  },
102         { .index = MSR_SYSCALL_MASK,                    .always = true  },
103 #endif
104         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
105         { .index = MSR_IA32_PRED_CMD,                   .always = false },
106         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
107         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
108         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
109         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
110         { .index = MSR_INVALID,                         .always = false },
111 };
112
113 /* enable NPT for AMD64 and X86 with PAE */
114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
115 bool npt_enabled = true;
116 #else
117 bool npt_enabled;
118 #endif
119
120 /*
121  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
122  * pause_filter_count: On processors that support Pause filtering(indicated
123  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
124  *      count value. On VMRUN this value is loaded into an internal counter.
125  *      Each time a pause instruction is executed, this counter is decremented
126  *      until it reaches zero at which time a #VMEXIT is generated if pause
127  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
128  *      Intercept Filtering for more details.
129  *      This also indicate if ple logic enabled.
130  *
131  * pause_filter_thresh: In addition, some processor families support advanced
132  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
133  *      the amount of time a guest is allowed to execute in a pause loop.
134  *      In this mode, a 16-bit pause filter threshold field is added in the
135  *      VMCB. The threshold value is a cycle count that is used to reset the
136  *      pause counter. As with simple pause filtering, VMRUN loads the pause
137  *      count value from VMCB into an internal counter. Then, on each pause
138  *      instruction the hardware checks the elapsed number of cycles since
139  *      the most recent pause instruction against the pause filter threshold.
140  *      If the elapsed cycle count is greater than the pause filter threshold,
141  *      then the internal pause count is reloaded from the VMCB and execution
142  *      continues. If the elapsed cycle count is less than the pause filter
143  *      threshold, then the internal pause count is decremented. If the count
144  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
145  *      triggered. If advanced pause filtering is supported and pause filter
146  *      threshold field is set to zero, the filter will operate in the simpler,
147  *      count only mode.
148  */
149
150 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
151 module_param(pause_filter_thresh, ushort, 0444);
152
153 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
154 module_param(pause_filter_count, ushort, 0444);
155
156 /* Default doubles per-vcpu window every exit. */
157 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
158 module_param(pause_filter_count_grow, ushort, 0444);
159
160 /* Default resets per-vcpu window every exit to pause_filter_count. */
161 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
162 module_param(pause_filter_count_shrink, ushort, 0444);
163
164 /* Default is to compute the maximum so we can never overflow. */
165 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
166 module_param(pause_filter_count_max, ushort, 0444);
167
168 /* allow nested paging (virtualized MMU) for all guests */
169 static int npt = true;
170 module_param(npt, int, S_IRUGO);
171
172 /* allow nested virtualization in KVM/SVM */
173 static int nested = true;
174 module_param(nested, int, S_IRUGO);
175
176 /* enable/disable Next RIP Save */
177 static int nrips = true;
178 module_param(nrips, int, 0444);
179
180 /* enable/disable Virtual VMLOAD VMSAVE */
181 static int vls = true;
182 module_param(vls, int, 0444);
183
184 /* enable/disable Virtual GIF */
185 static int vgif = true;
186 module_param(vgif, int, 0444);
187
188 /* enable/disable SEV support */
189 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
190 module_param(sev, int, 0444);
191
192 static bool __read_mostly dump_invalid_vmcb = 0;
193 module_param(dump_invalid_vmcb, bool, 0644);
194
195 static u8 rsm_ins_bytes[] = "\x0f\xaa";
196
197 static void svm_complete_interrupts(struct vcpu_svm *svm);
198
199 static unsigned long iopm_base;
200
201 struct kvm_ldttss_desc {
202         u16 limit0;
203         u16 base0;
204         unsigned base1:8, type:5, dpl:2, p:1;
205         unsigned limit1:4, zero0:3, g:1, base2:8;
206         u32 base3;
207         u32 zero1;
208 } __attribute__((packed));
209
210 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
211
212 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
213
214 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
215 #define MSRS_RANGE_SIZE 2048
216 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
217
218 u32 svm_msrpm_offset(u32 msr)
219 {
220         u32 offset;
221         int i;
222
223         for (i = 0; i < NUM_MSR_MAPS; i++) {
224                 if (msr < msrpm_ranges[i] ||
225                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
226                         continue;
227
228                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
229                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
230
231                 /* Now we have the u8 offset - but need the u32 offset */
232                 return offset / 4;
233         }
234
235         /* MSR not in any range */
236         return MSR_INVALID;
237 }
238
239 #define MAX_INST_SIZE 15
240
241 static inline void clgi(void)
242 {
243         asm volatile (__ex("clgi"));
244 }
245
246 static inline void stgi(void)
247 {
248         asm volatile (__ex("stgi"));
249 }
250
251 static inline void invlpga(unsigned long addr, u32 asid)
252 {
253         asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
254 }
255
256 static int get_npt_level(struct kvm_vcpu *vcpu)
257 {
258 #ifdef CONFIG_X86_64
259         return PT64_ROOT_4LEVEL;
260 #else
261         return PT32E_ROOT_LEVEL;
262 #endif
263 }
264
265 void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
266 {
267         vcpu->arch.efer = efer;
268
269         if (!npt_enabled) {
270                 /* Shadow paging assumes NX to be available.  */
271                 efer |= EFER_NX;
272
273                 if (!(efer & EFER_LMA))
274                         efer &= ~EFER_LME;
275         }
276
277         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
278         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
279 }
280
281 static int is_external_interrupt(u32 info)
282 {
283         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
284         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
285 }
286
287 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
288 {
289         struct vcpu_svm *svm = to_svm(vcpu);
290         u32 ret = 0;
291
292         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
293                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
294         return ret;
295 }
296
297 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
298 {
299         struct vcpu_svm *svm = to_svm(vcpu);
300
301         if (mask == 0)
302                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
303         else
304                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
305
306 }
307
308 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
309 {
310         struct vcpu_svm *svm = to_svm(vcpu);
311
312         if (nrips && svm->vmcb->control.next_rip != 0) {
313                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
314                 svm->next_rip = svm->vmcb->control.next_rip;
315         }
316
317         if (!svm->next_rip) {
318                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
319                         return 0;
320         } else {
321                 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
322                         pr_err("%s: ip 0x%lx next 0x%llx\n",
323                                __func__, kvm_rip_read(vcpu), svm->next_rip);
324                 kvm_rip_write(vcpu, svm->next_rip);
325         }
326         svm_set_interrupt_shadow(vcpu, 0);
327
328         return 1;
329 }
330
331 static void svm_queue_exception(struct kvm_vcpu *vcpu)
332 {
333         struct vcpu_svm *svm = to_svm(vcpu);
334         unsigned nr = vcpu->arch.exception.nr;
335         bool has_error_code = vcpu->arch.exception.has_error_code;
336         bool reinject = vcpu->arch.exception.injected;
337         u32 error_code = vcpu->arch.exception.error_code;
338
339         /*
340          * If we are within a nested VM we'd better #VMEXIT and let the guest
341          * handle the exception
342          */
343         if (!reinject &&
344             nested_svm_check_exception(svm, nr, has_error_code, error_code))
345                 return;
346
347         kvm_deliver_exception_payload(&svm->vcpu);
348
349         if (nr == BP_VECTOR && !nrips) {
350                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
351
352                 /*
353                  * For guest debugging where we have to reinject #BP if some
354                  * INT3 is guest-owned:
355                  * Emulate nRIP by moving RIP forward. Will fail if injection
356                  * raises a fault that is not intercepted. Still better than
357                  * failing in all cases.
358                  */
359                 (void)skip_emulated_instruction(&svm->vcpu);
360                 rip = kvm_rip_read(&svm->vcpu);
361                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
362                 svm->int3_injected = rip - old_rip;
363         }
364
365         svm->vmcb->control.event_inj = nr
366                 | SVM_EVTINJ_VALID
367                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
368                 | SVM_EVTINJ_TYPE_EXEPT;
369         svm->vmcb->control.event_inj_err = error_code;
370 }
371
372 static void svm_init_erratum_383(void)
373 {
374         u32 low, high;
375         int err;
376         u64 val;
377
378         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
379                 return;
380
381         /* Use _safe variants to not break nested virtualization */
382         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
383         if (err)
384                 return;
385
386         val |= (1ULL << 47);
387
388         low  = lower_32_bits(val);
389         high = upper_32_bits(val);
390
391         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
392
393         erratum_383_found = true;
394 }
395
396 static void svm_init_osvw(struct kvm_vcpu *vcpu)
397 {
398         /*
399          * Guests should see errata 400 and 415 as fixed (assuming that
400          * HLT and IO instructions are intercepted).
401          */
402         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
403         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
404
405         /*
406          * By increasing VCPU's osvw.length to 3 we are telling the guest that
407          * all osvw.status bits inside that length, including bit 0 (which is
408          * reserved for erratum 298), are valid. However, if host processor's
409          * osvw_len is 0 then osvw_status[0] carries no information. We need to
410          * be conservative here and therefore we tell the guest that erratum 298
411          * is present (because we really don't know).
412          */
413         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
414                 vcpu->arch.osvw.status |= 1;
415 }
416
417 static int has_svm(void)
418 {
419         const char *msg;
420
421         if (!cpu_has_svm(&msg)) {
422                 printk(KERN_INFO "has_svm: %s\n", msg);
423                 return 0;
424         }
425
426         return 1;
427 }
428
429 static void svm_hardware_disable(void)
430 {
431         /* Make sure we clean up behind us */
432         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
433                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
434
435         cpu_svm_disable();
436
437         amd_pmu_disable_virt();
438 }
439
440 static int svm_hardware_enable(void)
441 {
442
443         struct svm_cpu_data *sd;
444         uint64_t efer;
445         struct desc_struct *gdt;
446         int me = raw_smp_processor_id();
447
448         rdmsrl(MSR_EFER, efer);
449         if (efer & EFER_SVME)
450                 return -EBUSY;
451
452         if (!has_svm()) {
453                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
454                 return -EINVAL;
455         }
456         sd = per_cpu(svm_data, me);
457         if (!sd) {
458                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
459                 return -EINVAL;
460         }
461
462         sd->asid_generation = 1;
463         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
464         sd->next_asid = sd->max_asid + 1;
465         sd->min_asid = max_sev_asid + 1;
466
467         gdt = get_current_gdt_rw();
468         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
469
470         wrmsrl(MSR_EFER, efer | EFER_SVME);
471
472         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
473
474         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
475                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
476                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
477         }
478
479
480         /*
481          * Get OSVW bits.
482          *
483          * Note that it is possible to have a system with mixed processor
484          * revisions and therefore different OSVW bits. If bits are not the same
485          * on different processors then choose the worst case (i.e. if erratum
486          * is present on one processor and not on another then assume that the
487          * erratum is present everywhere).
488          */
489         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
490                 uint64_t len, status = 0;
491                 int err;
492
493                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
494                 if (!err)
495                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
496                                                       &err);
497
498                 if (err)
499                         osvw_status = osvw_len = 0;
500                 else {
501                         if (len < osvw_len)
502                                 osvw_len = len;
503                         osvw_status |= status;
504                         osvw_status &= (1ULL << osvw_len) - 1;
505                 }
506         } else
507                 osvw_status = osvw_len = 0;
508
509         svm_init_erratum_383();
510
511         amd_pmu_enable_virt();
512
513         return 0;
514 }
515
516 static void svm_cpu_uninit(int cpu)
517 {
518         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
519
520         if (!sd)
521                 return;
522
523         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
524         kfree(sd->sev_vmcbs);
525         __free_page(sd->save_area);
526         kfree(sd);
527 }
528
529 static int svm_cpu_init(int cpu)
530 {
531         struct svm_cpu_data *sd;
532
533         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
534         if (!sd)
535                 return -ENOMEM;
536         sd->cpu = cpu;
537         sd->save_area = alloc_page(GFP_KERNEL);
538         if (!sd->save_area)
539                 goto free_cpu_data;
540
541         if (svm_sev_enabled()) {
542                 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
543                                               sizeof(void *),
544                                               GFP_KERNEL);
545                 if (!sd->sev_vmcbs)
546                         goto free_save_area;
547         }
548
549         per_cpu(svm_data, cpu) = sd;
550
551         return 0;
552
553 free_save_area:
554         __free_page(sd->save_area);
555 free_cpu_data:
556         kfree(sd);
557         return -ENOMEM;
558
559 }
560
561 static bool valid_msr_intercept(u32 index)
562 {
563         int i;
564
565         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
566                 if (direct_access_msrs[i].index == index)
567                         return true;
568
569         return false;
570 }
571
572 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
573 {
574         u8 bit_write;
575         unsigned long tmp;
576         u32 offset;
577         u32 *msrpm;
578
579         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
580                                       to_svm(vcpu)->msrpm;
581
582         offset    = svm_msrpm_offset(msr);
583         bit_write = 2 * (msr & 0x0f) + 1;
584         tmp       = msrpm[offset];
585
586         BUG_ON(offset == MSR_INVALID);
587
588         return !!test_bit(bit_write,  &tmp);
589 }
590
591 static void set_msr_interception(u32 *msrpm, unsigned msr,
592                                  int read, int write)
593 {
594         u8 bit_read, bit_write;
595         unsigned long tmp;
596         u32 offset;
597
598         /*
599          * If this warning triggers extend the direct_access_msrs list at the
600          * beginning of the file
601          */
602         WARN_ON(!valid_msr_intercept(msr));
603
604         offset    = svm_msrpm_offset(msr);
605         bit_read  = 2 * (msr & 0x0f);
606         bit_write = 2 * (msr & 0x0f) + 1;
607         tmp       = msrpm[offset];
608
609         BUG_ON(offset == MSR_INVALID);
610
611         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
612         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
613
614         msrpm[offset] = tmp;
615 }
616
617 static void svm_vcpu_init_msrpm(u32 *msrpm)
618 {
619         int i;
620
621         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
622
623         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
624                 if (!direct_access_msrs[i].always)
625                         continue;
626
627                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
628         }
629 }
630
631 static void add_msr_offset(u32 offset)
632 {
633         int i;
634
635         for (i = 0; i < MSRPM_OFFSETS; ++i) {
636
637                 /* Offset already in list? */
638                 if (msrpm_offsets[i] == offset)
639                         return;
640
641                 /* Slot used by another offset? */
642                 if (msrpm_offsets[i] != MSR_INVALID)
643                         continue;
644
645                 /* Add offset to list */
646                 msrpm_offsets[i] = offset;
647
648                 return;
649         }
650
651         /*
652          * If this BUG triggers the msrpm_offsets table has an overflow. Just
653          * increase MSRPM_OFFSETS in this case.
654          */
655         BUG();
656 }
657
658 static void init_msrpm_offsets(void)
659 {
660         int i;
661
662         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
663
664         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
665                 u32 offset;
666
667                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
668                 BUG_ON(offset == MSR_INVALID);
669
670                 add_msr_offset(offset);
671         }
672 }
673
674 static void svm_enable_lbrv(struct vcpu_svm *svm)
675 {
676         u32 *msrpm = svm->msrpm;
677
678         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
679         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
680         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
681         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
682         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
683 }
684
685 static void svm_disable_lbrv(struct vcpu_svm *svm)
686 {
687         u32 *msrpm = svm->msrpm;
688
689         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
690         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
691         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
692         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
693         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
694 }
695
696 void disable_nmi_singlestep(struct vcpu_svm *svm)
697 {
698         svm->nmi_singlestep = false;
699
700         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
701                 /* Clear our flags if they were not set by the guest */
702                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
703                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
704                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
705                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
706         }
707 }
708
709 static void grow_ple_window(struct kvm_vcpu *vcpu)
710 {
711         struct vcpu_svm *svm = to_svm(vcpu);
712         struct vmcb_control_area *control = &svm->vmcb->control;
713         int old = control->pause_filter_count;
714
715         control->pause_filter_count = __grow_ple_window(old,
716                                                         pause_filter_count,
717                                                         pause_filter_count_grow,
718                                                         pause_filter_count_max);
719
720         if (control->pause_filter_count != old) {
721                 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
722                 trace_kvm_ple_window_update(vcpu->vcpu_id,
723                                             control->pause_filter_count, old);
724         }
725 }
726
727 static void shrink_ple_window(struct kvm_vcpu *vcpu)
728 {
729         struct vcpu_svm *svm = to_svm(vcpu);
730         struct vmcb_control_area *control = &svm->vmcb->control;
731         int old = control->pause_filter_count;
732
733         control->pause_filter_count =
734                                 __shrink_ple_window(old,
735                                                     pause_filter_count,
736                                                     pause_filter_count_shrink,
737                                                     pause_filter_count);
738         if (control->pause_filter_count != old) {
739                 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
740                 trace_kvm_ple_window_update(vcpu->vcpu_id,
741                                             control->pause_filter_count, old);
742         }
743 }
744
745 /*
746  * The default MMIO mask is a single bit (excluding the present bit),
747  * which could conflict with the memory encryption bit. Check for
748  * memory encryption support and override the default MMIO mask if
749  * memory encryption is enabled.
750  */
751 static __init void svm_adjust_mmio_mask(void)
752 {
753         unsigned int enc_bit, mask_bit;
754         u64 msr, mask;
755
756         /* If there is no memory encryption support, use existing mask */
757         if (cpuid_eax(0x80000000) < 0x8000001f)
758                 return;
759
760         /* If memory encryption is not enabled, use existing mask */
761         rdmsrl(MSR_K8_SYSCFG, msr);
762         if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
763                 return;
764
765         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
766         mask_bit = boot_cpu_data.x86_phys_bits;
767
768         /* Increment the mask bit if it is the same as the encryption bit */
769         if (enc_bit == mask_bit)
770                 mask_bit++;
771
772         /*
773          * If the mask bit location is below 52, then some bits above the
774          * physical addressing limit will always be reserved, so use the
775          * rsvd_bits() function to generate the mask. This mask, along with
776          * the present bit, will be used to generate a page fault with
777          * PFER.RSV = 1.
778          *
779          * If the mask bit location is 52 (or above), then clear the mask.
780          */
781         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
782
783         kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
784 }
785
786 static void svm_hardware_teardown(void)
787 {
788         int cpu;
789
790         if (svm_sev_enabled())
791                 sev_hardware_teardown();
792
793         for_each_possible_cpu(cpu)
794                 svm_cpu_uninit(cpu);
795
796         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
797         iopm_base = 0;
798 }
799
800 static __init void svm_set_cpu_caps(void)
801 {
802         kvm_set_cpu_caps();
803
804         supported_xss = 0;
805
806         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
807         if (nested) {
808                 kvm_cpu_cap_set(X86_FEATURE_SVM);
809
810                 if (nrips)
811                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
812
813                 if (npt_enabled)
814                         kvm_cpu_cap_set(X86_FEATURE_NPT);
815         }
816
817         /* CPUID 0x80000008 */
818         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
819             boot_cpu_has(X86_FEATURE_AMD_SSBD))
820                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
821 }
822
823 static __init int svm_hardware_setup(void)
824 {
825         int cpu;
826         struct page *iopm_pages;
827         void *iopm_va;
828         int r;
829
830         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
831
832         if (!iopm_pages)
833                 return -ENOMEM;
834
835         iopm_va = page_address(iopm_pages);
836         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
837         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
838
839         init_msrpm_offsets();
840
841         supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
842
843         if (boot_cpu_has(X86_FEATURE_NX))
844                 kvm_enable_efer_bits(EFER_NX);
845
846         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
847                 kvm_enable_efer_bits(EFER_FFXSR);
848
849         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
850                 kvm_has_tsc_control = true;
851                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
852                 kvm_tsc_scaling_ratio_frac_bits = 32;
853         }
854
855         /* Check for pause filtering support */
856         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
857                 pause_filter_count = 0;
858                 pause_filter_thresh = 0;
859         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
860                 pause_filter_thresh = 0;
861         }
862
863         if (nested) {
864                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
865                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
866         }
867
868         if (sev) {
869                 if (boot_cpu_has(X86_FEATURE_SEV) &&
870                     IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
871                         r = sev_hardware_setup();
872                         if (r)
873                                 sev = false;
874                 } else {
875                         sev = false;
876                 }
877         }
878
879         svm_adjust_mmio_mask();
880
881         for_each_possible_cpu(cpu) {
882                 r = svm_cpu_init(cpu);
883                 if (r)
884                         goto err;
885         }
886
887         if (!boot_cpu_has(X86_FEATURE_NPT))
888                 npt_enabled = false;
889
890         if (npt_enabled && !npt)
891                 npt_enabled = false;
892
893         kvm_configure_mmu(npt_enabled, PT_PDPE_LEVEL);
894         pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
895
896         if (nrips) {
897                 if (!boot_cpu_has(X86_FEATURE_NRIPS))
898                         nrips = false;
899         }
900
901         if (avic) {
902                 if (!npt_enabled ||
903                     !boot_cpu_has(X86_FEATURE_AVIC) ||
904                     !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
905                         avic = false;
906                 } else {
907                         pr_info("AVIC enabled\n");
908
909                         amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
910                 }
911         }
912
913         if (vls) {
914                 if (!npt_enabled ||
915                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
916                     !IS_ENABLED(CONFIG_X86_64)) {
917                         vls = false;
918                 } else {
919                         pr_info("Virtual VMLOAD VMSAVE supported\n");
920                 }
921         }
922
923         if (vgif) {
924                 if (!boot_cpu_has(X86_FEATURE_VGIF))
925                         vgif = false;
926                 else
927                         pr_info("Virtual GIF supported\n");
928         }
929
930         svm_set_cpu_caps();
931
932         return 0;
933
934 err:
935         svm_hardware_teardown();
936         return r;
937 }
938
939 static void init_seg(struct vmcb_seg *seg)
940 {
941         seg->selector = 0;
942         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
943                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
944         seg->limit = 0xffff;
945         seg->base = 0;
946 }
947
948 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
949 {
950         seg->selector = 0;
951         seg->attrib = SVM_SELECTOR_P_MASK | type;
952         seg->limit = 0xffff;
953         seg->base = 0;
954 }
955
956 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
957 {
958         struct vcpu_svm *svm = to_svm(vcpu);
959
960         if (is_guest_mode(vcpu))
961                 return svm->nested.hsave->control.tsc_offset;
962
963         return vcpu->arch.tsc_offset;
964 }
965
966 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
967 {
968         struct vcpu_svm *svm = to_svm(vcpu);
969         u64 g_tsc_offset = 0;
970
971         if (is_guest_mode(vcpu)) {
972                 /* Write L1's TSC offset.  */
973                 g_tsc_offset = svm->vmcb->control.tsc_offset -
974                                svm->nested.hsave->control.tsc_offset;
975                 svm->nested.hsave->control.tsc_offset = offset;
976         }
977
978         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
979                                    svm->vmcb->control.tsc_offset - g_tsc_offset,
980                                    offset);
981
982         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
983
984         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
985         return svm->vmcb->control.tsc_offset;
986 }
987
988 static void init_vmcb(struct vcpu_svm *svm)
989 {
990         struct vmcb_control_area *control = &svm->vmcb->control;
991         struct vmcb_save_area *save = &svm->vmcb->save;
992
993         svm->vcpu.arch.hflags = 0;
994
995         set_cr_intercept(svm, INTERCEPT_CR0_READ);
996         set_cr_intercept(svm, INTERCEPT_CR3_READ);
997         set_cr_intercept(svm, INTERCEPT_CR4_READ);
998         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
999         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1000         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1001         if (!kvm_vcpu_apicv_active(&svm->vcpu))
1002                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1003
1004         set_dr_intercepts(svm);
1005
1006         set_exception_intercept(svm, PF_VECTOR);
1007         set_exception_intercept(svm, UD_VECTOR);
1008         set_exception_intercept(svm, MC_VECTOR);
1009         set_exception_intercept(svm, AC_VECTOR);
1010         set_exception_intercept(svm, DB_VECTOR);
1011         /*
1012          * Guest access to VMware backdoor ports could legitimately
1013          * trigger #GP because of TSS I/O permission bitmap.
1014          * We intercept those #GP and allow access to them anyway
1015          * as VMware does.
1016          */
1017         if (enable_vmware_backdoor)
1018                 set_exception_intercept(svm, GP_VECTOR);
1019
1020         set_intercept(svm, INTERCEPT_INTR);
1021         set_intercept(svm, INTERCEPT_NMI);
1022         set_intercept(svm, INTERCEPT_SMI);
1023         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1024         set_intercept(svm, INTERCEPT_RDPMC);
1025         set_intercept(svm, INTERCEPT_CPUID);
1026         set_intercept(svm, INTERCEPT_INVD);
1027         set_intercept(svm, INTERCEPT_INVLPG);
1028         set_intercept(svm, INTERCEPT_INVLPGA);
1029         set_intercept(svm, INTERCEPT_IOIO_PROT);
1030         set_intercept(svm, INTERCEPT_MSR_PROT);
1031         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1032         set_intercept(svm, INTERCEPT_SHUTDOWN);
1033         set_intercept(svm, INTERCEPT_VMRUN);
1034         set_intercept(svm, INTERCEPT_VMMCALL);
1035         set_intercept(svm, INTERCEPT_VMLOAD);
1036         set_intercept(svm, INTERCEPT_VMSAVE);
1037         set_intercept(svm, INTERCEPT_STGI);
1038         set_intercept(svm, INTERCEPT_CLGI);
1039         set_intercept(svm, INTERCEPT_SKINIT);
1040         set_intercept(svm, INTERCEPT_WBINVD);
1041         set_intercept(svm, INTERCEPT_XSETBV);
1042         set_intercept(svm, INTERCEPT_RDPRU);
1043         set_intercept(svm, INTERCEPT_RSM);
1044
1045         if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1046                 set_intercept(svm, INTERCEPT_MONITOR);
1047                 set_intercept(svm, INTERCEPT_MWAIT);
1048         }
1049
1050         if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1051                 set_intercept(svm, INTERCEPT_HLT);
1052
1053         control->iopm_base_pa = __sme_set(iopm_base);
1054         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1055         control->int_ctl = V_INTR_MASKING_MASK;
1056
1057         init_seg(&save->es);
1058         init_seg(&save->ss);
1059         init_seg(&save->ds);
1060         init_seg(&save->fs);
1061         init_seg(&save->gs);
1062
1063         save->cs.selector = 0xf000;
1064         save->cs.base = 0xffff0000;
1065         /* Executable/Readable Code Segment */
1066         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1067                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1068         save->cs.limit = 0xffff;
1069
1070         save->gdtr.limit = 0xffff;
1071         save->idtr.limit = 0xffff;
1072
1073         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1074         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1075
1076         svm_set_efer(&svm->vcpu, 0);
1077         save->dr6 = 0xffff0ff0;
1078         kvm_set_rflags(&svm->vcpu, 2);
1079         save->rip = 0x0000fff0;
1080         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1081
1082         /*
1083          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1084          * It also updates the guest-visible cr0 value.
1085          */
1086         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1087         kvm_mmu_reset_context(&svm->vcpu);
1088
1089         save->cr4 = X86_CR4_PAE;
1090         /* rdx = ?? */
1091
1092         if (npt_enabled) {
1093                 /* Setup VMCB for Nested Paging */
1094                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1095                 clr_intercept(svm, INTERCEPT_INVLPG);
1096                 clr_exception_intercept(svm, PF_VECTOR);
1097                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1098                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1099                 save->g_pat = svm->vcpu.arch.pat;
1100                 save->cr3 = 0;
1101                 save->cr4 = 0;
1102         }
1103         svm->asid_generation = 0;
1104
1105         svm->nested.vmcb = 0;
1106         svm->vcpu.arch.hflags = 0;
1107
1108         if (pause_filter_count) {
1109                 control->pause_filter_count = pause_filter_count;
1110                 if (pause_filter_thresh)
1111                         control->pause_filter_thresh = pause_filter_thresh;
1112                 set_intercept(svm, INTERCEPT_PAUSE);
1113         } else {
1114                 clr_intercept(svm, INTERCEPT_PAUSE);
1115         }
1116
1117         if (kvm_vcpu_apicv_active(&svm->vcpu))
1118                 avic_init_vmcb(svm);
1119
1120         /*
1121          * If hardware supports Virtual VMLOAD VMSAVE then enable it
1122          * in VMCB and clear intercepts to avoid #VMEXIT.
1123          */
1124         if (vls) {
1125                 clr_intercept(svm, INTERCEPT_VMLOAD);
1126                 clr_intercept(svm, INTERCEPT_VMSAVE);
1127                 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1128         }
1129
1130         if (vgif) {
1131                 clr_intercept(svm, INTERCEPT_STGI);
1132                 clr_intercept(svm, INTERCEPT_CLGI);
1133                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1134         }
1135
1136         if (sev_guest(svm->vcpu.kvm)) {
1137                 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1138                 clr_exception_intercept(svm, UD_VECTOR);
1139         }
1140
1141         mark_all_dirty(svm->vmcb);
1142
1143         enable_gif(svm);
1144
1145 }
1146
1147 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1148 {
1149         struct vcpu_svm *svm = to_svm(vcpu);
1150         u32 dummy;
1151         u32 eax = 1;
1152
1153         svm->spec_ctrl = 0;
1154         svm->virt_spec_ctrl = 0;
1155
1156         if (!init_event) {
1157                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1158                                            MSR_IA32_APICBASE_ENABLE;
1159                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1160                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1161         }
1162         init_vmcb(svm);
1163
1164         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1165         kvm_rdx_write(vcpu, eax);
1166
1167         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1168                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1169 }
1170
1171 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1172 {
1173         struct vcpu_svm *svm;
1174         struct page *page;
1175         struct page *msrpm_pages;
1176         struct page *hsave_page;
1177         struct page *nested_msrpm_pages;
1178         int err;
1179
1180         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1181         svm = to_svm(vcpu);
1182
1183         err = -ENOMEM;
1184         page = alloc_page(GFP_KERNEL_ACCOUNT);
1185         if (!page)
1186                 goto out;
1187
1188         msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
1189         if (!msrpm_pages)
1190                 goto free_page1;
1191
1192         nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
1193         if (!nested_msrpm_pages)
1194                 goto free_page2;
1195
1196         hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
1197         if (!hsave_page)
1198                 goto free_page3;
1199
1200         err = avic_init_vcpu(svm);
1201         if (err)
1202                 goto free_page4;
1203
1204         /* We initialize this flag to true to make sure that the is_running
1205          * bit would be set the first time the vcpu is loaded.
1206          */
1207         if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1208                 svm->avic_is_running = true;
1209
1210         svm->nested.hsave = page_address(hsave_page);
1211
1212         svm->msrpm = page_address(msrpm_pages);
1213         svm_vcpu_init_msrpm(svm->msrpm);
1214
1215         svm->nested.msrpm = page_address(nested_msrpm_pages);
1216         svm_vcpu_init_msrpm(svm->nested.msrpm);
1217
1218         svm->vmcb = page_address(page);
1219         clear_page(svm->vmcb);
1220         svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
1221         svm->asid_generation = 0;
1222         init_vmcb(svm);
1223
1224         svm_init_osvw(vcpu);
1225         vcpu->arch.microcode_version = 0x01000065;
1226
1227         return 0;
1228
1229 free_page4:
1230         __free_page(hsave_page);
1231 free_page3:
1232         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1233 free_page2:
1234         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1235 free_page1:
1236         __free_page(page);
1237 out:
1238         return err;
1239 }
1240
1241 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1242 {
1243         int i;
1244
1245         for_each_online_cpu(i)
1246                 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1247 }
1248
1249 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1250 {
1251         struct vcpu_svm *svm = to_svm(vcpu);
1252
1253         /*
1254          * The vmcb page can be recycled, causing a false negative in
1255          * svm_vcpu_load(). So, ensure that no logical CPU has this
1256          * vmcb page recorded as its current vmcb.
1257          */
1258         svm_clear_current_vmcb(svm->vmcb);
1259
1260         __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1261         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1262         __free_page(virt_to_page(svm->nested.hsave));
1263         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1264 }
1265
1266 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1267 {
1268         struct vcpu_svm *svm = to_svm(vcpu);
1269         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1270         int i;
1271
1272         if (unlikely(cpu != vcpu->cpu)) {
1273                 svm->asid_generation = 0;
1274                 mark_all_dirty(svm->vmcb);
1275         }
1276
1277 #ifdef CONFIG_X86_64
1278         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1279 #endif
1280         savesegment(fs, svm->host.fs);
1281         savesegment(gs, svm->host.gs);
1282         svm->host.ldt = kvm_read_ldt();
1283
1284         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1285                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1286
1287         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1288                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1289                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1290                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1291                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1292                 }
1293         }
1294         /* This assumes that the kernel never uses MSR_TSC_AUX */
1295         if (static_cpu_has(X86_FEATURE_RDTSCP))
1296                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1297
1298         if (sd->current_vmcb != svm->vmcb) {
1299                 sd->current_vmcb = svm->vmcb;
1300                 indirect_branch_prediction_barrier();
1301         }
1302         avic_vcpu_load(vcpu, cpu);
1303 }
1304
1305 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1306 {
1307         struct vcpu_svm *svm = to_svm(vcpu);
1308         int i;
1309
1310         avic_vcpu_put(vcpu);
1311
1312         ++vcpu->stat.host_state_reload;
1313         kvm_load_ldt(svm->host.ldt);
1314 #ifdef CONFIG_X86_64
1315         loadsegment(fs, svm->host.fs);
1316         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1317         load_gs_index(svm->host.gs);
1318 #else
1319 #ifdef CONFIG_X86_32_LAZY_GS
1320         loadsegment(gs, svm->host.gs);
1321 #endif
1322 #endif
1323         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1324                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1325 }
1326
1327 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1328 {
1329         struct vcpu_svm *svm = to_svm(vcpu);
1330         unsigned long rflags = svm->vmcb->save.rflags;
1331
1332         if (svm->nmi_singlestep) {
1333                 /* Hide our flags if they were not set by the guest */
1334                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1335                         rflags &= ~X86_EFLAGS_TF;
1336                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1337                         rflags &= ~X86_EFLAGS_RF;
1338         }
1339         return rflags;
1340 }
1341
1342 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1343 {
1344         if (to_svm(vcpu)->nmi_singlestep)
1345                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1346
1347        /*
1348         * Any change of EFLAGS.VM is accompanied by a reload of SS
1349         * (caused by either a task switch or an inter-privilege IRET),
1350         * so we do not need to update the CPL here.
1351         */
1352         to_svm(vcpu)->vmcb->save.rflags = rflags;
1353 }
1354
1355 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1356 {
1357         switch (reg) {
1358         case VCPU_EXREG_PDPTR:
1359                 BUG_ON(!npt_enabled);
1360                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1361                 break;
1362         default:
1363                 WARN_ON_ONCE(1);
1364         }
1365 }
1366
1367 static inline void svm_enable_vintr(struct vcpu_svm *svm)
1368 {
1369         struct vmcb_control_area *control;
1370
1371         /* The following fields are ignored when AVIC is enabled */
1372         WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1373
1374         /*
1375          * This is just a dummy VINTR to actually cause a vmexit to happen.
1376          * Actual injection of virtual interrupts happens through EVENTINJ.
1377          */
1378         control = &svm->vmcb->control;
1379         control->int_vector = 0x0;
1380         control->int_ctl &= ~V_INTR_PRIO_MASK;
1381         control->int_ctl |= V_IRQ_MASK |
1382                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1383         mark_dirty(svm->vmcb, VMCB_INTR);
1384 }
1385
1386 static void svm_set_vintr(struct vcpu_svm *svm)
1387 {
1388         set_intercept(svm, INTERCEPT_VINTR);
1389         if (is_intercept(svm, INTERCEPT_VINTR))
1390                 svm_enable_vintr(svm);
1391 }
1392
1393 static void svm_clear_vintr(struct vcpu_svm *svm)
1394 {
1395         clr_intercept(svm, INTERCEPT_VINTR);
1396
1397         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1398         mark_dirty(svm->vmcb, VMCB_INTR);
1399 }
1400
1401 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1402 {
1403         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1404
1405         switch (seg) {
1406         case VCPU_SREG_CS: return &save->cs;
1407         case VCPU_SREG_DS: return &save->ds;
1408         case VCPU_SREG_ES: return &save->es;
1409         case VCPU_SREG_FS: return &save->fs;
1410         case VCPU_SREG_GS: return &save->gs;
1411         case VCPU_SREG_SS: return &save->ss;
1412         case VCPU_SREG_TR: return &save->tr;
1413         case VCPU_SREG_LDTR: return &save->ldtr;
1414         }
1415         BUG();
1416         return NULL;
1417 }
1418
1419 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1420 {
1421         struct vmcb_seg *s = svm_seg(vcpu, seg);
1422
1423         return s->base;
1424 }
1425
1426 static void svm_get_segment(struct kvm_vcpu *vcpu,
1427                             struct kvm_segment *var, int seg)
1428 {
1429         struct vmcb_seg *s = svm_seg(vcpu, seg);
1430
1431         var->base = s->base;
1432         var->limit = s->limit;
1433         var->selector = s->selector;
1434         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1435         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1436         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1437         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1438         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1439         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1440         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1441
1442         /*
1443          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1444          * However, the SVM spec states that the G bit is not observed by the
1445          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1446          * So let's synthesize a legal G bit for all segments, this helps
1447          * running KVM nested. It also helps cross-vendor migration, because
1448          * Intel's vmentry has a check on the 'G' bit.
1449          */
1450         var->g = s->limit > 0xfffff;
1451
1452         /*
1453          * AMD's VMCB does not have an explicit unusable field, so emulate it
1454          * for cross vendor migration purposes by "not present"
1455          */
1456         var->unusable = !var->present;
1457
1458         switch (seg) {
1459         case VCPU_SREG_TR:
1460                 /*
1461                  * Work around a bug where the busy flag in the tr selector
1462                  * isn't exposed
1463                  */
1464                 var->type |= 0x2;
1465                 break;
1466         case VCPU_SREG_DS:
1467         case VCPU_SREG_ES:
1468         case VCPU_SREG_FS:
1469         case VCPU_SREG_GS:
1470                 /*
1471                  * The accessed bit must always be set in the segment
1472                  * descriptor cache, although it can be cleared in the
1473                  * descriptor, the cached bit always remains at 1. Since
1474                  * Intel has a check on this, set it here to support
1475                  * cross-vendor migration.
1476                  */
1477                 if (!var->unusable)
1478                         var->type |= 0x1;
1479                 break;
1480         case VCPU_SREG_SS:
1481                 /*
1482                  * On AMD CPUs sometimes the DB bit in the segment
1483                  * descriptor is left as 1, although the whole segment has
1484                  * been made unusable. Clear it here to pass an Intel VMX
1485                  * entry check when cross vendor migrating.
1486                  */
1487                 if (var->unusable)
1488                         var->db = 0;
1489                 /* This is symmetric with svm_set_segment() */
1490                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1491                 break;
1492         }
1493 }
1494
1495 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1496 {
1497         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1498
1499         return save->cpl;
1500 }
1501
1502 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1503 {
1504         struct vcpu_svm *svm = to_svm(vcpu);
1505
1506         dt->size = svm->vmcb->save.idtr.limit;
1507         dt->address = svm->vmcb->save.idtr.base;
1508 }
1509
1510 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1511 {
1512         struct vcpu_svm *svm = to_svm(vcpu);
1513
1514         svm->vmcb->save.idtr.limit = dt->size;
1515         svm->vmcb->save.idtr.base = dt->address ;
1516         mark_dirty(svm->vmcb, VMCB_DT);
1517 }
1518
1519 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1520 {
1521         struct vcpu_svm *svm = to_svm(vcpu);
1522
1523         dt->size = svm->vmcb->save.gdtr.limit;
1524         dt->address = svm->vmcb->save.gdtr.base;
1525 }
1526
1527 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1528 {
1529         struct vcpu_svm *svm = to_svm(vcpu);
1530
1531         svm->vmcb->save.gdtr.limit = dt->size;
1532         svm->vmcb->save.gdtr.base = dt->address ;
1533         mark_dirty(svm->vmcb, VMCB_DT);
1534 }
1535
1536 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1537 {
1538 }
1539
1540 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1541 {
1542 }
1543
1544 static void update_cr0_intercept(struct vcpu_svm *svm)
1545 {
1546         ulong gcr0 = svm->vcpu.arch.cr0;
1547         u64 *hcr0 = &svm->vmcb->save.cr0;
1548
1549         *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1550                 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1551
1552         mark_dirty(svm->vmcb, VMCB_CR);
1553
1554         if (gcr0 == *hcr0) {
1555                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1556                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1557         } else {
1558                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1559                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1560         }
1561 }
1562
1563 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1564 {
1565         struct vcpu_svm *svm = to_svm(vcpu);
1566
1567 #ifdef CONFIG_X86_64
1568         if (vcpu->arch.efer & EFER_LME) {
1569                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1570                         vcpu->arch.efer |= EFER_LMA;
1571                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1572                 }
1573
1574                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1575                         vcpu->arch.efer &= ~EFER_LMA;
1576                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1577                 }
1578         }
1579 #endif
1580         vcpu->arch.cr0 = cr0;
1581
1582         if (!npt_enabled)
1583                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1584
1585         /*
1586          * re-enable caching here because the QEMU bios
1587          * does not do it - this results in some delay at
1588          * reboot
1589          */
1590         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1591                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1592         svm->vmcb->save.cr0 = cr0;
1593         mark_dirty(svm->vmcb, VMCB_CR);
1594         update_cr0_intercept(svm);
1595 }
1596
1597 int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1598 {
1599         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1600         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1601
1602         if (cr4 & X86_CR4_VMXE)
1603                 return 1;
1604
1605         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1606                 svm_flush_tlb(vcpu, true);
1607
1608         vcpu->arch.cr4 = cr4;
1609         if (!npt_enabled)
1610                 cr4 |= X86_CR4_PAE;
1611         cr4 |= host_cr4_mce;
1612         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1613         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1614         return 0;
1615 }
1616
1617 static void svm_set_segment(struct kvm_vcpu *vcpu,
1618                             struct kvm_segment *var, int seg)
1619 {
1620         struct vcpu_svm *svm = to_svm(vcpu);
1621         struct vmcb_seg *s = svm_seg(vcpu, seg);
1622
1623         s->base = var->base;
1624         s->limit = var->limit;
1625         s->selector = var->selector;
1626         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1627         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1628         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1629         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1630         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1631         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1632         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1633         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1634
1635         /*
1636          * This is always accurate, except if SYSRET returned to a segment
1637          * with SS.DPL != 3.  Intel does not have this quirk, and always
1638          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1639          * would entail passing the CPL to userspace and back.
1640          */
1641         if (seg == VCPU_SREG_SS)
1642                 /* This is symmetric with svm_get_segment() */
1643                 svm->vmcb->save.cpl = (var->dpl & 3);
1644
1645         mark_dirty(svm->vmcb, VMCB_SEG);
1646 }
1647
1648 static void update_bp_intercept(struct kvm_vcpu *vcpu)
1649 {
1650         struct vcpu_svm *svm = to_svm(vcpu);
1651
1652         clr_exception_intercept(svm, BP_VECTOR);
1653
1654         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1655                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1656                         set_exception_intercept(svm, BP_VECTOR);
1657         } else
1658                 vcpu->guest_debug = 0;
1659 }
1660
1661 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1662 {
1663         if (sd->next_asid > sd->max_asid) {
1664                 ++sd->asid_generation;
1665                 sd->next_asid = sd->min_asid;
1666                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1667         }
1668
1669         svm->asid_generation = sd->asid_generation;
1670         svm->vmcb->control.asid = sd->next_asid++;
1671
1672         mark_dirty(svm->vmcb, VMCB_ASID);
1673 }
1674
1675 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1676 {
1677         return to_svm(vcpu)->vmcb->save.dr6;
1678 }
1679
1680 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1681 {
1682         struct vcpu_svm *svm = to_svm(vcpu);
1683
1684         svm->vmcb->save.dr6 = value;
1685         mark_dirty(svm->vmcb, VMCB_DR);
1686 }
1687
1688 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1689 {
1690         struct vcpu_svm *svm = to_svm(vcpu);
1691
1692         get_debugreg(vcpu->arch.db[0], 0);
1693         get_debugreg(vcpu->arch.db[1], 1);
1694         get_debugreg(vcpu->arch.db[2], 2);
1695         get_debugreg(vcpu->arch.db[3], 3);
1696         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1697         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1698
1699         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1700         set_dr_intercepts(svm);
1701 }
1702
1703 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1704 {
1705         struct vcpu_svm *svm = to_svm(vcpu);
1706
1707         svm->vmcb->save.dr7 = value;
1708         mark_dirty(svm->vmcb, VMCB_DR);
1709 }
1710
1711 static int pf_interception(struct vcpu_svm *svm)
1712 {
1713         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1714         u64 error_code = svm->vmcb->control.exit_info_1;
1715
1716         return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1717                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1718                         svm->vmcb->control.insn_bytes : NULL,
1719                         svm->vmcb->control.insn_len);
1720 }
1721
1722 static int npf_interception(struct vcpu_svm *svm)
1723 {
1724         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1725         u64 error_code = svm->vmcb->control.exit_info_1;
1726
1727         trace_kvm_page_fault(fault_address, error_code);
1728         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1729                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1730                         svm->vmcb->control.insn_bytes : NULL,
1731                         svm->vmcb->control.insn_len);
1732 }
1733
1734 static int db_interception(struct vcpu_svm *svm)
1735 {
1736         struct kvm_run *kvm_run = svm->vcpu.run;
1737         struct kvm_vcpu *vcpu = &svm->vcpu;
1738
1739         if (!(svm->vcpu.guest_debug &
1740               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1741                 !svm->nmi_singlestep) {
1742                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1743                 return 1;
1744         }
1745
1746         if (svm->nmi_singlestep) {
1747                 disable_nmi_singlestep(svm);
1748                 /* Make sure we check for pending NMIs upon entry */
1749                 kvm_make_request(KVM_REQ_EVENT, vcpu);
1750         }
1751
1752         if (svm->vcpu.guest_debug &
1753             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1754                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1755                 kvm_run->debug.arch.pc =
1756                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1757                 kvm_run->debug.arch.exception = DB_VECTOR;
1758                 return 0;
1759         }
1760
1761         return 1;
1762 }
1763
1764 static int bp_interception(struct vcpu_svm *svm)
1765 {
1766         struct kvm_run *kvm_run = svm->vcpu.run;
1767
1768         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1769         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1770         kvm_run->debug.arch.exception = BP_VECTOR;
1771         return 0;
1772 }
1773
1774 static int ud_interception(struct vcpu_svm *svm)
1775 {
1776         return handle_ud(&svm->vcpu);
1777 }
1778
1779 static int ac_interception(struct vcpu_svm *svm)
1780 {
1781         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1782         return 1;
1783 }
1784
1785 static int gp_interception(struct vcpu_svm *svm)
1786 {
1787         struct kvm_vcpu *vcpu = &svm->vcpu;
1788         u32 error_code = svm->vmcb->control.exit_info_1;
1789
1790         WARN_ON_ONCE(!enable_vmware_backdoor);
1791
1792         /*
1793          * VMware backdoor emulation on #GP interception only handles IN{S},
1794          * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1795          */
1796         if (error_code) {
1797                 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1798                 return 1;
1799         }
1800         return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1801 }
1802
1803 static bool is_erratum_383(void)
1804 {
1805         int err, i;
1806         u64 value;
1807
1808         if (!erratum_383_found)
1809                 return false;
1810
1811         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1812         if (err)
1813                 return false;
1814
1815         /* Bit 62 may or may not be set for this mce */
1816         value &= ~(1ULL << 62);
1817
1818         if (value != 0xb600000000010015ULL)
1819                 return false;
1820
1821         /* Clear MCi_STATUS registers */
1822         for (i = 0; i < 6; ++i)
1823                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1824
1825         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1826         if (!err) {
1827                 u32 low, high;
1828
1829                 value &= ~(1ULL << 2);
1830                 low    = lower_32_bits(value);
1831                 high   = upper_32_bits(value);
1832
1833                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1834         }
1835
1836         /* Flush tlb to evict multi-match entries */
1837         __flush_tlb_all();
1838
1839         return true;
1840 }
1841
1842 static void svm_handle_mce(struct vcpu_svm *svm)
1843 {
1844         if (is_erratum_383()) {
1845                 /*
1846                  * Erratum 383 triggered. Guest state is corrupt so kill the
1847                  * guest.
1848                  */
1849                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1850
1851                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1852
1853                 return;
1854         }
1855
1856         /*
1857          * On an #MC intercept the MCE handler is not called automatically in
1858          * the host. So do it by hand here.
1859          */
1860         asm volatile (
1861                 "int $0x12\n");
1862         /* not sure if we ever come back to this point */
1863
1864         return;
1865 }
1866
1867 static int mc_interception(struct vcpu_svm *svm)
1868 {
1869         return 1;
1870 }
1871
1872 static int shutdown_interception(struct vcpu_svm *svm)
1873 {
1874         struct kvm_run *kvm_run = svm->vcpu.run;
1875
1876         /*
1877          * VMCB is undefined after a SHUTDOWN intercept
1878          * so reinitialize it.
1879          */
1880         clear_page(svm->vmcb);
1881         init_vmcb(svm);
1882
1883         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1884         return 0;
1885 }
1886
1887 static int io_interception(struct vcpu_svm *svm)
1888 {
1889         struct kvm_vcpu *vcpu = &svm->vcpu;
1890         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1891         int size, in, string;
1892         unsigned port;
1893
1894         ++svm->vcpu.stat.io_exits;
1895         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1896         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1897         if (string)
1898                 return kvm_emulate_instruction(vcpu, 0);
1899
1900         port = io_info >> 16;
1901         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1902         svm->next_rip = svm->vmcb->control.exit_info_2;
1903
1904         return kvm_fast_pio(&svm->vcpu, size, port, in);
1905 }
1906
1907 static int nmi_interception(struct vcpu_svm *svm)
1908 {
1909         return 1;
1910 }
1911
1912 static int intr_interception(struct vcpu_svm *svm)
1913 {
1914         ++svm->vcpu.stat.irq_exits;
1915         return 1;
1916 }
1917
1918 static int nop_on_interception(struct vcpu_svm *svm)
1919 {
1920         return 1;
1921 }
1922
1923 static int halt_interception(struct vcpu_svm *svm)
1924 {
1925         return kvm_emulate_halt(&svm->vcpu);
1926 }
1927
1928 static int vmmcall_interception(struct vcpu_svm *svm)
1929 {
1930         return kvm_emulate_hypercall(&svm->vcpu);
1931 }
1932
1933 static int vmload_interception(struct vcpu_svm *svm)
1934 {
1935         struct vmcb *nested_vmcb;
1936         struct kvm_host_map map;
1937         int ret;
1938
1939         if (nested_svm_check_permissions(svm))
1940                 return 1;
1941
1942         ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1943         if (ret) {
1944                 if (ret == -EINVAL)
1945                         kvm_inject_gp(&svm->vcpu, 0);
1946                 return 1;
1947         }
1948
1949         nested_vmcb = map.hva;
1950
1951         ret = kvm_skip_emulated_instruction(&svm->vcpu);
1952
1953         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1954         kvm_vcpu_unmap(&svm->vcpu, &map, true);
1955
1956         return ret;
1957 }
1958
1959 static int vmsave_interception(struct vcpu_svm *svm)
1960 {
1961         struct vmcb *nested_vmcb;
1962         struct kvm_host_map map;
1963         int ret;
1964
1965         if (nested_svm_check_permissions(svm))
1966                 return 1;
1967
1968         ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1969         if (ret) {
1970                 if (ret == -EINVAL)
1971                         kvm_inject_gp(&svm->vcpu, 0);
1972                 return 1;
1973         }
1974
1975         nested_vmcb = map.hva;
1976
1977         ret = kvm_skip_emulated_instruction(&svm->vcpu);
1978
1979         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1980         kvm_vcpu_unmap(&svm->vcpu, &map, true);
1981
1982         return ret;
1983 }
1984
1985 static int vmrun_interception(struct vcpu_svm *svm)
1986 {
1987         if (nested_svm_check_permissions(svm))
1988                 return 1;
1989
1990         return nested_svm_vmrun(svm);
1991 }
1992
1993 static int stgi_interception(struct vcpu_svm *svm)
1994 {
1995         int ret;
1996
1997         if (nested_svm_check_permissions(svm))
1998                 return 1;
1999
2000         /*
2001          * If VGIF is enabled, the STGI intercept is only added to
2002          * detect the opening of the SMI/NMI window; remove it now.
2003          */
2004         if (vgif_enabled(svm))
2005                 clr_intercept(svm, INTERCEPT_STGI);
2006
2007         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2008         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2009
2010         enable_gif(svm);
2011
2012         return ret;
2013 }
2014
2015 static int clgi_interception(struct vcpu_svm *svm)
2016 {
2017         int ret;
2018
2019         if (nested_svm_check_permissions(svm))
2020                 return 1;
2021
2022         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2023
2024         disable_gif(svm);
2025
2026         /* After a CLGI no interrupts should come */
2027         if (!kvm_vcpu_apicv_active(&svm->vcpu))
2028                 svm_clear_vintr(svm);
2029
2030         return ret;
2031 }
2032
2033 static int invlpga_interception(struct vcpu_svm *svm)
2034 {
2035         struct kvm_vcpu *vcpu = &svm->vcpu;
2036
2037         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2038                           kvm_rax_read(&svm->vcpu));
2039
2040         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2041         kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2042
2043         return kvm_skip_emulated_instruction(&svm->vcpu);
2044 }
2045
2046 static int skinit_interception(struct vcpu_svm *svm)
2047 {
2048         trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2049
2050         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2051         return 1;
2052 }
2053
2054 static int wbinvd_interception(struct vcpu_svm *svm)
2055 {
2056         return kvm_emulate_wbinvd(&svm->vcpu);
2057 }
2058
2059 static int xsetbv_interception(struct vcpu_svm *svm)
2060 {
2061         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2062         u32 index = kvm_rcx_read(&svm->vcpu);
2063
2064         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2065                 return kvm_skip_emulated_instruction(&svm->vcpu);
2066         }
2067
2068         return 1;
2069 }
2070
2071 static int rdpru_interception(struct vcpu_svm *svm)
2072 {
2073         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2074         return 1;
2075 }
2076
2077 static int task_switch_interception(struct vcpu_svm *svm)
2078 {
2079         u16 tss_selector;
2080         int reason;
2081         int int_type = svm->vmcb->control.exit_int_info &
2082                 SVM_EXITINTINFO_TYPE_MASK;
2083         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2084         uint32_t type =
2085                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2086         uint32_t idt_v =
2087                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2088         bool has_error_code = false;
2089         u32 error_code = 0;
2090
2091         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2092
2093         if (svm->vmcb->control.exit_info_2 &
2094             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2095                 reason = TASK_SWITCH_IRET;
2096         else if (svm->vmcb->control.exit_info_2 &
2097                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2098                 reason = TASK_SWITCH_JMP;
2099         else if (idt_v)
2100                 reason = TASK_SWITCH_GATE;
2101         else
2102                 reason = TASK_SWITCH_CALL;
2103
2104         if (reason == TASK_SWITCH_GATE) {
2105                 switch (type) {
2106                 case SVM_EXITINTINFO_TYPE_NMI:
2107                         svm->vcpu.arch.nmi_injected = false;
2108                         break;
2109                 case SVM_EXITINTINFO_TYPE_EXEPT:
2110                         if (svm->vmcb->control.exit_info_2 &
2111                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2112                                 has_error_code = true;
2113                                 error_code =
2114                                         (u32)svm->vmcb->control.exit_info_2;
2115                         }
2116                         kvm_clear_exception_queue(&svm->vcpu);
2117                         break;
2118                 case SVM_EXITINTINFO_TYPE_INTR:
2119                         kvm_clear_interrupt_queue(&svm->vcpu);
2120                         break;
2121                 default:
2122                         break;
2123                 }
2124         }
2125
2126         if (reason != TASK_SWITCH_GATE ||
2127             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2128             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2129              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2130                 if (!skip_emulated_instruction(&svm->vcpu))
2131                         return 0;
2132         }
2133
2134         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2135                 int_vec = -1;
2136
2137         return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2138                                has_error_code, error_code);
2139 }
2140
2141 static int cpuid_interception(struct vcpu_svm *svm)
2142 {
2143         return kvm_emulate_cpuid(&svm->vcpu);
2144 }
2145
2146 static int iret_interception(struct vcpu_svm *svm)
2147 {
2148         ++svm->vcpu.stat.nmi_window_exits;
2149         clr_intercept(svm, INTERCEPT_IRET);
2150         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2151         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2152         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2153         return 1;
2154 }
2155
2156 static int invlpg_interception(struct vcpu_svm *svm)
2157 {
2158         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2159                 return kvm_emulate_instruction(&svm->vcpu, 0);
2160
2161         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2162         return kvm_skip_emulated_instruction(&svm->vcpu);
2163 }
2164
2165 static int emulate_on_interception(struct vcpu_svm *svm)
2166 {
2167         return kvm_emulate_instruction(&svm->vcpu, 0);
2168 }
2169
2170 static int rsm_interception(struct vcpu_svm *svm)
2171 {
2172         return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2173 }
2174
2175 static int rdpmc_interception(struct vcpu_svm *svm)
2176 {
2177         int err;
2178
2179         if (!nrips)
2180                 return emulate_on_interception(svm);
2181
2182         err = kvm_rdpmc(&svm->vcpu);
2183         return kvm_complete_insn_gp(&svm->vcpu, err);
2184 }
2185
2186 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2187                                             unsigned long val)
2188 {
2189         unsigned long cr0 = svm->vcpu.arch.cr0;
2190         bool ret = false;
2191         u64 intercept;
2192
2193         intercept = svm->nested.intercept;
2194
2195         if (!is_guest_mode(&svm->vcpu) ||
2196             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2197                 return false;
2198
2199         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2200         val &= ~SVM_CR0_SELECTIVE_MASK;
2201
2202         if (cr0 ^ val) {
2203                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2204                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2205         }
2206
2207         return ret;
2208 }
2209
2210 #define CR_VALID (1ULL << 63)
2211
2212 static int cr_interception(struct vcpu_svm *svm)
2213 {
2214         int reg, cr;
2215         unsigned long val;
2216         int err;
2217
2218         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2219                 return emulate_on_interception(svm);
2220
2221         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2222                 return emulate_on_interception(svm);
2223
2224         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2225         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2226                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2227         else
2228                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2229
2230         err = 0;
2231         if (cr >= 16) { /* mov to cr */
2232                 cr -= 16;
2233                 val = kvm_register_read(&svm->vcpu, reg);
2234                 switch (cr) {
2235                 case 0:
2236                         if (!check_selective_cr0_intercepted(svm, val))
2237                                 err = kvm_set_cr0(&svm->vcpu, val);
2238                         else
2239                                 return 1;
2240
2241                         break;
2242                 case 3:
2243                         err = kvm_set_cr3(&svm->vcpu, val);
2244                         break;
2245                 case 4:
2246                         err = kvm_set_cr4(&svm->vcpu, val);
2247                         break;
2248                 case 8:
2249                         err = kvm_set_cr8(&svm->vcpu, val);
2250                         break;
2251                 default:
2252                         WARN(1, "unhandled write to CR%d", cr);
2253                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2254                         return 1;
2255                 }
2256         } else { /* mov from cr */
2257                 switch (cr) {
2258                 case 0:
2259                         val = kvm_read_cr0(&svm->vcpu);
2260                         break;
2261                 case 2:
2262                         val = svm->vcpu.arch.cr2;
2263                         break;
2264                 case 3:
2265                         val = kvm_read_cr3(&svm->vcpu);
2266                         break;
2267                 case 4:
2268                         val = kvm_read_cr4(&svm->vcpu);
2269                         break;
2270                 case 8:
2271                         val = kvm_get_cr8(&svm->vcpu);
2272                         break;
2273                 default:
2274                         WARN(1, "unhandled read from CR%d", cr);
2275                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2276                         return 1;
2277                 }
2278                 kvm_register_write(&svm->vcpu, reg, val);
2279         }
2280         return kvm_complete_insn_gp(&svm->vcpu, err);
2281 }
2282
2283 static int dr_interception(struct vcpu_svm *svm)
2284 {
2285         int reg, dr;
2286         unsigned long val;
2287
2288         if (svm->vcpu.guest_debug == 0) {
2289                 /*
2290                  * No more DR vmexits; force a reload of the debug registers
2291                  * and reenter on this instruction.  The next vmexit will
2292                  * retrieve the full state of the debug registers.
2293                  */
2294                 clr_dr_intercepts(svm);
2295                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2296                 return 1;
2297         }
2298
2299         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2300                 return emulate_on_interception(svm);
2301
2302         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2303         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2304
2305         if (dr >= 16) { /* mov to DRn */
2306                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
2307                         return 1;
2308                 val = kvm_register_read(&svm->vcpu, reg);
2309                 kvm_set_dr(&svm->vcpu, dr - 16, val);
2310         } else {
2311                 if (!kvm_require_dr(&svm->vcpu, dr))
2312                         return 1;
2313                 kvm_get_dr(&svm->vcpu, dr, &val);
2314                 kvm_register_write(&svm->vcpu, reg, val);
2315         }
2316
2317         return kvm_skip_emulated_instruction(&svm->vcpu);
2318 }
2319
2320 static int cr8_write_interception(struct vcpu_svm *svm)
2321 {
2322         struct kvm_run *kvm_run = svm->vcpu.run;
2323         int r;
2324
2325         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2326         /* instruction emulation calls kvm_set_cr8() */
2327         r = cr_interception(svm);
2328         if (lapic_in_kernel(&svm->vcpu))
2329                 return r;
2330         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2331                 return r;
2332         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2333         return 0;
2334 }
2335
2336 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2337 {
2338         msr->data = 0;
2339
2340         switch (msr->index) {
2341         case MSR_F10H_DECFG:
2342                 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2343                         msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2344                 break;
2345         default:
2346                 return 1;
2347         }
2348
2349         return 0;
2350 }
2351
2352 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2353 {
2354         struct vcpu_svm *svm = to_svm(vcpu);
2355
2356         switch (msr_info->index) {
2357         case MSR_STAR:
2358                 msr_info->data = svm->vmcb->save.star;
2359                 break;
2360 #ifdef CONFIG_X86_64
2361         case MSR_LSTAR:
2362                 msr_info->data = svm->vmcb->save.lstar;
2363                 break;
2364         case MSR_CSTAR:
2365                 msr_info->data = svm->vmcb->save.cstar;
2366                 break;
2367         case MSR_KERNEL_GS_BASE:
2368                 msr_info->data = svm->vmcb->save.kernel_gs_base;
2369                 break;
2370         case MSR_SYSCALL_MASK:
2371                 msr_info->data = svm->vmcb->save.sfmask;
2372                 break;
2373 #endif
2374         case MSR_IA32_SYSENTER_CS:
2375                 msr_info->data = svm->vmcb->save.sysenter_cs;
2376                 break;
2377         case MSR_IA32_SYSENTER_EIP:
2378                 msr_info->data = svm->sysenter_eip;
2379                 break;
2380         case MSR_IA32_SYSENTER_ESP:
2381                 msr_info->data = svm->sysenter_esp;
2382                 break;
2383         case MSR_TSC_AUX:
2384                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2385                         return 1;
2386                 msr_info->data = svm->tsc_aux;
2387                 break;
2388         /*
2389          * Nobody will change the following 5 values in the VMCB so we can
2390          * safely return them on rdmsr. They will always be 0 until LBRV is
2391          * implemented.
2392          */
2393         case MSR_IA32_DEBUGCTLMSR:
2394                 msr_info->data = svm->vmcb->save.dbgctl;
2395                 break;
2396         case MSR_IA32_LASTBRANCHFROMIP:
2397                 msr_info->data = svm->vmcb->save.br_from;
2398                 break;
2399         case MSR_IA32_LASTBRANCHTOIP:
2400                 msr_info->data = svm->vmcb->save.br_to;
2401                 break;
2402         case MSR_IA32_LASTINTFROMIP:
2403                 msr_info->data = svm->vmcb->save.last_excp_from;
2404                 break;
2405         case MSR_IA32_LASTINTTOIP:
2406                 msr_info->data = svm->vmcb->save.last_excp_to;
2407                 break;
2408         case MSR_VM_HSAVE_PA:
2409                 msr_info->data = svm->nested.hsave_msr;
2410                 break;
2411         case MSR_VM_CR:
2412                 msr_info->data = svm->nested.vm_cr_msr;
2413                 break;
2414         case MSR_IA32_SPEC_CTRL:
2415                 if (!msr_info->host_initiated &&
2416                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2417                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2418                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2419                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2420                         return 1;
2421
2422                 msr_info->data = svm->spec_ctrl;
2423                 break;
2424         case MSR_AMD64_VIRT_SPEC_CTRL:
2425                 if (!msr_info->host_initiated &&
2426                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2427                         return 1;
2428
2429                 msr_info->data = svm->virt_spec_ctrl;
2430                 break;
2431         case MSR_F15H_IC_CFG: {
2432
2433                 int family, model;
2434
2435                 family = guest_cpuid_family(vcpu);
2436                 model  = guest_cpuid_model(vcpu);
2437
2438                 if (family < 0 || model < 0)
2439                         return kvm_get_msr_common(vcpu, msr_info);
2440
2441                 msr_info->data = 0;
2442
2443                 if (family == 0x15 &&
2444                     (model >= 0x2 && model < 0x20))
2445                         msr_info->data = 0x1E;
2446                 }
2447                 break;
2448         case MSR_F10H_DECFG:
2449                 msr_info->data = svm->msr_decfg;
2450                 break;
2451         default:
2452                 return kvm_get_msr_common(vcpu, msr_info);
2453         }
2454         return 0;
2455 }
2456
2457 static int rdmsr_interception(struct vcpu_svm *svm)
2458 {
2459         return kvm_emulate_rdmsr(&svm->vcpu);
2460 }
2461
2462 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2463 {
2464         struct vcpu_svm *svm = to_svm(vcpu);
2465         int svm_dis, chg_mask;
2466
2467         if (data & ~SVM_VM_CR_VALID_MASK)
2468                 return 1;
2469
2470         chg_mask = SVM_VM_CR_VALID_MASK;
2471
2472         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2473                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2474
2475         svm->nested.vm_cr_msr &= ~chg_mask;
2476         svm->nested.vm_cr_msr |= (data & chg_mask);
2477
2478         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2479
2480         /* check for svm_disable while efer.svme is set */
2481         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2482                 return 1;
2483
2484         return 0;
2485 }
2486
2487 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2488 {
2489         struct vcpu_svm *svm = to_svm(vcpu);
2490
2491         u32 ecx = msr->index;
2492         u64 data = msr->data;
2493         switch (ecx) {
2494         case MSR_IA32_CR_PAT:
2495                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2496                         return 1;
2497                 vcpu->arch.pat = data;
2498                 svm->vmcb->save.g_pat = data;
2499                 mark_dirty(svm->vmcb, VMCB_NPT);
2500                 break;
2501         case MSR_IA32_SPEC_CTRL:
2502                 if (!msr->host_initiated &&
2503                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2504                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2505                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2506                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2507                         return 1;
2508
2509                 if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2510                         return 1;
2511
2512                 svm->spec_ctrl = data;
2513                 if (!data)
2514                         break;
2515
2516                 /*
2517                  * For non-nested:
2518                  * When it's written (to non-zero) for the first time, pass
2519                  * it through.
2520                  *
2521                  * For nested:
2522                  * The handling of the MSR bitmap for L2 guests is done in
2523                  * nested_svm_vmrun_msrpm.
2524                  * We update the L1 MSR bit as well since it will end up
2525                  * touching the MSR anyway now.
2526                  */
2527                 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2528                 break;
2529         case MSR_IA32_PRED_CMD:
2530                 if (!msr->host_initiated &&
2531                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
2532                         return 1;
2533
2534                 if (data & ~PRED_CMD_IBPB)
2535                         return 1;
2536                 if (!boot_cpu_has(X86_FEATURE_AMD_IBPB))
2537                         return 1;
2538                 if (!data)
2539                         break;
2540
2541                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2542                 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2543                 break;
2544         case MSR_AMD64_VIRT_SPEC_CTRL:
2545                 if (!msr->host_initiated &&
2546                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2547                         return 1;
2548
2549                 if (data & ~SPEC_CTRL_SSBD)
2550                         return 1;
2551
2552                 svm->virt_spec_ctrl = data;
2553                 break;
2554         case MSR_STAR:
2555                 svm->vmcb->save.star = data;
2556                 break;
2557 #ifdef CONFIG_X86_64
2558         case MSR_LSTAR:
2559                 svm->vmcb->save.lstar = data;
2560                 break;
2561         case MSR_CSTAR:
2562                 svm->vmcb->save.cstar = data;
2563                 break;
2564         case MSR_KERNEL_GS_BASE:
2565                 svm->vmcb->save.kernel_gs_base = data;
2566                 break;
2567         case MSR_SYSCALL_MASK:
2568                 svm->vmcb->save.sfmask = data;
2569                 break;
2570 #endif
2571         case MSR_IA32_SYSENTER_CS:
2572                 svm->vmcb->save.sysenter_cs = data;
2573                 break;
2574         case MSR_IA32_SYSENTER_EIP:
2575                 svm->sysenter_eip = data;
2576                 svm->vmcb->save.sysenter_eip = data;
2577                 break;
2578         case MSR_IA32_SYSENTER_ESP:
2579                 svm->sysenter_esp = data;
2580                 svm->vmcb->save.sysenter_esp = data;
2581                 break;
2582         case MSR_TSC_AUX:
2583                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2584                         return 1;
2585
2586                 /*
2587                  * This is rare, so we update the MSR here instead of using
2588                  * direct_access_msrs.  Doing that would require a rdmsr in
2589                  * svm_vcpu_put.
2590                  */
2591                 svm->tsc_aux = data;
2592                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2593                 break;
2594         case MSR_IA32_DEBUGCTLMSR:
2595                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2596                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2597                                     __func__, data);
2598                         break;
2599                 }
2600                 if (data & DEBUGCTL_RESERVED_BITS)
2601                         return 1;
2602
2603                 svm->vmcb->save.dbgctl = data;
2604                 mark_dirty(svm->vmcb, VMCB_LBR);
2605                 if (data & (1ULL<<0))
2606                         svm_enable_lbrv(svm);
2607                 else
2608                         svm_disable_lbrv(svm);
2609                 break;
2610         case MSR_VM_HSAVE_PA:
2611                 svm->nested.hsave_msr = data;
2612                 break;
2613         case MSR_VM_CR:
2614                 return svm_set_vm_cr(vcpu, data);
2615         case MSR_VM_IGNNE:
2616                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2617                 break;
2618         case MSR_F10H_DECFG: {
2619                 struct kvm_msr_entry msr_entry;
2620
2621                 msr_entry.index = msr->index;
2622                 if (svm_get_msr_feature(&msr_entry))
2623                         return 1;
2624
2625                 /* Check the supported bits */
2626                 if (data & ~msr_entry.data)
2627                         return 1;
2628
2629                 /* Don't allow the guest to change a bit, #GP */
2630                 if (!msr->host_initiated && (data ^ msr_entry.data))
2631                         return 1;
2632
2633                 svm->msr_decfg = data;
2634                 break;
2635         }
2636         case MSR_IA32_APICBASE:
2637                 if (kvm_vcpu_apicv_active(vcpu))
2638                         avic_update_vapic_bar(to_svm(vcpu), data);
2639                 /* Fall through */
2640         default:
2641                 return kvm_set_msr_common(vcpu, msr);
2642         }
2643         return 0;
2644 }
2645
2646 static int wrmsr_interception(struct vcpu_svm *svm)
2647 {
2648         return kvm_emulate_wrmsr(&svm->vcpu);
2649 }
2650
2651 static int msr_interception(struct vcpu_svm *svm)
2652 {
2653         if (svm->vmcb->control.exit_info_1)
2654                 return wrmsr_interception(svm);
2655         else
2656                 return rdmsr_interception(svm);
2657 }
2658
2659 static int interrupt_window_interception(struct vcpu_svm *svm)
2660 {
2661         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2662         svm_clear_vintr(svm);
2663
2664         /*
2665          * For AVIC, the only reason to end up here is ExtINTs.
2666          * In this case AVIC was temporarily disabled for
2667          * requesting the IRQ window and we have to re-enable it.
2668          */
2669         svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2670
2671         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2672         mark_dirty(svm->vmcb, VMCB_INTR);
2673         ++svm->vcpu.stat.irq_window_exits;
2674         return 1;
2675 }
2676
2677 static int pause_interception(struct vcpu_svm *svm)
2678 {
2679         struct kvm_vcpu *vcpu = &svm->vcpu;
2680         bool in_kernel = (svm_get_cpl(vcpu) == 0);
2681
2682         if (pause_filter_thresh)
2683                 grow_ple_window(vcpu);
2684
2685         kvm_vcpu_on_spin(vcpu, in_kernel);
2686         return 1;
2687 }
2688
2689 static int nop_interception(struct vcpu_svm *svm)
2690 {
2691         return kvm_skip_emulated_instruction(&(svm->vcpu));
2692 }
2693
2694 static int monitor_interception(struct vcpu_svm *svm)
2695 {
2696         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2697         return nop_interception(svm);
2698 }
2699
2700 static int mwait_interception(struct vcpu_svm *svm)
2701 {
2702         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2703         return nop_interception(svm);
2704 }
2705
2706 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
2707         [SVM_EXIT_READ_CR0]                     = cr_interception,
2708         [SVM_EXIT_READ_CR3]                     = cr_interception,
2709         [SVM_EXIT_READ_CR4]                     = cr_interception,
2710         [SVM_EXIT_READ_CR8]                     = cr_interception,
2711         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
2712         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
2713         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
2714         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
2715         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2716         [SVM_EXIT_READ_DR0]                     = dr_interception,
2717         [SVM_EXIT_READ_DR1]                     = dr_interception,
2718         [SVM_EXIT_READ_DR2]                     = dr_interception,
2719         [SVM_EXIT_READ_DR3]                     = dr_interception,
2720         [SVM_EXIT_READ_DR4]                     = dr_interception,
2721         [SVM_EXIT_READ_DR5]                     = dr_interception,
2722         [SVM_EXIT_READ_DR6]                     = dr_interception,
2723         [SVM_EXIT_READ_DR7]                     = dr_interception,
2724         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
2725         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
2726         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
2727         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
2728         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
2729         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
2730         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
2731         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
2732         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2733         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2734         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2735         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2736         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2737         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
2738         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
2739         [SVM_EXIT_INTR]                         = intr_interception,
2740         [SVM_EXIT_NMI]                          = nmi_interception,
2741         [SVM_EXIT_SMI]                          = nop_on_interception,
2742         [SVM_EXIT_INIT]                         = nop_on_interception,
2743         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2744         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
2745         [SVM_EXIT_CPUID]                        = cpuid_interception,
2746         [SVM_EXIT_IRET]                         = iret_interception,
2747         [SVM_EXIT_INVD]                         = emulate_on_interception,
2748         [SVM_EXIT_PAUSE]                        = pause_interception,
2749         [SVM_EXIT_HLT]                          = halt_interception,
2750         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2751         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2752         [SVM_EXIT_IOIO]                         = io_interception,
2753         [SVM_EXIT_MSR]                          = msr_interception,
2754         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2755         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2756         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2757         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2758         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2759         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2760         [SVM_EXIT_STGI]                         = stgi_interception,
2761         [SVM_EXIT_CLGI]                         = clgi_interception,
2762         [SVM_EXIT_SKINIT]                       = skinit_interception,
2763         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
2764         [SVM_EXIT_MONITOR]                      = monitor_interception,
2765         [SVM_EXIT_MWAIT]                        = mwait_interception,
2766         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
2767         [SVM_EXIT_RDPRU]                        = rdpru_interception,
2768         [SVM_EXIT_NPF]                          = npf_interception,
2769         [SVM_EXIT_RSM]                          = rsm_interception,
2770         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
2771         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
2772 };
2773
2774 static void dump_vmcb(struct kvm_vcpu *vcpu)
2775 {
2776         struct vcpu_svm *svm = to_svm(vcpu);
2777         struct vmcb_control_area *control = &svm->vmcb->control;
2778         struct vmcb_save_area *save = &svm->vmcb->save;
2779
2780         if (!dump_invalid_vmcb) {
2781                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2782                 return;
2783         }
2784
2785         pr_err("VMCB Control Area:\n");
2786         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
2787         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
2788         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
2789         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
2790         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
2791         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
2792         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
2793         pr_err("%-20s%d\n", "pause filter threshold:",
2794                control->pause_filter_thresh);
2795         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
2796         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
2797         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
2798         pr_err("%-20s%d\n", "asid:", control->asid);
2799         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
2800         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
2801         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
2802         pr_err("%-20s%08x\n", "int_state:", control->int_state);
2803         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
2804         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
2805         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
2806         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
2807         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
2808         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
2809         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
2810         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
2811         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
2812         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
2813         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
2814         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
2815         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
2816         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
2817         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
2818         pr_err("VMCB State Save Area:\n");
2819         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2820                "es:",
2821                save->es.selector, save->es.attrib,
2822                save->es.limit, save->es.base);
2823         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2824                "cs:",
2825                save->cs.selector, save->cs.attrib,
2826                save->cs.limit, save->cs.base);
2827         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2828                "ss:",
2829                save->ss.selector, save->ss.attrib,
2830                save->ss.limit, save->ss.base);
2831         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2832                "ds:",
2833                save->ds.selector, save->ds.attrib,
2834                save->ds.limit, save->ds.base);
2835         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2836                "fs:",
2837                save->fs.selector, save->fs.attrib,
2838                save->fs.limit, save->fs.base);
2839         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2840                "gs:",
2841                save->gs.selector, save->gs.attrib,
2842                save->gs.limit, save->gs.base);
2843         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2844                "gdtr:",
2845                save->gdtr.selector, save->gdtr.attrib,
2846                save->gdtr.limit, save->gdtr.base);
2847         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2848                "ldtr:",
2849                save->ldtr.selector, save->ldtr.attrib,
2850                save->ldtr.limit, save->ldtr.base);
2851         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2852                "idtr:",
2853                save->idtr.selector, save->idtr.attrib,
2854                save->idtr.limit, save->idtr.base);
2855         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2856                "tr:",
2857                save->tr.selector, save->tr.attrib,
2858                save->tr.limit, save->tr.base);
2859         pr_err("cpl:            %d                efer:         %016llx\n",
2860                 save->cpl, save->efer);
2861         pr_err("%-15s %016llx %-13s %016llx\n",
2862                "cr0:", save->cr0, "cr2:", save->cr2);
2863         pr_err("%-15s %016llx %-13s %016llx\n",
2864                "cr3:", save->cr3, "cr4:", save->cr4);
2865         pr_err("%-15s %016llx %-13s %016llx\n",
2866                "dr6:", save->dr6, "dr7:", save->dr7);
2867         pr_err("%-15s %016llx %-13s %016llx\n",
2868                "rip:", save->rip, "rflags:", save->rflags);
2869         pr_err("%-15s %016llx %-13s %016llx\n",
2870                "rsp:", save->rsp, "rax:", save->rax);
2871         pr_err("%-15s %016llx %-13s %016llx\n",
2872                "star:", save->star, "lstar:", save->lstar);
2873         pr_err("%-15s %016llx %-13s %016llx\n",
2874                "cstar:", save->cstar, "sfmask:", save->sfmask);
2875         pr_err("%-15s %016llx %-13s %016llx\n",
2876                "kernel_gs_base:", save->kernel_gs_base,
2877                "sysenter_cs:", save->sysenter_cs);
2878         pr_err("%-15s %016llx %-13s %016llx\n",
2879                "sysenter_esp:", save->sysenter_esp,
2880                "sysenter_eip:", save->sysenter_eip);
2881         pr_err("%-15s %016llx %-13s %016llx\n",
2882                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
2883         pr_err("%-15s %016llx %-13s %016llx\n",
2884                "br_from:", save->br_from, "br_to:", save->br_to);
2885         pr_err("%-15s %016llx %-13s %016llx\n",
2886                "excp_from:", save->last_excp_from,
2887                "excp_to:", save->last_excp_to);
2888 }
2889
2890 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
2891 {
2892         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
2893
2894         *info1 = control->exit_info_1;
2895         *info2 = control->exit_info_2;
2896 }
2897
2898 static int handle_exit(struct kvm_vcpu *vcpu,
2899         enum exit_fastpath_completion exit_fastpath)
2900 {
2901         struct vcpu_svm *svm = to_svm(vcpu);
2902         struct kvm_run *kvm_run = vcpu->run;
2903         u32 exit_code = svm->vmcb->control.exit_code;
2904
2905         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
2906
2907         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
2908                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2909         if (npt_enabled)
2910                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2911
2912         if (unlikely(svm->nested.exit_required)) {
2913                 nested_svm_vmexit(svm);
2914                 svm->nested.exit_required = false;
2915
2916                 return 1;
2917         }
2918
2919         if (is_guest_mode(vcpu)) {
2920                 int vmexit;
2921
2922                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2923                                         svm->vmcb->control.exit_info_1,
2924                                         svm->vmcb->control.exit_info_2,
2925                                         svm->vmcb->control.exit_int_info,
2926                                         svm->vmcb->control.exit_int_info_err,
2927                                         KVM_ISA_SVM);
2928
2929                 vmexit = nested_svm_exit_special(svm);
2930
2931                 if (vmexit == NESTED_EXIT_CONTINUE)
2932                         vmexit = nested_svm_exit_handled(svm);
2933
2934                 if (vmexit == NESTED_EXIT_DONE)
2935                         return 1;
2936         }
2937
2938         svm_complete_interrupts(svm);
2939
2940         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2941                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2942                 kvm_run->fail_entry.hardware_entry_failure_reason
2943                         = svm->vmcb->control.exit_code;
2944                 dump_vmcb(vcpu);
2945                 return 0;
2946         }
2947
2948         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2949             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2950             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
2951             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
2952                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
2953                        "exit_code 0x%x\n",
2954                        __func__, svm->vmcb->control.exit_int_info,
2955                        exit_code);
2956
2957         if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
2958                 kvm_skip_emulated_instruction(vcpu);
2959                 return 1;
2960         } else if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2961             || !svm_exit_handlers[exit_code]) {
2962                 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
2963                 dump_vmcb(vcpu);
2964                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2965                 vcpu->run->internal.suberror =
2966                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2967                 vcpu->run->internal.ndata = 1;
2968                 vcpu->run->internal.data[0] = exit_code;
2969                 return 0;
2970         }
2971
2972 #ifdef CONFIG_RETPOLINE
2973         if (exit_code == SVM_EXIT_MSR)
2974                 return msr_interception(svm);
2975         else if (exit_code == SVM_EXIT_VINTR)
2976                 return interrupt_window_interception(svm);
2977         else if (exit_code == SVM_EXIT_INTR)
2978                 return intr_interception(svm);
2979         else if (exit_code == SVM_EXIT_HLT)
2980                 return halt_interception(svm);
2981         else if (exit_code == SVM_EXIT_NPF)
2982                 return npf_interception(svm);
2983 #endif
2984         return svm_exit_handlers[exit_code](svm);
2985 }
2986
2987 static void reload_tss(struct kvm_vcpu *vcpu)
2988 {
2989         int cpu = raw_smp_processor_id();
2990
2991         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2992         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2993         load_TR_desc();
2994 }
2995
2996 static void pre_svm_run(struct vcpu_svm *svm)
2997 {
2998         int cpu = raw_smp_processor_id();
2999
3000         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3001
3002         if (sev_guest(svm->vcpu.kvm))
3003                 return pre_sev_run(svm, cpu);
3004
3005         /* FIXME: handle wraparound of asid_generation */
3006         if (svm->asid_generation != sd->asid_generation)
3007                 new_asid(svm, sd);
3008 }
3009
3010 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3011 {
3012         struct vcpu_svm *svm = to_svm(vcpu);
3013
3014         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3015         vcpu->arch.hflags |= HF_NMI_MASK;
3016         set_intercept(svm, INTERCEPT_IRET);
3017         ++vcpu->stat.nmi_injections;
3018 }
3019
3020 static void svm_set_irq(struct kvm_vcpu *vcpu)
3021 {
3022         struct vcpu_svm *svm = to_svm(vcpu);
3023
3024         BUG_ON(!(gif_set(svm)));
3025
3026         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3027         ++vcpu->stat.irq_injections;
3028
3029         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3030                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3031 }
3032
3033 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3034 {
3035         struct vcpu_svm *svm = to_svm(vcpu);
3036
3037         if (svm_nested_virtualize_tpr(vcpu))
3038                 return;
3039
3040         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3041
3042         if (irr == -1)
3043                 return;
3044
3045         if (tpr >= irr)
3046                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3047 }
3048
3049 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3050 {
3051         struct vcpu_svm *svm = to_svm(vcpu);
3052         struct vmcb *vmcb = svm->vmcb;
3053         int ret;
3054         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3055               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3056         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3057
3058         return ret;
3059 }
3060
3061 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3062 {
3063         struct vcpu_svm *svm = to_svm(vcpu);
3064
3065         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3066 }
3067
3068 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3069 {
3070         struct vcpu_svm *svm = to_svm(vcpu);
3071
3072         if (masked) {
3073                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3074                 set_intercept(svm, INTERCEPT_IRET);
3075         } else {
3076                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3077                 clr_intercept(svm, INTERCEPT_IRET);
3078         }
3079 }
3080
3081 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3082 {
3083         struct vcpu_svm *svm = to_svm(vcpu);
3084         struct vmcb *vmcb = svm->vmcb;
3085
3086         if (!gif_set(svm) ||
3087              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3088                 return 0;
3089
3090         if (is_guest_mode(vcpu) && (svm->vcpu.arch.hflags & HF_VINTR_MASK))
3091                 return !!(svm->vcpu.arch.hflags & HF_HIF_MASK);
3092         else
3093                 return !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3094 }
3095
3096 static void enable_irq_window(struct kvm_vcpu *vcpu)
3097 {
3098         struct vcpu_svm *svm = to_svm(vcpu);
3099
3100         /*
3101          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3102          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3103          * get that intercept, this function will be called again though and
3104          * we'll get the vintr intercept. However, if the vGIF feature is
3105          * enabled, the STGI interception will not occur. Enable the irq
3106          * window under the assumption that the hardware will set the GIF.
3107          */
3108         if (vgif_enabled(svm) || gif_set(svm)) {
3109                 /*
3110                  * IRQ window is not needed when AVIC is enabled,
3111                  * unless we have pending ExtINT since it cannot be injected
3112                  * via AVIC. In such case, we need to temporarily disable AVIC,
3113                  * and fallback to injecting IRQ via V_IRQ.
3114                  */
3115                 svm_toggle_avic_for_irq_window(vcpu, false);
3116                 svm_set_vintr(svm);
3117         }
3118 }
3119
3120 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3121 {
3122         struct vcpu_svm *svm = to_svm(vcpu);
3123
3124         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3125             == HF_NMI_MASK)
3126                 return; /* IRET will cause a vm exit */
3127
3128         if (!gif_set(svm)) {
3129                 if (vgif_enabled(svm))
3130                         set_intercept(svm, INTERCEPT_STGI);
3131                 return; /* STGI will cause a vm exit */
3132         }
3133
3134         if (svm->nested.exit_required)
3135                 return; /* we're not going to run the guest yet */
3136
3137         /*
3138          * Something prevents NMI from been injected. Single step over possible
3139          * problem (IRET or exception injection or interrupt shadow)
3140          */
3141         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3142         svm->nmi_singlestep = true;
3143         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3144 }
3145
3146 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3147 {
3148         return 0;
3149 }
3150
3151 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3152 {
3153         return 0;
3154 }
3155
3156 void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
3157 {
3158         struct vcpu_svm *svm = to_svm(vcpu);
3159
3160         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3161                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3162         else
3163                 svm->asid_generation--;
3164 }
3165
3166 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3167 {
3168         struct vcpu_svm *svm = to_svm(vcpu);
3169
3170         invlpga(gva, svm->vmcb->control.asid);
3171 }
3172
3173 static void svm_flush_tlb_guest(struct kvm_vcpu *vcpu)
3174 {
3175         svm_flush_tlb(vcpu, false);
3176 }
3177
3178 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3179 {
3180 }
3181
3182 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3183 {
3184         struct vcpu_svm *svm = to_svm(vcpu);
3185
3186         if (svm_nested_virtualize_tpr(vcpu))
3187                 return;
3188
3189         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3190                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3191                 kvm_set_cr8(vcpu, cr8);
3192         }
3193 }
3194
3195 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3196 {
3197         struct vcpu_svm *svm = to_svm(vcpu);
3198         u64 cr8;
3199
3200         if (svm_nested_virtualize_tpr(vcpu) ||
3201             kvm_vcpu_apicv_active(vcpu))
3202                 return;
3203
3204         cr8 = kvm_get_cr8(vcpu);
3205         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3206         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3207 }
3208
3209 static void svm_complete_interrupts(struct vcpu_svm *svm)
3210 {
3211         u8 vector;
3212         int type;
3213         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3214         unsigned int3_injected = svm->int3_injected;
3215
3216         svm->int3_injected = 0;
3217
3218         /*
3219          * If we've made progress since setting HF_IRET_MASK, we've
3220          * executed an IRET and can allow NMI injection.
3221          */
3222         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3223             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3224                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3225                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3226         }
3227
3228         svm->vcpu.arch.nmi_injected = false;
3229         kvm_clear_exception_queue(&svm->vcpu);
3230         kvm_clear_interrupt_queue(&svm->vcpu);
3231
3232         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3233                 return;
3234
3235         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3236
3237         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3238         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3239
3240         switch (type) {
3241         case SVM_EXITINTINFO_TYPE_NMI:
3242                 svm->vcpu.arch.nmi_injected = true;
3243                 break;
3244         case SVM_EXITINTINFO_TYPE_EXEPT:
3245                 /*
3246                  * In case of software exceptions, do not reinject the vector,
3247                  * but re-execute the instruction instead. Rewind RIP first
3248                  * if we emulated INT3 before.
3249                  */
3250                 if (kvm_exception_is_soft(vector)) {
3251                         if (vector == BP_VECTOR && int3_injected &&
3252                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3253                                 kvm_rip_write(&svm->vcpu,
3254                                               kvm_rip_read(&svm->vcpu) -
3255                                               int3_injected);
3256                         break;
3257                 }
3258                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3259                         u32 err = svm->vmcb->control.exit_int_info_err;
3260                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3261
3262                 } else
3263                         kvm_requeue_exception(&svm->vcpu, vector);
3264                 break;
3265         case SVM_EXITINTINFO_TYPE_INTR:
3266                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3267                 break;
3268         default:
3269                 break;
3270         }
3271 }
3272
3273 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3274 {
3275         struct vcpu_svm *svm = to_svm(vcpu);
3276         struct vmcb_control_area *control = &svm->vmcb->control;
3277
3278         control->exit_int_info = control->event_inj;
3279         control->exit_int_info_err = control->event_inj_err;
3280         control->event_inj = 0;
3281         svm_complete_interrupts(svm);
3282 }
3283
3284 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
3285
3286 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3287 {
3288         struct vcpu_svm *svm = to_svm(vcpu);
3289
3290         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3291         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3292         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3293
3294         /*
3295          * A vmexit emulation is required before the vcpu can be executed
3296          * again.
3297          */
3298         if (unlikely(svm->nested.exit_required))
3299                 return;
3300
3301         /*
3302          * Disable singlestep if we're injecting an interrupt/exception.
3303          * We don't want our modified rflags to be pushed on the stack where
3304          * we might not be able to easily reset them if we disabled NMI
3305          * singlestep later.
3306          */
3307         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3308                 /*
3309                  * Event injection happens before external interrupts cause a
3310                  * vmexit and interrupts are disabled here, so smp_send_reschedule
3311                  * is enough to force an immediate vmexit.
3312                  */
3313                 disable_nmi_singlestep(svm);
3314                 smp_send_reschedule(vcpu->cpu);
3315         }
3316
3317         pre_svm_run(svm);
3318
3319         sync_lapic_to_cr8(vcpu);
3320
3321         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3322
3323         clgi();
3324         kvm_load_guest_xsave_state(vcpu);
3325
3326         if (lapic_in_kernel(vcpu) &&
3327                 vcpu->arch.apic->lapic_timer.timer_advance_ns)
3328                 kvm_wait_lapic_expire(vcpu);
3329
3330         /*
3331          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3332          * it's non-zero. Since vmentry is serialising on affected CPUs, there
3333          * is no need to worry about the conditional branch over the wrmsr
3334          * being speculatively taken.
3335          */
3336         x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3337
3338         __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3339
3340 #ifdef CONFIG_X86_64
3341         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3342 #else
3343         loadsegment(fs, svm->host.fs);
3344 #ifndef CONFIG_X86_32_LAZY_GS
3345         loadsegment(gs, svm->host.gs);
3346 #endif
3347 #endif
3348
3349         /*
3350          * We do not use IBRS in the kernel. If this vCPU has used the
3351          * SPEC_CTRL MSR it may have left it on; save the value and
3352          * turn it off. This is much more efficient than blindly adding
3353          * it to the atomic save/restore list. Especially as the former
3354          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3355          *
3356          * For non-nested case:
3357          * If the L01 MSR bitmap does not intercept the MSR, then we need to
3358          * save it.
3359          *
3360          * For nested case:
3361          * If the L02 MSR bitmap does not intercept the MSR, then we need to
3362          * save it.
3363          */
3364         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3365                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3366
3367         reload_tss(vcpu);
3368
3369         x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3370
3371         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3372         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3373         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3374         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3375
3376         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3377                 kvm_before_interrupt(&svm->vcpu);
3378
3379         kvm_load_host_xsave_state(vcpu);
3380         stgi();
3381
3382         /* Any pending NMI will happen here */
3383
3384         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3385                 kvm_after_interrupt(&svm->vcpu);
3386
3387         sync_cr8_to_lapic(vcpu);
3388
3389         svm->next_rip = 0;
3390
3391         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3392
3393         /* if exit due to PF check for async PF */
3394         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3395                 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
3396
3397         if (npt_enabled) {
3398                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3399                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3400         }
3401
3402         /*
3403          * We need to handle MC intercepts here before the vcpu has a chance to
3404          * change the physical cpu
3405          */
3406         if (unlikely(svm->vmcb->control.exit_code ==
3407                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3408                 svm_handle_mce(svm);
3409
3410         mark_all_clean(svm->vmcb);
3411 }
3412
3413 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root)
3414 {
3415         struct vcpu_svm *svm = to_svm(vcpu);
3416         bool update_guest_cr3 = true;
3417         unsigned long cr3;
3418
3419         cr3 = __sme_set(root);
3420         if (npt_enabled) {
3421                 svm->vmcb->control.nested_cr3 = cr3;
3422                 mark_dirty(svm->vmcb, VMCB_NPT);
3423
3424                 /* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3425                 if (is_guest_mode(vcpu))
3426                         update_guest_cr3 = false;
3427                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3428                         cr3 = vcpu->arch.cr3;
3429                 else /* CR3 is already up-to-date.  */
3430                         update_guest_cr3 = false;
3431         }
3432
3433         if (update_guest_cr3) {
3434                 svm->vmcb->save.cr3 = cr3;
3435                 mark_dirty(svm->vmcb, VMCB_CR);
3436         }
3437 }
3438
3439 static int is_disabled(void)
3440 {
3441         u64 vm_cr;
3442
3443         rdmsrl(MSR_VM_CR, vm_cr);
3444         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3445                 return 1;
3446
3447         return 0;
3448 }
3449
3450 static void
3451 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3452 {
3453         /*
3454          * Patch in the VMMCALL instruction:
3455          */
3456         hypercall[0] = 0x0f;
3457         hypercall[1] = 0x01;
3458         hypercall[2] = 0xd9;
3459 }
3460
3461 static int __init svm_check_processor_compat(void)
3462 {
3463         return 0;
3464 }
3465
3466 static bool svm_cpu_has_accelerated_tpr(void)
3467 {
3468         return false;
3469 }
3470
3471 static bool svm_has_emulated_msr(int index)
3472 {
3473         switch (index) {
3474         case MSR_IA32_MCG_EXT_CTL:
3475         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3476                 return false;
3477         default:
3478                 break;
3479         }
3480
3481         return true;
3482 }
3483
3484 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3485 {
3486         return 0;
3487 }
3488
3489 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3490 {
3491         struct vcpu_svm *svm = to_svm(vcpu);
3492
3493         vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3494                                     boot_cpu_has(X86_FEATURE_XSAVE) &&
3495                                     boot_cpu_has(X86_FEATURE_XSAVES);
3496
3497         /* Update nrips enabled cache */
3498         svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3499                              guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3500
3501         if (!kvm_vcpu_apicv_active(vcpu))
3502                 return;
3503
3504         /*
3505          * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3506          * is exposed to the guest, disable AVIC.
3507          */
3508         if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3509                 kvm_request_apicv_update(vcpu->kvm, false,
3510                                          APICV_INHIBIT_REASON_X2APIC);
3511
3512         /*
3513          * Currently, AVIC does not work with nested virtualization.
3514          * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3515          */
3516         if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3517                 kvm_request_apicv_update(vcpu->kvm, false,
3518                                          APICV_INHIBIT_REASON_NESTED);
3519 }
3520
3521 static bool svm_has_wbinvd_exit(void)
3522 {
3523         return true;
3524 }
3525
3526 #define PRE_EX(exit)  { .exit_code = (exit), \
3527                         .stage = X86_ICPT_PRE_EXCEPT, }
3528 #define POST_EX(exit) { .exit_code = (exit), \
3529                         .stage = X86_ICPT_POST_EXCEPT, }
3530 #define POST_MEM(exit) { .exit_code = (exit), \
3531                         .stage = X86_ICPT_POST_MEMACCESS, }
3532
3533 static const struct __x86_intercept {
3534         u32 exit_code;
3535         enum x86_intercept_stage stage;
3536 } x86_intercept_map[] = {
3537         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
3538         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
3539         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
3540         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
3541         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
3542         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
3543         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
3544         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
3545         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
3546         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
3547         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
3548         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
3549         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
3550         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
3551         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
3552         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
3553         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
3554         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
3555         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
3556         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
3557         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
3558         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
3559         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
3560         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
3561         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
3562         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
3563         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
3564         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
3565         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
3566         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
3567         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
3568         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
3569         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
3570         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
3571         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
3572         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
3573         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
3574         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
3575         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
3576         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
3577         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
3578         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
3579         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
3580         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
3581         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
3582         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
3583         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
3584 };
3585
3586 #undef PRE_EX
3587 #undef POST_EX
3588 #undef POST_MEM
3589
3590 static int svm_check_intercept(struct kvm_vcpu *vcpu,
3591                                struct x86_instruction_info *info,
3592                                enum x86_intercept_stage stage,
3593                                struct x86_exception *exception)
3594 {
3595         struct vcpu_svm *svm = to_svm(vcpu);
3596         int vmexit, ret = X86EMUL_CONTINUE;
3597         struct __x86_intercept icpt_info;
3598         struct vmcb *vmcb = svm->vmcb;
3599
3600         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
3601                 goto out;
3602
3603         icpt_info = x86_intercept_map[info->intercept];
3604
3605         if (stage != icpt_info.stage)
3606                 goto out;
3607
3608         switch (icpt_info.exit_code) {
3609         case SVM_EXIT_READ_CR0:
3610                 if (info->intercept == x86_intercept_cr_read)
3611                         icpt_info.exit_code += info->modrm_reg;
3612                 break;
3613         case SVM_EXIT_WRITE_CR0: {
3614                 unsigned long cr0, val;
3615                 u64 intercept;
3616
3617                 if (info->intercept == x86_intercept_cr_write)
3618                         icpt_info.exit_code += info->modrm_reg;
3619
3620                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
3621                     info->intercept == x86_intercept_clts)
3622                         break;
3623
3624                 intercept = svm->nested.intercept;
3625
3626                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
3627                         break;
3628
3629                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
3630                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
3631
3632                 if (info->intercept == x86_intercept_lmsw) {
3633                         cr0 &= 0xfUL;
3634                         val &= 0xfUL;
3635                         /* lmsw can't clear PE - catch this here */
3636                         if (cr0 & X86_CR0_PE)
3637                                 val |= X86_CR0_PE;
3638                 }
3639
3640                 if (cr0 ^ val)
3641                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3642
3643                 break;
3644         }
3645         case SVM_EXIT_READ_DR0:
3646         case SVM_EXIT_WRITE_DR0:
3647                 icpt_info.exit_code += info->modrm_reg;
3648                 break;
3649         case SVM_EXIT_MSR:
3650                 if (info->intercept == x86_intercept_wrmsr)
3651                         vmcb->control.exit_info_1 = 1;
3652                 else
3653                         vmcb->control.exit_info_1 = 0;
3654                 break;
3655         case SVM_EXIT_PAUSE:
3656                 /*
3657                  * We get this for NOP only, but pause
3658                  * is rep not, check this here
3659                  */
3660                 if (info->rep_prefix != REPE_PREFIX)
3661                         goto out;
3662                 break;
3663         case SVM_EXIT_IOIO: {
3664                 u64 exit_info;
3665                 u32 bytes;
3666
3667                 if (info->intercept == x86_intercept_in ||
3668                     info->intercept == x86_intercept_ins) {
3669                         exit_info = ((info->src_val & 0xffff) << 16) |
3670                                 SVM_IOIO_TYPE_MASK;
3671                         bytes = info->dst_bytes;
3672                 } else {
3673                         exit_info = (info->dst_val & 0xffff) << 16;
3674                         bytes = info->src_bytes;
3675                 }
3676
3677                 if (info->intercept == x86_intercept_outs ||
3678                     info->intercept == x86_intercept_ins)
3679                         exit_info |= SVM_IOIO_STR_MASK;
3680
3681                 if (info->rep_prefix)
3682                         exit_info |= SVM_IOIO_REP_MASK;
3683
3684                 bytes = min(bytes, 4u);
3685
3686                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
3687
3688                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
3689
3690                 vmcb->control.exit_info_1 = exit_info;
3691                 vmcb->control.exit_info_2 = info->next_rip;
3692
3693                 break;
3694         }
3695         default:
3696                 break;
3697         }
3698
3699         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
3700         if (static_cpu_has(X86_FEATURE_NRIPS))
3701                 vmcb->control.next_rip  = info->next_rip;
3702         vmcb->control.exit_code = icpt_info.exit_code;
3703         vmexit = nested_svm_exit_handled(svm);
3704
3705         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
3706                                            : X86EMUL_CONTINUE;
3707
3708 out:
3709         return ret;
3710 }
3711
3712 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu,
3713         enum exit_fastpath_completion *exit_fastpath)
3714 {
3715         if (!is_guest_mode(vcpu) &&
3716             to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3717             to_svm(vcpu)->vmcb->control.exit_info_1)
3718                 *exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu);
3719 }
3720
3721 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
3722 {
3723         if (pause_filter_thresh)
3724                 shrink_ple_window(vcpu);
3725 }
3726
3727 static void svm_setup_mce(struct kvm_vcpu *vcpu)
3728 {
3729         /* [63:9] are reserved. */
3730         vcpu->arch.mcg_cap &= 0x1ff;
3731 }
3732
3733 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
3734 {
3735         struct vcpu_svm *svm = to_svm(vcpu);
3736
3737         /* Per APM Vol.2 15.22.2 "Response to SMI" */
3738         if (!gif_set(svm))
3739                 return 0;
3740
3741         if (is_guest_mode(&svm->vcpu) &&
3742             svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
3743                 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
3744                 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
3745                 svm->nested.exit_required = true;
3746                 return 0;
3747         }
3748
3749         return 1;
3750 }
3751
3752 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
3753 {
3754         struct vcpu_svm *svm = to_svm(vcpu);
3755         int ret;
3756
3757         if (is_guest_mode(vcpu)) {
3758                 /* FED8h - SVM Guest */
3759                 put_smstate(u64, smstate, 0x7ed8, 1);
3760                 /* FEE0h - SVM Guest VMCB Physical Address */
3761                 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
3762
3763                 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3764                 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3765                 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3766
3767                 ret = nested_svm_vmexit(svm);
3768                 if (ret)
3769                         return ret;
3770         }
3771         return 0;
3772 }
3773
3774 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
3775 {
3776         struct vcpu_svm *svm = to_svm(vcpu);
3777         struct vmcb *nested_vmcb;
3778         struct kvm_host_map map;
3779         u64 guest;
3780         u64 vmcb;
3781
3782         guest = GET_SMSTATE(u64, smstate, 0x7ed8);
3783         vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
3784
3785         if (guest) {
3786                 if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
3787                         return 1;
3788                 nested_vmcb = map.hva;
3789                 enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
3790         }
3791         return 0;
3792 }
3793
3794 static int enable_smi_window(struct kvm_vcpu *vcpu)
3795 {
3796         struct vcpu_svm *svm = to_svm(vcpu);
3797
3798         if (!gif_set(svm)) {
3799                 if (vgif_enabled(svm))
3800                         set_intercept(svm, INTERCEPT_STGI);
3801                 /* STGI will cause a vm exit */
3802                 return 1;
3803         }
3804         return 0;
3805 }
3806
3807 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
3808 {
3809         unsigned long cr4 = kvm_read_cr4(vcpu);
3810         bool smep = cr4 & X86_CR4_SMEP;
3811         bool smap = cr4 & X86_CR4_SMAP;
3812         bool is_user = svm_get_cpl(vcpu) == 3;
3813
3814         /*
3815          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
3816          *
3817          * Errata:
3818          * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
3819          * possible that CPU microcode implementing DecodeAssist will fail
3820          * to read bytes of instruction which caused #NPF. In this case,
3821          * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
3822          * return 0 instead of the correct guest instruction bytes.
3823          *
3824          * This happens because CPU microcode reading instruction bytes
3825          * uses a special opcode which attempts to read data using CPL=0
3826          * priviledges. The microcode reads CS:RIP and if it hits a SMAP
3827          * fault, it gives up and returns no instruction bytes.
3828          *
3829          * Detection:
3830          * We reach here in case CPU supports DecodeAssist, raised #NPF and
3831          * returned 0 in GuestIntrBytes field of the VMCB.
3832          * First, errata can only be triggered in case vCPU CR4.SMAP=1.
3833          * Second, if vCPU CR4.SMEP=1, errata could only be triggered
3834          * in case vCPU CPL==3 (Because otherwise guest would have triggered
3835          * a SMEP fault instead of #NPF).
3836          * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
3837          * As most guests enable SMAP if they have also enabled SMEP, use above
3838          * logic in order to attempt minimize false-positive of detecting errata
3839          * while still preserving all cases semantic correctness.
3840          *
3841          * Workaround:
3842          * To determine what instruction the guest was executing, the hypervisor
3843          * will have to decode the instruction at the instruction pointer.
3844          *
3845          * In non SEV guest, hypervisor will be able to read the guest
3846          * memory to decode the instruction pointer when insn_len is zero
3847          * so we return true to indicate that decoding is possible.
3848          *
3849          * But in the SEV guest, the guest memory is encrypted with the
3850          * guest specific key and hypervisor will not be able to decode the
3851          * instruction pointer so we will not able to workaround it. Lets
3852          * print the error and request to kill the guest.
3853          */
3854         if (smap && (!smep || is_user)) {
3855                 if (!sev_guest(vcpu->kvm))
3856                         return true;
3857
3858                 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
3859                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3860         }
3861
3862         return false;
3863 }
3864
3865 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
3866 {
3867         struct vcpu_svm *svm = to_svm(vcpu);
3868
3869         /*
3870          * TODO: Last condition latch INIT signals on vCPU when
3871          * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
3872          * To properly emulate the INIT intercept, SVM should implement
3873          * kvm_x86_ops.check_nested_events() and call nested_svm_vmexit()
3874          * there if an INIT signal is pending.
3875          */
3876         return !gif_set(svm) ||
3877                    (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
3878 }
3879
3880 static void svm_vm_destroy(struct kvm *kvm)
3881 {
3882         avic_vm_destroy(kvm);
3883         sev_vm_destroy(kvm);
3884 }
3885
3886 static int svm_vm_init(struct kvm *kvm)
3887 {
3888         if (avic) {
3889                 int ret = avic_vm_init(kvm);
3890                 if (ret)
3891                         return ret;
3892         }
3893
3894         kvm_apicv_init(kvm, avic);
3895         return 0;
3896 }
3897
3898 static struct kvm_x86_ops svm_x86_ops __initdata = {
3899         .hardware_unsetup = svm_hardware_teardown,
3900         .hardware_enable = svm_hardware_enable,
3901         .hardware_disable = svm_hardware_disable,
3902         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3903         .has_emulated_msr = svm_has_emulated_msr,
3904
3905         .vcpu_create = svm_create_vcpu,
3906         .vcpu_free = svm_free_vcpu,
3907         .vcpu_reset = svm_vcpu_reset,
3908
3909         .vm_size = sizeof(struct kvm_svm),
3910         .vm_init = svm_vm_init,
3911         .vm_destroy = svm_vm_destroy,
3912
3913         .prepare_guest_switch = svm_prepare_guest_switch,
3914         .vcpu_load = svm_vcpu_load,
3915         .vcpu_put = svm_vcpu_put,
3916         .vcpu_blocking = svm_vcpu_blocking,
3917         .vcpu_unblocking = svm_vcpu_unblocking,
3918
3919         .update_bp_intercept = update_bp_intercept,
3920         .get_msr_feature = svm_get_msr_feature,
3921         .get_msr = svm_get_msr,
3922         .set_msr = svm_set_msr,
3923         .get_segment_base = svm_get_segment_base,
3924         .get_segment = svm_get_segment,
3925         .set_segment = svm_set_segment,
3926         .get_cpl = svm_get_cpl,
3927         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3928         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3929         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3930         .set_cr0 = svm_set_cr0,
3931         .set_cr4 = svm_set_cr4,
3932         .set_efer = svm_set_efer,
3933         .get_idt = svm_get_idt,
3934         .set_idt = svm_set_idt,
3935         .get_gdt = svm_get_gdt,
3936         .set_gdt = svm_set_gdt,
3937         .get_dr6 = svm_get_dr6,
3938         .set_dr6 = svm_set_dr6,
3939         .set_dr7 = svm_set_dr7,
3940         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
3941         .cache_reg = svm_cache_reg,
3942         .get_rflags = svm_get_rflags,
3943         .set_rflags = svm_set_rflags,
3944
3945         .tlb_flush = svm_flush_tlb,
3946         .tlb_flush_gva = svm_flush_tlb_gva,
3947         .tlb_flush_guest = svm_flush_tlb_guest,
3948
3949         .run = svm_vcpu_run,
3950         .handle_exit = handle_exit,
3951         .skip_emulated_instruction = skip_emulated_instruction,
3952         .update_emulated_instruction = NULL,
3953         .set_interrupt_shadow = svm_set_interrupt_shadow,
3954         .get_interrupt_shadow = svm_get_interrupt_shadow,
3955         .patch_hypercall = svm_patch_hypercall,
3956         .set_irq = svm_set_irq,
3957         .set_nmi = svm_inject_nmi,
3958         .queue_exception = svm_queue_exception,
3959         .cancel_injection = svm_cancel_injection,
3960         .interrupt_allowed = svm_interrupt_allowed,
3961         .nmi_allowed = svm_nmi_allowed,
3962         .get_nmi_mask = svm_get_nmi_mask,
3963         .set_nmi_mask = svm_set_nmi_mask,
3964         .enable_nmi_window = enable_nmi_window,
3965         .enable_irq_window = enable_irq_window,
3966         .update_cr8_intercept = update_cr8_intercept,
3967         .set_virtual_apic_mode = svm_set_virtual_apic_mode,
3968         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
3969         .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
3970         .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
3971         .load_eoi_exitmap = svm_load_eoi_exitmap,
3972         .hwapic_irr_update = svm_hwapic_irr_update,
3973         .hwapic_isr_update = svm_hwapic_isr_update,
3974         .sync_pir_to_irr = kvm_lapic_find_highest_irr,
3975         .apicv_post_state_restore = avic_post_state_restore,
3976
3977         .set_tss_addr = svm_set_tss_addr,
3978         .set_identity_map_addr = svm_set_identity_map_addr,
3979         .get_tdp_level = get_npt_level,
3980         .get_mt_mask = svm_get_mt_mask,
3981
3982         .get_exit_info = svm_get_exit_info,
3983
3984         .cpuid_update = svm_cpuid_update,
3985
3986         .has_wbinvd_exit = svm_has_wbinvd_exit,
3987
3988         .read_l1_tsc_offset = svm_read_l1_tsc_offset,
3989         .write_l1_tsc_offset = svm_write_l1_tsc_offset,
3990
3991         .load_mmu_pgd = svm_load_mmu_pgd,
3992
3993         .check_intercept = svm_check_intercept,
3994         .handle_exit_irqoff = svm_handle_exit_irqoff,
3995
3996         .request_immediate_exit = __kvm_request_immediate_exit,
3997
3998         .sched_in = svm_sched_in,
3999
4000         .pmu_ops = &amd_pmu_ops,
4001         .deliver_posted_interrupt = svm_deliver_avic_intr,
4002         .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4003         .update_pi_irte = svm_update_pi_irte,
4004         .setup_mce = svm_setup_mce,
4005
4006         .smi_allowed = svm_smi_allowed,
4007         .pre_enter_smm = svm_pre_enter_smm,
4008         .pre_leave_smm = svm_pre_leave_smm,
4009         .enable_smi_window = enable_smi_window,
4010
4011         .mem_enc_op = svm_mem_enc_op,
4012         .mem_enc_reg_region = svm_register_enc_region,
4013         .mem_enc_unreg_region = svm_unregister_enc_region,
4014
4015         .nested_enable_evmcs = NULL,
4016         .nested_get_evmcs_version = NULL,
4017
4018         .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
4019
4020         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4021
4022         .check_nested_events = svm_check_nested_events,
4023 };
4024
4025 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4026         .cpu_has_kvm_support = has_svm,
4027         .disabled_by_bios = is_disabled,
4028         .hardware_setup = svm_hardware_setup,
4029         .check_processor_compatibility = svm_check_processor_compat,
4030
4031         .runtime_ops = &svm_x86_ops,
4032 };
4033
4034 static int __init svm_init(void)
4035 {
4036         return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4037                         __alignof__(struct vcpu_svm), THIS_MODULE);
4038 }
4039
4040 static void __exit svm_exit(void)
4041 {
4042         kvm_exit();
4043 }
4044
4045 module_init(svm_init)
4046 module_exit(svm_exit)