Merge tag 'integrity-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar...
[linux-2.6-microblaze.git] / kernel / futex.c
index 2ecb075..e7b4c61 100644 (file)
@@ -179,7 +179,7 @@ struct futex_pi_state {
        /*
         * The PI object:
         */
-       struct rt_mutex pi_mutex;
+       struct rt_mutex_base pi_mutex;
 
        struct task_struct *owner;
        refcount_t refcount;
@@ -197,6 +197,8 @@ struct futex_pi_state {
  * @rt_waiter:         rt_waiter storage for use with requeue_pi
  * @requeue_pi_key:    the requeue_pi target futex key
  * @bitset:            bitset for the optional bitmasked wakeup
+ * @requeue_state:     State field for futex_requeue_pi()
+ * @requeue_wait:      RCU wait for futex_requeue_pi() (RT only)
  *
  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
  * we can wake only the relevant ones (hashed queues may be shared).
@@ -219,12 +221,68 @@ struct futex_q {
        struct rt_mutex_waiter *rt_waiter;
        union futex_key *requeue_pi_key;
        u32 bitset;
+       atomic_t requeue_state;
+#ifdef CONFIG_PREEMPT_RT
+       struct rcuwait requeue_wait;
+#endif
 } __randomize_layout;
 
+/*
+ * On PREEMPT_RT, the hash bucket lock is a 'sleeping' spinlock with an
+ * underlying rtmutex. The task which is about to be requeued could have
+ * just woken up (timeout, signal). After the wake up the task has to
+ * acquire hash bucket lock, which is held by the requeue code.  As a task
+ * can only be blocked on _ONE_ rtmutex at a time, the proxy lock blocking
+ * and the hash bucket lock blocking would collide and corrupt state.
+ *
+ * On !PREEMPT_RT this is not a problem and everything could be serialized
+ * on hash bucket lock, but aside of having the benefit of common code,
+ * this allows to avoid doing the requeue when the task is already on the
+ * way out and taking the hash bucket lock of the original uaddr1 when the
+ * requeue has been completed.
+ *
+ * The following state transitions are valid:
+ *
+ * On the waiter side:
+ *   Q_REQUEUE_PI_NONE         -> Q_REQUEUE_PI_IGNORE
+ *   Q_REQUEUE_PI_IN_PROGRESS  -> Q_REQUEUE_PI_WAIT
+ *
+ * On the requeue side:
+ *   Q_REQUEUE_PI_NONE         -> Q_REQUEUE_PI_INPROGRESS
+ *   Q_REQUEUE_PI_IN_PROGRESS  -> Q_REQUEUE_PI_DONE/LOCKED
+ *   Q_REQUEUE_PI_IN_PROGRESS  -> Q_REQUEUE_PI_NONE (requeue failed)
+ *   Q_REQUEUE_PI_WAIT         -> Q_REQUEUE_PI_DONE/LOCKED
+ *   Q_REQUEUE_PI_WAIT         -> Q_REQUEUE_PI_IGNORE (requeue failed)
+ *
+ * The requeue side ignores a waiter with state Q_REQUEUE_PI_IGNORE as this
+ * signals that the waiter is already on the way out. It also means that
+ * the waiter is still on the 'wait' futex, i.e. uaddr1.
+ *
+ * The waiter side signals early wakeup to the requeue side either through
+ * setting state to Q_REQUEUE_PI_IGNORE or to Q_REQUEUE_PI_WAIT depending
+ * on the current state. In case of Q_REQUEUE_PI_IGNORE it can immediately
+ * proceed to take the hash bucket lock of uaddr1. If it set state to WAIT,
+ * which means the wakeup is interleaving with a requeue in progress it has
+ * to wait for the requeue side to change the state. Either to DONE/LOCKED
+ * or to IGNORE. DONE/LOCKED means the waiter q is now on the uaddr2 futex
+ * and either blocked (DONE) or has acquired it (LOCKED). IGNORE is set by
+ * the requeue side when the requeue attempt failed via deadlock detection
+ * and therefore the waiter q is still on the uaddr1 futex.
+ */
+enum {
+       Q_REQUEUE_PI_NONE               =  0,
+       Q_REQUEUE_PI_IGNORE,
+       Q_REQUEUE_PI_IN_PROGRESS,
+       Q_REQUEUE_PI_WAIT,
+       Q_REQUEUE_PI_DONE,
+       Q_REQUEUE_PI_LOCKED,
+};
+
 static const struct futex_q futex_q_init = {
        /* list gets initialized in queue_me()*/
-       .key = FUTEX_KEY_INIT,
-       .bitset = FUTEX_BITSET_MATCH_ANY
+       .key            = FUTEX_KEY_INIT,
+       .bitset         = FUTEX_BITSET_MATCH_ANY,
+       .requeue_state  = ATOMIC_INIT(Q_REQUEUE_PI_NONE),
 };
 
 /*
@@ -1299,27 +1357,6 @@ static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
        return 0;
 }
 
-static int lookup_pi_state(u32 __user *uaddr, u32 uval,
-                          struct futex_hash_bucket *hb,
-                          union futex_key *key, struct futex_pi_state **ps,
-                          struct task_struct **exiting)
-{
-       struct futex_q *top_waiter = futex_top_waiter(hb, key);
-
-       /*
-        * If there is a waiter on that futex, validate it and
-        * attach to the pi_state when the validation succeeds.
-        */
-       if (top_waiter)
-               return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
-
-       /*
-        * We are the first waiter - try to look up the owner based on
-        * @uval and attach to it.
-        */
-       return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
-}
-
 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
 {
        int err;
@@ -1354,7 +1391,7 @@ static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
  *  -  1 - acquired the lock;
  *  - <0 - error
  *
- * The hb->lock and futex_key refs shall be held by the caller.
+ * The hb->lock must be held by the caller.
  *
  * @exiting is only set when the return value is -EBUSY. If so, this holds
  * a refcount on the exiting task on return and the caller needs to drop it
@@ -1493,11 +1530,11 @@ static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
  */
 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
 {
-       u32 curval, newval;
        struct rt_mutex_waiter *top_waiter;
        struct task_struct *new_owner;
        bool postunlock = false;
-       DEFINE_WAKE_Q(wake_q);
+       DEFINE_RT_WAKE_Q(wqh);
+       u32 curval, newval;
        int ret = 0;
 
        top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
@@ -1549,14 +1586,14 @@ static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_
                 * not fail.
                 */
                pi_state_update_owner(pi_state, new_owner);
-               postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
+               postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wqh);
        }
 
 out_unlock:
        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 
        if (postunlock)
-               rt_mutex_postunlock(&wake_q);
+               rt_mutex_postunlock(&wqh);
 
        return ret;
 }
@@ -1793,6 +1830,108 @@ void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
        q->key = *key2;
 }
 
+static inline bool futex_requeue_pi_prepare(struct futex_q *q,
+                                           struct futex_pi_state *pi_state)
+{
+       int old, new;
+
+       /*
+        * Set state to Q_REQUEUE_PI_IN_PROGRESS unless an early wakeup has
+        * already set Q_REQUEUE_PI_IGNORE to signal that requeue should
+        * ignore the waiter.
+        */
+       old = atomic_read_acquire(&q->requeue_state);
+       do {
+               if (old == Q_REQUEUE_PI_IGNORE)
+                       return false;
+
+               /*
+                * futex_proxy_trylock_atomic() might have set it to
+                * IN_PROGRESS and a interleaved early wake to WAIT.
+                *
+                * It was considered to have an extra state for that
+                * trylock, but that would just add more conditionals
+                * all over the place for a dubious value.
+                */
+               if (old != Q_REQUEUE_PI_NONE)
+                       break;
+
+               new = Q_REQUEUE_PI_IN_PROGRESS;
+       } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
+
+       q->pi_state = pi_state;
+       return true;
+}
+
+static inline void futex_requeue_pi_complete(struct futex_q *q, int locked)
+{
+       int old, new;
+
+       old = atomic_read_acquire(&q->requeue_state);
+       do {
+               if (old == Q_REQUEUE_PI_IGNORE)
+                       return;
+
+               if (locked >= 0) {
+                       /* Requeue succeeded. Set DONE or LOCKED */
+                       WARN_ON_ONCE(old != Q_REQUEUE_PI_IN_PROGRESS &&
+                                    old != Q_REQUEUE_PI_WAIT);
+                       new = Q_REQUEUE_PI_DONE + locked;
+               } else if (old == Q_REQUEUE_PI_IN_PROGRESS) {
+                       /* Deadlock, no early wakeup interleave */
+                       new = Q_REQUEUE_PI_NONE;
+               } else {
+                       /* Deadlock, early wakeup interleave. */
+                       WARN_ON_ONCE(old != Q_REQUEUE_PI_WAIT);
+                       new = Q_REQUEUE_PI_IGNORE;
+               }
+       } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
+
+#ifdef CONFIG_PREEMPT_RT
+       /* If the waiter interleaved with the requeue let it know */
+       if (unlikely(old == Q_REQUEUE_PI_WAIT))
+               rcuwait_wake_up(&q->requeue_wait);
+#endif
+}
+
+static inline int futex_requeue_pi_wakeup_sync(struct futex_q *q)
+{
+       int old, new;
+
+       old = atomic_read_acquire(&q->requeue_state);
+       do {
+               /* Is requeue done already? */
+               if (old >= Q_REQUEUE_PI_DONE)
+                       return old;
+
+               /*
+                * If not done, then tell the requeue code to either ignore
+                * the waiter or to wake it up once the requeue is done.
+                */
+               new = Q_REQUEUE_PI_WAIT;
+               if (old == Q_REQUEUE_PI_NONE)
+                       new = Q_REQUEUE_PI_IGNORE;
+       } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
+
+       /* If the requeue was in progress, wait for it to complete */
+       if (old == Q_REQUEUE_PI_IN_PROGRESS) {
+#ifdef CONFIG_PREEMPT_RT
+               rcuwait_wait_event(&q->requeue_wait,
+                                  atomic_read(&q->requeue_state) != Q_REQUEUE_PI_WAIT,
+                                  TASK_UNINTERRUPTIBLE);
+#else
+               (void)atomic_cond_read_relaxed(&q->requeue_state, VAL != Q_REQUEUE_PI_WAIT);
+#endif
+       }
+
+       /*
+        * Requeue is now either prohibited or complete. Reread state
+        * because during the wait above it might have changed. Nothing
+        * will modify q->requeue_state after this point.
+        */
+       return atomic_read(&q->requeue_state);
+}
+
 /**
  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  * @q:         the futex_q
@@ -1820,6 +1959,8 @@ void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
 
        q->lock_ptr = &hb->lock;
 
+       /* Signal locked state to the waiter */
+       futex_requeue_pi_complete(q, 1);
        wake_up_state(q->task, TASK_NORMAL);
 }
 
@@ -1879,10 +2020,21 @@ futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
        if (!top_waiter)
                return 0;
 
+       /*
+        * Ensure that this is a waiter sitting in futex_wait_requeue_pi()
+        * and waiting on the 'waitqueue' futex which is always !PI.
+        */
+       if (!top_waiter->rt_waiter || top_waiter->pi_state)
+               ret = -EINVAL;
+
        /* Ensure we requeue to the expected futex. */
        if (!match_futex(top_waiter->requeue_pi_key, key2))
                return -EINVAL;
 
+       /* Ensure that this does not race against an early wakeup */
+       if (!futex_requeue_pi_prepare(top_waiter, NULL))
+               return -EAGAIN;
+
        /*
         * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
         * the contended case or if set_waiters is 1.  The pi_state is returned
@@ -1892,8 +2044,22 @@ futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
        ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
                                   exiting, set_waiters);
        if (ret == 1) {
+               /* Dequeue, wake up and update top_waiter::requeue_state */
                requeue_pi_wake_futex(top_waiter, key2, hb2);
                return vpid;
+       } else if (ret < 0) {
+               /* Rewind top_waiter::requeue_state */
+               futex_requeue_pi_complete(top_waiter, ret);
+       } else {
+               /*
+                * futex_lock_pi_atomic() did not acquire the user space
+                * futex, but managed to establish the proxy lock and pi
+                * state. top_waiter::requeue_state cannot be fixed up here
+                * because the waiter is not enqueued on the rtmutex
+                * yet. This is handled at the callsite depending on the
+                * result of rt_mutex_start_proxy_lock() which is
+                * guaranteed to be reached with this function returning 0.
+                */
        }
        return ret;
 }
@@ -1947,24 +2113,36 @@ static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
                if (uaddr1 == uaddr2)
                        return -EINVAL;
 
+               /*
+                * futex_requeue() allows the caller to define the number
+                * of waiters to wake up via the @nr_wake argument. With
+                * REQUEUE_PI, waking up more than one waiter is creating
+                * more problems than it solves. Waking up a waiter makes
+                * only sense if the PI futex @uaddr2 is uncontended as
+                * this allows the requeue code to acquire the futex
+                * @uaddr2 before waking the waiter. The waiter can then
+                * return to user space without further action. A secondary
+                * wakeup would just make the futex_wait_requeue_pi()
+                * handling more complex, because that code would have to
+                * look up pi_state and do more or less all the handling
+                * which the requeue code has to do for the to be requeued
+                * waiters. So restrict the number of waiters to wake to
+                * one, and only wake it up when the PI futex is
+                * uncontended. Otherwise requeue it and let the unlock of
+                * the PI futex handle the wakeup.
+                *
+                * All REQUEUE_PI users, e.g. pthread_cond_signal() and
+                * pthread_cond_broadcast() must use nr_wake=1.
+                */
+               if (nr_wake != 1)
+                       return -EINVAL;
+
                /*
                 * requeue_pi requires a pi_state, try to allocate it now
                 * without any locks in case it fails.
                 */
                if (refill_pi_state_cache())
                        return -ENOMEM;
-               /*
-                * requeue_pi must wake as many tasks as it can, up to nr_wake
-                * + nr_requeue, since it acquires the rt_mutex prior to
-                * returning to userspace, so as to not leave the rt_mutex with
-                * waiters and no owner.  However, second and third wake-ups
-                * cannot be predicted as they involve race conditions with the
-                * first wake and a fault while looking up the pi_state.  Both
-                * pthread_cond_signal() and pthread_cond_broadcast() should
-                * use nr_wake=1.
-                */
-               if (nr_wake != 1)
-                       return -EINVAL;
        }
 
 retry:
@@ -2014,7 +2192,7 @@ retry_private:
                }
        }
 
-       if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
+       if (requeue_pi) {
                struct task_struct *exiting = NULL;
 
                /*
@@ -2022,6 +2200,8 @@ retry_private:
                 * intend to requeue waiters, force setting the FUTEX_WAITERS
                 * bit.  We force this here where we are able to easily handle
                 * faults rather in the requeue loop below.
+                *
+                * Updates topwaiter::requeue_state if a top waiter exists.
                 */
                ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
                                                 &key2, &pi_state,
@@ -2031,28 +2211,52 @@ retry_private:
                 * At this point the top_waiter has either taken uaddr2 or is
                 * waiting on it.  If the former, then the pi_state will not
                 * exist yet, look it up one more time to ensure we have a
-                * reference to it. If the lock was taken, ret contains the
-                * vpid of the top waiter task.
+                * reference to it. If the lock was taken, @ret contains the
+                * VPID of the top waiter task.
                 * If the lock was not taken, we have pi_state and an initial
                 * refcount on it. In case of an error we have nothing.
+                *
+                * The top waiter's requeue_state is up to date:
+                *
+                *  - If the lock was acquired atomically (ret > 0), then
+                *    the state is Q_REQUEUE_PI_LOCKED.
+                *
+                *  - If the trylock failed with an error (ret < 0) then
+                *    the state is either Q_REQUEUE_PI_NONE, i.e. "nothing
+                *    happened", or Q_REQUEUE_PI_IGNORE when there was an
+                *    interleaved early wakeup.
+                *
+                *  - If the trylock did not succeed (ret == 0) then the
+                *    state is either Q_REQUEUE_PI_IN_PROGRESS or
+                *    Q_REQUEUE_PI_WAIT if an early wakeup interleaved.
+                *    This will be cleaned up in the loop below, which
+                *    cannot fail because futex_proxy_trylock_atomic() did
+                *    the same sanity checks for requeue_pi as the loop
+                *    below does.
                 */
                if (ret > 0) {
                        WARN_ON(pi_state);
                        task_count++;
                        /*
-                        * If we acquired the lock, then the user space value
-                        * of uaddr2 should be vpid. It cannot be changed by
-                        * the top waiter as it is blocked on hb2 lock if it
-                        * tries to do so. If something fiddled with it behind
-                        * our back the pi state lookup might unearth it. So
-                        * we rather use the known value than rereading and
-                        * handing potential crap to lookup_pi_state.
+                        * If futex_proxy_trylock_atomic() acquired the
+                        * user space futex, then the user space value
+                        * @uaddr2 has been set to the @hb1's top waiter
+                        * task VPID. This task is guaranteed to be alive
+                        * and cannot be exiting because it is either
+                        * sleeping or blocked on @hb2 lock.
+                        *
+                        * The @uaddr2 futex cannot have waiters either as
+                        * otherwise futex_proxy_trylock_atomic() would not
+                        * have succeeded.
                         *
-                        * If that call succeeds then we have pi_state and an
-                        * initial refcount on it.
+                        * In order to requeue waiters to @hb2, pi state is
+                        * required. Hand in the VPID value (@ret) and
+                        * allocate PI state with an initial refcount on
+                        * it.
                         */
-                       ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
-                                             &pi_state, &exiting);
+                       ret = attach_to_pi_owner(uaddr2, ret, &key2, &pi_state,
+                                                &exiting);
+                       WARN_ON(ret);
                }
 
                switch (ret) {
@@ -2060,7 +2264,10 @@ retry_private:
                        /* We hold a reference on the pi state. */
                        break;
 
-                       /* If the above failed, then pi_state is NULL */
+               /*
+                * If the above failed, then pi_state is NULL and
+                * waiter::requeue_state is correct.
+                */
                case -EFAULT:
                        double_unlock_hb(hb1, hb2);
                        hb_waiters_dec(hb2);
@@ -2112,18 +2319,17 @@ retry_private:
                        break;
                }
 
-               /*
-                * Wake nr_wake waiters.  For requeue_pi, if we acquired the
-                * lock, we already woke the top_waiter.  If not, it will be
-                * woken by futex_unlock_pi().
-                */
-               if (++task_count <= nr_wake && !requeue_pi) {
-                       mark_wake_futex(&wake_q, this);
+               /* Plain futexes just wake or requeue and are done */
+               if (!requeue_pi) {
+                       if (++task_count <= nr_wake)
+                               mark_wake_futex(&wake_q, this);
+                       else
+                               requeue_futex(this, hb1, hb2, &key2);
                        continue;
                }
 
                /* Ensure we requeue to the expected futex for requeue_pi. */
-               if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
+               if (!match_futex(this->requeue_pi_key, &key2)) {
                        ret = -EINVAL;
                        break;
                }
@@ -2131,54 +2337,67 @@ retry_private:
                /*
                 * Requeue nr_requeue waiters and possibly one more in the case
                 * of requeue_pi if we couldn't acquire the lock atomically.
+                *
+                * Prepare the waiter to take the rt_mutex. Take a refcount
+                * on the pi_state and store the pointer in the futex_q
+                * object of the waiter.
                 */
-               if (requeue_pi) {
+               get_pi_state(pi_state);
+
+               /* Don't requeue when the waiter is already on the way out. */
+               if (!futex_requeue_pi_prepare(this, pi_state)) {
                        /*
-                        * Prepare the waiter to take the rt_mutex. Take a
-                        * refcount on the pi_state and store the pointer in
-                        * the futex_q object of the waiter.
+                        * Early woken waiter signaled that it is on the
+                        * way out. Drop the pi_state reference and try the
+                        * next waiter. @this->pi_state is still NULL.
                         */
-                       get_pi_state(pi_state);
-                       this->pi_state = pi_state;
-                       ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
-                                                       this->rt_waiter,
-                                                       this->task);
-                       if (ret == 1) {
-                               /*
-                                * We got the lock. We do neither drop the
-                                * refcount on pi_state nor clear
-                                * this->pi_state because the waiter needs the
-                                * pi_state for cleaning up the user space
-                                * value. It will drop the refcount after
-                                * doing so.
-                                */
-                               requeue_pi_wake_futex(this, &key2, hb2);
-                               continue;
-                       } else if (ret) {
-                               /*
-                                * rt_mutex_start_proxy_lock() detected a
-                                * potential deadlock when we tried to queue
-                                * that waiter. Drop the pi_state reference
-                                * which we took above and remove the pointer
-                                * to the state from the waiters futex_q
-                                * object.
-                                */
-                               this->pi_state = NULL;
-                               put_pi_state(pi_state);
-                               /*
-                                * We stop queueing more waiters and let user
-                                * space deal with the mess.
-                                */
-                               break;
-                       }
+                       put_pi_state(pi_state);
+                       continue;
+               }
+
+               ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
+                                               this->rt_waiter,
+                                               this->task);
+
+               if (ret == 1) {
+                       /*
+                        * We got the lock. We do neither drop the refcount
+                        * on pi_state nor clear this->pi_state because the
+                        * waiter needs the pi_state for cleaning up the
+                        * user space value. It will drop the refcount
+                        * after doing so. this::requeue_state is updated
+                        * in the wakeup as well.
+                        */
+                       requeue_pi_wake_futex(this, &key2, hb2);
+                       task_count++;
+               } else if (!ret) {
+                       /* Waiter is queued, move it to hb2 */
+                       requeue_futex(this, hb1, hb2, &key2);
+                       futex_requeue_pi_complete(this, 0);
+                       task_count++;
+               } else {
+                       /*
+                        * rt_mutex_start_proxy_lock() detected a potential
+                        * deadlock when we tried to queue that waiter.
+                        * Drop the pi_state reference which we took above
+                        * and remove the pointer to the state from the
+                        * waiters futex_q object.
+                        */
+                       this->pi_state = NULL;
+                       put_pi_state(pi_state);
+                       futex_requeue_pi_complete(this, ret);
+                       /*
+                        * We stop queueing more waiters and let user space
+                        * deal with the mess.
+                        */
+                       break;
                }
-               requeue_futex(this, hb1, hb2, &key2);
        }
 
        /*
-        * We took an extra initial reference to the pi_state either
-        * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
-        * need to drop it here again.
+        * We took an extra initial reference to the pi_state either in
+        * futex_proxy_trylock_atomic() or in attach_to_pi_owner(). We need
+        * to drop it here again.
         */
        put_pi_state(pi_state);
 
@@ -2357,7 +2576,7 @@ static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
         * Modifying pi_state _before_ the user space value would leave the
         * pi_state in an inconsistent state when we fault here, because we
         * need to drop the locks to handle the fault. This might be observed
-        * in the PID check in lookup_pi_state.
+        * in the PID checks when attaching to PI state .
         */
 retry:
        if (!argowner) {
@@ -2614,8 +2833,7 @@ static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  *
  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
  * compare it with the expected value.  Handle atomic faults internally.
- * Return with the hb lock held and a q.key reference on success, and unlocked
- * with no q.key reference on failure.
+ * Return with the hb lock held on success, and unlocked on failure.
  *
  * Return:
  *  -  0 - uaddr contains val and hb has been locked;
@@ -2693,8 +2911,8 @@ static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
                               current->timer_slack_ns);
 retry:
        /*
-        * Prepare to wait on uaddr. On success, holds hb lock and increments
-        * q.key refs.
+        * Prepare to wait on uaddr. On success, it holds hb->lock and q
+        * is initialized.
         */
        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
        if (ret)
@@ -2705,7 +2923,6 @@ retry:
 
        /* If we were woken (and unqueued), we succeeded, whatever. */
        ret = 0;
-       /* unqueue_me() drops q.key ref */
        if (!unqueue_me(&q))
                goto out;
        ret = -ETIMEDOUT;
@@ -3072,27 +3289,22 @@ pi_faulted:
 }
 
 /**
- * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
+ * handle_early_requeue_pi_wakeup() - Handle early wakeup on the initial futex
  * @hb:                the hash_bucket futex_q was original enqueued on
  * @q:         the futex_q woken while waiting to be requeued
- * @key2:      the futex_key of the requeue target futex
  * @timeout:   the timeout associated with the wait (NULL if none)
  *
- * Detect if the task was woken on the initial futex as opposed to the requeue
- * target futex.  If so, determine if it was a timeout or a signal that caused
- * the wakeup and return the appropriate error code to the caller.  Must be
- * called with the hb lock held.
+ * Determine the cause for the early wakeup.
  *
  * Return:
- *  -  0 = no early wakeup detected;
- *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
+ *  -EWOULDBLOCK or -ETIMEDOUT or -ERESTARTNOINTR
  */
 static inline
 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
-                                  struct futex_q *q, union futex_key *key2,
+                                  struct futex_q *q,
                                   struct hrtimer_sleeper *timeout)
 {
-       int ret = 0;
+       int ret;
 
        /*
         * With the hb lock held, we avoid races while we process the wakeup.
@@ -3101,22 +3313,21 @@ int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
         * It can't be requeued from uaddr2 to something else since we don't
         * support a PI aware source futex for requeue.
         */
-       if (!match_futex(&q->key, key2)) {
-               WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
-               /*
-                * We were woken prior to requeue by a timeout or a signal.
-                * Unqueue the futex_q and determine which it was.
-                */
-               plist_del(&q->list, &hb->chain);
-               hb_waiters_dec(hb);
+       WARN_ON_ONCE(&hb->lock != q->lock_ptr);
 
-               /* Handle spurious wakeups gracefully */
-               ret = -EWOULDBLOCK;
-               if (timeout && !timeout->task)
-                       ret = -ETIMEDOUT;
-               else if (signal_pending(current))
-                       ret = -ERESTARTNOINTR;
-       }
+       /*
+        * We were woken prior to requeue by a timeout or a signal.
+        * Unqueue the futex_q and determine which it was.
+        */
+       plist_del(&q->list, &hb->chain);
+       hb_waiters_dec(hb);
+
+       /* Handle spurious wakeups gracefully */
+       ret = -EWOULDBLOCK;
+       if (timeout && !timeout->task)
+               ret = -ETIMEDOUT;
+       else if (signal_pending(current))
+               ret = -ERESTARTNOINTR;
        return ret;
 }
 
@@ -3169,6 +3380,7 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
        struct futex_hash_bucket *hb;
        union futex_key key2 = FUTEX_KEY_INIT;
        struct futex_q q = futex_q_init;
+       struct rt_mutex_base *pi_mutex;
        int res, ret;
 
        if (!IS_ENABLED(CONFIG_FUTEX_PI))
@@ -3198,8 +3410,8 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
        q.requeue_pi_key = &key2;
 
        /*
-        * Prepare to wait on uaddr. On success, increments q.key (key1) ref
-        * count.
+        * Prepare to wait on uaddr. On success, it holds hb->lock and q
+        * is initialized.
         */
        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
        if (ret)
@@ -3218,32 +3430,22 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
        /* Queue the futex_q, drop the hb lock, wait for wakeup. */
        futex_wait_queue_me(hb, &q, to);
 
-       spin_lock(&hb->lock);
-       ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
-       spin_unlock(&hb->lock);
-       if (ret)
-               goto out;
-
-       /*
-        * In order for us to be here, we know our q.key == key2, and since
-        * we took the hb->lock above, we also know that futex_requeue() has
-        * completed and we no longer have to concern ourselves with a wakeup
-        * race with the atomic proxy lock acquisition by the requeue code. The
-        * futex_requeue dropped our key1 reference and incremented our key2
-        * reference count.
-        */
+       switch (futex_requeue_pi_wakeup_sync(&q)) {
+       case Q_REQUEUE_PI_IGNORE:
+               /* The waiter is still on uaddr1 */
+               spin_lock(&hb->lock);
+               ret = handle_early_requeue_pi_wakeup(hb, &q, to);
+               spin_unlock(&hb->lock);
+               break;
 
-       /*
-        * Check if the requeue code acquired the second futex for us and do
-        * any pertinent fixup.
-        */
-       if (!q.rt_waiter) {
+       case Q_REQUEUE_PI_LOCKED:
+               /* The requeue acquired the lock */
                if (q.pi_state && (q.pi_state->owner != current)) {
                        spin_lock(q.lock_ptr);
                        ret = fixup_owner(uaddr2, &q, true);
                        /*
-                        * Drop the reference to the pi state which
-                        * the requeue_pi() code acquired for us.
+                        * Drop the reference to the pi state which the
+                        * requeue_pi() code acquired for us.
                         */
                        put_pi_state(q.pi_state);
                        spin_unlock(q.lock_ptr);
@@ -3253,18 +3455,14 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
                         */
                        ret = ret < 0 ? ret : 0;
                }
-       } else {
-               struct rt_mutex *pi_mutex;
+               break;
 
-               /*
-                * We have been woken up by futex_unlock_pi(), a timeout, or a
-                * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
-                * the pi_state.
-                */
-               WARN_ON(!q.pi_state);
+       case Q_REQUEUE_PI_DONE:
+               /* Requeue completed. Current is 'pi_blocked_on' the rtmutex */
                pi_mutex = &q.pi_state->pi_mutex;
                ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
 
+               /* Current is not longer pi_blocked_on */
                spin_lock(q.lock_ptr);
                if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
                        ret = 0;
@@ -3284,17 +3482,21 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
 
                unqueue_me_pi(&q);
                spin_unlock(q.lock_ptr);
-       }
 
-       if (ret == -EINTR) {
-               /*
-                * We've already been requeued, but cannot restart by calling
-                * futex_lock_pi() directly. We could restart this syscall, but
-                * it would detect that the user space "val" changed and return
-                * -EWOULDBLOCK.  Save the overhead of the restart and return
-                * -EWOULDBLOCK directly.
-                */
-               ret = -EWOULDBLOCK;
+               if (ret == -EINTR) {
+                       /*
+                        * We've already been requeued, but cannot restart
+                        * by calling futex_lock_pi() directly. We could
+                        * restart this syscall, but it would detect that
+                        * the user space "val" changed and return
+                        * -EWOULDBLOCK.  Save the overhead of the restart
+                        * and return -EWOULDBLOCK directly.
+                        */
+                       ret = -EWOULDBLOCK;
+               }
+               break;
+       default:
+               BUG();
        }
 
 out: