Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / tools / testing / selftests / kvm / kvm_page_table_test.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KVM page table test
4  *
5  * Copyright (C) 2021, Huawei, Inc.
6  *
7  * Make sure that THP has been enabled or enough HUGETLB pages with specific
8  * page size have been pre-allocated on your system, if you are planning to
9  * use hugepages to back the guest memory for testing.
10  */
11
12 #define _GNU_SOURCE /* for program_invocation_name */
13
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <time.h>
17 #include <pthread.h>
18 #include <semaphore.h>
19
20 #include "test_util.h"
21 #include "kvm_util.h"
22 #include "processor.h"
23 #include "guest_modes.h"
24
25 #define TEST_MEM_SLOT_INDEX             1
26
27 /* Default size(1GB) of the memory for testing */
28 #define DEFAULT_TEST_MEM_SIZE           (1 << 30)
29
30 /* Default guest test virtual memory offset */
31 #define DEFAULT_GUEST_TEST_MEM          0xc0000000
32
33 /* Different guest memory accessing stages */
34 enum test_stage {
35         KVM_BEFORE_MAPPINGS,
36         KVM_CREATE_MAPPINGS,
37         KVM_UPDATE_MAPPINGS,
38         KVM_ADJUST_MAPPINGS,
39         NUM_TEST_STAGES,
40 };
41
42 static const char * const test_stage_string[] = {
43         "KVM_BEFORE_MAPPINGS",
44         "KVM_CREATE_MAPPINGS",
45         "KVM_UPDATE_MAPPINGS",
46         "KVM_ADJUST_MAPPINGS",
47 };
48
49 struct vcpu_args {
50         int vcpu_id;
51         bool vcpu_write;
52 };
53
54 struct test_args {
55         struct kvm_vm *vm;
56         uint64_t guest_test_virt_mem;
57         uint64_t host_page_size;
58         uint64_t host_num_pages;
59         uint64_t large_page_size;
60         uint64_t large_num_pages;
61         uint64_t host_pages_per_lpage;
62         enum vm_mem_backing_src_type src_type;
63         struct vcpu_args vcpu_args[KVM_MAX_VCPUS];
64 };
65
66 /*
67  * Guest variables. Use addr_gva2hva() if these variables need
68  * to be changed in host.
69  */
70 static enum test_stage guest_test_stage;
71
72 /* Host variables */
73 static uint32_t nr_vcpus = 1;
74 static struct test_args test_args;
75 static enum test_stage *current_stage;
76 static bool host_quit;
77
78 /* Whether the test stage is updated, or completed */
79 static sem_t test_stage_updated;
80 static sem_t test_stage_completed;
81
82 /*
83  * Guest physical memory offset of the testing memory slot.
84  * This will be set to the topmost valid physical address minus
85  * the test memory size.
86  */
87 static uint64_t guest_test_phys_mem;
88
89 /*
90  * Guest virtual memory offset of the testing memory slot.
91  * Must not conflict with identity mapped test code.
92  */
93 static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM;
94
95 static void guest_code(int vcpu_id)
96 {
97         struct test_args *p = &test_args;
98         struct vcpu_args *vcpu_args = &p->vcpu_args[vcpu_id];
99         enum test_stage *current_stage = &guest_test_stage;
100         uint64_t addr;
101         int i, j;
102
103         /* Make sure vCPU args data structure is not corrupt */
104         GUEST_ASSERT(vcpu_args->vcpu_id == vcpu_id);
105
106         while (true) {
107                 addr = p->guest_test_virt_mem;
108
109                 switch (READ_ONCE(*current_stage)) {
110                 /*
111                  * All vCPU threads will be started in this stage,
112                  * where guest code of each vCPU will do nothing.
113                  */
114                 case KVM_BEFORE_MAPPINGS:
115                         break;
116
117                 /*
118                  * Before dirty logging, vCPUs concurrently access the first
119                  * 8 bytes of each page (host page/large page) within the same
120                  * memory region with different accessing types (read/write).
121                  * Then KVM will create normal page mappings or huge block
122                  * mappings for them.
123                  */
124                 case KVM_CREATE_MAPPINGS:
125                         for (i = 0; i < p->large_num_pages; i++) {
126                                 if (vcpu_args->vcpu_write)
127                                         *(uint64_t *)addr = 0x0123456789ABCDEF;
128                                 else
129                                         READ_ONCE(*(uint64_t *)addr);
130
131                                 addr += p->large_page_size;
132                         }
133                         break;
134
135                 /*
136                  * During dirty logging, KVM will only update attributes of the
137                  * normal page mappings from RO to RW if memory backing src type
138                  * is anonymous. In other cases, KVM will split the huge block
139                  * mappings into normal page mappings if memory backing src type
140                  * is THP or HUGETLB.
141                  */
142                 case KVM_UPDATE_MAPPINGS:
143                         if (p->src_type == VM_MEM_SRC_ANONYMOUS) {
144                                 for (i = 0; i < p->host_num_pages; i++) {
145                                         *(uint64_t *)addr = 0x0123456789ABCDEF;
146                                         addr += p->host_page_size;
147                                 }
148                                 break;
149                         }
150
151                         for (i = 0; i < p->large_num_pages; i++) {
152                                 /*
153                                  * Write to the first host page in each large
154                                  * page region, and triger break of large pages.
155                                  */
156                                 *(uint64_t *)addr = 0x0123456789ABCDEF;
157
158                                 /*
159                                  * Access the middle host pages in each large
160                                  * page region. Since dirty logging is enabled,
161                                  * this will create new mappings at the smallest
162                                  * granularity.
163                                  */
164                                 addr += p->large_page_size / 2;
165                                 for (j = 0; j < p->host_pages_per_lpage / 2; j++) {
166                                         READ_ONCE(*(uint64_t *)addr);
167                                         addr += p->host_page_size;
168                                 }
169                         }
170                         break;
171
172                 /*
173                  * After dirty logging is stopped, vCPUs concurrently read
174                  * from every single host page. Then KVM will coalesce the
175                  * split page mappings back to block mappings. And a TLB
176                  * conflict abort could occur here if TLB entries of the
177                  * page mappings are not fully invalidated.
178                  */
179                 case KVM_ADJUST_MAPPINGS:
180                         for (i = 0; i < p->host_num_pages; i++) {
181                                 READ_ONCE(*(uint64_t *)addr);
182                                 addr += p->host_page_size;
183                         }
184                         break;
185
186                 default:
187                         GUEST_ASSERT(0);
188                 }
189
190                 GUEST_SYNC(1);
191         }
192 }
193
194 static void *vcpu_worker(void *data)
195 {
196         int ret;
197         struct vcpu_args *vcpu_args = data;
198         struct kvm_vm *vm = test_args.vm;
199         int vcpu_id = vcpu_args->vcpu_id;
200         struct kvm_run *run;
201         struct timespec start;
202         struct timespec ts_diff;
203         enum test_stage stage;
204
205         vcpu_args_set(vm, vcpu_id, 1, vcpu_id);
206         run = vcpu_state(vm, vcpu_id);
207
208         while (!READ_ONCE(host_quit)) {
209                 ret = sem_wait(&test_stage_updated);
210                 TEST_ASSERT(ret == 0, "Error in sem_wait");
211
212                 if (READ_ONCE(host_quit))
213                         return NULL;
214
215                 clock_gettime(CLOCK_MONOTONIC_RAW, &start);
216                 ret = _vcpu_run(vm, vcpu_id);
217                 ts_diff = timespec_elapsed(start);
218
219                 TEST_ASSERT(ret == 0, "vcpu_run failed: %d\n", ret);
220                 TEST_ASSERT(get_ucall(vm, vcpu_id, NULL) == UCALL_SYNC,
221                             "Invalid guest sync status: exit_reason=%s\n",
222                             exit_reason_str(run->exit_reason));
223
224                 pr_debug("Got sync event from vCPU %d\n", vcpu_id);
225                 stage = READ_ONCE(*current_stage);
226
227                 /*
228                  * Here we can know the execution time of every
229                  * single vcpu running in different test stages.
230                  */
231                 pr_debug("vCPU %d has completed stage %s\n"
232                          "execution time is: %ld.%.9lds\n\n",
233                          vcpu_id, test_stage_string[stage],
234                          ts_diff.tv_sec, ts_diff.tv_nsec);
235
236                 ret = sem_post(&test_stage_completed);
237                 TEST_ASSERT(ret == 0, "Error in sem_post");
238         }
239
240         return NULL;
241 }
242
243 struct test_params {
244         uint64_t phys_offset;
245         uint64_t test_mem_size;
246         enum vm_mem_backing_src_type src_type;
247 };
248
249 static struct kvm_vm *pre_init_before_test(enum vm_guest_mode mode, void *arg)
250 {
251         int ret;
252         struct test_params *p = arg;
253         struct vcpu_args *vcpu_args;
254         enum vm_mem_backing_src_type src_type = p->src_type;
255         uint64_t large_page_size = get_backing_src_pagesz(src_type);
256         uint64_t guest_page_size = vm_guest_mode_params[mode].page_size;
257         uint64_t host_page_size = getpagesize();
258         uint64_t test_mem_size = p->test_mem_size;
259         uint64_t guest_num_pages;
260         uint64_t alignment;
261         void *host_test_mem;
262         struct kvm_vm *vm;
263         int vcpu_id;
264
265         /* Align up the test memory size */
266         alignment = max(large_page_size, guest_page_size);
267         test_mem_size = (test_mem_size + alignment - 1) & ~(alignment - 1);
268
269         /* Create a VM with enough guest pages */
270         guest_num_pages = test_mem_size / guest_page_size;
271         vm = vm_create_with_vcpus(mode, nr_vcpus, DEFAULT_GUEST_PHY_PAGES,
272                                   guest_num_pages, 0, guest_code, NULL);
273
274         /* Align down GPA of the testing memslot */
275         if (!p->phys_offset)
276                 guest_test_phys_mem = (vm_get_max_gfn(vm) - guest_num_pages) *
277                                        guest_page_size;
278         else
279                 guest_test_phys_mem = p->phys_offset;
280 #ifdef __s390x__
281         alignment = max(0x100000, alignment);
282 #endif
283         guest_test_phys_mem &= ~(alignment - 1);
284
285         /* Set up the shared data structure test_args */
286         test_args.vm = vm;
287         test_args.guest_test_virt_mem = guest_test_virt_mem;
288         test_args.host_page_size = host_page_size;
289         test_args.host_num_pages = test_mem_size / host_page_size;
290         test_args.large_page_size = large_page_size;
291         test_args.large_num_pages = test_mem_size / large_page_size;
292         test_args.host_pages_per_lpage = large_page_size / host_page_size;
293         test_args.src_type = src_type;
294
295         for (vcpu_id = 0; vcpu_id < KVM_MAX_VCPUS; vcpu_id++) {
296                 vcpu_args = &test_args.vcpu_args[vcpu_id];
297                 vcpu_args->vcpu_id = vcpu_id;
298                 vcpu_args->vcpu_write = !(vcpu_id % 2);
299         }
300
301         /* Add an extra memory slot with specified backing src type */
302         vm_userspace_mem_region_add(vm, src_type, guest_test_phys_mem,
303                                     TEST_MEM_SLOT_INDEX, guest_num_pages, 0);
304
305         /* Do mapping(GVA->GPA) for the testing memory slot */
306         virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages, 0);
307
308         /* Cache the HVA pointer of the region */
309         host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem);
310
311         /* Export shared structure test_args to guest */
312         ucall_init(vm, NULL);
313         sync_global_to_guest(vm, test_args);
314
315         ret = sem_init(&test_stage_updated, 0, 0);
316         TEST_ASSERT(ret == 0, "Error in sem_init");
317
318         ret = sem_init(&test_stage_completed, 0, 0);
319         TEST_ASSERT(ret == 0, "Error in sem_init");
320
321         current_stage = addr_gva2hva(vm, (vm_vaddr_t)(&guest_test_stage));
322         *current_stage = NUM_TEST_STAGES;
323
324         pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode));
325         pr_info("Testing memory backing src type: %s\n",
326                 vm_mem_backing_src_alias(src_type)->name);
327         pr_info("Testing memory backing src granularity: 0x%lx\n",
328                 large_page_size);
329         pr_info("Testing memory size(aligned): 0x%lx\n", test_mem_size);
330         pr_info("Guest physical test memory offset: 0x%lx\n",
331                 guest_test_phys_mem);
332         pr_info("Host  virtual  test memory offset: 0x%lx\n",
333                 (uint64_t)host_test_mem);
334         pr_info("Number of testing vCPUs: %d\n", nr_vcpus);
335
336         return vm;
337 }
338
339 static void vcpus_complete_new_stage(enum test_stage stage)
340 {
341         int ret;
342         int vcpus;
343
344         /* Wake up all the vcpus to run new test stage */
345         for (vcpus = 0; vcpus < nr_vcpus; vcpus++) {
346                 ret = sem_post(&test_stage_updated);
347                 TEST_ASSERT(ret == 0, "Error in sem_post");
348         }
349         pr_debug("All vcpus have been notified to continue\n");
350
351         /* Wait for all the vcpus to complete new test stage */
352         for (vcpus = 0; vcpus < nr_vcpus; vcpus++) {
353                 ret = sem_wait(&test_stage_completed);
354                 TEST_ASSERT(ret == 0, "Error in sem_wait");
355
356                 pr_debug("%d vcpus have completed stage %s\n",
357                          vcpus + 1, test_stage_string[stage]);
358         }
359
360         pr_debug("All vcpus have completed stage %s\n",
361                  test_stage_string[stage]);
362 }
363
364 static void run_test(enum vm_guest_mode mode, void *arg)
365 {
366         int ret;
367         pthread_t *vcpu_threads;
368         struct kvm_vm *vm;
369         int vcpu_id;
370         struct timespec start;
371         struct timespec ts_diff;
372
373         /* Create VM with vCPUs and make some pre-initialization */
374         vm = pre_init_before_test(mode, arg);
375
376         vcpu_threads = malloc(nr_vcpus * sizeof(*vcpu_threads));
377         TEST_ASSERT(vcpu_threads, "Memory allocation failed");
378
379         host_quit = false;
380         *current_stage = KVM_BEFORE_MAPPINGS;
381
382         for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) {
383                 pthread_create(&vcpu_threads[vcpu_id], NULL, vcpu_worker,
384                                &test_args.vcpu_args[vcpu_id]);
385         }
386
387         vcpus_complete_new_stage(*current_stage);
388         pr_info("Started all vCPUs successfully\n");
389
390         /* Test the stage of KVM creating mappings */
391         *current_stage = KVM_CREATE_MAPPINGS;
392
393         clock_gettime(CLOCK_MONOTONIC_RAW, &start);
394         vcpus_complete_new_stage(*current_stage);
395         ts_diff = timespec_elapsed(start);
396
397         pr_info("KVM_CREATE_MAPPINGS: total execution time: %ld.%.9lds\n\n",
398                 ts_diff.tv_sec, ts_diff.tv_nsec);
399
400         /* Test the stage of KVM updating mappings */
401         vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX,
402                                 KVM_MEM_LOG_DIRTY_PAGES);
403
404         *current_stage = KVM_UPDATE_MAPPINGS;
405
406         clock_gettime(CLOCK_MONOTONIC_RAW, &start);
407         vcpus_complete_new_stage(*current_stage);
408         ts_diff = timespec_elapsed(start);
409
410         pr_info("KVM_UPDATE_MAPPINGS: total execution time: %ld.%.9lds\n\n",
411                 ts_diff.tv_sec, ts_diff.tv_nsec);
412
413         /* Test the stage of KVM adjusting mappings */
414         vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX, 0);
415
416         *current_stage = KVM_ADJUST_MAPPINGS;
417
418         clock_gettime(CLOCK_MONOTONIC_RAW, &start);
419         vcpus_complete_new_stage(*current_stage);
420         ts_diff = timespec_elapsed(start);
421
422         pr_info("KVM_ADJUST_MAPPINGS: total execution time: %ld.%.9lds\n\n",
423                 ts_diff.tv_sec, ts_diff.tv_nsec);
424
425         /* Tell the vcpu thread to quit */
426         host_quit = true;
427         for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) {
428                 ret = sem_post(&test_stage_updated);
429                 TEST_ASSERT(ret == 0, "Error in sem_post");
430         }
431
432         for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++)
433                 pthread_join(vcpu_threads[vcpu_id], NULL);
434
435         ret = sem_destroy(&test_stage_updated);
436         TEST_ASSERT(ret == 0, "Error in sem_destroy");
437
438         ret = sem_destroy(&test_stage_completed);
439         TEST_ASSERT(ret == 0, "Error in sem_destroy");
440
441         free(vcpu_threads);
442         ucall_uninit(vm);
443         kvm_vm_free(vm);
444 }
445
446 static void help(char *name)
447 {
448         puts("");
449         printf("usage: %s [-h] [-p offset] [-m mode] "
450                "[-b mem-size] [-v vcpus] [-s mem-type]\n", name);
451         puts("");
452         printf(" -p: specify guest physical test memory offset\n"
453                "     Warning: a low offset can conflict with the loaded test code.\n");
454         guest_modes_help();
455         printf(" -b: specify size of the memory region for testing. e.g. 10M or 3G.\n"
456                "     (default: 1G)\n");
457         printf(" -v: specify the number of vCPUs to run\n"
458                "     (default: 1)\n");
459         printf(" -s: specify the type of memory that should be used to\n"
460                "     back the guest data region.\n"
461                "     (default: anonymous)\n\n");
462         backing_src_help();
463         puts("");
464 }
465
466 int main(int argc, char *argv[])
467 {
468         int max_vcpus = kvm_check_cap(KVM_CAP_MAX_VCPUS);
469         struct test_params p = {
470                 .test_mem_size = DEFAULT_TEST_MEM_SIZE,
471                 .src_type = VM_MEM_SRC_ANONYMOUS,
472         };
473         int opt;
474
475         guest_modes_append_default();
476
477         while ((opt = getopt(argc, argv, "hp:m:b:v:s:")) != -1) {
478                 switch (opt) {
479                 case 'p':
480                         p.phys_offset = strtoull(optarg, NULL, 0);
481                         break;
482                 case 'm':
483                         guest_modes_cmdline(optarg);
484                         break;
485                 case 'b':
486                         p.test_mem_size = parse_size(optarg);
487                         break;
488                 case 'v':
489                         nr_vcpus = atoi(optarg);
490                         TEST_ASSERT(nr_vcpus > 0 && nr_vcpus <= max_vcpus,
491                                     "Invalid number of vcpus, must be between 1 and %d", max_vcpus);
492                         break;
493                 case 's':
494                         p.src_type = parse_backing_src_type(optarg);
495                         break;
496                 case 'h':
497                 default:
498                         help(argv[0]);
499                         exit(0);
500                 }
501         }
502
503         for_each_guest_mode(run_test, &p);
504
505         return 0;
506 }