KVM: x86/mmu: Ignore CR0 and CR4 bits in nested EPT MMU role
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 extern bool itlb_multihit_kvm_mitigation;
57
58 int __read_mostly nx_huge_pages = -1;
59 #ifdef CONFIG_PREEMPT_RT
60 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
61 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
62 #else
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
64 #endif
65
66 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
67 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
68
69 static const struct kernel_param_ops nx_huge_pages_ops = {
70         .set = set_nx_huge_pages,
71         .get = param_get_bool,
72 };
73
74 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
75         .set = set_nx_huge_pages_recovery_ratio,
76         .get = param_get_uint,
77 };
78
79 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
80 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
81 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
82                 &nx_huge_pages_recovery_ratio, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
84
85 static bool __read_mostly force_flush_and_sync_on_reuse;
86 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
87
88 /*
89  * When setting this variable to true it enables Two-Dimensional-Paging
90  * where the hardware walks 2 page tables:
91  * 1. the guest-virtual to guest-physical
92  * 2. while doing 1. it walks guest-physical to host-physical
93  * If the hardware supports that we don't need to do shadow paging.
94  */
95 bool tdp_enabled = false;
96
97 static int max_huge_page_level __read_mostly;
98 static int max_tdp_level __read_mostly;
99
100 enum {
101         AUDIT_PRE_PAGE_FAULT,
102         AUDIT_POST_PAGE_FAULT,
103         AUDIT_PRE_PTE_WRITE,
104         AUDIT_POST_PTE_WRITE,
105         AUDIT_PRE_SYNC,
106         AUDIT_POST_SYNC
107 };
108
109 #ifdef MMU_DEBUG
110 bool dbg = 0;
111 module_param(dbg, bool, 0644);
112 #endif
113
114 #define PTE_PREFETCH_NUM                8
115
116 #define PT32_LEVEL_BITS 10
117
118 #define PT32_LEVEL_SHIFT(level) \
119                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
120
121 #define PT32_LVL_OFFSET_MASK(level) \
122         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT32_LEVEL_BITS))) - 1))
124
125 #define PT32_INDEX(address, level)\
126         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127
128
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134                                             * PT32_LEVEL_BITS))) - 1))
135
136 #include <trace/events/kvm.h>
137
138 /* make pte_list_desc fit well in cache line */
139 #define PTE_LIST_EXT 3
140
141 struct pte_list_desc {
142         u64 *sptes[PTE_LIST_EXT];
143         struct pte_list_desc *more;
144 };
145
146 struct kvm_shadow_walk_iterator {
147         u64 addr;
148         hpa_t shadow_addr;
149         u64 *sptep;
150         int level;
151         unsigned index;
152 };
153
154 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
155         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
156                                          (_root), (_addr));                \
157              shadow_walk_okay(&(_walker));                                 \
158              shadow_walk_next(&(_walker)))
159
160 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
161         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
162              shadow_walk_okay(&(_walker));                      \
163              shadow_walk_next(&(_walker)))
164
165 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
166         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
167              shadow_walk_okay(&(_walker)) &&                            \
168                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
169              __shadow_walk_next(&(_walker), spte))
170
171 static struct kmem_cache *pte_list_desc_cache;
172 struct kmem_cache *mmu_page_header_cache;
173 static struct percpu_counter kvm_total_used_mmu_pages;
174
175 static void mmu_spte_set(u64 *sptep, u64 spte);
176 static union kvm_mmu_page_role
177 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
178
179 struct kvm_mmu_role_regs {
180         const unsigned long cr0;
181         const unsigned long cr4;
182         const u64 efer;
183 };
184
185 #define CREATE_TRACE_POINTS
186 #include "mmutrace.h"
187
188 /*
189  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
190  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
191  * the single source of truth for the MMU's state.
192  */
193 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)                   \
194 static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
195 {                                                                       \
196         return !!(regs->reg & flag);                                    \
197 }
198 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
199 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
200 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
201 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
202 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
203 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
204 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
206 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
208
209 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
210 {
211         struct kvm_mmu_role_regs regs = {
212                 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
213                 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
214                 .efer = vcpu->arch.efer,
215         };
216
217         return regs;
218 }
219
220 static inline bool kvm_available_flush_tlb_with_range(void)
221 {
222         return kvm_x86_ops.tlb_remote_flush_with_range;
223 }
224
225 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
226                 struct kvm_tlb_range *range)
227 {
228         int ret = -ENOTSUPP;
229
230         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
231                 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
232
233         if (ret)
234                 kvm_flush_remote_tlbs(kvm);
235 }
236
237 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
238                 u64 start_gfn, u64 pages)
239 {
240         struct kvm_tlb_range range;
241
242         range.start_gfn = start_gfn;
243         range.pages = pages;
244
245         kvm_flush_remote_tlbs_with_range(kvm, &range);
246 }
247
248 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
249                            unsigned int access)
250 {
251         u64 spte = make_mmio_spte(vcpu, gfn, access);
252
253         trace_mark_mmio_spte(sptep, gfn, spte);
254         mmu_spte_set(sptep, spte);
255 }
256
257 static gfn_t get_mmio_spte_gfn(u64 spte)
258 {
259         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
260
261         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
262                & shadow_nonpresent_or_rsvd_mask;
263
264         return gpa >> PAGE_SHIFT;
265 }
266
267 static unsigned get_mmio_spte_access(u64 spte)
268 {
269         return spte & shadow_mmio_access_mask;
270 }
271
272 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
273 {
274         u64 kvm_gen, spte_gen, gen;
275
276         gen = kvm_vcpu_memslots(vcpu)->generation;
277         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
278                 return false;
279
280         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
281         spte_gen = get_mmio_spte_generation(spte);
282
283         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
284         return likely(kvm_gen == spte_gen);
285 }
286
287 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
288                                   struct x86_exception *exception)
289 {
290         /* Check if guest physical address doesn't exceed guest maximum */
291         if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
292                 exception->error_code |= PFERR_RSVD_MASK;
293                 return UNMAPPED_GVA;
294         }
295
296         return gpa;
297 }
298
299 static int is_cpuid_PSE36(void)
300 {
301         return 1;
302 }
303
304 static int is_nx(struct kvm_vcpu *vcpu)
305 {
306         return vcpu->arch.efer & EFER_NX;
307 }
308
309 static gfn_t pse36_gfn_delta(u32 gpte)
310 {
311         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
312
313         return (gpte & PT32_DIR_PSE36_MASK) << shift;
314 }
315
316 #ifdef CONFIG_X86_64
317 static void __set_spte(u64 *sptep, u64 spte)
318 {
319         WRITE_ONCE(*sptep, spte);
320 }
321
322 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
323 {
324         WRITE_ONCE(*sptep, spte);
325 }
326
327 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
328 {
329         return xchg(sptep, spte);
330 }
331
332 static u64 __get_spte_lockless(u64 *sptep)
333 {
334         return READ_ONCE(*sptep);
335 }
336 #else
337 union split_spte {
338         struct {
339                 u32 spte_low;
340                 u32 spte_high;
341         };
342         u64 spte;
343 };
344
345 static void count_spte_clear(u64 *sptep, u64 spte)
346 {
347         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
348
349         if (is_shadow_present_pte(spte))
350                 return;
351
352         /* Ensure the spte is completely set before we increase the count */
353         smp_wmb();
354         sp->clear_spte_count++;
355 }
356
357 static void __set_spte(u64 *sptep, u64 spte)
358 {
359         union split_spte *ssptep, sspte;
360
361         ssptep = (union split_spte *)sptep;
362         sspte = (union split_spte)spte;
363
364         ssptep->spte_high = sspte.spte_high;
365
366         /*
367          * If we map the spte from nonpresent to present, We should store
368          * the high bits firstly, then set present bit, so cpu can not
369          * fetch this spte while we are setting the spte.
370          */
371         smp_wmb();
372
373         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
374 }
375
376 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
377 {
378         union split_spte *ssptep, sspte;
379
380         ssptep = (union split_spte *)sptep;
381         sspte = (union split_spte)spte;
382
383         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
384
385         /*
386          * If we map the spte from present to nonpresent, we should clear
387          * present bit firstly to avoid vcpu fetch the old high bits.
388          */
389         smp_wmb();
390
391         ssptep->spte_high = sspte.spte_high;
392         count_spte_clear(sptep, spte);
393 }
394
395 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
396 {
397         union split_spte *ssptep, sspte, orig;
398
399         ssptep = (union split_spte *)sptep;
400         sspte = (union split_spte)spte;
401
402         /* xchg acts as a barrier before the setting of the high bits */
403         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
404         orig.spte_high = ssptep->spte_high;
405         ssptep->spte_high = sspte.spte_high;
406         count_spte_clear(sptep, spte);
407
408         return orig.spte;
409 }
410
411 /*
412  * The idea using the light way get the spte on x86_32 guest is from
413  * gup_get_pte (mm/gup.c).
414  *
415  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
416  * coalesces them and we are running out of the MMU lock.  Therefore
417  * we need to protect against in-progress updates of the spte.
418  *
419  * Reading the spte while an update is in progress may get the old value
420  * for the high part of the spte.  The race is fine for a present->non-present
421  * change (because the high part of the spte is ignored for non-present spte),
422  * but for a present->present change we must reread the spte.
423  *
424  * All such changes are done in two steps (present->non-present and
425  * non-present->present), hence it is enough to count the number of
426  * present->non-present updates: if it changed while reading the spte,
427  * we might have hit the race.  This is done using clear_spte_count.
428  */
429 static u64 __get_spte_lockless(u64 *sptep)
430 {
431         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
432         union split_spte spte, *orig = (union split_spte *)sptep;
433         int count;
434
435 retry:
436         count = sp->clear_spte_count;
437         smp_rmb();
438
439         spte.spte_low = orig->spte_low;
440         smp_rmb();
441
442         spte.spte_high = orig->spte_high;
443         smp_rmb();
444
445         if (unlikely(spte.spte_low != orig->spte_low ||
446               count != sp->clear_spte_count))
447                 goto retry;
448
449         return spte.spte;
450 }
451 #endif
452
453 static bool spte_has_volatile_bits(u64 spte)
454 {
455         if (!is_shadow_present_pte(spte))
456                 return false;
457
458         /*
459          * Always atomically update spte if it can be updated
460          * out of mmu-lock, it can ensure dirty bit is not lost,
461          * also, it can help us to get a stable is_writable_pte()
462          * to ensure tlb flush is not missed.
463          */
464         if (spte_can_locklessly_be_made_writable(spte) ||
465             is_access_track_spte(spte))
466                 return true;
467
468         if (spte_ad_enabled(spte)) {
469                 if ((spte & shadow_accessed_mask) == 0 ||
470                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
471                         return true;
472         }
473
474         return false;
475 }
476
477 /* Rules for using mmu_spte_set:
478  * Set the sptep from nonpresent to present.
479  * Note: the sptep being assigned *must* be either not present
480  * or in a state where the hardware will not attempt to update
481  * the spte.
482  */
483 static void mmu_spte_set(u64 *sptep, u64 new_spte)
484 {
485         WARN_ON(is_shadow_present_pte(*sptep));
486         __set_spte(sptep, new_spte);
487 }
488
489 /*
490  * Update the SPTE (excluding the PFN), but do not track changes in its
491  * accessed/dirty status.
492  */
493 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
494 {
495         u64 old_spte = *sptep;
496
497         WARN_ON(!is_shadow_present_pte(new_spte));
498
499         if (!is_shadow_present_pte(old_spte)) {
500                 mmu_spte_set(sptep, new_spte);
501                 return old_spte;
502         }
503
504         if (!spte_has_volatile_bits(old_spte))
505                 __update_clear_spte_fast(sptep, new_spte);
506         else
507                 old_spte = __update_clear_spte_slow(sptep, new_spte);
508
509         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
510
511         return old_spte;
512 }
513
514 /* Rules for using mmu_spte_update:
515  * Update the state bits, it means the mapped pfn is not changed.
516  *
517  * Whenever we overwrite a writable spte with a read-only one we
518  * should flush remote TLBs. Otherwise rmap_write_protect
519  * will find a read-only spte, even though the writable spte
520  * might be cached on a CPU's TLB, the return value indicates this
521  * case.
522  *
523  * Returns true if the TLB needs to be flushed
524  */
525 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
526 {
527         bool flush = false;
528         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
529
530         if (!is_shadow_present_pte(old_spte))
531                 return false;
532
533         /*
534          * For the spte updated out of mmu-lock is safe, since
535          * we always atomically update it, see the comments in
536          * spte_has_volatile_bits().
537          */
538         if (spte_can_locklessly_be_made_writable(old_spte) &&
539               !is_writable_pte(new_spte))
540                 flush = true;
541
542         /*
543          * Flush TLB when accessed/dirty states are changed in the page tables,
544          * to guarantee consistency between TLB and page tables.
545          */
546
547         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
548                 flush = true;
549                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
550         }
551
552         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
553                 flush = true;
554                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
555         }
556
557         return flush;
558 }
559
560 /*
561  * Rules for using mmu_spte_clear_track_bits:
562  * It sets the sptep from present to nonpresent, and track the
563  * state bits, it is used to clear the last level sptep.
564  * Returns non-zero if the PTE was previously valid.
565  */
566 static int mmu_spte_clear_track_bits(u64 *sptep)
567 {
568         kvm_pfn_t pfn;
569         u64 old_spte = *sptep;
570
571         if (!spte_has_volatile_bits(old_spte))
572                 __update_clear_spte_fast(sptep, 0ull);
573         else
574                 old_spte = __update_clear_spte_slow(sptep, 0ull);
575
576         if (!is_shadow_present_pte(old_spte))
577                 return 0;
578
579         pfn = spte_to_pfn(old_spte);
580
581         /*
582          * KVM does not hold the refcount of the page used by
583          * kvm mmu, before reclaiming the page, we should
584          * unmap it from mmu first.
585          */
586         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
587
588         if (is_accessed_spte(old_spte))
589                 kvm_set_pfn_accessed(pfn);
590
591         if (is_dirty_spte(old_spte))
592                 kvm_set_pfn_dirty(pfn);
593
594         return 1;
595 }
596
597 /*
598  * Rules for using mmu_spte_clear_no_track:
599  * Directly clear spte without caring the state bits of sptep,
600  * it is used to set the upper level spte.
601  */
602 static void mmu_spte_clear_no_track(u64 *sptep)
603 {
604         __update_clear_spte_fast(sptep, 0ull);
605 }
606
607 static u64 mmu_spte_get_lockless(u64 *sptep)
608 {
609         return __get_spte_lockless(sptep);
610 }
611
612 /* Restore an acc-track PTE back to a regular PTE */
613 static u64 restore_acc_track_spte(u64 spte)
614 {
615         u64 new_spte = spte;
616         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
617                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
618
619         WARN_ON_ONCE(spte_ad_enabled(spte));
620         WARN_ON_ONCE(!is_access_track_spte(spte));
621
622         new_spte &= ~shadow_acc_track_mask;
623         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
624                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
625         new_spte |= saved_bits;
626
627         return new_spte;
628 }
629
630 /* Returns the Accessed status of the PTE and resets it at the same time. */
631 static bool mmu_spte_age(u64 *sptep)
632 {
633         u64 spte = mmu_spte_get_lockless(sptep);
634
635         if (!is_accessed_spte(spte))
636                 return false;
637
638         if (spte_ad_enabled(spte)) {
639                 clear_bit((ffs(shadow_accessed_mask) - 1),
640                           (unsigned long *)sptep);
641         } else {
642                 /*
643                  * Capture the dirty status of the page, so that it doesn't get
644                  * lost when the SPTE is marked for access tracking.
645                  */
646                 if (is_writable_pte(spte))
647                         kvm_set_pfn_dirty(spte_to_pfn(spte));
648
649                 spte = mark_spte_for_access_track(spte);
650                 mmu_spte_update_no_track(sptep, spte);
651         }
652
653         return true;
654 }
655
656 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
657 {
658         /*
659          * Prevent page table teardown by making any free-er wait during
660          * kvm_flush_remote_tlbs() IPI to all active vcpus.
661          */
662         local_irq_disable();
663
664         /*
665          * Make sure a following spte read is not reordered ahead of the write
666          * to vcpu->mode.
667          */
668         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
669 }
670
671 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
672 {
673         /*
674          * Make sure the write to vcpu->mode is not reordered in front of
675          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
676          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
677          */
678         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
679         local_irq_enable();
680 }
681
682 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
683 {
684         int r;
685
686         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
687         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
688                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
689         if (r)
690                 return r;
691         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
692                                        PT64_ROOT_MAX_LEVEL);
693         if (r)
694                 return r;
695         if (maybe_indirect) {
696                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
697                                                PT64_ROOT_MAX_LEVEL);
698                 if (r)
699                         return r;
700         }
701         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
702                                           PT64_ROOT_MAX_LEVEL);
703 }
704
705 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
706 {
707         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
708         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
709         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
710         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
711 }
712
713 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714 {
715         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
716 }
717
718 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
719 {
720         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
721 }
722
723 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
724 {
725         if (!sp->role.direct)
726                 return sp->gfns[index];
727
728         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
729 }
730
731 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
732 {
733         if (!sp->role.direct) {
734                 sp->gfns[index] = gfn;
735                 return;
736         }
737
738         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
739                 pr_err_ratelimited("gfn mismatch under direct page %llx "
740                                    "(expected %llx, got %llx)\n",
741                                    sp->gfn,
742                                    kvm_mmu_page_get_gfn(sp, index), gfn);
743 }
744
745 /*
746  * Return the pointer to the large page information for a given gfn,
747  * handling slots that are not large page aligned.
748  */
749 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
750                 const struct kvm_memory_slot *slot, int level)
751 {
752         unsigned long idx;
753
754         idx = gfn_to_index(gfn, slot->base_gfn, level);
755         return &slot->arch.lpage_info[level - 2][idx];
756 }
757
758 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
759                                             gfn_t gfn, int count)
760 {
761         struct kvm_lpage_info *linfo;
762         int i;
763
764         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
765                 linfo = lpage_info_slot(gfn, slot, i);
766                 linfo->disallow_lpage += count;
767                 WARN_ON(linfo->disallow_lpage < 0);
768         }
769 }
770
771 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
772 {
773         update_gfn_disallow_lpage_count(slot, gfn, 1);
774 }
775
776 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
777 {
778         update_gfn_disallow_lpage_count(slot, gfn, -1);
779 }
780
781 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
782 {
783         struct kvm_memslots *slots;
784         struct kvm_memory_slot *slot;
785         gfn_t gfn;
786
787         kvm->arch.indirect_shadow_pages++;
788         gfn = sp->gfn;
789         slots = kvm_memslots_for_spte_role(kvm, sp->role);
790         slot = __gfn_to_memslot(slots, gfn);
791
792         /* the non-leaf shadow pages are keeping readonly. */
793         if (sp->role.level > PG_LEVEL_4K)
794                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
795                                                     KVM_PAGE_TRACK_WRITE);
796
797         kvm_mmu_gfn_disallow_lpage(slot, gfn);
798 }
799
800 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
801 {
802         if (sp->lpage_disallowed)
803                 return;
804
805         ++kvm->stat.nx_lpage_splits;
806         list_add_tail(&sp->lpage_disallowed_link,
807                       &kvm->arch.lpage_disallowed_mmu_pages);
808         sp->lpage_disallowed = true;
809 }
810
811 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
812 {
813         struct kvm_memslots *slots;
814         struct kvm_memory_slot *slot;
815         gfn_t gfn;
816
817         kvm->arch.indirect_shadow_pages--;
818         gfn = sp->gfn;
819         slots = kvm_memslots_for_spte_role(kvm, sp->role);
820         slot = __gfn_to_memslot(slots, gfn);
821         if (sp->role.level > PG_LEVEL_4K)
822                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
823                                                        KVM_PAGE_TRACK_WRITE);
824
825         kvm_mmu_gfn_allow_lpage(slot, gfn);
826 }
827
828 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
829 {
830         --kvm->stat.nx_lpage_splits;
831         sp->lpage_disallowed = false;
832         list_del(&sp->lpage_disallowed_link);
833 }
834
835 static struct kvm_memory_slot *
836 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
837                             bool no_dirty_log)
838 {
839         struct kvm_memory_slot *slot;
840
841         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
842         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
843                 return NULL;
844         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
845                 return NULL;
846
847         return slot;
848 }
849
850 /*
851  * About rmap_head encoding:
852  *
853  * If the bit zero of rmap_head->val is clear, then it points to the only spte
854  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
855  * pte_list_desc containing more mappings.
856  */
857
858 /*
859  * Returns the number of pointers in the rmap chain, not counting the new one.
860  */
861 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
862                         struct kvm_rmap_head *rmap_head)
863 {
864         struct pte_list_desc *desc;
865         int i, count = 0;
866
867         if (!rmap_head->val) {
868                 rmap_printk("%p %llx 0->1\n", spte, *spte);
869                 rmap_head->val = (unsigned long)spte;
870         } else if (!(rmap_head->val & 1)) {
871                 rmap_printk("%p %llx 1->many\n", spte, *spte);
872                 desc = mmu_alloc_pte_list_desc(vcpu);
873                 desc->sptes[0] = (u64 *)rmap_head->val;
874                 desc->sptes[1] = spte;
875                 rmap_head->val = (unsigned long)desc | 1;
876                 ++count;
877         } else {
878                 rmap_printk("%p %llx many->many\n", spte, *spte);
879                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
880                 while (desc->sptes[PTE_LIST_EXT-1]) {
881                         count += PTE_LIST_EXT;
882
883                         if (!desc->more) {
884                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
885                                 desc = desc->more;
886                                 break;
887                         }
888                         desc = desc->more;
889                 }
890                 for (i = 0; desc->sptes[i]; ++i)
891                         ++count;
892                 desc->sptes[i] = spte;
893         }
894         return count;
895 }
896
897 static void
898 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
899                            struct pte_list_desc *desc, int i,
900                            struct pte_list_desc *prev_desc)
901 {
902         int j;
903
904         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
905                 ;
906         desc->sptes[i] = desc->sptes[j];
907         desc->sptes[j] = NULL;
908         if (j != 0)
909                 return;
910         if (!prev_desc && !desc->more)
911                 rmap_head->val = 0;
912         else
913                 if (prev_desc)
914                         prev_desc->more = desc->more;
915                 else
916                         rmap_head->val = (unsigned long)desc->more | 1;
917         mmu_free_pte_list_desc(desc);
918 }
919
920 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
921 {
922         struct pte_list_desc *desc;
923         struct pte_list_desc *prev_desc;
924         int i;
925
926         if (!rmap_head->val) {
927                 pr_err("%s: %p 0->BUG\n", __func__, spte);
928                 BUG();
929         } else if (!(rmap_head->val & 1)) {
930                 rmap_printk("%p 1->0\n", spte);
931                 if ((u64 *)rmap_head->val != spte) {
932                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
933                         BUG();
934                 }
935                 rmap_head->val = 0;
936         } else {
937                 rmap_printk("%p many->many\n", spte);
938                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
939                 prev_desc = NULL;
940                 while (desc) {
941                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
942                                 if (desc->sptes[i] == spte) {
943                                         pte_list_desc_remove_entry(rmap_head,
944                                                         desc, i, prev_desc);
945                                         return;
946                                 }
947                         }
948                         prev_desc = desc;
949                         desc = desc->more;
950                 }
951                 pr_err("%s: %p many->many\n", __func__, spte);
952                 BUG();
953         }
954 }
955
956 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
957 {
958         mmu_spte_clear_track_bits(sptep);
959         __pte_list_remove(sptep, rmap_head);
960 }
961
962 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
963                                            struct kvm_memory_slot *slot)
964 {
965         unsigned long idx;
966
967         idx = gfn_to_index(gfn, slot->base_gfn, level);
968         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
969 }
970
971 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
972                                          struct kvm_mmu_page *sp)
973 {
974         struct kvm_memslots *slots;
975         struct kvm_memory_slot *slot;
976
977         slots = kvm_memslots_for_spte_role(kvm, sp->role);
978         slot = __gfn_to_memslot(slots, gfn);
979         return __gfn_to_rmap(gfn, sp->role.level, slot);
980 }
981
982 static bool rmap_can_add(struct kvm_vcpu *vcpu)
983 {
984         struct kvm_mmu_memory_cache *mc;
985
986         mc = &vcpu->arch.mmu_pte_list_desc_cache;
987         return kvm_mmu_memory_cache_nr_free_objects(mc);
988 }
989
990 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
991 {
992         struct kvm_mmu_page *sp;
993         struct kvm_rmap_head *rmap_head;
994
995         sp = sptep_to_sp(spte);
996         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
997         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
998         return pte_list_add(vcpu, spte, rmap_head);
999 }
1000
1001 static void rmap_remove(struct kvm *kvm, u64 *spte)
1002 {
1003         struct kvm_mmu_page *sp;
1004         gfn_t gfn;
1005         struct kvm_rmap_head *rmap_head;
1006
1007         sp = sptep_to_sp(spte);
1008         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1009         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1010         __pte_list_remove(spte, rmap_head);
1011 }
1012
1013 /*
1014  * Used by the following functions to iterate through the sptes linked by a
1015  * rmap.  All fields are private and not assumed to be used outside.
1016  */
1017 struct rmap_iterator {
1018         /* private fields */
1019         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1020         int pos;                        /* index of the sptep */
1021 };
1022
1023 /*
1024  * Iteration must be started by this function.  This should also be used after
1025  * removing/dropping sptes from the rmap link because in such cases the
1026  * information in the iterator may not be valid.
1027  *
1028  * Returns sptep if found, NULL otherwise.
1029  */
1030 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1031                            struct rmap_iterator *iter)
1032 {
1033         u64 *sptep;
1034
1035         if (!rmap_head->val)
1036                 return NULL;
1037
1038         if (!(rmap_head->val & 1)) {
1039                 iter->desc = NULL;
1040                 sptep = (u64 *)rmap_head->val;
1041                 goto out;
1042         }
1043
1044         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1045         iter->pos = 0;
1046         sptep = iter->desc->sptes[iter->pos];
1047 out:
1048         BUG_ON(!is_shadow_present_pte(*sptep));
1049         return sptep;
1050 }
1051
1052 /*
1053  * Must be used with a valid iterator: e.g. after rmap_get_first().
1054  *
1055  * Returns sptep if found, NULL otherwise.
1056  */
1057 static u64 *rmap_get_next(struct rmap_iterator *iter)
1058 {
1059         u64 *sptep;
1060
1061         if (iter->desc) {
1062                 if (iter->pos < PTE_LIST_EXT - 1) {
1063                         ++iter->pos;
1064                         sptep = iter->desc->sptes[iter->pos];
1065                         if (sptep)
1066                                 goto out;
1067                 }
1068
1069                 iter->desc = iter->desc->more;
1070
1071                 if (iter->desc) {
1072                         iter->pos = 0;
1073                         /* desc->sptes[0] cannot be NULL */
1074                         sptep = iter->desc->sptes[iter->pos];
1075                         goto out;
1076                 }
1077         }
1078
1079         return NULL;
1080 out:
1081         BUG_ON(!is_shadow_present_pte(*sptep));
1082         return sptep;
1083 }
1084
1085 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1086         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1087              _spte_; _spte_ = rmap_get_next(_iter_))
1088
1089 static void drop_spte(struct kvm *kvm, u64 *sptep)
1090 {
1091         if (mmu_spte_clear_track_bits(sptep))
1092                 rmap_remove(kvm, sptep);
1093 }
1094
1095
1096 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1097 {
1098         if (is_large_pte(*sptep)) {
1099                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1100                 drop_spte(kvm, sptep);
1101                 --kvm->stat.lpages;
1102                 return true;
1103         }
1104
1105         return false;
1106 }
1107
1108 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1109 {
1110         if (__drop_large_spte(vcpu->kvm, sptep)) {
1111                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1112
1113                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1114                         KVM_PAGES_PER_HPAGE(sp->role.level));
1115         }
1116 }
1117
1118 /*
1119  * Write-protect on the specified @sptep, @pt_protect indicates whether
1120  * spte write-protection is caused by protecting shadow page table.
1121  *
1122  * Note: write protection is difference between dirty logging and spte
1123  * protection:
1124  * - for dirty logging, the spte can be set to writable at anytime if
1125  *   its dirty bitmap is properly set.
1126  * - for spte protection, the spte can be writable only after unsync-ing
1127  *   shadow page.
1128  *
1129  * Return true if tlb need be flushed.
1130  */
1131 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1132 {
1133         u64 spte = *sptep;
1134
1135         if (!is_writable_pte(spte) &&
1136               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1137                 return false;
1138
1139         rmap_printk("spte %p %llx\n", sptep, *sptep);
1140
1141         if (pt_protect)
1142                 spte &= ~shadow_mmu_writable_mask;
1143         spte = spte & ~PT_WRITABLE_MASK;
1144
1145         return mmu_spte_update(sptep, spte);
1146 }
1147
1148 static bool __rmap_write_protect(struct kvm *kvm,
1149                                  struct kvm_rmap_head *rmap_head,
1150                                  bool pt_protect)
1151 {
1152         u64 *sptep;
1153         struct rmap_iterator iter;
1154         bool flush = false;
1155
1156         for_each_rmap_spte(rmap_head, &iter, sptep)
1157                 flush |= spte_write_protect(sptep, pt_protect);
1158
1159         return flush;
1160 }
1161
1162 static bool spte_clear_dirty(u64 *sptep)
1163 {
1164         u64 spte = *sptep;
1165
1166         rmap_printk("spte %p %llx\n", sptep, *sptep);
1167
1168         MMU_WARN_ON(!spte_ad_enabled(spte));
1169         spte &= ~shadow_dirty_mask;
1170         return mmu_spte_update(sptep, spte);
1171 }
1172
1173 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1174 {
1175         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1176                                                (unsigned long *)sptep);
1177         if (was_writable && !spte_ad_enabled(*sptep))
1178                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1179
1180         return was_writable;
1181 }
1182
1183 /*
1184  * Gets the GFN ready for another round of dirty logging by clearing the
1185  *      - D bit on ad-enabled SPTEs, and
1186  *      - W bit on ad-disabled SPTEs.
1187  * Returns true iff any D or W bits were cleared.
1188  */
1189 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1190                                struct kvm_memory_slot *slot)
1191 {
1192         u64 *sptep;
1193         struct rmap_iterator iter;
1194         bool flush = false;
1195
1196         for_each_rmap_spte(rmap_head, &iter, sptep)
1197                 if (spte_ad_need_write_protect(*sptep))
1198                         flush |= spte_wrprot_for_clear_dirty(sptep);
1199                 else
1200                         flush |= spte_clear_dirty(sptep);
1201
1202         return flush;
1203 }
1204
1205 /**
1206  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1207  * @kvm: kvm instance
1208  * @slot: slot to protect
1209  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1210  * @mask: indicates which pages we should protect
1211  *
1212  * Used when we do not need to care about huge page mappings.
1213  */
1214 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1215                                      struct kvm_memory_slot *slot,
1216                                      gfn_t gfn_offset, unsigned long mask)
1217 {
1218         struct kvm_rmap_head *rmap_head;
1219
1220         if (is_tdp_mmu_enabled(kvm))
1221                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1222                                 slot->base_gfn + gfn_offset, mask, true);
1223
1224         if (!kvm_memslots_have_rmaps(kvm))
1225                 return;
1226
1227         while (mask) {
1228                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1229                                           PG_LEVEL_4K, slot);
1230                 __rmap_write_protect(kvm, rmap_head, false);
1231
1232                 /* clear the first set bit */
1233                 mask &= mask - 1;
1234         }
1235 }
1236
1237 /**
1238  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1239  * protect the page if the D-bit isn't supported.
1240  * @kvm: kvm instance
1241  * @slot: slot to clear D-bit
1242  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1243  * @mask: indicates which pages we should clear D-bit
1244  *
1245  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1246  */
1247 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1248                                          struct kvm_memory_slot *slot,
1249                                          gfn_t gfn_offset, unsigned long mask)
1250 {
1251         struct kvm_rmap_head *rmap_head;
1252
1253         if (is_tdp_mmu_enabled(kvm))
1254                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1255                                 slot->base_gfn + gfn_offset, mask, false);
1256
1257         if (!kvm_memslots_have_rmaps(kvm))
1258                 return;
1259
1260         while (mask) {
1261                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1262                                           PG_LEVEL_4K, slot);
1263                 __rmap_clear_dirty(kvm, rmap_head, slot);
1264
1265                 /* clear the first set bit */
1266                 mask &= mask - 1;
1267         }
1268 }
1269
1270 /**
1271  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1272  * PT level pages.
1273  *
1274  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1275  * enable dirty logging for them.
1276  *
1277  * We need to care about huge page mappings: e.g. during dirty logging we may
1278  * have such mappings.
1279  */
1280 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1281                                 struct kvm_memory_slot *slot,
1282                                 gfn_t gfn_offset, unsigned long mask)
1283 {
1284         /*
1285          * Huge pages are NOT write protected when we start dirty logging in
1286          * initially-all-set mode; must write protect them here so that they
1287          * are split to 4K on the first write.
1288          *
1289          * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1290          * of memslot has no such restriction, so the range can cross two large
1291          * pages.
1292          */
1293         if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1294                 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1295                 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1296
1297                 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1298
1299                 /* Cross two large pages? */
1300                 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1301                     ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1302                         kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1303                                                        PG_LEVEL_2M);
1304         }
1305
1306         /* Now handle 4K PTEs.  */
1307         if (kvm_x86_ops.cpu_dirty_log_size)
1308                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1309         else
1310                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1311 }
1312
1313 int kvm_cpu_dirty_log_size(void)
1314 {
1315         return kvm_x86_ops.cpu_dirty_log_size;
1316 }
1317
1318 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1319                                     struct kvm_memory_slot *slot, u64 gfn,
1320                                     int min_level)
1321 {
1322         struct kvm_rmap_head *rmap_head;
1323         int i;
1324         bool write_protected = false;
1325
1326         if (kvm_memslots_have_rmaps(kvm)) {
1327                 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1328                         rmap_head = __gfn_to_rmap(gfn, i, slot);
1329                         write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1330                 }
1331         }
1332
1333         if (is_tdp_mmu_enabled(kvm))
1334                 write_protected |=
1335                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1336
1337         return write_protected;
1338 }
1339
1340 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1341 {
1342         struct kvm_memory_slot *slot;
1343
1344         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1345         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1346 }
1347
1348 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1349                           struct kvm_memory_slot *slot)
1350 {
1351         u64 *sptep;
1352         struct rmap_iterator iter;
1353         bool flush = false;
1354
1355         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1356                 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1357
1358                 pte_list_remove(rmap_head, sptep);
1359                 flush = true;
1360         }
1361
1362         return flush;
1363 }
1364
1365 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1366                             struct kvm_memory_slot *slot, gfn_t gfn, int level,
1367                             pte_t unused)
1368 {
1369         return kvm_zap_rmapp(kvm, rmap_head, slot);
1370 }
1371
1372 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1373                               struct kvm_memory_slot *slot, gfn_t gfn, int level,
1374                               pte_t pte)
1375 {
1376         u64 *sptep;
1377         struct rmap_iterator iter;
1378         int need_flush = 0;
1379         u64 new_spte;
1380         kvm_pfn_t new_pfn;
1381
1382         WARN_ON(pte_huge(pte));
1383         new_pfn = pte_pfn(pte);
1384
1385 restart:
1386         for_each_rmap_spte(rmap_head, &iter, sptep) {
1387                 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1388                             sptep, *sptep, gfn, level);
1389
1390                 need_flush = 1;
1391
1392                 if (pte_write(pte)) {
1393                         pte_list_remove(rmap_head, sptep);
1394                         goto restart;
1395                 } else {
1396                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1397                                         *sptep, new_pfn);
1398
1399                         mmu_spte_clear_track_bits(sptep);
1400                         mmu_spte_set(sptep, new_spte);
1401                 }
1402         }
1403
1404         if (need_flush && kvm_available_flush_tlb_with_range()) {
1405                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1406                 return 0;
1407         }
1408
1409         return need_flush;
1410 }
1411
1412 struct slot_rmap_walk_iterator {
1413         /* input fields. */
1414         struct kvm_memory_slot *slot;
1415         gfn_t start_gfn;
1416         gfn_t end_gfn;
1417         int start_level;
1418         int end_level;
1419
1420         /* output fields. */
1421         gfn_t gfn;
1422         struct kvm_rmap_head *rmap;
1423         int level;
1424
1425         /* private field. */
1426         struct kvm_rmap_head *end_rmap;
1427 };
1428
1429 static void
1430 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1431 {
1432         iterator->level = level;
1433         iterator->gfn = iterator->start_gfn;
1434         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1435         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1436                                            iterator->slot);
1437 }
1438
1439 static void
1440 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1441                     struct kvm_memory_slot *slot, int start_level,
1442                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1443 {
1444         iterator->slot = slot;
1445         iterator->start_level = start_level;
1446         iterator->end_level = end_level;
1447         iterator->start_gfn = start_gfn;
1448         iterator->end_gfn = end_gfn;
1449
1450         rmap_walk_init_level(iterator, iterator->start_level);
1451 }
1452
1453 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1454 {
1455         return !!iterator->rmap;
1456 }
1457
1458 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1459 {
1460         if (++iterator->rmap <= iterator->end_rmap) {
1461                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1462                 return;
1463         }
1464
1465         if (++iterator->level > iterator->end_level) {
1466                 iterator->rmap = NULL;
1467                 return;
1468         }
1469
1470         rmap_walk_init_level(iterator, iterator->level);
1471 }
1472
1473 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1474            _start_gfn, _end_gfn, _iter_)                                \
1475         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1476                                  _end_level_, _start_gfn, _end_gfn);    \
1477              slot_rmap_walk_okay(_iter_);                               \
1478              slot_rmap_walk_next(_iter_))
1479
1480 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1481                                struct kvm_memory_slot *slot, gfn_t gfn,
1482                                int level, pte_t pte);
1483
1484 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1485                                                  struct kvm_gfn_range *range,
1486                                                  rmap_handler_t handler)
1487 {
1488         struct slot_rmap_walk_iterator iterator;
1489         bool ret = false;
1490
1491         for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1492                                  range->start, range->end - 1, &iterator)
1493                 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1494                                iterator.level, range->pte);
1495
1496         return ret;
1497 }
1498
1499 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1500 {
1501         bool flush = false;
1502
1503         if (kvm_memslots_have_rmaps(kvm))
1504                 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1505
1506         if (is_tdp_mmu_enabled(kvm))
1507                 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1508
1509         return flush;
1510 }
1511
1512 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1513 {
1514         bool flush = false;
1515
1516         if (kvm_memslots_have_rmaps(kvm))
1517                 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1518
1519         if (is_tdp_mmu_enabled(kvm))
1520                 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1521
1522         return flush;
1523 }
1524
1525 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1526                           struct kvm_memory_slot *slot, gfn_t gfn, int level,
1527                           pte_t unused)
1528 {
1529         u64 *sptep;
1530         struct rmap_iterator iter;
1531         int young = 0;
1532
1533         for_each_rmap_spte(rmap_head, &iter, sptep)
1534                 young |= mmu_spte_age(sptep);
1535
1536         return young;
1537 }
1538
1539 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1540                                struct kvm_memory_slot *slot, gfn_t gfn,
1541                                int level, pte_t unused)
1542 {
1543         u64 *sptep;
1544         struct rmap_iterator iter;
1545
1546         for_each_rmap_spte(rmap_head, &iter, sptep)
1547                 if (is_accessed_spte(*sptep))
1548                         return 1;
1549         return 0;
1550 }
1551
1552 #define RMAP_RECYCLE_THRESHOLD 1000
1553
1554 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1555 {
1556         struct kvm_rmap_head *rmap_head;
1557         struct kvm_mmu_page *sp;
1558
1559         sp = sptep_to_sp(spte);
1560
1561         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1562
1563         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1564         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1565                         KVM_PAGES_PER_HPAGE(sp->role.level));
1566 }
1567
1568 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1569 {
1570         bool young = false;
1571
1572         if (kvm_memslots_have_rmaps(kvm))
1573                 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1574
1575         if (is_tdp_mmu_enabled(kvm))
1576                 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1577
1578         return young;
1579 }
1580
1581 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1582 {
1583         bool young = false;
1584
1585         if (kvm_memslots_have_rmaps(kvm))
1586                 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1587
1588         if (is_tdp_mmu_enabled(kvm))
1589                 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1590
1591         return young;
1592 }
1593
1594 #ifdef MMU_DEBUG
1595 static int is_empty_shadow_page(u64 *spt)
1596 {
1597         u64 *pos;
1598         u64 *end;
1599
1600         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1601                 if (is_shadow_present_pte(*pos)) {
1602                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1603                                pos, *pos);
1604                         return 0;
1605                 }
1606         return 1;
1607 }
1608 #endif
1609
1610 /*
1611  * This value is the sum of all of the kvm instances's
1612  * kvm->arch.n_used_mmu_pages values.  We need a global,
1613  * aggregate version in order to make the slab shrinker
1614  * faster
1615  */
1616 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1617 {
1618         kvm->arch.n_used_mmu_pages += nr;
1619         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1620 }
1621
1622 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1623 {
1624         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1625         hlist_del(&sp->hash_link);
1626         list_del(&sp->link);
1627         free_page((unsigned long)sp->spt);
1628         if (!sp->role.direct)
1629                 free_page((unsigned long)sp->gfns);
1630         kmem_cache_free(mmu_page_header_cache, sp);
1631 }
1632
1633 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1634 {
1635         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1636 }
1637
1638 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1639                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1640 {
1641         if (!parent_pte)
1642                 return;
1643
1644         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1645 }
1646
1647 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1648                                        u64 *parent_pte)
1649 {
1650         __pte_list_remove(parent_pte, &sp->parent_ptes);
1651 }
1652
1653 static void drop_parent_pte(struct kvm_mmu_page *sp,
1654                             u64 *parent_pte)
1655 {
1656         mmu_page_remove_parent_pte(sp, parent_pte);
1657         mmu_spte_clear_no_track(parent_pte);
1658 }
1659
1660 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1661 {
1662         struct kvm_mmu_page *sp;
1663
1664         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1665         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1666         if (!direct)
1667                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1668         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1669
1670         /*
1671          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1672          * depends on valid pages being added to the head of the list.  See
1673          * comments in kvm_zap_obsolete_pages().
1674          */
1675         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1676         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1677         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1678         return sp;
1679 }
1680
1681 static void mark_unsync(u64 *spte);
1682 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1683 {
1684         u64 *sptep;
1685         struct rmap_iterator iter;
1686
1687         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1688                 mark_unsync(sptep);
1689         }
1690 }
1691
1692 static void mark_unsync(u64 *spte)
1693 {
1694         struct kvm_mmu_page *sp;
1695         unsigned int index;
1696
1697         sp = sptep_to_sp(spte);
1698         index = spte - sp->spt;
1699         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1700                 return;
1701         if (sp->unsync_children++)
1702                 return;
1703         kvm_mmu_mark_parents_unsync(sp);
1704 }
1705
1706 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1707                                struct kvm_mmu_page *sp)
1708 {
1709         return 0;
1710 }
1711
1712 #define KVM_PAGE_ARRAY_NR 16
1713
1714 struct kvm_mmu_pages {
1715         struct mmu_page_and_offset {
1716                 struct kvm_mmu_page *sp;
1717                 unsigned int idx;
1718         } page[KVM_PAGE_ARRAY_NR];
1719         unsigned int nr;
1720 };
1721
1722 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1723                          int idx)
1724 {
1725         int i;
1726
1727         if (sp->unsync)
1728                 for (i=0; i < pvec->nr; i++)
1729                         if (pvec->page[i].sp == sp)
1730                                 return 0;
1731
1732         pvec->page[pvec->nr].sp = sp;
1733         pvec->page[pvec->nr].idx = idx;
1734         pvec->nr++;
1735         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1736 }
1737
1738 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1739 {
1740         --sp->unsync_children;
1741         WARN_ON((int)sp->unsync_children < 0);
1742         __clear_bit(idx, sp->unsync_child_bitmap);
1743 }
1744
1745 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1746                            struct kvm_mmu_pages *pvec)
1747 {
1748         int i, ret, nr_unsync_leaf = 0;
1749
1750         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1751                 struct kvm_mmu_page *child;
1752                 u64 ent = sp->spt[i];
1753
1754                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1755                         clear_unsync_child_bit(sp, i);
1756                         continue;
1757                 }
1758
1759                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1760
1761                 if (child->unsync_children) {
1762                         if (mmu_pages_add(pvec, child, i))
1763                                 return -ENOSPC;
1764
1765                         ret = __mmu_unsync_walk(child, pvec);
1766                         if (!ret) {
1767                                 clear_unsync_child_bit(sp, i);
1768                                 continue;
1769                         } else if (ret > 0) {
1770                                 nr_unsync_leaf += ret;
1771                         } else
1772                                 return ret;
1773                 } else if (child->unsync) {
1774                         nr_unsync_leaf++;
1775                         if (mmu_pages_add(pvec, child, i))
1776                                 return -ENOSPC;
1777                 } else
1778                         clear_unsync_child_bit(sp, i);
1779         }
1780
1781         return nr_unsync_leaf;
1782 }
1783
1784 #define INVALID_INDEX (-1)
1785
1786 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1787                            struct kvm_mmu_pages *pvec)
1788 {
1789         pvec->nr = 0;
1790         if (!sp->unsync_children)
1791                 return 0;
1792
1793         mmu_pages_add(pvec, sp, INVALID_INDEX);
1794         return __mmu_unsync_walk(sp, pvec);
1795 }
1796
1797 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1798 {
1799         WARN_ON(!sp->unsync);
1800         trace_kvm_mmu_sync_page(sp);
1801         sp->unsync = 0;
1802         --kvm->stat.mmu_unsync;
1803 }
1804
1805 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1806                                      struct list_head *invalid_list);
1807 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1808                                     struct list_head *invalid_list);
1809
1810 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1811         hlist_for_each_entry(_sp, _list, hash_link)                     \
1812                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1813                 } else
1814
1815 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1816         for_each_valid_sp(_kvm, _sp,                                    \
1817           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1818                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1819
1820 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1821                          struct list_head *invalid_list)
1822 {
1823         if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1824                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1825                 return false;
1826         }
1827
1828         return true;
1829 }
1830
1831 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1832                                         struct list_head *invalid_list,
1833                                         bool remote_flush)
1834 {
1835         if (!remote_flush && list_empty(invalid_list))
1836                 return false;
1837
1838         if (!list_empty(invalid_list))
1839                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1840         else
1841                 kvm_flush_remote_tlbs(kvm);
1842         return true;
1843 }
1844
1845 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1846                                  struct list_head *invalid_list,
1847                                  bool remote_flush, bool local_flush)
1848 {
1849         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1850                 return;
1851
1852         if (local_flush)
1853                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1854 }
1855
1856 #ifdef CONFIG_KVM_MMU_AUDIT
1857 #include "mmu_audit.c"
1858 #else
1859 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1860 static void mmu_audit_disable(void) { }
1861 #endif
1862
1863 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1864 {
1865         return sp->role.invalid ||
1866                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1867 }
1868
1869 struct mmu_page_path {
1870         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1871         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1872 };
1873
1874 #define for_each_sp(pvec, sp, parents, i)                       \
1875                 for (i = mmu_pages_first(&pvec, &parents);      \
1876                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1877                         i = mmu_pages_next(&pvec, &parents, i))
1878
1879 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1880                           struct mmu_page_path *parents,
1881                           int i)
1882 {
1883         int n;
1884
1885         for (n = i+1; n < pvec->nr; n++) {
1886                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1887                 unsigned idx = pvec->page[n].idx;
1888                 int level = sp->role.level;
1889
1890                 parents->idx[level-1] = idx;
1891                 if (level == PG_LEVEL_4K)
1892                         break;
1893
1894                 parents->parent[level-2] = sp;
1895         }
1896
1897         return n;
1898 }
1899
1900 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1901                            struct mmu_page_path *parents)
1902 {
1903         struct kvm_mmu_page *sp;
1904         int level;
1905
1906         if (pvec->nr == 0)
1907                 return 0;
1908
1909         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1910
1911         sp = pvec->page[0].sp;
1912         level = sp->role.level;
1913         WARN_ON(level == PG_LEVEL_4K);
1914
1915         parents->parent[level-2] = sp;
1916
1917         /* Also set up a sentinel.  Further entries in pvec are all
1918          * children of sp, so this element is never overwritten.
1919          */
1920         parents->parent[level-1] = NULL;
1921         return mmu_pages_next(pvec, parents, 0);
1922 }
1923
1924 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1925 {
1926         struct kvm_mmu_page *sp;
1927         unsigned int level = 0;
1928
1929         do {
1930                 unsigned int idx = parents->idx[level];
1931                 sp = parents->parent[level];
1932                 if (!sp)
1933                         return;
1934
1935                 WARN_ON(idx == INVALID_INDEX);
1936                 clear_unsync_child_bit(sp, idx);
1937                 level++;
1938         } while (!sp->unsync_children);
1939 }
1940
1941 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1942                               struct kvm_mmu_page *parent)
1943 {
1944         int i;
1945         struct kvm_mmu_page *sp;
1946         struct mmu_page_path parents;
1947         struct kvm_mmu_pages pages;
1948         LIST_HEAD(invalid_list);
1949         bool flush = false;
1950
1951         while (mmu_unsync_walk(parent, &pages)) {
1952                 bool protected = false;
1953
1954                 for_each_sp(pages, sp, parents, i)
1955                         protected |= rmap_write_protect(vcpu, sp->gfn);
1956
1957                 if (protected) {
1958                         kvm_flush_remote_tlbs(vcpu->kvm);
1959                         flush = false;
1960                 }
1961
1962                 for_each_sp(pages, sp, parents, i) {
1963                         kvm_unlink_unsync_page(vcpu->kvm, sp);
1964                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1965                         mmu_pages_clear_parents(&parents);
1966                 }
1967                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1968                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1969                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1970                         flush = false;
1971                 }
1972         }
1973
1974         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1975 }
1976
1977 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1978 {
1979         atomic_set(&sp->write_flooding_count,  0);
1980 }
1981
1982 static void clear_sp_write_flooding_count(u64 *spte)
1983 {
1984         __clear_sp_write_flooding_count(sptep_to_sp(spte));
1985 }
1986
1987 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1988                                              gfn_t gfn,
1989                                              gva_t gaddr,
1990                                              unsigned level,
1991                                              int direct,
1992                                              unsigned int access)
1993 {
1994         bool direct_mmu = vcpu->arch.mmu->direct_map;
1995         union kvm_mmu_page_role role;
1996         struct hlist_head *sp_list;
1997         unsigned quadrant;
1998         struct kvm_mmu_page *sp;
1999         int collisions = 0;
2000         LIST_HEAD(invalid_list);
2001
2002         role = vcpu->arch.mmu->mmu_role.base;
2003         role.level = level;
2004         role.direct = direct;
2005         if (role.direct)
2006                 role.gpte_is_8_bytes = true;
2007         role.access = access;
2008         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2009                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2010                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2011                 role.quadrant = quadrant;
2012         }
2013
2014         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2015         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2016                 if (sp->gfn != gfn) {
2017                         collisions++;
2018                         continue;
2019                 }
2020
2021                 if (sp->role.word != role.word) {
2022                         /*
2023                          * If the guest is creating an upper-level page, zap
2024                          * unsync pages for the same gfn.  While it's possible
2025                          * the guest is using recursive page tables, in all
2026                          * likelihood the guest has stopped using the unsync
2027                          * page and is installing a completely unrelated page.
2028                          * Unsync pages must not be left as is, because the new
2029                          * upper-level page will be write-protected.
2030                          */
2031                         if (level > PG_LEVEL_4K && sp->unsync)
2032                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2033                                                          &invalid_list);
2034                         continue;
2035                 }
2036
2037                 if (direct_mmu)
2038                         goto trace_get_page;
2039
2040                 if (sp->unsync) {
2041                         /*
2042                          * The page is good, but is stale.  kvm_sync_page does
2043                          * get the latest guest state, but (unlike mmu_unsync_children)
2044                          * it doesn't write-protect the page or mark it synchronized!
2045                          * This way the validity of the mapping is ensured, but the
2046                          * overhead of write protection is not incurred until the
2047                          * guest invalidates the TLB mapping.  This allows multiple
2048                          * SPs for a single gfn to be unsync.
2049                          *
2050                          * If the sync fails, the page is zapped.  If so, break
2051                          * in order to rebuild it.
2052                          */
2053                         if (!kvm_sync_page(vcpu, sp, &invalid_list))
2054                                 break;
2055
2056                         WARN_ON(!list_empty(&invalid_list));
2057                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2058                 }
2059
2060                 if (sp->unsync_children)
2061                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2062
2063                 __clear_sp_write_flooding_count(sp);
2064
2065 trace_get_page:
2066                 trace_kvm_mmu_get_page(sp, false);
2067                 goto out;
2068         }
2069
2070         ++vcpu->kvm->stat.mmu_cache_miss;
2071
2072         sp = kvm_mmu_alloc_page(vcpu, direct);
2073
2074         sp->gfn = gfn;
2075         sp->role = role;
2076         hlist_add_head(&sp->hash_link, sp_list);
2077         if (!direct) {
2078                 account_shadowed(vcpu->kvm, sp);
2079                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2080                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2081         }
2082         trace_kvm_mmu_get_page(sp, true);
2083 out:
2084         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2085
2086         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2087                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2088         return sp;
2089 }
2090
2091 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2092                                         struct kvm_vcpu *vcpu, hpa_t root,
2093                                         u64 addr)
2094 {
2095         iterator->addr = addr;
2096         iterator->shadow_addr = root;
2097         iterator->level = vcpu->arch.mmu->shadow_root_level;
2098
2099         if (iterator->level == PT64_ROOT_4LEVEL &&
2100             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2101             !vcpu->arch.mmu->direct_map)
2102                 --iterator->level;
2103
2104         if (iterator->level == PT32E_ROOT_LEVEL) {
2105                 /*
2106                  * prev_root is currently only used for 64-bit hosts. So only
2107                  * the active root_hpa is valid here.
2108                  */
2109                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2110
2111                 iterator->shadow_addr
2112                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2113                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2114                 --iterator->level;
2115                 if (!iterator->shadow_addr)
2116                         iterator->level = 0;
2117         }
2118 }
2119
2120 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2121                              struct kvm_vcpu *vcpu, u64 addr)
2122 {
2123         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2124                                     addr);
2125 }
2126
2127 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2128 {
2129         if (iterator->level < PG_LEVEL_4K)
2130                 return false;
2131
2132         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2133         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2134         return true;
2135 }
2136
2137 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2138                                u64 spte)
2139 {
2140         if (is_last_spte(spte, iterator->level)) {
2141                 iterator->level = 0;
2142                 return;
2143         }
2144
2145         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2146         --iterator->level;
2147 }
2148
2149 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2150 {
2151         __shadow_walk_next(iterator, *iterator->sptep);
2152 }
2153
2154 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2155                              struct kvm_mmu_page *sp)
2156 {
2157         u64 spte;
2158
2159         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2160
2161         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2162
2163         mmu_spte_set(sptep, spte);
2164
2165         mmu_page_add_parent_pte(vcpu, sp, sptep);
2166
2167         if (sp->unsync_children || sp->unsync)
2168                 mark_unsync(sptep);
2169 }
2170
2171 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2172                                    unsigned direct_access)
2173 {
2174         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2175                 struct kvm_mmu_page *child;
2176
2177                 /*
2178                  * For the direct sp, if the guest pte's dirty bit
2179                  * changed form clean to dirty, it will corrupt the
2180                  * sp's access: allow writable in the read-only sp,
2181                  * so we should update the spte at this point to get
2182                  * a new sp with the correct access.
2183                  */
2184                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2185                 if (child->role.access == direct_access)
2186                         return;
2187
2188                 drop_parent_pte(child, sptep);
2189                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2190         }
2191 }
2192
2193 /* Returns the number of zapped non-leaf child shadow pages. */
2194 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2195                             u64 *spte, struct list_head *invalid_list)
2196 {
2197         u64 pte;
2198         struct kvm_mmu_page *child;
2199
2200         pte = *spte;
2201         if (is_shadow_present_pte(pte)) {
2202                 if (is_last_spte(pte, sp->role.level)) {
2203                         drop_spte(kvm, spte);
2204                         if (is_large_pte(pte))
2205                                 --kvm->stat.lpages;
2206                 } else {
2207                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2208                         drop_parent_pte(child, spte);
2209
2210                         /*
2211                          * Recursively zap nested TDP SPs, parentless SPs are
2212                          * unlikely to be used again in the near future.  This
2213                          * avoids retaining a large number of stale nested SPs.
2214                          */
2215                         if (tdp_enabled && invalid_list &&
2216                             child->role.guest_mode && !child->parent_ptes.val)
2217                                 return kvm_mmu_prepare_zap_page(kvm, child,
2218                                                                 invalid_list);
2219                 }
2220         } else if (is_mmio_spte(pte)) {
2221                 mmu_spte_clear_no_track(spte);
2222         }
2223         return 0;
2224 }
2225
2226 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2227                                         struct kvm_mmu_page *sp,
2228                                         struct list_head *invalid_list)
2229 {
2230         int zapped = 0;
2231         unsigned i;
2232
2233         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2234                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2235
2236         return zapped;
2237 }
2238
2239 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2240 {
2241         u64 *sptep;
2242         struct rmap_iterator iter;
2243
2244         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2245                 drop_parent_pte(sp, sptep);
2246 }
2247
2248 static int mmu_zap_unsync_children(struct kvm *kvm,
2249                                    struct kvm_mmu_page *parent,
2250                                    struct list_head *invalid_list)
2251 {
2252         int i, zapped = 0;
2253         struct mmu_page_path parents;
2254         struct kvm_mmu_pages pages;
2255
2256         if (parent->role.level == PG_LEVEL_4K)
2257                 return 0;
2258
2259         while (mmu_unsync_walk(parent, &pages)) {
2260                 struct kvm_mmu_page *sp;
2261
2262                 for_each_sp(pages, sp, parents, i) {
2263                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2264                         mmu_pages_clear_parents(&parents);
2265                         zapped++;
2266                 }
2267         }
2268
2269         return zapped;
2270 }
2271
2272 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2273                                        struct kvm_mmu_page *sp,
2274                                        struct list_head *invalid_list,
2275                                        int *nr_zapped)
2276 {
2277         bool list_unstable;
2278
2279         trace_kvm_mmu_prepare_zap_page(sp);
2280         ++kvm->stat.mmu_shadow_zapped;
2281         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2282         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2283         kvm_mmu_unlink_parents(kvm, sp);
2284
2285         /* Zapping children means active_mmu_pages has become unstable. */
2286         list_unstable = *nr_zapped;
2287
2288         if (!sp->role.invalid && !sp->role.direct)
2289                 unaccount_shadowed(kvm, sp);
2290
2291         if (sp->unsync)
2292                 kvm_unlink_unsync_page(kvm, sp);
2293         if (!sp->root_count) {
2294                 /* Count self */
2295                 (*nr_zapped)++;
2296
2297                 /*
2298                  * Already invalid pages (previously active roots) are not on
2299                  * the active page list.  See list_del() in the "else" case of
2300                  * !sp->root_count.
2301                  */
2302                 if (sp->role.invalid)
2303                         list_add(&sp->link, invalid_list);
2304                 else
2305                         list_move(&sp->link, invalid_list);
2306                 kvm_mod_used_mmu_pages(kvm, -1);
2307         } else {
2308                 /*
2309                  * Remove the active root from the active page list, the root
2310                  * will be explicitly freed when the root_count hits zero.
2311                  */
2312                 list_del(&sp->link);
2313
2314                 /*
2315                  * Obsolete pages cannot be used on any vCPUs, see the comment
2316                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2317                  * treats invalid shadow pages as being obsolete.
2318                  */
2319                 if (!is_obsolete_sp(kvm, sp))
2320                         kvm_reload_remote_mmus(kvm);
2321         }
2322
2323         if (sp->lpage_disallowed)
2324                 unaccount_huge_nx_page(kvm, sp);
2325
2326         sp->role.invalid = 1;
2327         return list_unstable;
2328 }
2329
2330 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2331                                      struct list_head *invalid_list)
2332 {
2333         int nr_zapped;
2334
2335         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2336         return nr_zapped;
2337 }
2338
2339 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2340                                     struct list_head *invalid_list)
2341 {
2342         struct kvm_mmu_page *sp, *nsp;
2343
2344         if (list_empty(invalid_list))
2345                 return;
2346
2347         /*
2348          * We need to make sure everyone sees our modifications to
2349          * the page tables and see changes to vcpu->mode here. The barrier
2350          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2351          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2352          *
2353          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2354          * guest mode and/or lockless shadow page table walks.
2355          */
2356         kvm_flush_remote_tlbs(kvm);
2357
2358         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2359                 WARN_ON(!sp->role.invalid || sp->root_count);
2360                 kvm_mmu_free_page(sp);
2361         }
2362 }
2363
2364 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2365                                                   unsigned long nr_to_zap)
2366 {
2367         unsigned long total_zapped = 0;
2368         struct kvm_mmu_page *sp, *tmp;
2369         LIST_HEAD(invalid_list);
2370         bool unstable;
2371         int nr_zapped;
2372
2373         if (list_empty(&kvm->arch.active_mmu_pages))
2374                 return 0;
2375
2376 restart:
2377         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2378                 /*
2379                  * Don't zap active root pages, the page itself can't be freed
2380                  * and zapping it will just force vCPUs to realloc and reload.
2381                  */
2382                 if (sp->root_count)
2383                         continue;
2384
2385                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2386                                                       &nr_zapped);
2387                 total_zapped += nr_zapped;
2388                 if (total_zapped >= nr_to_zap)
2389                         break;
2390
2391                 if (unstable)
2392                         goto restart;
2393         }
2394
2395         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2396
2397         kvm->stat.mmu_recycled += total_zapped;
2398         return total_zapped;
2399 }
2400
2401 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2402 {
2403         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2404                 return kvm->arch.n_max_mmu_pages -
2405                         kvm->arch.n_used_mmu_pages;
2406
2407         return 0;
2408 }
2409
2410 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2411 {
2412         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2413
2414         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2415                 return 0;
2416
2417         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2418
2419         /*
2420          * Note, this check is intentionally soft, it only guarantees that one
2421          * page is available, while the caller may end up allocating as many as
2422          * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2423          * exceeding the (arbitrary by default) limit will not harm the host,
2424          * being too agressive may unnecessarily kill the guest, and getting an
2425          * exact count is far more trouble than it's worth, especially in the
2426          * page fault paths.
2427          */
2428         if (!kvm_mmu_available_pages(vcpu->kvm))
2429                 return -ENOSPC;
2430         return 0;
2431 }
2432
2433 /*
2434  * Changing the number of mmu pages allocated to the vm
2435  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2436  */
2437 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2438 {
2439         write_lock(&kvm->mmu_lock);
2440
2441         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2442                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2443                                                   goal_nr_mmu_pages);
2444
2445                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2446         }
2447
2448         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2449
2450         write_unlock(&kvm->mmu_lock);
2451 }
2452
2453 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2454 {
2455         struct kvm_mmu_page *sp;
2456         LIST_HEAD(invalid_list);
2457         int r;
2458
2459         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2460         r = 0;
2461         write_lock(&kvm->mmu_lock);
2462         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2463                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2464                          sp->role.word);
2465                 r = 1;
2466                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2467         }
2468         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2469         write_unlock(&kvm->mmu_lock);
2470
2471         return r;
2472 }
2473
2474 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2475 {
2476         gpa_t gpa;
2477         int r;
2478
2479         if (vcpu->arch.mmu->direct_map)
2480                 return 0;
2481
2482         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2483
2484         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2485
2486         return r;
2487 }
2488
2489 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2490 {
2491         trace_kvm_mmu_unsync_page(sp);
2492         ++vcpu->kvm->stat.mmu_unsync;
2493         sp->unsync = 1;
2494
2495         kvm_mmu_mark_parents_unsync(sp);
2496 }
2497
2498 /*
2499  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2500  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2501  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2502  * be write-protected.
2503  */
2504 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2505 {
2506         struct kvm_mmu_page *sp;
2507
2508         /*
2509          * Force write-protection if the page is being tracked.  Note, the page
2510          * track machinery is used to write-protect upper-level shadow pages,
2511          * i.e. this guards the role.level == 4K assertion below!
2512          */
2513         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2514                 return -EPERM;
2515
2516         /*
2517          * The page is not write-tracked, mark existing shadow pages unsync
2518          * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2519          * that case, KVM must complete emulation of the guest TLB flush before
2520          * allowing shadow pages to become unsync (writable by the guest).
2521          */
2522         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2523                 if (!can_unsync)
2524                         return -EPERM;
2525
2526                 if (sp->unsync)
2527                         continue;
2528
2529                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2530                 kvm_unsync_page(vcpu, sp);
2531         }
2532
2533         /*
2534          * We need to ensure that the marking of unsync pages is visible
2535          * before the SPTE is updated to allow writes because
2536          * kvm_mmu_sync_roots() checks the unsync flags without holding
2537          * the MMU lock and so can race with this. If the SPTE was updated
2538          * before the page had been marked as unsync-ed, something like the
2539          * following could happen:
2540          *
2541          * CPU 1                    CPU 2
2542          * ---------------------------------------------------------------------
2543          * 1.2 Host updates SPTE
2544          *     to be writable
2545          *                      2.1 Guest writes a GPTE for GVA X.
2546          *                          (GPTE being in the guest page table shadowed
2547          *                           by the SP from CPU 1.)
2548          *                          This reads SPTE during the page table walk.
2549          *                          Since SPTE.W is read as 1, there is no
2550          *                          fault.
2551          *
2552          *                      2.2 Guest issues TLB flush.
2553          *                          That causes a VM Exit.
2554          *
2555          *                      2.3 Walking of unsync pages sees sp->unsync is
2556          *                          false and skips the page.
2557          *
2558          *                      2.4 Guest accesses GVA X.
2559          *                          Since the mapping in the SP was not updated,
2560          *                          so the old mapping for GVA X incorrectly
2561          *                          gets used.
2562          * 1.1 Host marks SP
2563          *     as unsync
2564          *     (sp->unsync = true)
2565          *
2566          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2567          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2568          * pairs with this write barrier.
2569          */
2570         smp_wmb();
2571
2572         return 0;
2573 }
2574
2575 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2576                     unsigned int pte_access, int level,
2577                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2578                     bool can_unsync, bool host_writable)
2579 {
2580         u64 spte;
2581         struct kvm_mmu_page *sp;
2582         int ret;
2583
2584         sp = sptep_to_sp(sptep);
2585
2586         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2587                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2588
2589         if (spte & PT_WRITABLE_MASK)
2590                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2591
2592         if (*sptep == spte)
2593                 ret |= SET_SPTE_SPURIOUS;
2594         else if (mmu_spte_update(sptep, spte))
2595                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2596         return ret;
2597 }
2598
2599 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2600                         unsigned int pte_access, bool write_fault, int level,
2601                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2602                         bool host_writable)
2603 {
2604         int was_rmapped = 0;
2605         int rmap_count;
2606         int set_spte_ret;
2607         int ret = RET_PF_FIXED;
2608         bool flush = false;
2609
2610         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2611                  *sptep, write_fault, gfn);
2612
2613         if (unlikely(is_noslot_pfn(pfn))) {
2614                 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2615                 return RET_PF_EMULATE;
2616         }
2617
2618         if (is_shadow_present_pte(*sptep)) {
2619                 /*
2620                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2621                  * the parent of the now unreachable PTE.
2622                  */
2623                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2624                         struct kvm_mmu_page *child;
2625                         u64 pte = *sptep;
2626
2627                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2628                         drop_parent_pte(child, sptep);
2629                         flush = true;
2630                 } else if (pfn != spte_to_pfn(*sptep)) {
2631                         pgprintk("hfn old %llx new %llx\n",
2632                                  spte_to_pfn(*sptep), pfn);
2633                         drop_spte(vcpu->kvm, sptep);
2634                         flush = true;
2635                 } else
2636                         was_rmapped = 1;
2637         }
2638
2639         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2640                                 speculative, true, host_writable);
2641         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2642                 if (write_fault)
2643                         ret = RET_PF_EMULATE;
2644                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2645         }
2646
2647         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2648                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2649                                 KVM_PAGES_PER_HPAGE(level));
2650
2651         /*
2652          * The fault is fully spurious if and only if the new SPTE and old SPTE
2653          * are identical, and emulation is not required.
2654          */
2655         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2656                 WARN_ON_ONCE(!was_rmapped);
2657                 return RET_PF_SPURIOUS;
2658         }
2659
2660         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2661         trace_kvm_mmu_set_spte(level, gfn, sptep);
2662         if (!was_rmapped && is_large_pte(*sptep))
2663                 ++vcpu->kvm->stat.lpages;
2664
2665         if (is_shadow_present_pte(*sptep)) {
2666                 if (!was_rmapped) {
2667                         rmap_count = rmap_add(vcpu, sptep, gfn);
2668                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2669                                 rmap_recycle(vcpu, sptep, gfn);
2670                 }
2671         }
2672
2673         return ret;
2674 }
2675
2676 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2677                                      bool no_dirty_log)
2678 {
2679         struct kvm_memory_slot *slot;
2680
2681         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2682         if (!slot)
2683                 return KVM_PFN_ERR_FAULT;
2684
2685         return gfn_to_pfn_memslot_atomic(slot, gfn);
2686 }
2687
2688 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2689                                     struct kvm_mmu_page *sp,
2690                                     u64 *start, u64 *end)
2691 {
2692         struct page *pages[PTE_PREFETCH_NUM];
2693         struct kvm_memory_slot *slot;
2694         unsigned int access = sp->role.access;
2695         int i, ret;
2696         gfn_t gfn;
2697
2698         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2699         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2700         if (!slot)
2701                 return -1;
2702
2703         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2704         if (ret <= 0)
2705                 return -1;
2706
2707         for (i = 0; i < ret; i++, gfn++, start++) {
2708                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2709                              page_to_pfn(pages[i]), true, true);
2710                 put_page(pages[i]);
2711         }
2712
2713         return 0;
2714 }
2715
2716 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2717                                   struct kvm_mmu_page *sp, u64 *sptep)
2718 {
2719         u64 *spte, *start = NULL;
2720         int i;
2721
2722         WARN_ON(!sp->role.direct);
2723
2724         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2725         spte = sp->spt + i;
2726
2727         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2728                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2729                         if (!start)
2730                                 continue;
2731                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2732                                 break;
2733                         start = NULL;
2734                 } else if (!start)
2735                         start = spte;
2736         }
2737 }
2738
2739 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2740 {
2741         struct kvm_mmu_page *sp;
2742
2743         sp = sptep_to_sp(sptep);
2744
2745         /*
2746          * Without accessed bits, there's no way to distinguish between
2747          * actually accessed translations and prefetched, so disable pte
2748          * prefetch if accessed bits aren't available.
2749          */
2750         if (sp_ad_disabled(sp))
2751                 return;
2752
2753         if (sp->role.level > PG_LEVEL_4K)
2754                 return;
2755
2756         /*
2757          * If addresses are being invalidated, skip prefetching to avoid
2758          * accidentally prefetching those addresses.
2759          */
2760         if (unlikely(vcpu->kvm->mmu_notifier_count))
2761                 return;
2762
2763         __direct_pte_prefetch(vcpu, sp, sptep);
2764 }
2765
2766 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2767                                   const struct kvm_memory_slot *slot)
2768 {
2769         unsigned long hva;
2770         pte_t *pte;
2771         int level;
2772
2773         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2774                 return PG_LEVEL_4K;
2775
2776         /*
2777          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2778          * is not solely for performance, it's also necessary to avoid the
2779          * "writable" check in __gfn_to_hva_many(), which will always fail on
2780          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2781          * page fault steps have already verified the guest isn't writing a
2782          * read-only memslot.
2783          */
2784         hva = __gfn_to_hva_memslot(slot, gfn);
2785
2786         pte = lookup_address_in_mm(kvm->mm, hva, &level);
2787         if (unlikely(!pte))
2788                 return PG_LEVEL_4K;
2789
2790         return level;
2791 }
2792
2793 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2794                               const struct kvm_memory_slot *slot, gfn_t gfn,
2795                               kvm_pfn_t pfn, int max_level)
2796 {
2797         struct kvm_lpage_info *linfo;
2798
2799         max_level = min(max_level, max_huge_page_level);
2800         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2801                 linfo = lpage_info_slot(gfn, slot, max_level);
2802                 if (!linfo->disallow_lpage)
2803                         break;
2804         }
2805
2806         if (max_level == PG_LEVEL_4K)
2807                 return PG_LEVEL_4K;
2808
2809         return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2810 }
2811
2812 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2813                             int max_level, kvm_pfn_t *pfnp,
2814                             bool huge_page_disallowed, int *req_level)
2815 {
2816         struct kvm_memory_slot *slot;
2817         kvm_pfn_t pfn = *pfnp;
2818         kvm_pfn_t mask;
2819         int level;
2820
2821         *req_level = PG_LEVEL_4K;
2822
2823         if (unlikely(max_level == PG_LEVEL_4K))
2824                 return PG_LEVEL_4K;
2825
2826         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2827                 return PG_LEVEL_4K;
2828
2829         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2830         if (!slot)
2831                 return PG_LEVEL_4K;
2832
2833         level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2834         if (level == PG_LEVEL_4K)
2835                 return level;
2836
2837         *req_level = level = min(level, max_level);
2838
2839         /*
2840          * Enforce the iTLB multihit workaround after capturing the requested
2841          * level, which will be used to do precise, accurate accounting.
2842          */
2843         if (huge_page_disallowed)
2844                 return PG_LEVEL_4K;
2845
2846         /*
2847          * mmu_notifier_retry() was successful and mmu_lock is held, so
2848          * the pmd can't be split from under us.
2849          */
2850         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2851         VM_BUG_ON((gfn & mask) != (pfn & mask));
2852         *pfnp = pfn & ~mask;
2853
2854         return level;
2855 }
2856
2857 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2858                                 kvm_pfn_t *pfnp, int *goal_levelp)
2859 {
2860         int level = *goal_levelp;
2861
2862         if (cur_level == level && level > PG_LEVEL_4K &&
2863             is_shadow_present_pte(spte) &&
2864             !is_large_pte(spte)) {
2865                 /*
2866                  * A small SPTE exists for this pfn, but FNAME(fetch)
2867                  * and __direct_map would like to create a large PTE
2868                  * instead: just force them to go down another level,
2869                  * patching back for them into pfn the next 9 bits of
2870                  * the address.
2871                  */
2872                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2873                                 KVM_PAGES_PER_HPAGE(level - 1);
2874                 *pfnp |= gfn & page_mask;
2875                 (*goal_levelp)--;
2876         }
2877 }
2878
2879 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2880                         int map_writable, int max_level, kvm_pfn_t pfn,
2881                         bool prefault, bool is_tdp)
2882 {
2883         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2884         bool write = error_code & PFERR_WRITE_MASK;
2885         bool exec = error_code & PFERR_FETCH_MASK;
2886         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2887         struct kvm_shadow_walk_iterator it;
2888         struct kvm_mmu_page *sp;
2889         int level, req_level, ret;
2890         gfn_t gfn = gpa >> PAGE_SHIFT;
2891         gfn_t base_gfn = gfn;
2892
2893         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2894                                         huge_page_disallowed, &req_level);
2895
2896         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2897         for_each_shadow_entry(vcpu, gpa, it) {
2898                 /*
2899                  * We cannot overwrite existing page tables with an NX
2900                  * large page, as the leaf could be executable.
2901                  */
2902                 if (nx_huge_page_workaround_enabled)
2903                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2904                                                    &pfn, &level);
2905
2906                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2907                 if (it.level == level)
2908                         break;
2909
2910                 drop_large_spte(vcpu, it.sptep);
2911                 if (!is_shadow_present_pte(*it.sptep)) {
2912                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2913                                               it.level - 1, true, ACC_ALL);
2914
2915                         link_shadow_page(vcpu, it.sptep, sp);
2916                         if (is_tdp && huge_page_disallowed &&
2917                             req_level >= it.level)
2918                                 account_huge_nx_page(vcpu->kvm, sp);
2919                 }
2920         }
2921
2922         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2923                            write, level, base_gfn, pfn, prefault,
2924                            map_writable);
2925         if (ret == RET_PF_SPURIOUS)
2926                 return ret;
2927
2928         direct_pte_prefetch(vcpu, it.sptep);
2929         ++vcpu->stat.pf_fixed;
2930         return ret;
2931 }
2932
2933 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2934 {
2935         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2936 }
2937
2938 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2939 {
2940         /*
2941          * Do not cache the mmio info caused by writing the readonly gfn
2942          * into the spte otherwise read access on readonly gfn also can
2943          * caused mmio page fault and treat it as mmio access.
2944          */
2945         if (pfn == KVM_PFN_ERR_RO_FAULT)
2946                 return RET_PF_EMULATE;
2947
2948         if (pfn == KVM_PFN_ERR_HWPOISON) {
2949                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2950                 return RET_PF_RETRY;
2951         }
2952
2953         return -EFAULT;
2954 }
2955
2956 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2957                                 kvm_pfn_t pfn, unsigned int access,
2958                                 int *ret_val)
2959 {
2960         /* The pfn is invalid, report the error! */
2961         if (unlikely(is_error_pfn(pfn))) {
2962                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2963                 return true;
2964         }
2965
2966         if (unlikely(is_noslot_pfn(pfn))) {
2967                 vcpu_cache_mmio_info(vcpu, gva, gfn,
2968                                      access & shadow_mmio_access_mask);
2969                 /*
2970                  * If MMIO caching is disabled, emulate immediately without
2971                  * touching the shadow page tables as attempting to install an
2972                  * MMIO SPTE will just be an expensive nop.
2973                  */
2974                 if (unlikely(!shadow_mmio_value)) {
2975                         *ret_val = RET_PF_EMULATE;
2976                         return true;
2977                 }
2978         }
2979
2980         return false;
2981 }
2982
2983 static bool page_fault_can_be_fast(u32 error_code)
2984 {
2985         /*
2986          * Do not fix the mmio spte with invalid generation number which
2987          * need to be updated by slow page fault path.
2988          */
2989         if (unlikely(error_code & PFERR_RSVD_MASK))
2990                 return false;
2991
2992         /* See if the page fault is due to an NX violation */
2993         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2994                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2995                 return false;
2996
2997         /*
2998          * #PF can be fast if:
2999          * 1. The shadow page table entry is not present, which could mean that
3000          *    the fault is potentially caused by access tracking (if enabled).
3001          * 2. The shadow page table entry is present and the fault
3002          *    is caused by write-protect, that means we just need change the W
3003          *    bit of the spte which can be done out of mmu-lock.
3004          *
3005          * However, if access tracking is disabled we know that a non-present
3006          * page must be a genuine page fault where we have to create a new SPTE.
3007          * So, if access tracking is disabled, we return true only for write
3008          * accesses to a present page.
3009          */
3010
3011         return shadow_acc_track_mask != 0 ||
3012                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3013                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3014 }
3015
3016 /*
3017  * Returns true if the SPTE was fixed successfully. Otherwise,
3018  * someone else modified the SPTE from its original value.
3019  */
3020 static bool
3021 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3022                         u64 *sptep, u64 old_spte, u64 new_spte)
3023 {
3024         gfn_t gfn;
3025
3026         WARN_ON(!sp->role.direct);
3027
3028         /*
3029          * Theoretically we could also set dirty bit (and flush TLB) here in
3030          * order to eliminate unnecessary PML logging. See comments in
3031          * set_spte. But fast_page_fault is very unlikely to happen with PML
3032          * enabled, so we do not do this. This might result in the same GPA
3033          * to be logged in PML buffer again when the write really happens, and
3034          * eventually to be called by mark_page_dirty twice. But it's also no
3035          * harm. This also avoids the TLB flush needed after setting dirty bit
3036          * so non-PML cases won't be impacted.
3037          *
3038          * Compare with set_spte where instead shadow_dirty_mask is set.
3039          */
3040         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3041                 return false;
3042
3043         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3044                 /*
3045                  * The gfn of direct spte is stable since it is
3046                  * calculated by sp->gfn.
3047                  */
3048                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3049                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3050         }
3051
3052         return true;
3053 }
3054
3055 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3056 {
3057         if (fault_err_code & PFERR_FETCH_MASK)
3058                 return is_executable_pte(spte);
3059
3060         if (fault_err_code & PFERR_WRITE_MASK)
3061                 return is_writable_pte(spte);
3062
3063         /* Fault was on Read access */
3064         return spte & PT_PRESENT_MASK;
3065 }
3066
3067 /*
3068  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3069  */
3070 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3071                            u32 error_code)
3072 {
3073         struct kvm_shadow_walk_iterator iterator;
3074         struct kvm_mmu_page *sp;
3075         int ret = RET_PF_INVALID;
3076         u64 spte = 0ull;
3077         uint retry_count = 0;
3078
3079         if (!page_fault_can_be_fast(error_code))
3080                 return ret;
3081
3082         walk_shadow_page_lockless_begin(vcpu);
3083
3084         do {
3085                 u64 new_spte;
3086
3087                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3088                         if (!is_shadow_present_pte(spte))
3089                                 break;
3090
3091                 if (!is_shadow_present_pte(spte))
3092                         break;
3093
3094                 sp = sptep_to_sp(iterator.sptep);
3095                 if (!is_last_spte(spte, sp->role.level))
3096                         break;
3097
3098                 /*
3099                  * Check whether the memory access that caused the fault would
3100                  * still cause it if it were to be performed right now. If not,
3101                  * then this is a spurious fault caused by TLB lazily flushed,
3102                  * or some other CPU has already fixed the PTE after the
3103                  * current CPU took the fault.
3104                  *
3105                  * Need not check the access of upper level table entries since
3106                  * they are always ACC_ALL.
3107                  */
3108                 if (is_access_allowed(error_code, spte)) {
3109                         ret = RET_PF_SPURIOUS;
3110                         break;
3111                 }
3112
3113                 new_spte = spte;
3114
3115                 if (is_access_track_spte(spte))
3116                         new_spte = restore_acc_track_spte(new_spte);
3117
3118                 /*
3119                  * Currently, to simplify the code, write-protection can
3120                  * be removed in the fast path only if the SPTE was
3121                  * write-protected for dirty-logging or access tracking.
3122                  */
3123                 if ((error_code & PFERR_WRITE_MASK) &&
3124                     spte_can_locklessly_be_made_writable(spte)) {
3125                         new_spte |= PT_WRITABLE_MASK;
3126
3127                         /*
3128                          * Do not fix write-permission on the large spte.  Since
3129                          * we only dirty the first page into the dirty-bitmap in
3130                          * fast_pf_fix_direct_spte(), other pages are missed
3131                          * if its slot has dirty logging enabled.
3132                          *
3133                          * Instead, we let the slow page fault path create a
3134                          * normal spte to fix the access.
3135                          *
3136                          * See the comments in kvm_arch_commit_memory_region().
3137                          */
3138                         if (sp->role.level > PG_LEVEL_4K)
3139                                 break;
3140                 }
3141
3142                 /* Verify that the fault can be handled in the fast path */
3143                 if (new_spte == spte ||
3144                     !is_access_allowed(error_code, new_spte))
3145                         break;
3146
3147                 /*
3148                  * Currently, fast page fault only works for direct mapping
3149                  * since the gfn is not stable for indirect shadow page. See
3150                  * Documentation/virt/kvm/locking.rst to get more detail.
3151                  */
3152                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3153                                             new_spte)) {
3154                         ret = RET_PF_FIXED;
3155                         break;
3156                 }
3157
3158                 if (++retry_count > 4) {
3159                         printk_once(KERN_WARNING
3160                                 "kvm: Fast #PF retrying more than 4 times.\n");
3161                         break;
3162                 }
3163
3164         } while (true);
3165
3166         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3167                               spte, ret);
3168         walk_shadow_page_lockless_end(vcpu);
3169
3170         return ret;
3171 }
3172
3173 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3174                                struct list_head *invalid_list)
3175 {
3176         struct kvm_mmu_page *sp;
3177
3178         if (!VALID_PAGE(*root_hpa))
3179                 return;
3180
3181         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3182
3183         if (is_tdp_mmu_page(sp))
3184                 kvm_tdp_mmu_put_root(kvm, sp, false);
3185         else if (!--sp->root_count && sp->role.invalid)
3186                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3187
3188         *root_hpa = INVALID_PAGE;
3189 }
3190
3191 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3192 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3193                         ulong roots_to_free)
3194 {
3195         struct kvm *kvm = vcpu->kvm;
3196         int i;
3197         LIST_HEAD(invalid_list);
3198         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3199
3200         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3201
3202         /* Before acquiring the MMU lock, see if we need to do any real work. */
3203         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3204                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3205                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3206                             VALID_PAGE(mmu->prev_roots[i].hpa))
3207                                 break;
3208
3209                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3210                         return;
3211         }
3212
3213         write_lock(&kvm->mmu_lock);
3214
3215         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3216                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3217                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3218                                            &invalid_list);
3219
3220         if (free_active_root) {
3221                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3222                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3223                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3224                 } else if (mmu->pae_root) {
3225                         for (i = 0; i < 4; ++i) {
3226                                 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3227                                         continue;
3228
3229                                 mmu_free_root_page(kvm, &mmu->pae_root[i],
3230                                                    &invalid_list);
3231                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3232                         }
3233                 }
3234                 mmu->root_hpa = INVALID_PAGE;
3235                 mmu->root_pgd = 0;
3236         }
3237
3238         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3239         write_unlock(&kvm->mmu_lock);
3240 }
3241 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3242
3243 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3244 {
3245         unsigned long roots_to_free = 0;
3246         hpa_t root_hpa;
3247         int i;
3248
3249         /*
3250          * This should not be called while L2 is active, L2 can't invalidate
3251          * _only_ its own roots, e.g. INVVPID unconditionally exits.
3252          */
3253         WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3254
3255         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3256                 root_hpa = mmu->prev_roots[i].hpa;
3257                 if (!VALID_PAGE(root_hpa))
3258                         continue;
3259
3260                 if (!to_shadow_page(root_hpa) ||
3261                         to_shadow_page(root_hpa)->role.guest_mode)
3262                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3263         }
3264
3265         kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3266 }
3267 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3268
3269
3270 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3271 {
3272         int ret = 0;
3273
3274         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3275                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3276                 ret = 1;
3277         }
3278
3279         return ret;
3280 }
3281
3282 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3283                             u8 level, bool direct)
3284 {
3285         struct kvm_mmu_page *sp;
3286
3287         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3288         ++sp->root_count;
3289
3290         return __pa(sp->spt);
3291 }
3292
3293 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3294 {
3295         struct kvm_mmu *mmu = vcpu->arch.mmu;
3296         u8 shadow_root_level = mmu->shadow_root_level;
3297         hpa_t root;
3298         unsigned i;
3299         int r;
3300
3301         write_lock(&vcpu->kvm->mmu_lock);
3302         r = make_mmu_pages_available(vcpu);
3303         if (r < 0)
3304                 goto out_unlock;
3305
3306         if (is_tdp_mmu_enabled(vcpu->kvm)) {
3307                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3308                 mmu->root_hpa = root;
3309         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3310                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3311                 mmu->root_hpa = root;
3312         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3313                 if (WARN_ON_ONCE(!mmu->pae_root)) {
3314                         r = -EIO;
3315                         goto out_unlock;
3316                 }
3317
3318                 for (i = 0; i < 4; ++i) {
3319                         WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3320
3321                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3322                                               i << 30, PT32_ROOT_LEVEL, true);
3323                         mmu->pae_root[i] = root | PT_PRESENT_MASK |
3324                                            shadow_me_mask;
3325                 }
3326                 mmu->root_hpa = __pa(mmu->pae_root);
3327         } else {
3328                 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3329                 r = -EIO;
3330                 goto out_unlock;
3331         }
3332
3333         /* root_pgd is ignored for direct MMUs. */
3334         mmu->root_pgd = 0;
3335 out_unlock:
3336         write_unlock(&vcpu->kvm->mmu_lock);
3337         return r;
3338 }
3339
3340 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3341 {
3342         struct kvm_mmu *mmu = vcpu->arch.mmu;
3343         u64 pdptrs[4], pm_mask;
3344         gfn_t root_gfn, root_pgd;
3345         hpa_t root;
3346         unsigned i;
3347         int r;
3348
3349         root_pgd = mmu->get_guest_pgd(vcpu);
3350         root_gfn = root_pgd >> PAGE_SHIFT;
3351
3352         if (mmu_check_root(vcpu, root_gfn))
3353                 return 1;
3354
3355         /*
3356          * On SVM, reading PDPTRs might access guest memory, which might fault
3357          * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3358          */
3359         if (mmu->root_level == PT32E_ROOT_LEVEL) {
3360                 for (i = 0; i < 4; ++i) {
3361                         pdptrs[i] = mmu->get_pdptr(vcpu, i);
3362                         if (!(pdptrs[i] & PT_PRESENT_MASK))
3363                                 continue;
3364
3365                         if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3366                                 return 1;
3367                 }
3368         }
3369
3370         r = alloc_all_memslots_rmaps(vcpu->kvm);
3371         if (r)
3372                 return r;
3373
3374         write_lock(&vcpu->kvm->mmu_lock);
3375         r = make_mmu_pages_available(vcpu);
3376         if (r < 0)
3377                 goto out_unlock;
3378
3379         /*
3380          * Do we shadow a long mode page table? If so we need to
3381          * write-protect the guests page table root.
3382          */
3383         if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3384                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3385                                       mmu->shadow_root_level, false);
3386                 mmu->root_hpa = root;
3387                 goto set_root_pgd;
3388         }
3389
3390         if (WARN_ON_ONCE(!mmu->pae_root)) {
3391                 r = -EIO;
3392                 goto out_unlock;
3393         }
3394
3395         /*
3396          * We shadow a 32 bit page table. This may be a legacy 2-level
3397          * or a PAE 3-level page table. In either case we need to be aware that
3398          * the shadow page table may be a PAE or a long mode page table.
3399          */
3400         pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3401         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3402                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3403
3404                 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3405                         r = -EIO;
3406                         goto out_unlock;
3407                 }
3408
3409                 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3410         }
3411
3412         for (i = 0; i < 4; ++i) {
3413                 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3414
3415                 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3416                         if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3417                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3418                                 continue;
3419                         }
3420                         root_gfn = pdptrs[i] >> PAGE_SHIFT;
3421                 }
3422
3423                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3424                                       PT32_ROOT_LEVEL, false);
3425                 mmu->pae_root[i] = root | pm_mask;
3426         }
3427
3428         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3429                 mmu->root_hpa = __pa(mmu->pml4_root);
3430         else
3431                 mmu->root_hpa = __pa(mmu->pae_root);
3432
3433 set_root_pgd:
3434         mmu->root_pgd = root_pgd;
3435 out_unlock:
3436         write_unlock(&vcpu->kvm->mmu_lock);
3437
3438         return 0;
3439 }
3440
3441 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3442 {
3443         struct kvm_mmu *mmu = vcpu->arch.mmu;
3444         u64 *pml4_root, *pae_root;
3445
3446         /*
3447          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3448          * tables are allocated and initialized at root creation as there is no
3449          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3450          * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3451          */
3452         if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3453             mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3454                 return 0;
3455
3456         /*
3457          * This mess only works with 4-level paging and needs to be updated to
3458          * work with 5-level paging.
3459          */
3460         if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3461                 return -EIO;
3462
3463         if (mmu->pae_root && mmu->pml4_root)
3464                 return 0;
3465
3466         /*
3467          * The special roots should always be allocated in concert.  Yell and
3468          * bail if KVM ends up in a state where only one of the roots is valid.
3469          */
3470         if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3471                 return -EIO;
3472
3473         /*
3474          * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3475          * doesn't need to be decrypted.
3476          */
3477         pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3478         if (!pae_root)
3479                 return -ENOMEM;
3480
3481         pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3482         if (!pml4_root) {
3483                 free_page((unsigned long)pae_root);
3484                 return -ENOMEM;
3485         }
3486
3487         mmu->pae_root = pae_root;
3488         mmu->pml4_root = pml4_root;
3489
3490         return 0;
3491 }
3492
3493 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3494 {
3495         int i;
3496         struct kvm_mmu_page *sp;
3497
3498         if (vcpu->arch.mmu->direct_map)
3499                 return;
3500
3501         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3502                 return;
3503
3504         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3505
3506         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3507                 hpa_t root = vcpu->arch.mmu->root_hpa;
3508                 sp = to_shadow_page(root);
3509
3510                 /*
3511                  * Even if another CPU was marking the SP as unsync-ed
3512                  * simultaneously, any guest page table changes are not
3513                  * guaranteed to be visible anyway until this VCPU issues a TLB
3514                  * flush strictly after those changes are made. We only need to
3515                  * ensure that the other CPU sets these flags before any actual
3516                  * changes to the page tables are made. The comments in
3517                  * mmu_try_to_unsync_pages() describe what could go wrong if
3518                  * this requirement isn't satisfied.
3519                  */
3520                 if (!smp_load_acquire(&sp->unsync) &&
3521                     !smp_load_acquire(&sp->unsync_children))
3522                         return;
3523
3524                 write_lock(&vcpu->kvm->mmu_lock);
3525                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3526
3527                 mmu_sync_children(vcpu, sp);
3528
3529                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3530                 write_unlock(&vcpu->kvm->mmu_lock);
3531                 return;
3532         }
3533
3534         write_lock(&vcpu->kvm->mmu_lock);
3535         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3536
3537         for (i = 0; i < 4; ++i) {
3538                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3539
3540                 if (IS_VALID_PAE_ROOT(root)) {
3541                         root &= PT64_BASE_ADDR_MASK;
3542                         sp = to_shadow_page(root);
3543                         mmu_sync_children(vcpu, sp);
3544                 }
3545         }
3546
3547         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3548         write_unlock(&vcpu->kvm->mmu_lock);
3549 }
3550
3551 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3552                                   u32 access, struct x86_exception *exception)
3553 {
3554         if (exception)
3555                 exception->error_code = 0;
3556         return vaddr;
3557 }
3558
3559 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3560                                          u32 access,
3561                                          struct x86_exception *exception)
3562 {
3563         if (exception)
3564                 exception->error_code = 0;
3565         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3566 }
3567
3568 static bool
3569 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3570 {
3571         int bit7 = (pte >> 7) & 1;
3572
3573         return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3574 }
3575
3576 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3577 {
3578         return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3579 }
3580
3581 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3582 {
3583         /*
3584          * A nested guest cannot use the MMIO cache if it is using nested
3585          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3586          */
3587         if (mmu_is_nested(vcpu))
3588                 return false;
3589
3590         if (direct)
3591                 return vcpu_match_mmio_gpa(vcpu, addr);
3592
3593         return vcpu_match_mmio_gva(vcpu, addr);
3594 }
3595
3596 /*
3597  * Return the level of the lowest level SPTE added to sptes.
3598  * That SPTE may be non-present.
3599  */
3600 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3601 {
3602         struct kvm_shadow_walk_iterator iterator;
3603         int leaf = -1;
3604         u64 spte;
3605
3606         walk_shadow_page_lockless_begin(vcpu);
3607
3608         for (shadow_walk_init(&iterator, vcpu, addr),
3609              *root_level = iterator.level;
3610              shadow_walk_okay(&iterator);
3611              __shadow_walk_next(&iterator, spte)) {
3612                 leaf = iterator.level;
3613                 spte = mmu_spte_get_lockless(iterator.sptep);
3614
3615                 sptes[leaf] = spte;
3616
3617                 if (!is_shadow_present_pte(spte))
3618                         break;
3619         }
3620
3621         walk_shadow_page_lockless_end(vcpu);
3622
3623         return leaf;
3624 }
3625
3626 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3627 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3628 {
3629         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3630         struct rsvd_bits_validate *rsvd_check;
3631         int root, leaf, level;
3632         bool reserved = false;
3633
3634         if (is_tdp_mmu(vcpu->arch.mmu))
3635                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3636         else
3637                 leaf = get_walk(vcpu, addr, sptes, &root);
3638
3639         if (unlikely(leaf < 0)) {
3640                 *sptep = 0ull;
3641                 return reserved;
3642         }
3643
3644         *sptep = sptes[leaf];
3645
3646         /*
3647          * Skip reserved bits checks on the terminal leaf if it's not a valid
3648          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3649          * design, always have reserved bits set.  The purpose of the checks is
3650          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3651          */
3652         if (!is_shadow_present_pte(sptes[leaf]))
3653                 leaf++;
3654
3655         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3656
3657         for (level = root; level >= leaf; level--)
3658                 /*
3659                  * Use a bitwise-OR instead of a logical-OR to aggregate the
3660                  * reserved bit and EPT's invalid memtype/XWR checks to avoid
3661                  * adding a Jcc in the loop.
3662                  */
3663                 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3664                             __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3665
3666         if (reserved) {
3667                 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3668                        __func__, addr);
3669                 for (level = root; level >= leaf; level--)
3670                         pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3671                                sptes[level], level,
3672                                rsvd_check->rsvd_bits_mask[(sptes[level] >> 7) & 1][level-1]);
3673         }
3674
3675         return reserved;
3676 }
3677
3678 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3679 {
3680         u64 spte;
3681         bool reserved;
3682
3683         if (mmio_info_in_cache(vcpu, addr, direct))
3684                 return RET_PF_EMULATE;
3685
3686         reserved = get_mmio_spte(vcpu, addr, &spte);
3687         if (WARN_ON(reserved))
3688                 return -EINVAL;
3689
3690         if (is_mmio_spte(spte)) {
3691                 gfn_t gfn = get_mmio_spte_gfn(spte);
3692                 unsigned int access = get_mmio_spte_access(spte);
3693
3694                 if (!check_mmio_spte(vcpu, spte))
3695                         return RET_PF_INVALID;
3696
3697                 if (direct)
3698                         addr = 0;
3699
3700                 trace_handle_mmio_page_fault(addr, gfn, access);
3701                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3702                 return RET_PF_EMULATE;
3703         }
3704
3705         /*
3706          * If the page table is zapped by other cpus, let CPU fault again on
3707          * the address.
3708          */
3709         return RET_PF_RETRY;
3710 }
3711
3712 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3713                                          u32 error_code, gfn_t gfn)
3714 {
3715         if (unlikely(error_code & PFERR_RSVD_MASK))
3716                 return false;
3717
3718         if (!(error_code & PFERR_PRESENT_MASK) ||
3719               !(error_code & PFERR_WRITE_MASK))
3720                 return false;
3721
3722         /*
3723          * guest is writing the page which is write tracked which can
3724          * not be fixed by page fault handler.
3725          */
3726         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3727                 return true;
3728
3729         return false;
3730 }
3731
3732 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3733 {
3734         struct kvm_shadow_walk_iterator iterator;
3735         u64 spte;
3736
3737         walk_shadow_page_lockless_begin(vcpu);
3738         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3739                 clear_sp_write_flooding_count(iterator.sptep);
3740                 if (!is_shadow_present_pte(spte))
3741                         break;
3742         }
3743         walk_shadow_page_lockless_end(vcpu);
3744 }
3745
3746 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3747                                     gfn_t gfn)
3748 {
3749         struct kvm_arch_async_pf arch;
3750
3751         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3752         arch.gfn = gfn;
3753         arch.direct_map = vcpu->arch.mmu->direct_map;
3754         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3755
3756         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3757                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3758 }
3759
3760 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3761                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3762                          bool write, bool *writable)
3763 {
3764         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3765         bool async;
3766
3767         /*
3768          * Retry the page fault if the gfn hit a memslot that is being deleted
3769          * or moved.  This ensures any existing SPTEs for the old memslot will
3770          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3771          */
3772         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3773                 return true;
3774
3775         /* Don't expose private memslots to L2. */
3776         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3777                 *pfn = KVM_PFN_NOSLOT;
3778                 *writable = false;
3779                 return false;
3780         }
3781
3782         async = false;
3783         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3784                                     write, writable, hva);
3785         if (!async)
3786                 return false; /* *pfn has correct page already */
3787
3788         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3789                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3790                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3791                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3792                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3793                         return true;
3794                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3795                         return true;
3796         }
3797
3798         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3799                                     write, writable, hva);
3800         return false;
3801 }
3802
3803 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3804                              bool prefault, int max_level, bool is_tdp)
3805 {
3806         bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3807         bool write = error_code & PFERR_WRITE_MASK;
3808         bool map_writable;
3809
3810         gfn_t gfn = gpa >> PAGE_SHIFT;
3811         unsigned long mmu_seq;
3812         kvm_pfn_t pfn;
3813         hva_t hva;
3814         int r;
3815
3816         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3817                 return RET_PF_EMULATE;
3818
3819         if (!is_tdp_mmu_fault) {
3820                 r = fast_page_fault(vcpu, gpa, error_code);
3821                 if (r != RET_PF_INVALID)
3822                         return r;
3823         }
3824
3825         r = mmu_topup_memory_caches(vcpu, false);
3826         if (r)
3827                 return r;
3828
3829         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3830         smp_rmb();
3831
3832         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3833                          write, &map_writable))
3834                 return RET_PF_RETRY;
3835
3836         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3837                 return r;
3838
3839         r = RET_PF_RETRY;
3840
3841         if (is_tdp_mmu_fault)
3842                 read_lock(&vcpu->kvm->mmu_lock);
3843         else
3844                 write_lock(&vcpu->kvm->mmu_lock);
3845
3846         if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3847                 goto out_unlock;
3848         r = make_mmu_pages_available(vcpu);
3849         if (r)
3850                 goto out_unlock;
3851
3852         if (is_tdp_mmu_fault)
3853                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3854                                     pfn, prefault);
3855         else
3856                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3857                                  prefault, is_tdp);
3858
3859 out_unlock:
3860         if (is_tdp_mmu_fault)
3861                 read_unlock(&vcpu->kvm->mmu_lock);
3862         else
3863                 write_unlock(&vcpu->kvm->mmu_lock);
3864         kvm_release_pfn_clean(pfn);
3865         return r;
3866 }
3867
3868 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3869                                 u32 error_code, bool prefault)
3870 {
3871         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3872
3873         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3874         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3875                                  PG_LEVEL_2M, false);
3876 }
3877
3878 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3879                                 u64 fault_address, char *insn, int insn_len)
3880 {
3881         int r = 1;
3882         u32 flags = vcpu->arch.apf.host_apf_flags;
3883
3884 #ifndef CONFIG_X86_64
3885         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3886         if (WARN_ON_ONCE(fault_address >> 32))
3887                 return -EFAULT;
3888 #endif
3889
3890         vcpu->arch.l1tf_flush_l1d = true;
3891         if (!flags) {
3892                 trace_kvm_page_fault(fault_address, error_code);
3893
3894                 if (kvm_event_needs_reinjection(vcpu))
3895                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3896                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3897                                 insn_len);
3898         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3899                 vcpu->arch.apf.host_apf_flags = 0;
3900                 local_irq_disable();
3901                 kvm_async_pf_task_wait_schedule(fault_address);
3902                 local_irq_enable();
3903         } else {
3904                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3905         }
3906
3907         return r;
3908 }
3909 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3910
3911 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3912                        bool prefault)
3913 {
3914         int max_level;
3915
3916         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3917              max_level > PG_LEVEL_4K;
3918              max_level--) {
3919                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3920                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3921
3922                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3923                         break;
3924         }
3925
3926         return direct_page_fault(vcpu, gpa, error_code, prefault,
3927                                  max_level, true);
3928 }
3929
3930 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3931                                    struct kvm_mmu *context)
3932 {
3933         context->page_fault = nonpaging_page_fault;
3934         context->gva_to_gpa = nonpaging_gva_to_gpa;
3935         context->sync_page = nonpaging_sync_page;
3936         context->invlpg = NULL;
3937         context->root_level = 0;
3938         context->direct_map = true;
3939         context->nx = false;
3940 }
3941
3942 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3943                                   union kvm_mmu_page_role role)
3944 {
3945         return (role.direct || pgd == root->pgd) &&
3946                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3947                role.word == to_shadow_page(root->hpa)->role.word;
3948 }
3949
3950 /*
3951  * Find out if a previously cached root matching the new pgd/role is available.
3952  * The current root is also inserted into the cache.
3953  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3954  * returned.
3955  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3956  * false is returned. This root should now be freed by the caller.
3957  */
3958 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3959                                   union kvm_mmu_page_role new_role)
3960 {
3961         uint i;
3962         struct kvm_mmu_root_info root;
3963         struct kvm_mmu *mmu = vcpu->arch.mmu;
3964
3965         root.pgd = mmu->root_pgd;
3966         root.hpa = mmu->root_hpa;
3967
3968         if (is_root_usable(&root, new_pgd, new_role))
3969                 return true;
3970
3971         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3972                 swap(root, mmu->prev_roots[i]);
3973
3974                 if (is_root_usable(&root, new_pgd, new_role))
3975                         break;
3976         }
3977
3978         mmu->root_hpa = root.hpa;
3979         mmu->root_pgd = root.pgd;
3980
3981         return i < KVM_MMU_NUM_PREV_ROOTS;
3982 }
3983
3984 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3985                             union kvm_mmu_page_role new_role)
3986 {
3987         struct kvm_mmu *mmu = vcpu->arch.mmu;
3988
3989         /*
3990          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3991          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3992          * later if necessary.
3993          */
3994         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3995             mmu->root_level >= PT64_ROOT_4LEVEL)
3996                 return cached_root_available(vcpu, new_pgd, new_role);
3997
3998         return false;
3999 }
4000
4001 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4002                               union kvm_mmu_page_role new_role)
4003 {
4004         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4005                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4006                 return;
4007         }
4008
4009         /*
4010          * It's possible that the cached previous root page is obsolete because
4011          * of a change in the MMU generation number. However, changing the
4012          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4013          * free the root set here and allocate a new one.
4014          */
4015         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4016
4017         if (force_flush_and_sync_on_reuse) {
4018                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4019                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4020         }
4021
4022         /*
4023          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4024          * switching to a new CR3, that GVA->GPA mapping may no longer be
4025          * valid. So clear any cached MMIO info even when we don't need to sync
4026          * the shadow page tables.
4027          */
4028         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4029
4030         /*
4031          * If this is a direct root page, it doesn't have a write flooding
4032          * count. Otherwise, clear the write flooding count.
4033          */
4034         if (!new_role.direct)
4035                 __clear_sp_write_flooding_count(
4036                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
4037 }
4038
4039 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4040 {
4041         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4042 }
4043 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4044
4045 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4046 {
4047         return kvm_read_cr3(vcpu);
4048 }
4049
4050 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4051                            unsigned int access, int *nr_present)
4052 {
4053         if (unlikely(is_mmio_spte(*sptep))) {
4054                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4055                         mmu_spte_clear_no_track(sptep);
4056                         return true;
4057                 }
4058
4059                 (*nr_present)++;
4060                 mark_mmio_spte(vcpu, sptep, gfn, access);
4061                 return true;
4062         }
4063
4064         return false;
4065 }
4066
4067 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4068                                 unsigned level, unsigned gpte)
4069 {
4070         /*
4071          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4072          * If it is clear, there are no large pages at this level, so clear
4073          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4074          */
4075         gpte &= level - mmu->last_nonleaf_level;
4076
4077         /*
4078          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
4079          * iff level <= PG_LEVEL_4K, which for our purpose means
4080          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4081          */
4082         gpte |= level - PG_LEVEL_4K - 1;
4083
4084         return gpte & PT_PAGE_SIZE_MASK;
4085 }
4086
4087 #define PTTYPE_EPT 18 /* arbitrary */
4088 #define PTTYPE PTTYPE_EPT
4089 #include "paging_tmpl.h"
4090 #undef PTTYPE
4091
4092 #define PTTYPE 64
4093 #include "paging_tmpl.h"
4094 #undef PTTYPE
4095
4096 #define PTTYPE 32
4097 #include "paging_tmpl.h"
4098 #undef PTTYPE
4099
4100 static void
4101 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4102                         struct rsvd_bits_validate *rsvd_check,
4103                         u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4104                         bool pse, bool amd)
4105 {
4106         u64 gbpages_bit_rsvd = 0;
4107         u64 nonleaf_bit8_rsvd = 0;
4108         u64 high_bits_rsvd;
4109
4110         rsvd_check->bad_mt_xwr = 0;
4111
4112         if (!gbpages)
4113                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4114
4115         if (level == PT32E_ROOT_LEVEL)
4116                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4117         else
4118                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4119
4120         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4121         if (!nx)
4122                 high_bits_rsvd |= rsvd_bits(63, 63);
4123
4124         /*
4125          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4126          * leaf entries) on AMD CPUs only.
4127          */
4128         if (amd)
4129                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4130
4131         switch (level) {
4132         case PT32_ROOT_LEVEL:
4133                 /* no rsvd bits for 2 level 4K page table entries */
4134                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4135                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4136                 rsvd_check->rsvd_bits_mask[1][0] =
4137                         rsvd_check->rsvd_bits_mask[0][0];
4138
4139                 if (!pse) {
4140                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4141                         break;
4142                 }
4143
4144                 if (is_cpuid_PSE36())
4145                         /* 36bits PSE 4MB page */
4146                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4147                 else
4148                         /* 32 bits PSE 4MB page */
4149                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4150                 break;
4151         case PT32E_ROOT_LEVEL:
4152                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4153                                                    high_bits_rsvd |
4154                                                    rsvd_bits(5, 8) |
4155                                                    rsvd_bits(1, 2);     /* PDPTE */
4156                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4157                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4158                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4159                                                    rsvd_bits(13, 20);   /* large page */
4160                 rsvd_check->rsvd_bits_mask[1][0] =
4161                         rsvd_check->rsvd_bits_mask[0][0];
4162                 break;
4163         case PT64_ROOT_5LEVEL:
4164                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4165                                                    nonleaf_bit8_rsvd |
4166                                                    rsvd_bits(7, 7);
4167                 rsvd_check->rsvd_bits_mask[1][4] =
4168                         rsvd_check->rsvd_bits_mask[0][4];
4169                 fallthrough;
4170         case PT64_ROOT_4LEVEL:
4171                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4172                                                    nonleaf_bit8_rsvd |
4173                                                    rsvd_bits(7, 7);
4174                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4175                                                    gbpages_bit_rsvd;
4176                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4177                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4178                 rsvd_check->rsvd_bits_mask[1][3] =
4179                         rsvd_check->rsvd_bits_mask[0][3];
4180                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4181                                                    gbpages_bit_rsvd |
4182                                                    rsvd_bits(13, 29);
4183                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4184                                                    rsvd_bits(13, 20); /* large page */
4185                 rsvd_check->rsvd_bits_mask[1][0] =
4186                         rsvd_check->rsvd_bits_mask[0][0];
4187                 break;
4188         }
4189 }
4190
4191 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4192                                   struct kvm_mmu *context)
4193 {
4194         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4195                                 vcpu->arch.reserved_gpa_bits,
4196                                 context->root_level, context->nx,
4197                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4198                                 is_pse(vcpu),
4199                                 guest_cpuid_is_amd_or_hygon(vcpu));
4200 }
4201
4202 static void
4203 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4204                             u64 pa_bits_rsvd, bool execonly)
4205 {
4206         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4207         u64 bad_mt_xwr;
4208
4209         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4210         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4211         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4212         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4213         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4214
4215         /* large page */
4216         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4217         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4218         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4219         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4220         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4221
4222         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4223         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4224         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4225         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4226         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4227         if (!execonly) {
4228                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4229                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4230         }
4231         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4232 }
4233
4234 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4235                 struct kvm_mmu *context, bool execonly)
4236 {
4237         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4238                                     vcpu->arch.reserved_gpa_bits, execonly);
4239 }
4240
4241 static inline u64 reserved_hpa_bits(void)
4242 {
4243         return rsvd_bits(shadow_phys_bits, 63);
4244 }
4245
4246 /*
4247  * the page table on host is the shadow page table for the page
4248  * table in guest or amd nested guest, its mmu features completely
4249  * follow the features in guest.
4250  */
4251 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4252                                         struct kvm_mmu *context)
4253 {
4254         /*
4255          * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4256          * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4257          * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4258          * The iTLB multi-hit workaround can be toggled at any time, so assume
4259          * NX can be used by any non-nested shadow MMU to avoid having to reset
4260          * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4261          */
4262         bool uses_nx = context->nx || !tdp_enabled;
4263         struct rsvd_bits_validate *shadow_zero_check;
4264         int i;
4265
4266         /*
4267          * Passing "true" to the last argument is okay; it adds a check
4268          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4269          */
4270         shadow_zero_check = &context->shadow_zero_check;
4271         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4272                                 reserved_hpa_bits(),
4273                                 context->shadow_root_level, uses_nx,
4274                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4275                                 is_pse(vcpu), true);
4276
4277         if (!shadow_me_mask)
4278                 return;
4279
4280         for (i = context->shadow_root_level; --i >= 0;) {
4281                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4282                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4283         }
4284
4285 }
4286
4287 static inline bool boot_cpu_is_amd(void)
4288 {
4289         WARN_ON_ONCE(!tdp_enabled);
4290         return shadow_x_mask == 0;
4291 }
4292
4293 /*
4294  * the direct page table on host, use as much mmu features as
4295  * possible, however, kvm currently does not do execution-protection.
4296  */
4297 static void
4298 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4299                                 struct kvm_mmu *context)
4300 {
4301         struct rsvd_bits_validate *shadow_zero_check;
4302         int i;
4303
4304         shadow_zero_check = &context->shadow_zero_check;
4305
4306         if (boot_cpu_is_amd())
4307                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4308                                         reserved_hpa_bits(),
4309                                         context->shadow_root_level, false,
4310                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4311                                         true, true);
4312         else
4313                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4314                                             reserved_hpa_bits(), false);
4315
4316         if (!shadow_me_mask)
4317                 return;
4318
4319         for (i = context->shadow_root_level; --i >= 0;) {
4320                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4321                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4322         }
4323 }
4324
4325 /*
4326  * as the comments in reset_shadow_zero_bits_mask() except it
4327  * is the shadow page table for intel nested guest.
4328  */
4329 static void
4330 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4331                                 struct kvm_mmu *context, bool execonly)
4332 {
4333         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4334                                     reserved_hpa_bits(), execonly);
4335 }
4336
4337 #define BYTE_MASK(access) \
4338         ((1 & (access) ? 2 : 0) | \
4339          (2 & (access) ? 4 : 0) | \
4340          (3 & (access) ? 8 : 0) | \
4341          (4 & (access) ? 16 : 0) | \
4342          (5 & (access) ? 32 : 0) | \
4343          (6 & (access) ? 64 : 0) | \
4344          (7 & (access) ? 128 : 0))
4345
4346
4347 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4348                                       struct kvm_mmu *mmu, bool ept)
4349 {
4350         unsigned byte;
4351
4352         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4353         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4354         const u8 u = BYTE_MASK(ACC_USER_MASK);
4355
4356         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4357         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4358         bool cr0_wp = is_write_protection(vcpu);
4359
4360         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4361                 unsigned pfec = byte << 1;
4362
4363                 /*
4364                  * Each "*f" variable has a 1 bit for each UWX value
4365                  * that causes a fault with the given PFEC.
4366                  */
4367
4368                 /* Faults from writes to non-writable pages */
4369                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4370                 /* Faults from user mode accesses to supervisor pages */
4371                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4372                 /* Faults from fetches of non-executable pages*/
4373                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4374                 /* Faults from kernel mode fetches of user pages */
4375                 u8 smepf = 0;
4376                 /* Faults from kernel mode accesses of user pages */
4377                 u8 smapf = 0;
4378
4379                 if (!ept) {
4380                         /* Faults from kernel mode accesses to user pages */
4381                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4382
4383                         /* Not really needed: !nx will cause pte.nx to fault */
4384                         if (!mmu->nx)
4385                                 ff = 0;
4386
4387                         /* Allow supervisor writes if !cr0.wp */
4388                         if (!cr0_wp)
4389                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4390
4391                         /* Disallow supervisor fetches of user code if cr4.smep */
4392                         if (cr4_smep)
4393                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4394
4395                         /*
4396                          * SMAP:kernel-mode data accesses from user-mode
4397                          * mappings should fault. A fault is considered
4398                          * as a SMAP violation if all of the following
4399                          * conditions are true:
4400                          *   - X86_CR4_SMAP is set in CR4
4401                          *   - A user page is accessed
4402                          *   - The access is not a fetch
4403                          *   - Page fault in kernel mode
4404                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4405                          *
4406                          * Here, we cover the first three conditions.
4407                          * The fourth is computed dynamically in permission_fault();
4408                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4409                          * *not* subject to SMAP restrictions.
4410                          */
4411                         if (cr4_smap)
4412                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4413                 }
4414
4415                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4416         }
4417 }
4418
4419 /*
4420 * PKU is an additional mechanism by which the paging controls access to
4421 * user-mode addresses based on the value in the PKRU register.  Protection
4422 * key violations are reported through a bit in the page fault error code.
4423 * Unlike other bits of the error code, the PK bit is not known at the
4424 * call site of e.g. gva_to_gpa; it must be computed directly in
4425 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4426 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4427 *
4428 * In particular the following conditions come from the error code, the
4429 * page tables and the machine state:
4430 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4431 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4432 * - PK is always zero if U=0 in the page tables
4433 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4434 *
4435 * The PKRU bitmask caches the result of these four conditions.  The error
4436 * code (minus the P bit) and the page table's U bit form an index into the
4437 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4438 * with the two bits of the PKRU register corresponding to the protection key.
4439 * For the first three conditions above the bits will be 00, thus masking
4440 * away both AD and WD.  For all reads or if the last condition holds, WD
4441 * only will be masked away.
4442 */
4443 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4444                                 bool ept)
4445 {
4446         unsigned bit;
4447         bool wp;
4448
4449         if (ept) {
4450                 mmu->pkru_mask = 0;
4451                 return;
4452         }
4453
4454         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4455         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4456                 mmu->pkru_mask = 0;
4457                 return;
4458         }
4459
4460         wp = is_write_protection(vcpu);
4461
4462         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4463                 unsigned pfec, pkey_bits;
4464                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4465
4466                 pfec = bit << 1;
4467                 ff = pfec & PFERR_FETCH_MASK;
4468                 uf = pfec & PFERR_USER_MASK;
4469                 wf = pfec & PFERR_WRITE_MASK;
4470
4471                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4472                 pte_user = pfec & PFERR_RSVD_MASK;
4473
4474                 /*
4475                  * Only need to check the access which is not an
4476                  * instruction fetch and is to a user page.
4477                  */
4478                 check_pkey = (!ff && pte_user);
4479                 /*
4480                  * write access is controlled by PKRU if it is a
4481                  * user access or CR0.WP = 1.
4482                  */
4483                 check_write = check_pkey && wf && (uf || wp);
4484
4485                 /* PKRU.AD stops both read and write access. */
4486                 pkey_bits = !!check_pkey;
4487                 /* PKRU.WD stops write access. */
4488                 pkey_bits |= (!!check_write) << 1;
4489
4490                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4491         }
4492 }
4493
4494 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4495 {
4496         unsigned root_level = mmu->root_level;
4497
4498         mmu->last_nonleaf_level = root_level;
4499         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4500                 mmu->last_nonleaf_level++;
4501 }
4502
4503 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4504                                          struct kvm_mmu *context,
4505                                          int root_level)
4506 {
4507         context->nx = is_nx(vcpu);
4508         context->root_level = root_level;
4509
4510         MMU_WARN_ON(!is_pae(vcpu));
4511         context->page_fault = paging64_page_fault;
4512         context->gva_to_gpa = paging64_gva_to_gpa;
4513         context->sync_page = paging64_sync_page;
4514         context->invlpg = paging64_invlpg;
4515         context->direct_map = false;
4516 }
4517
4518 static void paging64_init_context(struct kvm_vcpu *vcpu,
4519                                   struct kvm_mmu *context)
4520 {
4521         int root_level = is_la57_mode(vcpu) ?
4522                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4523
4524         paging64_init_context_common(vcpu, context, root_level);
4525 }
4526
4527 static void paging32_init_context(struct kvm_vcpu *vcpu,
4528                                   struct kvm_mmu *context)
4529 {
4530         context->nx = false;
4531         context->root_level = PT32_ROOT_LEVEL;
4532         context->page_fault = paging32_page_fault;
4533         context->gva_to_gpa = paging32_gva_to_gpa;
4534         context->sync_page = paging32_sync_page;
4535         context->invlpg = paging32_invlpg;
4536         context->direct_map = false;
4537 }
4538
4539 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4540                                    struct kvm_mmu *context)
4541 {
4542         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4543 }
4544
4545 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4546 {
4547         union kvm_mmu_extended_role ext = {0};
4548
4549         ext.cr0_pg = !!is_paging(vcpu);
4550         ext.cr4_pae = !!is_pae(vcpu);
4551         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4552         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4553         ext.cr4_pse = !!is_pse(vcpu);
4554         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4555         ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4556
4557         ext.valid = 1;
4558
4559         return ext;
4560 }
4561
4562 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4563                                                    bool base_only)
4564 {
4565         union kvm_mmu_role role = {0};
4566
4567         role.base.access = ACC_ALL;
4568         role.base.nxe = !!is_nx(vcpu);
4569         role.base.cr0_wp = is_write_protection(vcpu);
4570         role.base.smm = is_smm(vcpu);
4571         role.base.guest_mode = is_guest_mode(vcpu);
4572
4573         if (base_only)
4574                 return role;
4575
4576         role.ext = kvm_calc_mmu_role_ext(vcpu);
4577
4578         return role;
4579 }
4580
4581 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4582 {
4583         /* Use 5-level TDP if and only if it's useful/necessary. */
4584         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4585                 return 4;
4586
4587         return max_tdp_level;
4588 }
4589
4590 static union kvm_mmu_role
4591 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4592 {
4593         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4594
4595         role.base.ad_disabled = (shadow_accessed_mask == 0);
4596         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4597         role.base.direct = true;
4598         role.base.gpte_is_8_bytes = true;
4599
4600         return role;
4601 }
4602
4603 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4604 {
4605         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4606         union kvm_mmu_role new_role =
4607                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4608
4609         if (new_role.as_u64 == context->mmu_role.as_u64)
4610                 return;
4611
4612         context->mmu_role.as_u64 = new_role.as_u64;
4613         context->page_fault = kvm_tdp_page_fault;
4614         context->sync_page = nonpaging_sync_page;
4615         context->invlpg = NULL;
4616         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4617         context->direct_map = true;
4618         context->get_guest_pgd = get_cr3;
4619         context->get_pdptr = kvm_pdptr_read;
4620         context->inject_page_fault = kvm_inject_page_fault;
4621
4622         if (!is_paging(vcpu)) {
4623                 context->nx = false;
4624                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4625                 context->root_level = 0;
4626         } else if (is_long_mode(vcpu)) {
4627                 context->nx = is_nx(vcpu);
4628                 context->root_level = is_la57_mode(vcpu) ?
4629                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4630                 reset_rsvds_bits_mask(vcpu, context);
4631                 context->gva_to_gpa = paging64_gva_to_gpa;
4632         } else if (is_pae(vcpu)) {
4633                 context->nx = is_nx(vcpu);
4634                 context->root_level = PT32E_ROOT_LEVEL;
4635                 reset_rsvds_bits_mask(vcpu, context);
4636                 context->gva_to_gpa = paging64_gva_to_gpa;
4637         } else {
4638                 context->nx = false;
4639                 context->root_level = PT32_ROOT_LEVEL;
4640                 reset_rsvds_bits_mask(vcpu, context);
4641                 context->gva_to_gpa = paging32_gva_to_gpa;
4642         }
4643
4644         update_permission_bitmask(vcpu, context, false);
4645         update_pkru_bitmask(vcpu, context, false);
4646         update_last_nonleaf_level(vcpu, context);
4647         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4648 }
4649
4650 static union kvm_mmu_role
4651 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4652 {
4653         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4654
4655         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4656                 !is_write_protection(vcpu);
4657         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4658                 !is_write_protection(vcpu);
4659         role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4660
4661         return role;
4662 }
4663
4664 static union kvm_mmu_role
4665 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4666 {
4667         union kvm_mmu_role role =
4668                 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4669
4670         role.base.direct = !is_paging(vcpu);
4671
4672         if (!is_long_mode(vcpu))
4673                 role.base.level = PT32E_ROOT_LEVEL;
4674         else if (is_la57_mode(vcpu))
4675                 role.base.level = PT64_ROOT_5LEVEL;
4676         else
4677                 role.base.level = PT64_ROOT_4LEVEL;
4678
4679         return role;
4680 }
4681
4682 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4683                                     struct kvm_mmu_role_regs *regs,
4684                                     union kvm_mmu_role new_role)
4685 {
4686         if (!____is_cr0_pg(regs))
4687                 nonpaging_init_context(vcpu, context);
4688         else if (____is_efer_lma(regs))
4689                 paging64_init_context(vcpu, context);
4690         else if (____is_cr4_pae(regs))
4691                 paging32E_init_context(vcpu, context);
4692         else
4693                 paging32_init_context(vcpu, context);
4694
4695         if (____is_cr0_pg(regs)) {
4696                 reset_rsvds_bits_mask(vcpu, context);
4697                 update_permission_bitmask(vcpu, context, false);
4698                 update_pkru_bitmask(vcpu, context, false);
4699                 update_last_nonleaf_level(vcpu, context);
4700         }
4701         context->shadow_root_level = new_role.base.level;
4702
4703         context->mmu_role.as_u64 = new_role.as_u64;
4704         reset_shadow_zero_bits_mask(vcpu, context);
4705 }
4706
4707 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4708                                 struct kvm_mmu_role_regs *regs)
4709 {
4710         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4711         union kvm_mmu_role new_role =
4712                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4713
4714         if (new_role.as_u64 != context->mmu_role.as_u64)
4715                 shadow_mmu_init_context(vcpu, context, regs, new_role);
4716 }
4717
4718 static union kvm_mmu_role
4719 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4720 {
4721         union kvm_mmu_role role =
4722                 kvm_calc_shadow_root_page_role_common(vcpu, false);
4723
4724         role.base.direct = false;
4725         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4726
4727         return role;
4728 }
4729
4730 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4731                              unsigned long cr4, u64 efer, gpa_t nested_cr3)
4732 {
4733         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4734         struct kvm_mmu_role_regs regs = {
4735                 .cr0 = cr0,
4736                 .cr4 = cr4,
4737                 .efer = efer,
4738         };
4739         union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4740
4741         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4742
4743         if (new_role.as_u64 != context->mmu_role.as_u64)
4744                 shadow_mmu_init_context(vcpu, context, &regs, new_role);
4745
4746         /*
4747          * Redo the shadow bits, the reset done by shadow_mmu_init_context()
4748          * (above) may use the wrong shadow_root_level.
4749          */
4750         reset_shadow_zero_bits_mask(vcpu, context);
4751 }
4752 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4753
4754 static union kvm_mmu_role
4755 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4756                                    bool execonly, u8 level)
4757 {
4758         union kvm_mmu_role role = {0};
4759
4760         /* SMM flag is inherited from root_mmu */
4761         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4762
4763         role.base.level = level;
4764         role.base.gpte_is_8_bytes = true;
4765         role.base.direct = false;
4766         role.base.ad_disabled = !accessed_dirty;
4767         role.base.guest_mode = true;
4768         role.base.access = ACC_ALL;
4769
4770         /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4771         role.ext.word = 0;
4772         role.ext.execonly = execonly;
4773         role.ext.valid = 1;
4774
4775         return role;
4776 }
4777
4778 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4779                              bool accessed_dirty, gpa_t new_eptp)
4780 {
4781         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4782         u8 level = vmx_eptp_page_walk_level(new_eptp);
4783         union kvm_mmu_role new_role =
4784                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4785                                                    execonly, level);
4786
4787         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4788
4789         if (new_role.as_u64 == context->mmu_role.as_u64)
4790                 return;
4791
4792         context->shadow_root_level = level;
4793
4794         context->nx = true;
4795         context->ept_ad = accessed_dirty;
4796         context->page_fault = ept_page_fault;
4797         context->gva_to_gpa = ept_gva_to_gpa;
4798         context->sync_page = ept_sync_page;
4799         context->invlpg = ept_invlpg;
4800         context->root_level = level;
4801         context->direct_map = false;
4802         context->mmu_role.as_u64 = new_role.as_u64;
4803
4804         update_permission_bitmask(vcpu, context, true);
4805         update_pkru_bitmask(vcpu, context, true);
4806         update_last_nonleaf_level(vcpu, context);
4807         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4808         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4809 }
4810 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4811
4812 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4813 {
4814         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4815         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4816
4817         kvm_init_shadow_mmu(vcpu, &regs);
4818
4819         context->get_guest_pgd     = get_cr3;
4820         context->get_pdptr         = kvm_pdptr_read;
4821         context->inject_page_fault = kvm_inject_page_fault;
4822 }
4823
4824 static union kvm_mmu_role kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu)
4825 {
4826         union kvm_mmu_role role = kvm_calc_shadow_root_page_role_common(vcpu, false);
4827
4828         /*
4829          * Nested MMUs are used only for walking L2's gva->gpa, they never have
4830          * shadow pages of their own and so "direct" has no meaning.   Set it
4831          * to "true" to try to detect bogus usage of the nested MMU.
4832          */
4833         role.base.direct = true;
4834
4835         if (!is_paging(vcpu))
4836                 role.base.level = 0;
4837         else if (is_long_mode(vcpu))
4838                 role.base.level = is_la57_mode(vcpu) ? PT64_ROOT_5LEVEL :
4839                                                        PT64_ROOT_4LEVEL;
4840         else if (is_pae(vcpu))
4841                 role.base.level = PT32E_ROOT_LEVEL;
4842         else
4843                 role.base.level = PT32_ROOT_LEVEL;
4844
4845         return role;
4846 }
4847
4848 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4849 {
4850         union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu);
4851         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4852
4853         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4854                 return;
4855
4856         g_context->mmu_role.as_u64 = new_role.as_u64;
4857         g_context->get_guest_pgd     = get_cr3;
4858         g_context->get_pdptr         = kvm_pdptr_read;
4859         g_context->inject_page_fault = kvm_inject_page_fault;
4860
4861         /*
4862          * L2 page tables are never shadowed, so there is no need to sync
4863          * SPTEs.
4864          */
4865         g_context->invlpg            = NULL;
4866
4867         /*
4868          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4869          * L1's nested page tables (e.g. EPT12). The nested translation
4870          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4871          * L2's page tables as the first level of translation and L1's
4872          * nested page tables as the second level of translation. Basically
4873          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4874          */
4875         if (!is_paging(vcpu)) {
4876                 g_context->nx = false;
4877                 g_context->root_level = 0;
4878                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4879         } else if (is_long_mode(vcpu)) {
4880                 g_context->nx = is_nx(vcpu);
4881                 g_context->root_level = is_la57_mode(vcpu) ?
4882                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4883                 reset_rsvds_bits_mask(vcpu, g_context);
4884                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4885         } else if (is_pae(vcpu)) {
4886                 g_context->nx = is_nx(vcpu);
4887                 g_context->root_level = PT32E_ROOT_LEVEL;
4888                 reset_rsvds_bits_mask(vcpu, g_context);
4889                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4890         } else {
4891                 g_context->nx = false;
4892                 g_context->root_level = PT32_ROOT_LEVEL;
4893                 reset_rsvds_bits_mask(vcpu, g_context);
4894                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4895         }
4896
4897         update_permission_bitmask(vcpu, g_context, false);
4898         update_pkru_bitmask(vcpu, g_context, false);
4899         update_last_nonleaf_level(vcpu, g_context);
4900 }
4901
4902 void kvm_init_mmu(struct kvm_vcpu *vcpu)
4903 {
4904         if (mmu_is_nested(vcpu))
4905                 init_kvm_nested_mmu(vcpu);
4906         else if (tdp_enabled)
4907                 init_kvm_tdp_mmu(vcpu);
4908         else
4909                 init_kvm_softmmu(vcpu);
4910 }
4911 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4912
4913 static union kvm_mmu_page_role
4914 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4915 {
4916         union kvm_mmu_role role;
4917
4918         if (tdp_enabled)
4919                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4920         else
4921                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4922
4923         return role.base;
4924 }
4925
4926 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
4927 {
4928         /*
4929          * Invalidate all MMU roles to force them to reinitialize as CPUID
4930          * information is factored into reserved bit calculations.
4931          */
4932         vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
4933         vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
4934         vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
4935         kvm_mmu_reset_context(vcpu);
4936
4937         /*
4938          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
4939          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
4940          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
4941          * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
4942          * sweep the problem under the rug.
4943          *
4944          * KVM's horrific CPUID ABI makes the problem all but impossible to
4945          * solve, as correctly handling multiple vCPU models (with respect to
4946          * paging and physical address properties) in a single VM would require
4947          * tracking all relevant CPUID information in kvm_mmu_page_role.  That
4948          * is very undesirable as it would double the memory requirements for
4949          * gfn_track (see struct kvm_mmu_page_role comments), and in practice
4950          * no sane VMM mucks with the core vCPU model on the fly.
4951          */
4952         if (vcpu->arch.last_vmentry_cpu != -1) {
4953                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
4954                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
4955         }
4956 }
4957
4958 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4959 {
4960         kvm_mmu_unload(vcpu);
4961         kvm_init_mmu(vcpu);
4962 }
4963 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4964
4965 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4966 {
4967         int r;
4968
4969         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4970         if (r)
4971                 goto out;
4972         r = mmu_alloc_special_roots(vcpu);
4973         if (r)
4974                 goto out;
4975         if (vcpu->arch.mmu->direct_map)
4976                 r = mmu_alloc_direct_roots(vcpu);
4977         else
4978                 r = mmu_alloc_shadow_roots(vcpu);
4979         if (r)
4980                 goto out;
4981
4982         kvm_mmu_sync_roots(vcpu);
4983
4984         kvm_mmu_load_pgd(vcpu);
4985         static_call(kvm_x86_tlb_flush_current)(vcpu);
4986 out:
4987         return r;
4988 }
4989
4990 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4991 {
4992         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4993         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4994         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4995         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4996 }
4997
4998 static bool need_remote_flush(u64 old, u64 new)
4999 {
5000         if (!is_shadow_present_pte(old))
5001                 return false;
5002         if (!is_shadow_present_pte(new))
5003                 return true;
5004         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5005                 return true;
5006         old ^= shadow_nx_mask;
5007         new ^= shadow_nx_mask;
5008         return (old & ~new & PT64_PERM_MASK) != 0;
5009 }
5010
5011 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5012                                     int *bytes)
5013 {
5014         u64 gentry = 0;
5015         int r;
5016
5017         /*
5018          * Assume that the pte write on a page table of the same type
5019          * as the current vcpu paging mode since we update the sptes only
5020          * when they have the same mode.
5021          */
5022         if (is_pae(vcpu) && *bytes == 4) {
5023                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5024                 *gpa &= ~(gpa_t)7;
5025                 *bytes = 8;
5026         }
5027
5028         if (*bytes == 4 || *bytes == 8) {
5029                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5030                 if (r)
5031                         gentry = 0;
5032         }
5033
5034         return gentry;
5035 }
5036
5037 /*
5038  * If we're seeing too many writes to a page, it may no longer be a page table,
5039  * or we may be forking, in which case it is better to unmap the page.
5040  */
5041 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5042 {
5043         /*
5044          * Skip write-flooding detected for the sp whose level is 1, because
5045          * it can become unsync, then the guest page is not write-protected.
5046          */
5047         if (sp->role.level == PG_LEVEL_4K)
5048                 return false;
5049
5050         atomic_inc(&sp->write_flooding_count);
5051         return atomic_read(&sp->write_flooding_count) >= 3;
5052 }
5053
5054 /*
5055  * Misaligned accesses are too much trouble to fix up; also, they usually
5056  * indicate a page is not used as a page table.
5057  */
5058 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5059                                     int bytes)
5060 {
5061         unsigned offset, pte_size, misaligned;
5062
5063         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5064                  gpa, bytes, sp->role.word);
5065
5066         offset = offset_in_page(gpa);
5067         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5068
5069         /*
5070          * Sometimes, the OS only writes the last one bytes to update status
5071          * bits, for example, in linux, andb instruction is used in clear_bit().
5072          */
5073         if (!(offset & (pte_size - 1)) && bytes == 1)
5074                 return false;
5075
5076         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5077         misaligned |= bytes < 4;
5078
5079         return misaligned;
5080 }
5081
5082 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5083 {
5084         unsigned page_offset, quadrant;
5085         u64 *spte;
5086         int level;
5087
5088         page_offset = offset_in_page(gpa);
5089         level = sp->role.level;
5090         *nspte = 1;
5091         if (!sp->role.gpte_is_8_bytes) {
5092                 page_offset <<= 1;      /* 32->64 */
5093                 /*
5094                  * A 32-bit pde maps 4MB while the shadow pdes map
5095                  * only 2MB.  So we need to double the offset again
5096                  * and zap two pdes instead of one.
5097                  */
5098                 if (level == PT32_ROOT_LEVEL) {
5099                         page_offset &= ~7; /* kill rounding error */
5100                         page_offset <<= 1;
5101                         *nspte = 2;
5102                 }
5103                 quadrant = page_offset >> PAGE_SHIFT;
5104                 page_offset &= ~PAGE_MASK;
5105                 if (quadrant != sp->role.quadrant)
5106                         return NULL;
5107         }
5108
5109         spte = &sp->spt[page_offset / sizeof(*spte)];
5110         return spte;
5111 }
5112
5113 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5114                               const u8 *new, int bytes,
5115                               struct kvm_page_track_notifier_node *node)
5116 {
5117         gfn_t gfn = gpa >> PAGE_SHIFT;
5118         struct kvm_mmu_page *sp;
5119         LIST_HEAD(invalid_list);
5120         u64 entry, gentry, *spte;
5121         int npte;
5122         bool remote_flush, local_flush;
5123
5124         /*
5125          * If we don't have indirect shadow pages, it means no page is
5126          * write-protected, so we can exit simply.
5127          */
5128         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5129                 return;
5130
5131         remote_flush = local_flush = false;
5132
5133         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5134
5135         /*
5136          * No need to care whether allocation memory is successful
5137          * or not since pte prefetch is skipped if it does not have
5138          * enough objects in the cache.
5139          */
5140         mmu_topup_memory_caches(vcpu, true);
5141
5142         write_lock(&vcpu->kvm->mmu_lock);
5143
5144         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5145
5146         ++vcpu->kvm->stat.mmu_pte_write;
5147         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5148
5149         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5150                 if (detect_write_misaligned(sp, gpa, bytes) ||
5151                       detect_write_flooding(sp)) {
5152                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5153                         ++vcpu->kvm->stat.mmu_flooded;
5154                         continue;
5155                 }
5156
5157                 spte = get_written_sptes(sp, gpa, &npte);
5158                 if (!spte)
5159                         continue;
5160
5161                 local_flush = true;
5162                 while (npte--) {
5163                         entry = *spte;
5164                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5165                         if (gentry && sp->role.level != PG_LEVEL_4K)
5166                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5167                         if (need_remote_flush(entry, *spte))
5168                                 remote_flush = true;
5169                         ++spte;
5170                 }
5171         }
5172         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5173         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5174         write_unlock(&vcpu->kvm->mmu_lock);
5175 }
5176
5177 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5178                        void *insn, int insn_len)
5179 {
5180         int r, emulation_type = EMULTYPE_PF;
5181         bool direct = vcpu->arch.mmu->direct_map;
5182
5183         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5184                 return RET_PF_RETRY;
5185
5186         r = RET_PF_INVALID;
5187         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5188                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5189                 if (r == RET_PF_EMULATE)
5190                         goto emulate;
5191         }
5192
5193         if (r == RET_PF_INVALID) {
5194                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5195                                           lower_32_bits(error_code), false);
5196                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5197                         return -EIO;
5198         }
5199
5200         if (r < 0)
5201                 return r;
5202         if (r != RET_PF_EMULATE)
5203                 return 1;
5204
5205         /*
5206          * Before emulating the instruction, check if the error code
5207          * was due to a RO violation while translating the guest page.
5208          * This can occur when using nested virtualization with nested
5209          * paging in both guests. If true, we simply unprotect the page
5210          * and resume the guest.
5211          */
5212         if (vcpu->arch.mmu->direct_map &&
5213             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5214                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5215                 return 1;
5216         }
5217
5218         /*
5219          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5220          * optimistically try to just unprotect the page and let the processor
5221          * re-execute the instruction that caused the page fault.  Do not allow
5222          * retrying MMIO emulation, as it's not only pointless but could also
5223          * cause us to enter an infinite loop because the processor will keep
5224          * faulting on the non-existent MMIO address.  Retrying an instruction
5225          * from a nested guest is also pointless and dangerous as we are only
5226          * explicitly shadowing L1's page tables, i.e. unprotecting something
5227          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5228          */
5229         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5230                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5231 emulate:
5232         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5233                                        insn_len);
5234 }
5235 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5236
5237 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5238                             gva_t gva, hpa_t root_hpa)
5239 {
5240         int i;
5241
5242         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5243         if (mmu != &vcpu->arch.guest_mmu) {
5244                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5245                 if (is_noncanonical_address(gva, vcpu))
5246                         return;
5247
5248                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5249         }
5250
5251         if (!mmu->invlpg)
5252                 return;
5253
5254         if (root_hpa == INVALID_PAGE) {
5255                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5256
5257                 /*
5258                  * INVLPG is required to invalidate any global mappings for the VA,
5259                  * irrespective of PCID. Since it would take us roughly similar amount
5260                  * of work to determine whether any of the prev_root mappings of the VA
5261                  * is marked global, or to just sync it blindly, so we might as well
5262                  * just always sync it.
5263                  *
5264                  * Mappings not reachable via the current cr3 or the prev_roots will be
5265                  * synced when switching to that cr3, so nothing needs to be done here
5266                  * for them.
5267                  */
5268                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5269                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5270                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5271         } else {
5272                 mmu->invlpg(vcpu, gva, root_hpa);
5273         }
5274 }
5275
5276 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5277 {
5278         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5279         ++vcpu->stat.invlpg;
5280 }
5281 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5282
5283
5284 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5285 {
5286         struct kvm_mmu *mmu = vcpu->arch.mmu;
5287         bool tlb_flush = false;
5288         uint i;
5289
5290         if (pcid == kvm_get_active_pcid(vcpu)) {
5291                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5292                 tlb_flush = true;
5293         }
5294
5295         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5296                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5297                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5298                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5299                         tlb_flush = true;
5300                 }
5301         }
5302
5303         if (tlb_flush)
5304                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5305
5306         ++vcpu->stat.invlpg;
5307
5308         /*
5309          * Mappings not reachable via the current cr3 or the prev_roots will be
5310          * synced when switching to that cr3, so nothing needs to be done here
5311          * for them.
5312          */
5313 }
5314
5315 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5316                        int tdp_huge_page_level)
5317 {
5318         tdp_enabled = enable_tdp;
5319         max_tdp_level = tdp_max_root_level;
5320
5321         /*
5322          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5323          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5324          * the kernel is not.  But, KVM never creates a page size greater than
5325          * what is used by the kernel for any given HVA, i.e. the kernel's
5326          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5327          */
5328         if (tdp_enabled)
5329                 max_huge_page_level = tdp_huge_page_level;
5330         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5331                 max_huge_page_level = PG_LEVEL_1G;
5332         else
5333                 max_huge_page_level = PG_LEVEL_2M;
5334 }
5335 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5336
5337 /* The return value indicates if tlb flush on all vcpus is needed. */
5338 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5339                                     struct kvm_memory_slot *slot);
5340
5341 /* The caller should hold mmu-lock before calling this function. */
5342 static __always_inline bool
5343 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5344                         slot_level_handler fn, int start_level, int end_level,
5345                         gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5346                         bool flush)
5347 {
5348         struct slot_rmap_walk_iterator iterator;
5349
5350         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5351                         end_gfn, &iterator) {
5352                 if (iterator.rmap)
5353                         flush |= fn(kvm, iterator.rmap, memslot);
5354
5355                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5356                         if (flush && flush_on_yield) {
5357                                 kvm_flush_remote_tlbs_with_address(kvm,
5358                                                 start_gfn,
5359                                                 iterator.gfn - start_gfn + 1);
5360                                 flush = false;
5361                         }
5362                         cond_resched_rwlock_write(&kvm->mmu_lock);
5363                 }
5364         }
5365
5366         return flush;
5367 }
5368
5369 static __always_inline bool
5370 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5371                   slot_level_handler fn, int start_level, int end_level,
5372                   bool flush_on_yield)
5373 {
5374         return slot_handle_level_range(kvm, memslot, fn, start_level,
5375                         end_level, memslot->base_gfn,
5376                         memslot->base_gfn + memslot->npages - 1,
5377                         flush_on_yield, false);
5378 }
5379
5380 static __always_inline bool
5381 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5382                  slot_level_handler fn, bool flush_on_yield)
5383 {
5384         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5385                                  PG_LEVEL_4K, flush_on_yield);
5386 }
5387
5388 static void free_mmu_pages(struct kvm_mmu *mmu)
5389 {
5390         if (!tdp_enabled && mmu->pae_root)
5391                 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5392         free_page((unsigned long)mmu->pae_root);
5393         free_page((unsigned long)mmu->pml4_root);
5394 }
5395
5396 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5397 {
5398         struct page *page;
5399         int i;
5400
5401         mmu->root_hpa = INVALID_PAGE;
5402         mmu->root_pgd = 0;
5403         mmu->translate_gpa = translate_gpa;
5404         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5405                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5406
5407         /*
5408          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5409          * while the PDP table is a per-vCPU construct that's allocated at MMU
5410          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5411          * x86_64.  Therefore we need to allocate the PDP table in the first
5412          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5413          * generally doesn't use PAE paging and can skip allocating the PDP
5414          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5415          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5416          * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5417          */
5418         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5419                 return 0;
5420
5421         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5422         if (!page)
5423                 return -ENOMEM;
5424
5425         mmu->pae_root = page_address(page);
5426
5427         /*
5428          * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5429          * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5430          * that KVM's writes and the CPU's reads get along.  Note, this is
5431          * only necessary when using shadow paging, as 64-bit NPT can get at
5432          * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5433          * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5434          */
5435         if (!tdp_enabled)
5436                 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5437         else
5438                 WARN_ON_ONCE(shadow_me_mask);
5439
5440         for (i = 0; i < 4; ++i)
5441                 mmu->pae_root[i] = INVALID_PAE_ROOT;
5442
5443         return 0;
5444 }
5445
5446 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5447 {
5448         int ret;
5449
5450         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5451         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5452
5453         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5454         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5455
5456         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5457
5458         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5459         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5460
5461         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5462
5463         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5464         if (ret)
5465                 return ret;
5466
5467         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5468         if (ret)
5469                 goto fail_allocate_root;
5470
5471         return ret;
5472  fail_allocate_root:
5473         free_mmu_pages(&vcpu->arch.guest_mmu);
5474         return ret;
5475 }
5476
5477 #define BATCH_ZAP_PAGES 10
5478 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5479 {
5480         struct kvm_mmu_page *sp, *node;
5481         int nr_zapped, batch = 0;
5482
5483 restart:
5484         list_for_each_entry_safe_reverse(sp, node,
5485               &kvm->arch.active_mmu_pages, link) {
5486                 /*
5487                  * No obsolete valid page exists before a newly created page
5488                  * since active_mmu_pages is a FIFO list.
5489                  */
5490                 if (!is_obsolete_sp(kvm, sp))
5491                         break;
5492
5493                 /*
5494                  * Invalid pages should never land back on the list of active
5495                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5496                  * infinite loop if the page gets put back on the list (again).
5497                  */
5498                 if (WARN_ON(sp->role.invalid))
5499                         continue;
5500
5501                 /*
5502                  * No need to flush the TLB since we're only zapping shadow
5503                  * pages with an obsolete generation number and all vCPUS have
5504                  * loaded a new root, i.e. the shadow pages being zapped cannot
5505                  * be in active use by the guest.
5506                  */
5507                 if (batch >= BATCH_ZAP_PAGES &&
5508                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
5509                         batch = 0;
5510                         goto restart;
5511                 }
5512
5513                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5514                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5515                         batch += nr_zapped;
5516                         goto restart;
5517                 }
5518         }
5519
5520         /*
5521          * Trigger a remote TLB flush before freeing the page tables to ensure
5522          * KVM is not in the middle of a lockless shadow page table walk, which
5523          * may reference the pages.
5524          */
5525         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5526 }
5527
5528 /*
5529  * Fast invalidate all shadow pages and use lock-break technique
5530  * to zap obsolete pages.
5531  *
5532  * It's required when memslot is being deleted or VM is being
5533  * destroyed, in these cases, we should ensure that KVM MMU does
5534  * not use any resource of the being-deleted slot or all slots
5535  * after calling the function.
5536  */
5537 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5538 {
5539         lockdep_assert_held(&kvm->slots_lock);
5540
5541         write_lock(&kvm->mmu_lock);
5542         trace_kvm_mmu_zap_all_fast(kvm);
5543
5544         /*
5545          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5546          * held for the entire duration of zapping obsolete pages, it's
5547          * impossible for there to be multiple invalid generations associated
5548          * with *valid* shadow pages at any given time, i.e. there is exactly
5549          * one valid generation and (at most) one invalid generation.
5550          */
5551         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5552
5553         /* In order to ensure all threads see this change when
5554          * handling the MMU reload signal, this must happen in the
5555          * same critical section as kvm_reload_remote_mmus, and
5556          * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5557          * could drop the MMU lock and yield.
5558          */
5559         if (is_tdp_mmu_enabled(kvm))
5560                 kvm_tdp_mmu_invalidate_all_roots(kvm);
5561
5562         /*
5563          * Notify all vcpus to reload its shadow page table and flush TLB.
5564          * Then all vcpus will switch to new shadow page table with the new
5565          * mmu_valid_gen.
5566          *
5567          * Note: we need to do this under the protection of mmu_lock,
5568          * otherwise, vcpu would purge shadow page but miss tlb flush.
5569          */
5570         kvm_reload_remote_mmus(kvm);
5571
5572         kvm_zap_obsolete_pages(kvm);
5573
5574         write_unlock(&kvm->mmu_lock);
5575
5576         if (is_tdp_mmu_enabled(kvm)) {
5577                 read_lock(&kvm->mmu_lock);
5578                 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5579                 read_unlock(&kvm->mmu_lock);
5580         }
5581 }
5582
5583 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5584 {
5585         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5586 }
5587
5588 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5589                         struct kvm_memory_slot *slot,
5590                         struct kvm_page_track_notifier_node *node)
5591 {
5592         kvm_mmu_zap_all_fast(kvm);
5593 }
5594
5595 void kvm_mmu_init_vm(struct kvm *kvm)
5596 {
5597         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5598
5599         if (!kvm_mmu_init_tdp_mmu(kvm))
5600                 /*
5601                  * No smp_load/store wrappers needed here as we are in
5602                  * VM init and there cannot be any memslots / other threads
5603                  * accessing this struct kvm yet.
5604                  */
5605                 kvm->arch.memslots_have_rmaps = true;
5606
5607         node->track_write = kvm_mmu_pte_write;
5608         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5609         kvm_page_track_register_notifier(kvm, node);
5610 }
5611
5612 void kvm_mmu_uninit_vm(struct kvm *kvm)
5613 {
5614         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5615
5616         kvm_page_track_unregister_notifier(kvm, node);
5617
5618         kvm_mmu_uninit_tdp_mmu(kvm);
5619 }
5620
5621 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5622 {
5623         struct kvm_memslots *slots;
5624         struct kvm_memory_slot *memslot;
5625         int i;
5626         bool flush = false;
5627
5628         if (kvm_memslots_have_rmaps(kvm)) {
5629                 write_lock(&kvm->mmu_lock);
5630                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5631                         slots = __kvm_memslots(kvm, i);
5632                         kvm_for_each_memslot(memslot, slots) {
5633                                 gfn_t start, end;
5634
5635                                 start = max(gfn_start, memslot->base_gfn);
5636                                 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5637                                 if (start >= end)
5638                                         continue;
5639
5640                                 flush = slot_handle_level_range(kvm, memslot,
5641                                                 kvm_zap_rmapp, PG_LEVEL_4K,
5642                                                 KVM_MAX_HUGEPAGE_LEVEL, start,
5643                                                 end - 1, true, flush);
5644                         }
5645                 }
5646                 if (flush)
5647                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5648                 write_unlock(&kvm->mmu_lock);
5649         }
5650
5651         if (is_tdp_mmu_enabled(kvm)) {
5652                 flush = false;
5653
5654                 read_lock(&kvm->mmu_lock);
5655                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5656                         flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5657                                                           gfn_end, flush, true);
5658                 if (flush)
5659                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5660                                                            gfn_end);
5661
5662                 read_unlock(&kvm->mmu_lock);
5663         }
5664 }
5665
5666 static bool slot_rmap_write_protect(struct kvm *kvm,
5667                                     struct kvm_rmap_head *rmap_head,
5668                                     struct kvm_memory_slot *slot)
5669 {
5670         return __rmap_write_protect(kvm, rmap_head, false);
5671 }
5672
5673 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5674                                       struct kvm_memory_slot *memslot,
5675                                       int start_level)
5676 {
5677         bool flush = false;
5678
5679         if (kvm_memslots_have_rmaps(kvm)) {
5680                 write_lock(&kvm->mmu_lock);
5681                 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5682                                           start_level, KVM_MAX_HUGEPAGE_LEVEL,
5683                                           false);
5684                 write_unlock(&kvm->mmu_lock);
5685         }
5686
5687         if (is_tdp_mmu_enabled(kvm)) {
5688                 read_lock(&kvm->mmu_lock);
5689                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5690                 read_unlock(&kvm->mmu_lock);
5691         }
5692
5693         /*
5694          * We can flush all the TLBs out of the mmu lock without TLB
5695          * corruption since we just change the spte from writable to
5696          * readonly so that we only need to care the case of changing
5697          * spte from present to present (changing the spte from present
5698          * to nonpresent will flush all the TLBs immediately), in other
5699          * words, the only case we care is mmu_spte_update() where we
5700          * have checked Host-writable | MMU-writable instead of
5701          * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5702          * anymore.
5703          */
5704         if (flush)
5705                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5706 }
5707
5708 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5709                                          struct kvm_rmap_head *rmap_head,
5710                                          struct kvm_memory_slot *slot)
5711 {
5712         u64 *sptep;
5713         struct rmap_iterator iter;
5714         int need_tlb_flush = 0;
5715         kvm_pfn_t pfn;
5716         struct kvm_mmu_page *sp;
5717
5718 restart:
5719         for_each_rmap_spte(rmap_head, &iter, sptep) {
5720                 sp = sptep_to_sp(sptep);
5721                 pfn = spte_to_pfn(*sptep);
5722
5723                 /*
5724                  * We cannot do huge page mapping for indirect shadow pages,
5725                  * which are found on the last rmap (level = 1) when not using
5726                  * tdp; such shadow pages are synced with the page table in
5727                  * the guest, and the guest page table is using 4K page size
5728                  * mapping if the indirect sp has level = 1.
5729                  */
5730                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5731                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5732                                                                pfn, PG_LEVEL_NUM)) {
5733                         pte_list_remove(rmap_head, sptep);
5734
5735                         if (kvm_available_flush_tlb_with_range())
5736                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5737                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5738                         else
5739                                 need_tlb_flush = 1;
5740
5741                         goto restart;
5742                 }
5743         }
5744
5745         return need_tlb_flush;
5746 }
5747
5748 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5749                                    const struct kvm_memory_slot *memslot)
5750 {
5751         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5752         struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5753         bool flush = false;
5754
5755         if (kvm_memslots_have_rmaps(kvm)) {
5756                 write_lock(&kvm->mmu_lock);
5757                 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5758                 if (flush)
5759                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5760                 write_unlock(&kvm->mmu_lock);
5761         }
5762
5763         if (is_tdp_mmu_enabled(kvm)) {
5764                 read_lock(&kvm->mmu_lock);
5765                 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5766                 if (flush)
5767                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5768                 read_unlock(&kvm->mmu_lock);
5769         }
5770 }
5771
5772 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5773                                         const struct kvm_memory_slot *memslot)
5774 {
5775         /*
5776          * All current use cases for flushing the TLBs for a specific memslot
5777          * related to dirty logging, and many do the TLB flush out of mmu_lock.
5778          * The interaction between the various operations on memslot must be
5779          * serialized by slots_locks to ensure the TLB flush from one operation
5780          * is observed by any other operation on the same memslot.
5781          */
5782         lockdep_assert_held(&kvm->slots_lock);
5783         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5784                                            memslot->npages);
5785 }
5786
5787 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5788                                    struct kvm_memory_slot *memslot)
5789 {
5790         bool flush = false;
5791
5792         if (kvm_memslots_have_rmaps(kvm)) {
5793                 write_lock(&kvm->mmu_lock);
5794                 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
5795                                          false);
5796                 write_unlock(&kvm->mmu_lock);
5797         }
5798
5799         if (is_tdp_mmu_enabled(kvm)) {
5800                 read_lock(&kvm->mmu_lock);
5801                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5802                 read_unlock(&kvm->mmu_lock);
5803         }
5804
5805         /*
5806          * It's also safe to flush TLBs out of mmu lock here as currently this
5807          * function is only used for dirty logging, in which case flushing TLB
5808          * out of mmu lock also guarantees no dirty pages will be lost in
5809          * dirty_bitmap.
5810          */
5811         if (flush)
5812                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5813 }
5814
5815 void kvm_mmu_zap_all(struct kvm *kvm)
5816 {
5817         struct kvm_mmu_page *sp, *node;
5818         LIST_HEAD(invalid_list);
5819         int ign;
5820
5821         write_lock(&kvm->mmu_lock);
5822 restart:
5823         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5824                 if (WARN_ON(sp->role.invalid))
5825                         continue;
5826                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5827                         goto restart;
5828                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5829                         goto restart;
5830         }
5831
5832         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5833
5834         if (is_tdp_mmu_enabled(kvm))
5835                 kvm_tdp_mmu_zap_all(kvm);
5836
5837         write_unlock(&kvm->mmu_lock);
5838 }
5839
5840 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5841 {
5842         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5843
5844         gen &= MMIO_SPTE_GEN_MASK;
5845
5846         /*
5847          * Generation numbers are incremented in multiples of the number of
5848          * address spaces in order to provide unique generations across all
5849          * address spaces.  Strip what is effectively the address space
5850          * modifier prior to checking for a wrap of the MMIO generation so
5851          * that a wrap in any address space is detected.
5852          */
5853         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5854
5855         /*
5856          * The very rare case: if the MMIO generation number has wrapped,
5857          * zap all shadow pages.
5858          */
5859         if (unlikely(gen == 0)) {
5860                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5861                 kvm_mmu_zap_all_fast(kvm);
5862         }
5863 }
5864
5865 static unsigned long
5866 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5867 {
5868         struct kvm *kvm;
5869         int nr_to_scan = sc->nr_to_scan;
5870         unsigned long freed = 0;
5871
5872         mutex_lock(&kvm_lock);
5873
5874         list_for_each_entry(kvm, &vm_list, vm_list) {
5875                 int idx;
5876                 LIST_HEAD(invalid_list);
5877
5878                 /*
5879                  * Never scan more than sc->nr_to_scan VM instances.
5880                  * Will not hit this condition practically since we do not try
5881                  * to shrink more than one VM and it is very unlikely to see
5882                  * !n_used_mmu_pages so many times.
5883                  */
5884                 if (!nr_to_scan--)
5885                         break;
5886                 /*
5887                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5888                  * here. We may skip a VM instance errorneosly, but we do not
5889                  * want to shrink a VM that only started to populate its MMU
5890                  * anyway.
5891                  */
5892                 if (!kvm->arch.n_used_mmu_pages &&
5893                     !kvm_has_zapped_obsolete_pages(kvm))
5894                         continue;
5895
5896                 idx = srcu_read_lock(&kvm->srcu);
5897                 write_lock(&kvm->mmu_lock);
5898
5899                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5900                         kvm_mmu_commit_zap_page(kvm,
5901                               &kvm->arch.zapped_obsolete_pages);
5902                         goto unlock;
5903                 }
5904
5905                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5906
5907 unlock:
5908                 write_unlock(&kvm->mmu_lock);
5909                 srcu_read_unlock(&kvm->srcu, idx);
5910
5911                 /*
5912                  * unfair on small ones
5913                  * per-vm shrinkers cry out
5914                  * sadness comes quickly
5915                  */
5916                 list_move_tail(&kvm->vm_list, &vm_list);
5917                 break;
5918         }
5919
5920         mutex_unlock(&kvm_lock);
5921         return freed;
5922 }
5923
5924 static unsigned long
5925 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5926 {
5927         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5928 }
5929
5930 static struct shrinker mmu_shrinker = {
5931         .count_objects = mmu_shrink_count,
5932         .scan_objects = mmu_shrink_scan,
5933         .seeks = DEFAULT_SEEKS * 10,
5934 };
5935
5936 static void mmu_destroy_caches(void)
5937 {
5938         kmem_cache_destroy(pte_list_desc_cache);
5939         kmem_cache_destroy(mmu_page_header_cache);
5940 }
5941
5942 static bool get_nx_auto_mode(void)
5943 {
5944         /* Return true when CPU has the bug, and mitigations are ON */
5945         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5946 }
5947
5948 static void __set_nx_huge_pages(bool val)
5949 {
5950         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5951 }
5952
5953 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5954 {
5955         bool old_val = nx_huge_pages;
5956         bool new_val;
5957
5958         /* In "auto" mode deploy workaround only if CPU has the bug. */
5959         if (sysfs_streq(val, "off"))
5960                 new_val = 0;
5961         else if (sysfs_streq(val, "force"))
5962                 new_val = 1;
5963         else if (sysfs_streq(val, "auto"))
5964                 new_val = get_nx_auto_mode();
5965         else if (strtobool(val, &new_val) < 0)
5966                 return -EINVAL;
5967
5968         __set_nx_huge_pages(new_val);
5969
5970         if (new_val != old_val) {
5971                 struct kvm *kvm;
5972
5973                 mutex_lock(&kvm_lock);
5974
5975                 list_for_each_entry(kvm, &vm_list, vm_list) {
5976                         mutex_lock(&kvm->slots_lock);
5977                         kvm_mmu_zap_all_fast(kvm);
5978                         mutex_unlock(&kvm->slots_lock);
5979
5980                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5981                 }
5982                 mutex_unlock(&kvm_lock);
5983         }
5984
5985         return 0;
5986 }
5987
5988 int kvm_mmu_module_init(void)
5989 {
5990         int ret = -ENOMEM;
5991
5992         if (nx_huge_pages == -1)
5993                 __set_nx_huge_pages(get_nx_auto_mode());
5994
5995         /*
5996          * MMU roles use union aliasing which is, generally speaking, an
5997          * undefined behavior. However, we supposedly know how compilers behave
5998          * and the current status quo is unlikely to change. Guardians below are
5999          * supposed to let us know if the assumption becomes false.
6000          */
6001         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6002         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6003         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6004
6005         kvm_mmu_reset_all_pte_masks();
6006
6007         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6008                                             sizeof(struct pte_list_desc),
6009                                             0, SLAB_ACCOUNT, NULL);
6010         if (!pte_list_desc_cache)
6011                 goto out;
6012
6013         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6014                                                   sizeof(struct kvm_mmu_page),
6015                                                   0, SLAB_ACCOUNT, NULL);
6016         if (!mmu_page_header_cache)
6017                 goto out;
6018
6019         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6020                 goto out;
6021
6022         ret = register_shrinker(&mmu_shrinker);
6023         if (ret)
6024                 goto out;
6025
6026         return 0;
6027
6028 out:
6029         mmu_destroy_caches();
6030         return ret;
6031 }
6032
6033 /*
6034  * Calculate mmu pages needed for kvm.
6035  */
6036 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6037 {
6038         unsigned long nr_mmu_pages;
6039         unsigned long nr_pages = 0;
6040         struct kvm_memslots *slots;
6041         struct kvm_memory_slot *memslot;
6042         int i;
6043
6044         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6045                 slots = __kvm_memslots(kvm, i);
6046
6047                 kvm_for_each_memslot(memslot, slots)
6048                         nr_pages += memslot->npages;
6049         }
6050
6051         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6052         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6053
6054         return nr_mmu_pages;
6055 }
6056
6057 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6058 {
6059         kvm_mmu_unload(vcpu);
6060         free_mmu_pages(&vcpu->arch.root_mmu);
6061         free_mmu_pages(&vcpu->arch.guest_mmu);
6062         mmu_free_memory_caches(vcpu);
6063 }
6064
6065 void kvm_mmu_module_exit(void)
6066 {
6067         mmu_destroy_caches();
6068         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6069         unregister_shrinker(&mmu_shrinker);
6070         mmu_audit_disable();
6071 }
6072
6073 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6074 {
6075         unsigned int old_val;
6076         int err;
6077
6078         old_val = nx_huge_pages_recovery_ratio;
6079         err = param_set_uint(val, kp);
6080         if (err)
6081                 return err;
6082
6083         if (READ_ONCE(nx_huge_pages) &&
6084             !old_val && nx_huge_pages_recovery_ratio) {
6085                 struct kvm *kvm;
6086
6087                 mutex_lock(&kvm_lock);
6088
6089                 list_for_each_entry(kvm, &vm_list, vm_list)
6090                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6091
6092                 mutex_unlock(&kvm_lock);
6093         }
6094
6095         return err;
6096 }
6097
6098 static void kvm_recover_nx_lpages(struct kvm *kvm)
6099 {
6100         unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6101         int rcu_idx;
6102         struct kvm_mmu_page *sp;
6103         unsigned int ratio;
6104         LIST_HEAD(invalid_list);
6105         bool flush = false;
6106         ulong to_zap;
6107
6108         rcu_idx = srcu_read_lock(&kvm->srcu);
6109         write_lock(&kvm->mmu_lock);
6110
6111         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6112         to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6113         for ( ; to_zap; --to_zap) {
6114                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6115                         break;
6116
6117                 /*
6118                  * We use a separate list instead of just using active_mmu_pages
6119                  * because the number of lpage_disallowed pages is expected to
6120                  * be relatively small compared to the total.
6121                  */
6122                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6123                                       struct kvm_mmu_page,
6124                                       lpage_disallowed_link);
6125                 WARN_ON_ONCE(!sp->lpage_disallowed);
6126                 if (is_tdp_mmu_page(sp)) {
6127                         flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6128                 } else {
6129                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6130                         WARN_ON_ONCE(sp->lpage_disallowed);
6131                 }
6132
6133                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6134                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6135                         cond_resched_rwlock_write(&kvm->mmu_lock);
6136                         flush = false;
6137                 }
6138         }
6139         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6140
6141         write_unlock(&kvm->mmu_lock);
6142         srcu_read_unlock(&kvm->srcu, rcu_idx);
6143 }
6144
6145 static long get_nx_lpage_recovery_timeout(u64 start_time)
6146 {
6147         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6148                 ? start_time + 60 * HZ - get_jiffies_64()
6149                 : MAX_SCHEDULE_TIMEOUT;
6150 }
6151
6152 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6153 {
6154         u64 start_time;
6155         long remaining_time;
6156
6157         while (true) {
6158                 start_time = get_jiffies_64();
6159                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6160
6161                 set_current_state(TASK_INTERRUPTIBLE);
6162                 while (!kthread_should_stop() && remaining_time > 0) {
6163                         schedule_timeout(remaining_time);
6164                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6165                         set_current_state(TASK_INTERRUPTIBLE);
6166                 }
6167
6168                 set_current_state(TASK_RUNNING);
6169
6170                 if (kthread_should_stop())
6171                         return 0;
6172
6173                 kvm_recover_nx_lpages(kvm);
6174         }
6175 }
6176
6177 int kvm_mmu_post_init_vm(struct kvm *kvm)
6178 {
6179         int err;
6180
6181         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6182                                           "kvm-nx-lpage-recovery",
6183                                           &kvm->arch.nx_lpage_recovery_thread);
6184         if (!err)
6185                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6186
6187         return err;
6188 }
6189
6190 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6191 {
6192         if (kvm->arch.nx_lpage_recovery_thread)
6193                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6194 }