Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / tools / perf / util / intel-pt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46
47 #define MAX_TIMESTAMP (~0ULL)
48
49 struct range {
50         u64 start;
51         u64 end;
52 };
53
54 struct intel_pt {
55         struct auxtrace auxtrace;
56         struct auxtrace_queues queues;
57         struct auxtrace_heap heap;
58         u32 auxtrace_type;
59         struct perf_session *session;
60         struct machine *machine;
61         struct evsel *switch_evsel;
62         struct thread *unknown_thread;
63         bool timeless_decoding;
64         bool sampling_mode;
65         bool snapshot_mode;
66         bool per_cpu_mmaps;
67         bool have_tsc;
68         bool data_queued;
69         bool est_tsc;
70         bool sync_switch;
71         bool mispred_all;
72         bool use_thread_stack;
73         bool callstack;
74         unsigned int br_stack_sz;
75         unsigned int br_stack_sz_plus;
76         int have_sched_switch;
77         u32 pmu_type;
78         u64 kernel_start;
79         u64 switch_ip;
80         u64 ptss_ip;
81         u64 first_timestamp;
82
83         struct perf_tsc_conversion tc;
84         bool cap_user_time_zero;
85
86         struct itrace_synth_opts synth_opts;
87
88         bool sample_instructions;
89         u64 instructions_sample_type;
90         u64 instructions_id;
91
92         bool sample_branches;
93         u32 branches_filter;
94         u64 branches_sample_type;
95         u64 branches_id;
96
97         bool sample_transactions;
98         u64 transactions_sample_type;
99         u64 transactions_id;
100
101         bool sample_ptwrites;
102         u64 ptwrites_sample_type;
103         u64 ptwrites_id;
104
105         bool sample_pwr_events;
106         u64 pwr_events_sample_type;
107         u64 mwait_id;
108         u64 pwre_id;
109         u64 exstop_id;
110         u64 pwrx_id;
111         u64 cbr_id;
112         u64 psb_id;
113
114         bool sample_pebs;
115         struct evsel *pebs_evsel;
116
117         u64 tsc_bit;
118         u64 mtc_bit;
119         u64 mtc_freq_bits;
120         u32 tsc_ctc_ratio_n;
121         u32 tsc_ctc_ratio_d;
122         u64 cyc_bit;
123         u64 noretcomp_bit;
124         unsigned max_non_turbo_ratio;
125         unsigned cbr2khz;
126
127         unsigned long num_events;
128
129         char *filter;
130         struct addr_filters filts;
131
132         struct range *time_ranges;
133         unsigned int range_cnt;
134
135         struct ip_callchain *chain;
136         struct branch_stack *br_stack;
137
138         u64 dflt_tsc_offset;
139         struct rb_root vmcs_info;
140 };
141
142 enum switch_state {
143         INTEL_PT_SS_NOT_TRACING,
144         INTEL_PT_SS_UNKNOWN,
145         INTEL_PT_SS_TRACING,
146         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
147         INTEL_PT_SS_EXPECTING_SWITCH_IP,
148 };
149
150 struct intel_pt_queue {
151         struct intel_pt *pt;
152         unsigned int queue_nr;
153         struct auxtrace_buffer *buffer;
154         struct auxtrace_buffer *old_buffer;
155         void *decoder;
156         const struct intel_pt_state *state;
157         struct ip_callchain *chain;
158         struct branch_stack *last_branch;
159         union perf_event *event_buf;
160         bool on_heap;
161         bool stop;
162         bool step_through_buffers;
163         bool use_buffer_pid_tid;
164         bool sync_switch;
165         pid_t pid, tid;
166         int cpu;
167         int switch_state;
168         pid_t next_tid;
169         struct thread *thread;
170         struct machine *guest_machine;
171         struct thread *unknown_guest_thread;
172         pid_t guest_machine_pid;
173         bool exclude_kernel;
174         bool have_sample;
175         u64 time;
176         u64 timestamp;
177         u64 sel_timestamp;
178         bool sel_start;
179         unsigned int sel_idx;
180         u32 flags;
181         u16 insn_len;
182         u64 last_insn_cnt;
183         u64 ipc_insn_cnt;
184         u64 ipc_cyc_cnt;
185         u64 last_in_insn_cnt;
186         u64 last_in_cyc_cnt;
187         u64 last_br_insn_cnt;
188         u64 last_br_cyc_cnt;
189         unsigned int cbr_seen;
190         char insn[INTEL_PT_INSN_BUF_SZ];
191 };
192
193 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
194                           unsigned char *buf, size_t len)
195 {
196         struct intel_pt_pkt packet;
197         size_t pos = 0;
198         int ret, pkt_len, i;
199         char desc[INTEL_PT_PKT_DESC_MAX];
200         const char *color = PERF_COLOR_BLUE;
201         enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
202
203         color_fprintf(stdout, color,
204                       ". ... Intel Processor Trace data: size %zu bytes\n",
205                       len);
206
207         while (len) {
208                 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
209                 if (ret > 0)
210                         pkt_len = ret;
211                 else
212                         pkt_len = 1;
213                 printf(".");
214                 color_fprintf(stdout, color, "  %08x: ", pos);
215                 for (i = 0; i < pkt_len; i++)
216                         color_fprintf(stdout, color, " %02x", buf[i]);
217                 for (; i < 16; i++)
218                         color_fprintf(stdout, color, "   ");
219                 if (ret > 0) {
220                         ret = intel_pt_pkt_desc(&packet, desc,
221                                                 INTEL_PT_PKT_DESC_MAX);
222                         if (ret > 0)
223                                 color_fprintf(stdout, color, " %s\n", desc);
224                 } else {
225                         color_fprintf(stdout, color, " Bad packet!\n");
226                 }
227                 pos += pkt_len;
228                 buf += pkt_len;
229                 len -= pkt_len;
230         }
231 }
232
233 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
234                                 size_t len)
235 {
236         printf(".\n");
237         intel_pt_dump(pt, buf, len);
238 }
239
240 static void intel_pt_log_event(union perf_event *event)
241 {
242         FILE *f = intel_pt_log_fp();
243
244         if (!intel_pt_enable_logging || !f)
245                 return;
246
247         perf_event__fprintf(event, NULL, f);
248 }
249
250 static void intel_pt_dump_sample(struct perf_session *session,
251                                  struct perf_sample *sample)
252 {
253         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
254                                            auxtrace);
255
256         printf("\n");
257         intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
258 }
259
260 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
261 {
262         struct perf_time_interval *range = pt->synth_opts.ptime_range;
263         int n = pt->synth_opts.range_num;
264
265         if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
266                 return true;
267
268         if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
269                 return false;
270
271         /* perf_time__ranges_skip_sample does not work if time is zero */
272         if (!tm)
273                 tm = 1;
274
275         return !n || !perf_time__ranges_skip_sample(range, n, tm);
276 }
277
278 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
279                                                         u64 vmcs,
280                                                         u64 dflt_tsc_offset)
281 {
282         struct rb_node **p = &rb_root->rb_node;
283         struct rb_node *parent = NULL;
284         struct intel_pt_vmcs_info *v;
285
286         while (*p) {
287                 parent = *p;
288                 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
289
290                 if (v->vmcs == vmcs)
291                         return v;
292
293                 if (vmcs < v->vmcs)
294                         p = &(*p)->rb_left;
295                 else
296                         p = &(*p)->rb_right;
297         }
298
299         v = zalloc(sizeof(*v));
300         if (v) {
301                 v->vmcs = vmcs;
302                 v->tsc_offset = dflt_tsc_offset;
303                 v->reliable = dflt_tsc_offset;
304
305                 rb_link_node(&v->rb_node, parent, p);
306                 rb_insert_color(&v->rb_node, rb_root);
307         }
308
309         return v;
310 }
311
312 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
313 {
314         struct intel_pt_queue *ptq = data;
315         struct intel_pt *pt = ptq->pt;
316
317         if (!vmcs && !pt->dflt_tsc_offset)
318                 return NULL;
319
320         return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
321 }
322
323 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
324 {
325         struct intel_pt_vmcs_info *v;
326         struct rb_node *n;
327
328         n = rb_first(&pt->vmcs_info);
329         while (n) {
330                 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
331                 n = rb_next(n);
332                 rb_erase(&v->rb_node, &pt->vmcs_info);
333                 free(v);
334         }
335 }
336
337 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
338                                    struct auxtrace_buffer *b)
339 {
340         bool consecutive = false;
341         void *start;
342
343         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
344                                       pt->have_tsc, &consecutive,
345                                       pt->synth_opts.vm_time_correlation);
346         if (!start)
347                 return -EINVAL;
348         /*
349          * In the case of vm_time_correlation, the overlap might contain TSC
350          * packets that will not be fixed, and that will then no longer work for
351          * overlap detection. Avoid that by zeroing out the overlap.
352          */
353         if (pt->synth_opts.vm_time_correlation)
354                 memset(b->data, 0, start - b->data);
355         b->use_size = b->data + b->size - start;
356         b->use_data = start;
357         if (b->use_size && consecutive)
358                 b->consecutive = true;
359         return 0;
360 }
361
362 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
363                                struct auxtrace_buffer *buffer,
364                                struct auxtrace_buffer *old_buffer,
365                                struct intel_pt_buffer *b)
366 {
367         bool might_overlap;
368
369         if (!buffer->data) {
370                 int fd = perf_data__fd(ptq->pt->session->data);
371
372                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
373                 if (!buffer->data)
374                         return -ENOMEM;
375         }
376
377         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
378         if (might_overlap && !buffer->consecutive && old_buffer &&
379             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
380                 return -ENOMEM;
381
382         if (buffer->use_data) {
383                 b->len = buffer->use_size;
384                 b->buf = buffer->use_data;
385         } else {
386                 b->len = buffer->size;
387                 b->buf = buffer->data;
388         }
389         b->ref_timestamp = buffer->reference;
390
391         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
392                 b->consecutive = false;
393                 b->trace_nr = buffer->buffer_nr + 1;
394         } else {
395                 b->consecutive = true;
396         }
397
398         return 0;
399 }
400
401 /* Do not drop buffers with references - refer intel_pt_get_trace() */
402 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
403                                            struct auxtrace_buffer *buffer)
404 {
405         if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
406                 return;
407
408         auxtrace_buffer__drop_data(buffer);
409 }
410
411 /* Must be serialized with respect to intel_pt_get_trace() */
412 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
413                               void *cb_data)
414 {
415         struct intel_pt_queue *ptq = data;
416         struct auxtrace_buffer *buffer = ptq->buffer;
417         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
418         struct auxtrace_queue *queue;
419         int err = 0;
420
421         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
422
423         while (1) {
424                 struct intel_pt_buffer b = { .len = 0 };
425
426                 buffer = auxtrace_buffer__next(queue, buffer);
427                 if (!buffer)
428                         break;
429
430                 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
431                 if (err)
432                         break;
433
434                 if (b.len) {
435                         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
436                         old_buffer = buffer;
437                 } else {
438                         intel_pt_lookahead_drop_buffer(ptq, buffer);
439                         continue;
440                 }
441
442                 err = cb(&b, cb_data);
443                 if (err)
444                         break;
445         }
446
447         if (buffer != old_buffer)
448                 intel_pt_lookahead_drop_buffer(ptq, buffer);
449         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
450
451         return err;
452 }
453
454 /*
455  * This function assumes data is processed sequentially only.
456  * Must be serialized with respect to intel_pt_lookahead()
457  */
458 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
459 {
460         struct intel_pt_queue *ptq = data;
461         struct auxtrace_buffer *buffer = ptq->buffer;
462         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
463         struct auxtrace_queue *queue;
464         int err;
465
466         if (ptq->stop) {
467                 b->len = 0;
468                 return 0;
469         }
470
471         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
472
473         buffer = auxtrace_buffer__next(queue, buffer);
474         if (!buffer) {
475                 if (old_buffer)
476                         auxtrace_buffer__drop_data(old_buffer);
477                 b->len = 0;
478                 return 0;
479         }
480
481         ptq->buffer = buffer;
482
483         err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
484         if (err)
485                 return err;
486
487         if (ptq->step_through_buffers)
488                 ptq->stop = true;
489
490         if (b->len) {
491                 if (old_buffer)
492                         auxtrace_buffer__drop_data(old_buffer);
493                 ptq->old_buffer = buffer;
494         } else {
495                 auxtrace_buffer__drop_data(buffer);
496                 return intel_pt_get_trace(b, data);
497         }
498
499         return 0;
500 }
501
502 struct intel_pt_cache_entry {
503         struct auxtrace_cache_entry     entry;
504         u64                             insn_cnt;
505         u64                             byte_cnt;
506         enum intel_pt_insn_op           op;
507         enum intel_pt_insn_branch       branch;
508         int                             length;
509         int32_t                         rel;
510         char                            insn[INTEL_PT_INSN_BUF_SZ];
511 };
512
513 static int intel_pt_config_div(const char *var, const char *value, void *data)
514 {
515         int *d = data;
516         long val;
517
518         if (!strcmp(var, "intel-pt.cache-divisor")) {
519                 val = strtol(value, NULL, 0);
520                 if (val > 0 && val <= INT_MAX)
521                         *d = val;
522         }
523
524         return 0;
525 }
526
527 static int intel_pt_cache_divisor(void)
528 {
529         static int d;
530
531         if (d)
532                 return d;
533
534         perf_config(intel_pt_config_div, &d);
535
536         if (!d)
537                 d = 64;
538
539         return d;
540 }
541
542 static unsigned int intel_pt_cache_size(struct dso *dso,
543                                         struct machine *machine)
544 {
545         off_t size;
546
547         size = dso__data_size(dso, machine);
548         size /= intel_pt_cache_divisor();
549         if (size < 1000)
550                 return 10;
551         if (size > (1 << 21))
552                 return 21;
553         return 32 - __builtin_clz(size);
554 }
555
556 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
557                                              struct machine *machine)
558 {
559         struct auxtrace_cache *c;
560         unsigned int bits;
561
562         if (dso->auxtrace_cache)
563                 return dso->auxtrace_cache;
564
565         bits = intel_pt_cache_size(dso, machine);
566
567         /* Ignoring cache creation failure */
568         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
569
570         dso->auxtrace_cache = c;
571
572         return c;
573 }
574
575 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
576                               u64 offset, u64 insn_cnt, u64 byte_cnt,
577                               struct intel_pt_insn *intel_pt_insn)
578 {
579         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
580         struct intel_pt_cache_entry *e;
581         int err;
582
583         if (!c)
584                 return -ENOMEM;
585
586         e = auxtrace_cache__alloc_entry(c);
587         if (!e)
588                 return -ENOMEM;
589
590         e->insn_cnt = insn_cnt;
591         e->byte_cnt = byte_cnt;
592         e->op = intel_pt_insn->op;
593         e->branch = intel_pt_insn->branch;
594         e->length = intel_pt_insn->length;
595         e->rel = intel_pt_insn->rel;
596         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
597
598         err = auxtrace_cache__add(c, offset, &e->entry);
599         if (err)
600                 auxtrace_cache__free_entry(c, e);
601
602         return err;
603 }
604
605 static struct intel_pt_cache_entry *
606 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
607 {
608         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
609
610         if (!c)
611                 return NULL;
612
613         return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
614 }
615
616 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
617                                       u64 offset)
618 {
619         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
620
621         if (!c)
622                 return;
623
624         auxtrace_cache__remove(dso->auxtrace_cache, offset);
625 }
626
627 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
628 {
629         /* Assumes 64-bit kernel */
630         return ip & (1ULL << 63);
631 }
632
633 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
634 {
635         if (nr) {
636                 return intel_pt_guest_kernel_ip(ip) ?
637                        PERF_RECORD_MISC_GUEST_KERNEL :
638                        PERF_RECORD_MISC_GUEST_USER;
639         }
640
641         return ip >= ptq->pt->kernel_start ?
642                PERF_RECORD_MISC_KERNEL :
643                PERF_RECORD_MISC_USER;
644 }
645
646 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
647 {
648         /* No support for non-zero CS base */
649         if (from_ip)
650                 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
651         return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
652 }
653
654 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
655 {
656         struct machines *machines = &ptq->pt->session->machines;
657         struct machine *machine;
658         pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
659
660         if (ptq->guest_machine && pid == ptq->guest_machine_pid)
661                 return 0;
662
663         ptq->guest_machine = NULL;
664         thread__zput(ptq->unknown_guest_thread);
665
666         machine = machines__find_guest(machines, pid);
667         if (!machine)
668                 return -1;
669
670         ptq->unknown_guest_thread = machine__idle_thread(machine);
671         if (!ptq->unknown_guest_thread)
672                 return -1;
673
674         ptq->guest_machine = machine;
675         ptq->guest_machine_pid = pid;
676
677         return 0;
678 }
679
680 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
681                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
682                                    uint64_t to_ip, uint64_t max_insn_cnt,
683                                    void *data)
684 {
685         struct intel_pt_queue *ptq = data;
686         struct machine *machine = ptq->pt->machine;
687         struct thread *thread;
688         struct addr_location al;
689         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
690         ssize_t len;
691         int x86_64;
692         u8 cpumode;
693         u64 offset, start_offset, start_ip;
694         u64 insn_cnt = 0;
695         bool one_map = true;
696         bool nr;
697
698         intel_pt_insn->length = 0;
699
700         if (to_ip && *ip == to_ip)
701                 goto out_no_cache;
702
703         nr = ptq->state->to_nr;
704         cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
705
706         if (nr) {
707                 if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL ||
708                     intel_pt_get_guest(ptq))
709                         return -EINVAL;
710                 machine = ptq->guest_machine;
711                 thread = ptq->unknown_guest_thread;
712         } else {
713                 thread = ptq->thread;
714                 if (!thread) {
715                         if (cpumode != PERF_RECORD_MISC_KERNEL)
716                                 return -EINVAL;
717                         thread = ptq->pt->unknown_thread;
718                 }
719         }
720
721         while (1) {
722                 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
723                         return -EINVAL;
724
725                 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
726                     dso__data_status_seen(al.map->dso,
727                                           DSO_DATA_STATUS_SEEN_ITRACE))
728                         return -ENOENT;
729
730                 offset = al.map->map_ip(al.map, *ip);
731
732                 if (!to_ip && one_map) {
733                         struct intel_pt_cache_entry *e;
734
735                         e = intel_pt_cache_lookup(al.map->dso, machine, offset);
736                         if (e &&
737                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
738                                 *insn_cnt_ptr = e->insn_cnt;
739                                 *ip += e->byte_cnt;
740                                 intel_pt_insn->op = e->op;
741                                 intel_pt_insn->branch = e->branch;
742                                 intel_pt_insn->length = e->length;
743                                 intel_pt_insn->rel = e->rel;
744                                 memcpy(intel_pt_insn->buf, e->insn,
745                                        INTEL_PT_INSN_BUF_SZ);
746                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
747                                 return 0;
748                         }
749                 }
750
751                 start_offset = offset;
752                 start_ip = *ip;
753
754                 /* Load maps to ensure dso->is_64_bit has been updated */
755                 map__load(al.map);
756
757                 x86_64 = al.map->dso->is_64_bit;
758
759                 while (1) {
760                         len = dso__data_read_offset(al.map->dso, machine,
761                                                     offset, buf,
762                                                     INTEL_PT_INSN_BUF_SZ);
763                         if (len <= 0)
764                                 return -EINVAL;
765
766                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
767                                 return -EINVAL;
768
769                         intel_pt_log_insn(intel_pt_insn, *ip);
770
771                         insn_cnt += 1;
772
773                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
774                                 goto out;
775
776                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
777                                 goto out_no_cache;
778
779                         *ip += intel_pt_insn->length;
780
781                         if (to_ip && *ip == to_ip) {
782                                 intel_pt_insn->length = 0;
783                                 goto out_no_cache;
784                         }
785
786                         if (*ip >= al.map->end)
787                                 break;
788
789                         offset += intel_pt_insn->length;
790                 }
791                 one_map = false;
792         }
793 out:
794         *insn_cnt_ptr = insn_cnt;
795
796         if (!one_map)
797                 goto out_no_cache;
798
799         /*
800          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
801          * entries.
802          */
803         if (to_ip) {
804                 struct intel_pt_cache_entry *e;
805
806                 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
807                 if (e)
808                         return 0;
809         }
810
811         /* Ignore cache errors */
812         intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
813                            *ip - start_ip, intel_pt_insn);
814
815         return 0;
816
817 out_no_cache:
818         *insn_cnt_ptr = insn_cnt;
819         return 0;
820 }
821
822 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
823                                   uint64_t offset, const char *filename)
824 {
825         struct addr_filter *filt;
826         bool have_filter   = false;
827         bool hit_tracestop = false;
828         bool hit_filter    = false;
829
830         list_for_each_entry(filt, &pt->filts.head, list) {
831                 if (filt->start)
832                         have_filter = true;
833
834                 if ((filename && !filt->filename) ||
835                     (!filename && filt->filename) ||
836                     (filename && strcmp(filename, filt->filename)))
837                         continue;
838
839                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
840                         continue;
841
842                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
843                              ip, offset, filename ? filename : "[kernel]",
844                              filt->start ? "filter" : "stop",
845                              filt->addr, filt->size);
846
847                 if (filt->start)
848                         hit_filter = true;
849                 else
850                         hit_tracestop = true;
851         }
852
853         if (!hit_tracestop && !hit_filter)
854                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
855                              ip, offset, filename ? filename : "[kernel]");
856
857         return hit_tracestop || (have_filter && !hit_filter);
858 }
859
860 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
861 {
862         struct intel_pt_queue *ptq = data;
863         struct thread *thread;
864         struct addr_location al;
865         u8 cpumode;
866         u64 offset;
867
868         if (ptq->state->to_nr) {
869                 if (intel_pt_guest_kernel_ip(ip))
870                         return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
871                 /* No support for decoding guest user space */
872                 return -EINVAL;
873         } else if (ip >= ptq->pt->kernel_start) {
874                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
875         }
876
877         cpumode = PERF_RECORD_MISC_USER;
878
879         thread = ptq->thread;
880         if (!thread)
881                 return -EINVAL;
882
883         if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
884                 return -EINVAL;
885
886         offset = al.map->map_ip(al.map, ip);
887
888         return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
889                                      al.map->dso->long_name);
890 }
891
892 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
893 {
894         return __intel_pt_pgd_ip(ip, data) > 0;
895 }
896
897 static bool intel_pt_get_config(struct intel_pt *pt,
898                                 struct perf_event_attr *attr, u64 *config)
899 {
900         if (attr->type == pt->pmu_type) {
901                 if (config)
902                         *config = attr->config;
903                 return true;
904         }
905
906         return false;
907 }
908
909 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
910 {
911         struct evsel *evsel;
912
913         evlist__for_each_entry(pt->session->evlist, evsel) {
914                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
915                     !evsel->core.attr.exclude_kernel)
916                         return false;
917         }
918         return true;
919 }
920
921 static bool intel_pt_return_compression(struct intel_pt *pt)
922 {
923         struct evsel *evsel;
924         u64 config;
925
926         if (!pt->noretcomp_bit)
927                 return true;
928
929         evlist__for_each_entry(pt->session->evlist, evsel) {
930                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
931                     (config & pt->noretcomp_bit))
932                         return false;
933         }
934         return true;
935 }
936
937 static bool intel_pt_branch_enable(struct intel_pt *pt)
938 {
939         struct evsel *evsel;
940         u64 config;
941
942         evlist__for_each_entry(pt->session->evlist, evsel) {
943                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
944                     (config & 1) && !(config & 0x2000))
945                         return false;
946         }
947         return true;
948 }
949
950 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
951 {
952         struct evsel *evsel;
953         unsigned int shift;
954         u64 config;
955
956         if (!pt->mtc_freq_bits)
957                 return 0;
958
959         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
960                 config >>= 1;
961
962         evlist__for_each_entry(pt->session->evlist, evsel) {
963                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
964                         return (config & pt->mtc_freq_bits) >> shift;
965         }
966         return 0;
967 }
968
969 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
970 {
971         struct evsel *evsel;
972         bool timeless_decoding = true;
973         u64 config;
974
975         if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
976                 return true;
977
978         evlist__for_each_entry(pt->session->evlist, evsel) {
979                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
980                         return true;
981                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
982                         if (config & pt->tsc_bit)
983                                 timeless_decoding = false;
984                         else
985                                 return true;
986                 }
987         }
988         return timeless_decoding;
989 }
990
991 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
992 {
993         struct evsel *evsel;
994
995         evlist__for_each_entry(pt->session->evlist, evsel) {
996                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
997                     !evsel->core.attr.exclude_kernel)
998                         return true;
999         }
1000         return false;
1001 }
1002
1003 static bool intel_pt_have_tsc(struct intel_pt *pt)
1004 {
1005         struct evsel *evsel;
1006         bool have_tsc = false;
1007         u64 config;
1008
1009         if (!pt->tsc_bit)
1010                 return false;
1011
1012         evlist__for_each_entry(pt->session->evlist, evsel) {
1013                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1014                         if (config & pt->tsc_bit)
1015                                 have_tsc = true;
1016                         else
1017                                 return false;
1018                 }
1019         }
1020         return have_tsc;
1021 }
1022
1023 static bool intel_pt_have_mtc(struct intel_pt *pt)
1024 {
1025         struct evsel *evsel;
1026         u64 config;
1027
1028         evlist__for_each_entry(pt->session->evlist, evsel) {
1029                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1030                     (config & pt->mtc_bit))
1031                         return true;
1032         }
1033         return false;
1034 }
1035
1036 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1037 {
1038         struct evsel *evsel;
1039
1040         evlist__for_each_entry(pt->session->evlist, evsel) {
1041                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1042                     evsel->core.attr.aux_sample_size)
1043                         return true;
1044         }
1045         return false;
1046 }
1047
1048 static u64 intel_pt_ctl(struct intel_pt *pt)
1049 {
1050         struct evsel *evsel;
1051         u64 config;
1052
1053         evlist__for_each_entry(pt->session->evlist, evsel) {
1054                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1055                         return config;
1056         }
1057         return 0;
1058 }
1059
1060 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1061 {
1062         u64 quot, rem;
1063
1064         quot = ns / pt->tc.time_mult;
1065         rem  = ns % pt->tc.time_mult;
1066         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1067                 pt->tc.time_mult;
1068 }
1069
1070 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1071 {
1072         size_t sz = sizeof(struct ip_callchain);
1073
1074         /* Add 1 to callchain_sz for callchain context */
1075         sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1076         return zalloc(sz);
1077 }
1078
1079 static int intel_pt_callchain_init(struct intel_pt *pt)
1080 {
1081         struct evsel *evsel;
1082
1083         evlist__for_each_entry(pt->session->evlist, evsel) {
1084                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1085                         evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1086         }
1087
1088         pt->chain = intel_pt_alloc_chain(pt);
1089         if (!pt->chain)
1090                 return -ENOMEM;
1091
1092         return 0;
1093 }
1094
1095 static void intel_pt_add_callchain(struct intel_pt *pt,
1096                                    struct perf_sample *sample)
1097 {
1098         struct thread *thread = machine__findnew_thread(pt->machine,
1099                                                         sample->pid,
1100                                                         sample->tid);
1101
1102         thread_stack__sample_late(thread, sample->cpu, pt->chain,
1103                                   pt->synth_opts.callchain_sz + 1, sample->ip,
1104                                   pt->kernel_start);
1105
1106         sample->callchain = pt->chain;
1107 }
1108
1109 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1110 {
1111         size_t sz = sizeof(struct branch_stack);
1112
1113         sz += entry_cnt * sizeof(struct branch_entry);
1114         return zalloc(sz);
1115 }
1116
1117 static int intel_pt_br_stack_init(struct intel_pt *pt)
1118 {
1119         struct evsel *evsel;
1120
1121         evlist__for_each_entry(pt->session->evlist, evsel) {
1122                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1123                         evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1124         }
1125
1126         pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1127         if (!pt->br_stack)
1128                 return -ENOMEM;
1129
1130         return 0;
1131 }
1132
1133 static void intel_pt_add_br_stack(struct intel_pt *pt,
1134                                   struct perf_sample *sample)
1135 {
1136         struct thread *thread = machine__findnew_thread(pt->machine,
1137                                                         sample->pid,
1138                                                         sample->tid);
1139
1140         thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1141                                      pt->br_stack_sz, sample->ip,
1142                                      pt->kernel_start);
1143
1144         sample->branch_stack = pt->br_stack;
1145 }
1146
1147 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1148 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1149
1150 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1151                                                    unsigned int queue_nr)
1152 {
1153         struct intel_pt_params params = { .get_trace = 0, };
1154         struct perf_env *env = pt->machine->env;
1155         struct intel_pt_queue *ptq;
1156
1157         ptq = zalloc(sizeof(struct intel_pt_queue));
1158         if (!ptq)
1159                 return NULL;
1160
1161         if (pt->synth_opts.callchain) {
1162                 ptq->chain = intel_pt_alloc_chain(pt);
1163                 if (!ptq->chain)
1164                         goto out_free;
1165         }
1166
1167         if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1168                 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1169
1170                 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1171                 if (!ptq->last_branch)
1172                         goto out_free;
1173         }
1174
1175         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1176         if (!ptq->event_buf)
1177                 goto out_free;
1178
1179         ptq->pt = pt;
1180         ptq->queue_nr = queue_nr;
1181         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1182         ptq->pid = -1;
1183         ptq->tid = -1;
1184         ptq->cpu = -1;
1185         ptq->next_tid = -1;
1186
1187         params.get_trace = intel_pt_get_trace;
1188         params.walk_insn = intel_pt_walk_next_insn;
1189         params.lookahead = intel_pt_lookahead;
1190         params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1191         params.data = ptq;
1192         params.return_compression = intel_pt_return_compression(pt);
1193         params.branch_enable = intel_pt_branch_enable(pt);
1194         params.ctl = intel_pt_ctl(pt);
1195         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1196         params.mtc_period = intel_pt_mtc_period(pt);
1197         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1198         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1199         params.quick = pt->synth_opts.quick;
1200         params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1201         params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1202         params.first_timestamp = pt->first_timestamp;
1203
1204         if (pt->filts.cnt > 0)
1205                 params.pgd_ip = intel_pt_pgd_ip;
1206
1207         if (pt->synth_opts.instructions) {
1208                 if (pt->synth_opts.period) {
1209                         switch (pt->synth_opts.period_type) {
1210                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1211                                 params.period_type =
1212                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
1213                                 params.period = pt->synth_opts.period;
1214                                 break;
1215                         case PERF_ITRACE_PERIOD_TICKS:
1216                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1217                                 params.period = pt->synth_opts.period;
1218                                 break;
1219                         case PERF_ITRACE_PERIOD_NANOSECS:
1220                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1221                                 params.period = intel_pt_ns_to_ticks(pt,
1222                                                         pt->synth_opts.period);
1223                                 break;
1224                         default:
1225                                 break;
1226                         }
1227                 }
1228
1229                 if (!params.period) {
1230                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1231                         params.period = 1;
1232                 }
1233         }
1234
1235         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1236                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1237
1238         ptq->decoder = intel_pt_decoder_new(&params);
1239         if (!ptq->decoder)
1240                 goto out_free;
1241
1242         return ptq;
1243
1244 out_free:
1245         zfree(&ptq->event_buf);
1246         zfree(&ptq->last_branch);
1247         zfree(&ptq->chain);
1248         free(ptq);
1249         return NULL;
1250 }
1251
1252 static void intel_pt_free_queue(void *priv)
1253 {
1254         struct intel_pt_queue *ptq = priv;
1255
1256         if (!ptq)
1257                 return;
1258         thread__zput(ptq->thread);
1259         thread__zput(ptq->unknown_guest_thread);
1260         intel_pt_decoder_free(ptq->decoder);
1261         zfree(&ptq->event_buf);
1262         zfree(&ptq->last_branch);
1263         zfree(&ptq->chain);
1264         free(ptq);
1265 }
1266
1267 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1268 {
1269         unsigned int i;
1270
1271         pt->first_timestamp = timestamp;
1272
1273         for (i = 0; i < pt->queues.nr_queues; i++) {
1274                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1275                 struct intel_pt_queue *ptq = queue->priv;
1276
1277                 if (ptq && ptq->decoder)
1278                         intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1279         }
1280 }
1281
1282 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1283                                      struct auxtrace_queue *queue)
1284 {
1285         struct intel_pt_queue *ptq = queue->priv;
1286
1287         if (queue->tid == -1 || pt->have_sched_switch) {
1288                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1289                 if (ptq->tid == -1)
1290                         ptq->pid = -1;
1291                 thread__zput(ptq->thread);
1292         }
1293
1294         if (!ptq->thread && ptq->tid != -1)
1295                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1296
1297         if (ptq->thread) {
1298                 ptq->pid = ptq->thread->pid_;
1299                 if (queue->cpu == -1)
1300                         ptq->cpu = ptq->thread->cpu;
1301         }
1302 }
1303
1304 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1305 {
1306         ptq->insn_len = 0;
1307         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1308                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1309         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1310                 if (!ptq->state->to_ip)
1311                         ptq->flags = PERF_IP_FLAG_BRANCH |
1312                                      PERF_IP_FLAG_TRACE_END;
1313                 else if (ptq->state->from_nr && !ptq->state->to_nr)
1314                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1315                                      PERF_IP_FLAG_VMEXIT;
1316                 else
1317                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1318                                      PERF_IP_FLAG_ASYNC |
1319                                      PERF_IP_FLAG_INTERRUPT;
1320         } else {
1321                 if (ptq->state->from_ip)
1322                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1323                 else
1324                         ptq->flags = PERF_IP_FLAG_BRANCH |
1325                                      PERF_IP_FLAG_TRACE_BEGIN;
1326                 if (ptq->state->flags & INTEL_PT_IN_TX)
1327                         ptq->flags |= PERF_IP_FLAG_IN_TX;
1328                 ptq->insn_len = ptq->state->insn_len;
1329                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1330         }
1331
1332         if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1333                 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1334         if (ptq->state->type & INTEL_PT_TRACE_END)
1335                 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1336 }
1337
1338 static void intel_pt_setup_time_range(struct intel_pt *pt,
1339                                       struct intel_pt_queue *ptq)
1340 {
1341         if (!pt->range_cnt)
1342                 return;
1343
1344         ptq->sel_timestamp = pt->time_ranges[0].start;
1345         ptq->sel_idx = 0;
1346
1347         if (ptq->sel_timestamp) {
1348                 ptq->sel_start = true;
1349         } else {
1350                 ptq->sel_timestamp = pt->time_ranges[0].end;
1351                 ptq->sel_start = false;
1352         }
1353 }
1354
1355 static int intel_pt_setup_queue(struct intel_pt *pt,
1356                                 struct auxtrace_queue *queue,
1357                                 unsigned int queue_nr)
1358 {
1359         struct intel_pt_queue *ptq = queue->priv;
1360
1361         if (list_empty(&queue->head))
1362                 return 0;
1363
1364         if (!ptq) {
1365                 ptq = intel_pt_alloc_queue(pt, queue_nr);
1366                 if (!ptq)
1367                         return -ENOMEM;
1368                 queue->priv = ptq;
1369
1370                 if (queue->cpu != -1)
1371                         ptq->cpu = queue->cpu;
1372                 ptq->tid = queue->tid;
1373
1374                 ptq->cbr_seen = UINT_MAX;
1375
1376                 if (pt->sampling_mode && !pt->snapshot_mode &&
1377                     pt->timeless_decoding)
1378                         ptq->step_through_buffers = true;
1379
1380                 ptq->sync_switch = pt->sync_switch;
1381
1382                 intel_pt_setup_time_range(pt, ptq);
1383         }
1384
1385         if (!ptq->on_heap &&
1386             (!ptq->sync_switch ||
1387              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1388                 const struct intel_pt_state *state;
1389                 int ret;
1390
1391                 if (pt->timeless_decoding)
1392                         return 0;
1393
1394                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1395                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1396                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1397
1398                 if (ptq->sel_start && ptq->sel_timestamp) {
1399                         ret = intel_pt_fast_forward(ptq->decoder,
1400                                                     ptq->sel_timestamp);
1401                         if (ret)
1402                                 return ret;
1403                 }
1404
1405                 while (1) {
1406                         state = intel_pt_decode(ptq->decoder);
1407                         if (state->err) {
1408                                 if (state->err == INTEL_PT_ERR_NODATA) {
1409                                         intel_pt_log("queue %u has no timestamp\n",
1410                                                      queue_nr);
1411                                         return 0;
1412                                 }
1413                                 continue;
1414                         }
1415                         if (state->timestamp)
1416                                 break;
1417                 }
1418
1419                 ptq->timestamp = state->timestamp;
1420                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1421                              queue_nr, ptq->timestamp);
1422                 ptq->state = state;
1423                 ptq->have_sample = true;
1424                 if (ptq->sel_start && ptq->sel_timestamp &&
1425                     ptq->timestamp < ptq->sel_timestamp)
1426                         ptq->have_sample = false;
1427                 intel_pt_sample_flags(ptq);
1428                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1429                 if (ret)
1430                         return ret;
1431                 ptq->on_heap = true;
1432         }
1433
1434         return 0;
1435 }
1436
1437 static int intel_pt_setup_queues(struct intel_pt *pt)
1438 {
1439         unsigned int i;
1440         int ret;
1441
1442         for (i = 0; i < pt->queues.nr_queues; i++) {
1443                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1444                 if (ret)
1445                         return ret;
1446         }
1447         return 0;
1448 }
1449
1450 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1451 {
1452         return pt->synth_opts.initial_skip &&
1453                pt->num_events++ < pt->synth_opts.initial_skip;
1454 }
1455
1456 /*
1457  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1458  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1459  * from this decoder state.
1460  */
1461 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1462 {
1463         return pt->synth_opts.initial_skip &&
1464                pt->num_events + 4 < pt->synth_opts.initial_skip;
1465 }
1466
1467 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1468                                    union perf_event *event,
1469                                    struct perf_sample *sample)
1470 {
1471         event->sample.header.type = PERF_RECORD_SAMPLE;
1472         event->sample.header.size = sizeof(struct perf_event_header);
1473
1474         sample->pid = ptq->pid;
1475         sample->tid = ptq->tid;
1476         sample->cpu = ptq->cpu;
1477         sample->insn_len = ptq->insn_len;
1478         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1479 }
1480
1481 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1482                                    struct intel_pt_queue *ptq,
1483                                    union perf_event *event,
1484                                    struct perf_sample *sample)
1485 {
1486         intel_pt_prep_a_sample(ptq, event, sample);
1487
1488         if (!pt->timeless_decoding)
1489                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1490
1491         sample->ip = ptq->state->from_ip;
1492         sample->addr = ptq->state->to_ip;
1493         sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1494         sample->period = 1;
1495         sample->flags = ptq->flags;
1496
1497         event->sample.header.misc = sample->cpumode;
1498 }
1499
1500 static int intel_pt_inject_event(union perf_event *event,
1501                                  struct perf_sample *sample, u64 type)
1502 {
1503         event->header.size = perf_event__sample_event_size(sample, type, 0);
1504         return perf_event__synthesize_sample(event, type, 0, sample);
1505 }
1506
1507 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1508                                       union perf_event *event,
1509                                       struct perf_sample *sample, u64 type)
1510 {
1511         if (!pt->synth_opts.inject)
1512                 return 0;
1513
1514         return intel_pt_inject_event(event, sample, type);
1515 }
1516
1517 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1518                                         union perf_event *event,
1519                                         struct perf_sample *sample, u64 type)
1520 {
1521         int ret;
1522
1523         ret = intel_pt_opt_inject(pt, event, sample, type);
1524         if (ret)
1525                 return ret;
1526
1527         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1528         if (ret)
1529                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1530
1531         return ret;
1532 }
1533
1534 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1535 {
1536         struct intel_pt *pt = ptq->pt;
1537         union perf_event *event = ptq->event_buf;
1538         struct perf_sample sample = { .ip = 0, };
1539         struct dummy_branch_stack {
1540                 u64                     nr;
1541                 u64                     hw_idx;
1542                 struct branch_entry     entries;
1543         } dummy_bs;
1544
1545         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1546                 return 0;
1547
1548         if (intel_pt_skip_event(pt))
1549                 return 0;
1550
1551         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1552
1553         sample.id = ptq->pt->branches_id;
1554         sample.stream_id = ptq->pt->branches_id;
1555
1556         /*
1557          * perf report cannot handle events without a branch stack when using
1558          * SORT_MODE__BRANCH so make a dummy one.
1559          */
1560         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1561                 dummy_bs = (struct dummy_branch_stack){
1562                         .nr = 1,
1563                         .hw_idx = -1ULL,
1564                         .entries = {
1565                                 .from = sample.ip,
1566                                 .to = sample.addr,
1567                         },
1568                 };
1569                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1570         }
1571
1572         if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1573                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1574         if (sample.cyc_cnt) {
1575                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1576                 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1577                 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1578         }
1579
1580         return intel_pt_deliver_synth_event(pt, event, &sample,
1581                                             pt->branches_sample_type);
1582 }
1583
1584 static void intel_pt_prep_sample(struct intel_pt *pt,
1585                                  struct intel_pt_queue *ptq,
1586                                  union perf_event *event,
1587                                  struct perf_sample *sample)
1588 {
1589         intel_pt_prep_b_sample(pt, ptq, event, sample);
1590
1591         if (pt->synth_opts.callchain) {
1592                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1593                                      pt->synth_opts.callchain_sz + 1,
1594                                      sample->ip, pt->kernel_start);
1595                 sample->callchain = ptq->chain;
1596         }
1597
1598         if (pt->synth_opts.last_branch) {
1599                 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1600                                         pt->br_stack_sz);
1601                 sample->branch_stack = ptq->last_branch;
1602         }
1603 }
1604
1605 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1606 {
1607         struct intel_pt *pt = ptq->pt;
1608         union perf_event *event = ptq->event_buf;
1609         struct perf_sample sample = { .ip = 0, };
1610
1611         if (intel_pt_skip_event(pt))
1612                 return 0;
1613
1614         intel_pt_prep_sample(pt, ptq, event, &sample);
1615
1616         sample.id = ptq->pt->instructions_id;
1617         sample.stream_id = ptq->pt->instructions_id;
1618         if (pt->synth_opts.quick)
1619                 sample.period = 1;
1620         else
1621                 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1622
1623         if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1624                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1625         if (sample.cyc_cnt) {
1626                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1627                 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1628                 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1629         }
1630
1631         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1632
1633         return intel_pt_deliver_synth_event(pt, event, &sample,
1634                                             pt->instructions_sample_type);
1635 }
1636
1637 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1638 {
1639         struct intel_pt *pt = ptq->pt;
1640         union perf_event *event = ptq->event_buf;
1641         struct perf_sample sample = { .ip = 0, };
1642
1643         if (intel_pt_skip_event(pt))
1644                 return 0;
1645
1646         intel_pt_prep_sample(pt, ptq, event, &sample);
1647
1648         sample.id = ptq->pt->transactions_id;
1649         sample.stream_id = ptq->pt->transactions_id;
1650
1651         return intel_pt_deliver_synth_event(pt, event, &sample,
1652                                             pt->transactions_sample_type);
1653 }
1654
1655 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1656                                    struct intel_pt_queue *ptq,
1657                                    union perf_event *event,
1658                                    struct perf_sample *sample)
1659 {
1660         intel_pt_prep_sample(pt, ptq, event, sample);
1661
1662         /*
1663          * Zero IP is used to mean "trace start" but that is not the case for
1664          * power or PTWRITE events with no IP, so clear the flags.
1665          */
1666         if (!sample->ip)
1667                 sample->flags = 0;
1668 }
1669
1670 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1671 {
1672         struct intel_pt *pt = ptq->pt;
1673         union perf_event *event = ptq->event_buf;
1674         struct perf_sample sample = { .ip = 0, };
1675         struct perf_synth_intel_ptwrite raw;
1676
1677         if (intel_pt_skip_event(pt))
1678                 return 0;
1679
1680         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1681
1682         sample.id = ptq->pt->ptwrites_id;
1683         sample.stream_id = ptq->pt->ptwrites_id;
1684
1685         raw.flags = 0;
1686         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1687         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1688
1689         sample.raw_size = perf_synth__raw_size(raw);
1690         sample.raw_data = perf_synth__raw_data(&raw);
1691
1692         return intel_pt_deliver_synth_event(pt, event, &sample,
1693                                             pt->ptwrites_sample_type);
1694 }
1695
1696 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1697 {
1698         struct intel_pt *pt = ptq->pt;
1699         union perf_event *event = ptq->event_buf;
1700         struct perf_sample sample = { .ip = 0, };
1701         struct perf_synth_intel_cbr raw;
1702         u32 flags;
1703
1704         if (intel_pt_skip_cbr_event(pt))
1705                 return 0;
1706
1707         ptq->cbr_seen = ptq->state->cbr;
1708
1709         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1710
1711         sample.id = ptq->pt->cbr_id;
1712         sample.stream_id = ptq->pt->cbr_id;
1713
1714         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1715         raw.flags = cpu_to_le32(flags);
1716         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1717         raw.reserved3 = 0;
1718
1719         sample.raw_size = perf_synth__raw_size(raw);
1720         sample.raw_data = perf_synth__raw_data(&raw);
1721
1722         return intel_pt_deliver_synth_event(pt, event, &sample,
1723                                             pt->pwr_events_sample_type);
1724 }
1725
1726 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1727 {
1728         struct intel_pt *pt = ptq->pt;
1729         union perf_event *event = ptq->event_buf;
1730         struct perf_sample sample = { .ip = 0, };
1731         struct perf_synth_intel_psb raw;
1732
1733         if (intel_pt_skip_event(pt))
1734                 return 0;
1735
1736         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1737
1738         sample.id = ptq->pt->psb_id;
1739         sample.stream_id = ptq->pt->psb_id;
1740         sample.flags = 0;
1741
1742         raw.reserved = 0;
1743         raw.offset = ptq->state->psb_offset;
1744
1745         sample.raw_size = perf_synth__raw_size(raw);
1746         sample.raw_data = perf_synth__raw_data(&raw);
1747
1748         return intel_pt_deliver_synth_event(pt, event, &sample,
1749                                             pt->pwr_events_sample_type);
1750 }
1751
1752 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1753 {
1754         struct intel_pt *pt = ptq->pt;
1755         union perf_event *event = ptq->event_buf;
1756         struct perf_sample sample = { .ip = 0, };
1757         struct perf_synth_intel_mwait raw;
1758
1759         if (intel_pt_skip_event(pt))
1760                 return 0;
1761
1762         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1763
1764         sample.id = ptq->pt->mwait_id;
1765         sample.stream_id = ptq->pt->mwait_id;
1766
1767         raw.reserved = 0;
1768         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1769
1770         sample.raw_size = perf_synth__raw_size(raw);
1771         sample.raw_data = perf_synth__raw_data(&raw);
1772
1773         return intel_pt_deliver_synth_event(pt, event, &sample,
1774                                             pt->pwr_events_sample_type);
1775 }
1776
1777 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1778 {
1779         struct intel_pt *pt = ptq->pt;
1780         union perf_event *event = ptq->event_buf;
1781         struct perf_sample sample = { .ip = 0, };
1782         struct perf_synth_intel_pwre raw;
1783
1784         if (intel_pt_skip_event(pt))
1785                 return 0;
1786
1787         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1788
1789         sample.id = ptq->pt->pwre_id;
1790         sample.stream_id = ptq->pt->pwre_id;
1791
1792         raw.reserved = 0;
1793         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1794
1795         sample.raw_size = perf_synth__raw_size(raw);
1796         sample.raw_data = perf_synth__raw_data(&raw);
1797
1798         return intel_pt_deliver_synth_event(pt, event, &sample,
1799                                             pt->pwr_events_sample_type);
1800 }
1801
1802 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1803 {
1804         struct intel_pt *pt = ptq->pt;
1805         union perf_event *event = ptq->event_buf;
1806         struct perf_sample sample = { .ip = 0, };
1807         struct perf_synth_intel_exstop raw;
1808
1809         if (intel_pt_skip_event(pt))
1810                 return 0;
1811
1812         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1813
1814         sample.id = ptq->pt->exstop_id;
1815         sample.stream_id = ptq->pt->exstop_id;
1816
1817         raw.flags = 0;
1818         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1819
1820         sample.raw_size = perf_synth__raw_size(raw);
1821         sample.raw_data = perf_synth__raw_data(&raw);
1822
1823         return intel_pt_deliver_synth_event(pt, event, &sample,
1824                                             pt->pwr_events_sample_type);
1825 }
1826
1827 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1828 {
1829         struct intel_pt *pt = ptq->pt;
1830         union perf_event *event = ptq->event_buf;
1831         struct perf_sample sample = { .ip = 0, };
1832         struct perf_synth_intel_pwrx raw;
1833
1834         if (intel_pt_skip_event(pt))
1835                 return 0;
1836
1837         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1838
1839         sample.id = ptq->pt->pwrx_id;
1840         sample.stream_id = ptq->pt->pwrx_id;
1841
1842         raw.reserved = 0;
1843         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1844
1845         sample.raw_size = perf_synth__raw_size(raw);
1846         sample.raw_data = perf_synth__raw_data(&raw);
1847
1848         return intel_pt_deliver_synth_event(pt, event, &sample,
1849                                             pt->pwr_events_sample_type);
1850 }
1851
1852 /*
1853  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1854  * intel_pt_add_gp_regs().
1855  */
1856 static const int pebs_gp_regs[] = {
1857         [PERF_REG_X86_FLAGS]    = 1,
1858         [PERF_REG_X86_IP]       = 2,
1859         [PERF_REG_X86_AX]       = 3,
1860         [PERF_REG_X86_CX]       = 4,
1861         [PERF_REG_X86_DX]       = 5,
1862         [PERF_REG_X86_BX]       = 6,
1863         [PERF_REG_X86_SP]       = 7,
1864         [PERF_REG_X86_BP]       = 8,
1865         [PERF_REG_X86_SI]       = 9,
1866         [PERF_REG_X86_DI]       = 10,
1867         [PERF_REG_X86_R8]       = 11,
1868         [PERF_REG_X86_R9]       = 12,
1869         [PERF_REG_X86_R10]      = 13,
1870         [PERF_REG_X86_R11]      = 14,
1871         [PERF_REG_X86_R12]      = 15,
1872         [PERF_REG_X86_R13]      = 16,
1873         [PERF_REG_X86_R14]      = 17,
1874         [PERF_REG_X86_R15]      = 18,
1875 };
1876
1877 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1878                                  const struct intel_pt_blk_items *items,
1879                                  u64 regs_mask)
1880 {
1881         const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1882         u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1883         u32 bit;
1884         int i;
1885
1886         for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1887                 /* Get the PEBS gp_regs array index */
1888                 int n = pebs_gp_regs[i] - 1;
1889
1890                 if (n < 0)
1891                         continue;
1892                 /*
1893                  * Add only registers that were requested (i.e. 'regs_mask') and
1894                  * that were provided (i.e. 'mask'), and update the resulting
1895                  * mask (i.e. 'intr_regs->mask') accordingly.
1896                  */
1897                 if (mask & 1 << n && regs_mask & bit) {
1898                         intr_regs->mask |= bit;
1899                         *pos++ = gp_regs[n];
1900                 }
1901         }
1902
1903         return pos;
1904 }
1905
1906 #ifndef PERF_REG_X86_XMM0
1907 #define PERF_REG_X86_XMM0 32
1908 #endif
1909
1910 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1911                              const struct intel_pt_blk_items *items,
1912                              u64 regs_mask)
1913 {
1914         u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1915         const u64 *xmm = items->xmm;
1916
1917         /*
1918          * If there are any XMM registers, then there should be all of them.
1919          * Nevertheless, follow the logic to add only registers that were
1920          * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1921          * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1922          */
1923         intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1924
1925         for (; mask; mask >>= 1, xmm++) {
1926                 if (mask & 1)
1927                         *pos++ = *xmm;
1928         }
1929 }
1930
1931 #define LBR_INFO_MISPRED        (1ULL << 63)
1932 #define LBR_INFO_IN_TX          (1ULL << 62)
1933 #define LBR_INFO_ABORT          (1ULL << 61)
1934 #define LBR_INFO_CYCLES         0xffff
1935
1936 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1937 static u64 intel_pt_lbr_flags(u64 info)
1938 {
1939         union {
1940                 struct branch_flags flags;
1941                 u64 result;
1942         } u;
1943
1944         u.result          = 0;
1945         u.flags.mispred   = !!(info & LBR_INFO_MISPRED);
1946         u.flags.predicted = !(info & LBR_INFO_MISPRED);
1947         u.flags.in_tx     = !!(info & LBR_INFO_IN_TX);
1948         u.flags.abort     = !!(info & LBR_INFO_ABORT);
1949         u.flags.cycles    = info & LBR_INFO_CYCLES;
1950
1951         return u.result;
1952 }
1953
1954 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1955                               const struct intel_pt_blk_items *items)
1956 {
1957         u64 *to;
1958         int i;
1959
1960         br_stack->nr = 0;
1961
1962         to = &br_stack->entries[0].from;
1963
1964         for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1965                 u32 mask = items->mask[i];
1966                 const u64 *from = items->val[i];
1967
1968                 for (; mask; mask >>= 3, from += 3) {
1969                         if ((mask & 7) == 7) {
1970                                 *to++ = from[0];
1971                                 *to++ = from[1];
1972                                 *to++ = intel_pt_lbr_flags(from[2]);
1973                                 br_stack->nr += 1;
1974                         }
1975                 }
1976         }
1977 }
1978
1979 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1980 {
1981         const struct intel_pt_blk_items *items = &ptq->state->items;
1982         struct perf_sample sample = { .ip = 0, };
1983         union perf_event *event = ptq->event_buf;
1984         struct intel_pt *pt = ptq->pt;
1985         struct evsel *evsel = pt->pebs_evsel;
1986         u64 sample_type = evsel->core.attr.sample_type;
1987         u64 id = evsel->core.id[0];
1988         u8 cpumode;
1989         u64 regs[8 * sizeof(sample.intr_regs.mask)];
1990
1991         if (intel_pt_skip_event(pt))
1992                 return 0;
1993
1994         intel_pt_prep_a_sample(ptq, event, &sample);
1995
1996         sample.id = id;
1997         sample.stream_id = id;
1998
1999         if (!evsel->core.attr.freq)
2000                 sample.period = evsel->core.attr.sample_period;
2001
2002         /* No support for non-zero CS base */
2003         if (items->has_ip)
2004                 sample.ip = items->ip;
2005         else if (items->has_rip)
2006                 sample.ip = items->rip;
2007         else
2008                 sample.ip = ptq->state->from_ip;
2009
2010         cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2011
2012         event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2013
2014         sample.cpumode = cpumode;
2015
2016         if (sample_type & PERF_SAMPLE_TIME) {
2017                 u64 timestamp = 0;
2018
2019                 if (items->has_timestamp)
2020                         timestamp = items->timestamp;
2021                 else if (!pt->timeless_decoding)
2022                         timestamp = ptq->timestamp;
2023                 if (timestamp)
2024                         sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2025         }
2026
2027         if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2028             pt->synth_opts.callchain) {
2029                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2030                                      pt->synth_opts.callchain_sz, sample.ip,
2031                                      pt->kernel_start);
2032                 sample.callchain = ptq->chain;
2033         }
2034
2035         if (sample_type & PERF_SAMPLE_REGS_INTR &&
2036             (items->mask[INTEL_PT_GP_REGS_POS] ||
2037              items->mask[INTEL_PT_XMM_POS])) {
2038                 u64 regs_mask = evsel->core.attr.sample_regs_intr;
2039                 u64 *pos;
2040
2041                 sample.intr_regs.abi = items->is_32_bit ?
2042                                        PERF_SAMPLE_REGS_ABI_32 :
2043                                        PERF_SAMPLE_REGS_ABI_64;
2044                 sample.intr_regs.regs = regs;
2045
2046                 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2047
2048                 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2049         }
2050
2051         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2052                 if (items->mask[INTEL_PT_LBR_0_POS] ||
2053                     items->mask[INTEL_PT_LBR_1_POS] ||
2054                     items->mask[INTEL_PT_LBR_2_POS]) {
2055                         intel_pt_add_lbrs(ptq->last_branch, items);
2056                 } else if (pt->synth_opts.last_branch) {
2057                         thread_stack__br_sample(ptq->thread, ptq->cpu,
2058                                                 ptq->last_branch,
2059                                                 pt->br_stack_sz);
2060                 } else {
2061                         ptq->last_branch->nr = 0;
2062                 }
2063                 sample.branch_stack = ptq->last_branch;
2064         }
2065
2066         if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2067                 sample.addr = items->mem_access_address;
2068
2069         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2070                 /*
2071                  * Refer kernel's setup_pebs_adaptive_sample_data() and
2072                  * intel_hsw_weight().
2073                  */
2074                 if (items->has_mem_access_latency) {
2075                         u64 weight = items->mem_access_latency >> 32;
2076
2077                         /*
2078                          * Starts from SPR, the mem access latency field
2079                          * contains both cache latency [47:32] and instruction
2080                          * latency [15:0]. The cache latency is the same as the
2081                          * mem access latency on previous platforms.
2082                          *
2083                          * In practice, no memory access could last than 4G
2084                          * cycles. Use latency >> 32 to distinguish the
2085                          * different format of the mem access latency field.
2086                          */
2087                         if (weight > 0) {
2088                                 sample.weight = weight & 0xffff;
2089                                 sample.ins_lat = items->mem_access_latency & 0xffff;
2090                         } else
2091                                 sample.weight = items->mem_access_latency;
2092                 }
2093                 if (!sample.weight && items->has_tsx_aux_info) {
2094                         /* Cycles last block */
2095                         sample.weight = (u32)items->tsx_aux_info;
2096                 }
2097         }
2098
2099         if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2100                 u64 ax = items->has_rax ? items->rax : 0;
2101                 /* Refer kernel's intel_hsw_transaction() */
2102                 u64 txn = (u8)(items->tsx_aux_info >> 32);
2103
2104                 /* For RTM XABORTs also log the abort code from AX */
2105                 if (txn & PERF_TXN_TRANSACTION && ax & 1)
2106                         txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2107                 sample.transaction = txn;
2108         }
2109
2110         return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2111 }
2112
2113 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2114                                 pid_t pid, pid_t tid, u64 ip, u64 timestamp)
2115 {
2116         union perf_event event;
2117         char msg[MAX_AUXTRACE_ERROR_MSG];
2118         int err;
2119
2120         if (pt->synth_opts.error_minus_flags) {
2121                 if (code == INTEL_PT_ERR_OVR &&
2122                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2123                         return 0;
2124                 if (code == INTEL_PT_ERR_LOST &&
2125                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2126                         return 0;
2127         }
2128
2129         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2130
2131         auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2132                              code, cpu, pid, tid, ip, msg, timestamp);
2133
2134         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2135         if (err)
2136                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2137                        err);
2138
2139         return err;
2140 }
2141
2142 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2143                                  const struct intel_pt_state *state)
2144 {
2145         struct intel_pt *pt = ptq->pt;
2146         u64 tm = ptq->timestamp;
2147
2148         tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2149
2150         return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
2151                                     ptq->tid, state->from_ip, tm);
2152 }
2153
2154 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2155 {
2156         struct auxtrace_queue *queue;
2157         pid_t tid = ptq->next_tid;
2158         int err;
2159
2160         if (tid == -1)
2161                 return 0;
2162
2163         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2164
2165         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2166
2167         queue = &pt->queues.queue_array[ptq->queue_nr];
2168         intel_pt_set_pid_tid_cpu(pt, queue);
2169
2170         ptq->next_tid = -1;
2171
2172         return err;
2173 }
2174
2175 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2176 {
2177         struct intel_pt *pt = ptq->pt;
2178
2179         return ip == pt->switch_ip &&
2180                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2181                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2182                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2183 }
2184
2185 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2186                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2187
2188 static int intel_pt_sample(struct intel_pt_queue *ptq)
2189 {
2190         const struct intel_pt_state *state = ptq->state;
2191         struct intel_pt *pt = ptq->pt;
2192         int err;
2193
2194         if (!ptq->have_sample)
2195                 return 0;
2196
2197         ptq->have_sample = false;
2198
2199         ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2200         ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2201
2202         /*
2203          * Do PEBS first to allow for the possibility that the PEBS timestamp
2204          * precedes the current timestamp.
2205          */
2206         if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2207                 err = intel_pt_synth_pebs_sample(ptq);
2208                 if (err)
2209                         return err;
2210         }
2211
2212         if (pt->sample_pwr_events) {
2213                 if (state->type & INTEL_PT_PSB_EVT) {
2214                         err = intel_pt_synth_psb_sample(ptq);
2215                         if (err)
2216                                 return err;
2217                 }
2218                 if (ptq->state->cbr != ptq->cbr_seen) {
2219                         err = intel_pt_synth_cbr_sample(ptq);
2220                         if (err)
2221                                 return err;
2222                 }
2223                 if (state->type & INTEL_PT_PWR_EVT) {
2224                         if (state->type & INTEL_PT_MWAIT_OP) {
2225                                 err = intel_pt_synth_mwait_sample(ptq);
2226                                 if (err)
2227                                         return err;
2228                         }
2229                         if (state->type & INTEL_PT_PWR_ENTRY) {
2230                                 err = intel_pt_synth_pwre_sample(ptq);
2231                                 if (err)
2232                                         return err;
2233                         }
2234                         if (state->type & INTEL_PT_EX_STOP) {
2235                                 err = intel_pt_synth_exstop_sample(ptq);
2236                                 if (err)
2237                                         return err;
2238                         }
2239                         if (state->type & INTEL_PT_PWR_EXIT) {
2240                                 err = intel_pt_synth_pwrx_sample(ptq);
2241                                 if (err)
2242                                         return err;
2243                         }
2244                 }
2245         }
2246
2247         if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2248                 err = intel_pt_synth_instruction_sample(ptq);
2249                 if (err)
2250                         return err;
2251         }
2252
2253         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2254                 err = intel_pt_synth_transaction_sample(ptq);
2255                 if (err)
2256                         return err;
2257         }
2258
2259         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2260                 err = intel_pt_synth_ptwrite_sample(ptq);
2261                 if (err)
2262                         return err;
2263         }
2264
2265         if (!(state->type & INTEL_PT_BRANCH))
2266                 return 0;
2267
2268         if (pt->use_thread_stack) {
2269                 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2270                                     state->from_ip, state->to_ip, ptq->insn_len,
2271                                     state->trace_nr, pt->callstack,
2272                                     pt->br_stack_sz_plus,
2273                                     pt->mispred_all);
2274         } else {
2275                 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2276         }
2277
2278         if (pt->sample_branches) {
2279                 if (state->from_nr != state->to_nr &&
2280                     state->from_ip && state->to_ip) {
2281                         struct intel_pt_state *st = (struct intel_pt_state *)state;
2282                         u64 to_ip = st->to_ip;
2283                         u64 from_ip = st->from_ip;
2284
2285                         /*
2286                          * perf cannot handle having different machines for ip
2287                          * and addr, so create 2 branches.
2288                          */
2289                         st->to_ip = 0;
2290                         err = intel_pt_synth_branch_sample(ptq);
2291                         if (err)
2292                                 return err;
2293                         st->from_ip = 0;
2294                         st->to_ip = to_ip;
2295                         err = intel_pt_synth_branch_sample(ptq);
2296                         st->from_ip = from_ip;
2297                 } else {
2298                         err = intel_pt_synth_branch_sample(ptq);
2299                 }
2300                 if (err)
2301                         return err;
2302         }
2303
2304         if (!ptq->sync_switch)
2305                 return 0;
2306
2307         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2308                 switch (ptq->switch_state) {
2309                 case INTEL_PT_SS_NOT_TRACING:
2310                 case INTEL_PT_SS_UNKNOWN:
2311                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2312                         err = intel_pt_next_tid(pt, ptq);
2313                         if (err)
2314                                 return err;
2315                         ptq->switch_state = INTEL_PT_SS_TRACING;
2316                         break;
2317                 default:
2318                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2319                         return 1;
2320                 }
2321         } else if (!state->to_ip) {
2322                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2323         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2324                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2325         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2326                    state->to_ip == pt->ptss_ip &&
2327                    (ptq->flags & PERF_IP_FLAG_CALL)) {
2328                 ptq->switch_state = INTEL_PT_SS_TRACING;
2329         }
2330
2331         return 0;
2332 }
2333
2334 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2335 {
2336         struct machine *machine = pt->machine;
2337         struct map *map;
2338         struct symbol *sym, *start;
2339         u64 ip, switch_ip = 0;
2340         const char *ptss;
2341
2342         if (ptss_ip)
2343                 *ptss_ip = 0;
2344
2345         map = machine__kernel_map(machine);
2346         if (!map)
2347                 return 0;
2348
2349         if (map__load(map))
2350                 return 0;
2351
2352         start = dso__first_symbol(map->dso);
2353
2354         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2355                 if (sym->binding == STB_GLOBAL &&
2356                     !strcmp(sym->name, "__switch_to")) {
2357                         ip = map->unmap_ip(map, sym->start);
2358                         if (ip >= map->start && ip < map->end) {
2359                                 switch_ip = ip;
2360                                 break;
2361                         }
2362                 }
2363         }
2364
2365         if (!switch_ip || !ptss_ip)
2366                 return 0;
2367
2368         if (pt->have_sched_switch == 1)
2369                 ptss = "perf_trace_sched_switch";
2370         else
2371                 ptss = "__perf_event_task_sched_out";
2372
2373         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2374                 if (!strcmp(sym->name, ptss)) {
2375                         ip = map->unmap_ip(map, sym->start);
2376                         if (ip >= map->start && ip < map->end) {
2377                                 *ptss_ip = ip;
2378                                 break;
2379                         }
2380                 }
2381         }
2382
2383         return switch_ip;
2384 }
2385
2386 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2387 {
2388         unsigned int i;
2389
2390         pt->sync_switch = true;
2391
2392         for (i = 0; i < pt->queues.nr_queues; i++) {
2393                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2394                 struct intel_pt_queue *ptq = queue->priv;
2395
2396                 if (ptq)
2397                         ptq->sync_switch = true;
2398         }
2399 }
2400
2401 /*
2402  * To filter against time ranges, it is only necessary to look at the next start
2403  * or end time.
2404  */
2405 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2406 {
2407         struct intel_pt *pt = ptq->pt;
2408
2409         if (ptq->sel_start) {
2410                 /* Next time is an end time */
2411                 ptq->sel_start = false;
2412                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2413                 return true;
2414         } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2415                 /* Next time is a start time */
2416                 ptq->sel_start = true;
2417                 ptq->sel_idx += 1;
2418                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2419                 return true;
2420         }
2421
2422         /* No next time */
2423         return false;
2424 }
2425
2426 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2427 {
2428         int err;
2429
2430         while (1) {
2431                 if (ptq->sel_start) {
2432                         if (ptq->timestamp >= ptq->sel_timestamp) {
2433                                 /* After start time, so consider next time */
2434                                 intel_pt_next_time(ptq);
2435                                 if (!ptq->sel_timestamp) {
2436                                         /* No end time */
2437                                         return 0;
2438                                 }
2439                                 /* Check against end time */
2440                                 continue;
2441                         }
2442                         /* Before start time, so fast forward */
2443                         ptq->have_sample = false;
2444                         if (ptq->sel_timestamp > *ff_timestamp) {
2445                                 if (ptq->sync_switch) {
2446                                         intel_pt_next_tid(ptq->pt, ptq);
2447                                         ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2448                                 }
2449                                 *ff_timestamp = ptq->sel_timestamp;
2450                                 err = intel_pt_fast_forward(ptq->decoder,
2451                                                             ptq->sel_timestamp);
2452                                 if (err)
2453                                         return err;
2454                         }
2455                         return 0;
2456                 } else if (ptq->timestamp > ptq->sel_timestamp) {
2457                         /* After end time, so consider next time */
2458                         if (!intel_pt_next_time(ptq)) {
2459                                 /* No next time range, so stop decoding */
2460                                 ptq->have_sample = false;
2461                                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2462                                 return 1;
2463                         }
2464                         /* Check against next start time */
2465                         continue;
2466                 } else {
2467                         /* Before end time */
2468                         return 0;
2469                 }
2470         }
2471 }
2472
2473 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2474 {
2475         const struct intel_pt_state *state = ptq->state;
2476         struct intel_pt *pt = ptq->pt;
2477         u64 ff_timestamp = 0;
2478         int err;
2479
2480         if (!pt->kernel_start) {
2481                 pt->kernel_start = machine__kernel_start(pt->machine);
2482                 if (pt->per_cpu_mmaps &&
2483                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2484                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2485                     !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2486                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2487                         if (pt->switch_ip) {
2488                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2489                                              pt->switch_ip, pt->ptss_ip);
2490                                 intel_pt_enable_sync_switch(pt);
2491                         }
2492                 }
2493         }
2494
2495         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2496                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2497         while (1) {
2498                 err = intel_pt_sample(ptq);
2499                 if (err)
2500                         return err;
2501
2502                 state = intel_pt_decode(ptq->decoder);
2503                 if (state->err) {
2504                         if (state->err == INTEL_PT_ERR_NODATA)
2505                                 return 1;
2506                         if (ptq->sync_switch &&
2507                             state->from_ip >= pt->kernel_start) {
2508                                 ptq->sync_switch = false;
2509                                 intel_pt_next_tid(pt, ptq);
2510                         }
2511                         if (pt->synth_opts.errors) {
2512                                 err = intel_ptq_synth_error(ptq, state);
2513                                 if (err)
2514                                         return err;
2515                         }
2516                         continue;
2517                 }
2518
2519                 ptq->state = state;
2520                 ptq->have_sample = true;
2521                 intel_pt_sample_flags(ptq);
2522
2523                 /* Use estimated TSC upon return to user space */
2524                 if (pt->est_tsc &&
2525                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2526                     state->to_ip && state->to_ip < pt->kernel_start) {
2527                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2528                                      state->timestamp, state->est_timestamp);
2529                         ptq->timestamp = state->est_timestamp;
2530                 /* Use estimated TSC in unknown switch state */
2531                 } else if (ptq->sync_switch &&
2532                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2533                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
2534                            ptq->next_tid == -1) {
2535                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2536                                      state->timestamp, state->est_timestamp);
2537                         ptq->timestamp = state->est_timestamp;
2538                 } else if (state->timestamp > ptq->timestamp) {
2539                         ptq->timestamp = state->timestamp;
2540                 }
2541
2542                 if (ptq->sel_timestamp) {
2543                         err = intel_pt_time_filter(ptq, &ff_timestamp);
2544                         if (err)
2545                                 return err;
2546                 }
2547
2548                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2549                         *timestamp = ptq->timestamp;
2550                         return 0;
2551                 }
2552         }
2553         return 0;
2554 }
2555
2556 static inline int intel_pt_update_queues(struct intel_pt *pt)
2557 {
2558         if (pt->queues.new_data) {
2559                 pt->queues.new_data = false;
2560                 return intel_pt_setup_queues(pt);
2561         }
2562         return 0;
2563 }
2564
2565 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2566 {
2567         unsigned int queue_nr;
2568         u64 ts;
2569         int ret;
2570
2571         while (1) {
2572                 struct auxtrace_queue *queue;
2573                 struct intel_pt_queue *ptq;
2574
2575                 if (!pt->heap.heap_cnt)
2576                         return 0;
2577
2578                 if (pt->heap.heap_array[0].ordinal >= timestamp)
2579                         return 0;
2580
2581                 queue_nr = pt->heap.heap_array[0].queue_nr;
2582                 queue = &pt->queues.queue_array[queue_nr];
2583                 ptq = queue->priv;
2584
2585                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2586                              queue_nr, pt->heap.heap_array[0].ordinal,
2587                              timestamp);
2588
2589                 auxtrace_heap__pop(&pt->heap);
2590
2591                 if (pt->heap.heap_cnt) {
2592                         ts = pt->heap.heap_array[0].ordinal + 1;
2593                         if (ts > timestamp)
2594                                 ts = timestamp;
2595                 } else {
2596                         ts = timestamp;
2597                 }
2598
2599                 intel_pt_set_pid_tid_cpu(pt, queue);
2600
2601                 ret = intel_pt_run_decoder(ptq, &ts);
2602
2603                 if (ret < 0) {
2604                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
2605                         return ret;
2606                 }
2607
2608                 if (!ret) {
2609                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2610                         if (ret < 0)
2611                                 return ret;
2612                 } else {
2613                         ptq->on_heap = false;
2614                 }
2615         }
2616
2617         return 0;
2618 }
2619
2620 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2621                                             u64 time_)
2622 {
2623         struct auxtrace_queues *queues = &pt->queues;
2624         unsigned int i;
2625         u64 ts = 0;
2626
2627         for (i = 0; i < queues->nr_queues; i++) {
2628                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2629                 struct intel_pt_queue *ptq = queue->priv;
2630
2631                 if (ptq && (tid == -1 || ptq->tid == tid)) {
2632                         ptq->time = time_;
2633                         intel_pt_set_pid_tid_cpu(pt, queue);
2634                         intel_pt_run_decoder(ptq, &ts);
2635                 }
2636         }
2637         return 0;
2638 }
2639
2640 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2641                                             struct auxtrace_queue *queue,
2642                                             struct perf_sample *sample)
2643 {
2644         struct machine *m = ptq->pt->machine;
2645
2646         ptq->pid = sample->pid;
2647         ptq->tid = sample->tid;
2648         ptq->cpu = queue->cpu;
2649
2650         intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2651                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2652
2653         thread__zput(ptq->thread);
2654
2655         if (ptq->tid == -1)
2656                 return;
2657
2658         if (ptq->pid == -1) {
2659                 ptq->thread = machine__find_thread(m, -1, ptq->tid);
2660                 if (ptq->thread)
2661                         ptq->pid = ptq->thread->pid_;
2662                 return;
2663         }
2664
2665         ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2666 }
2667
2668 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2669                                             struct perf_sample *sample)
2670 {
2671         struct auxtrace_queue *queue;
2672         struct intel_pt_queue *ptq;
2673         u64 ts = 0;
2674
2675         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2676         if (!queue)
2677                 return -EINVAL;
2678
2679         ptq = queue->priv;
2680         if (!ptq)
2681                 return 0;
2682
2683         ptq->stop = false;
2684         ptq->time = sample->time;
2685         intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2686         intel_pt_run_decoder(ptq, &ts);
2687         return 0;
2688 }
2689
2690 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2691 {
2692         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2693                                     sample->pid, sample->tid, 0, sample->time);
2694 }
2695
2696 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2697 {
2698         unsigned i, j;
2699
2700         if (cpu < 0 || !pt->queues.nr_queues)
2701                 return NULL;
2702
2703         if ((unsigned)cpu >= pt->queues.nr_queues)
2704                 i = pt->queues.nr_queues - 1;
2705         else
2706                 i = cpu;
2707
2708         if (pt->queues.queue_array[i].cpu == cpu)
2709                 return pt->queues.queue_array[i].priv;
2710
2711         for (j = 0; i > 0; j++) {
2712                 if (pt->queues.queue_array[--i].cpu == cpu)
2713                         return pt->queues.queue_array[i].priv;
2714         }
2715
2716         for (; j < pt->queues.nr_queues; j++) {
2717                 if (pt->queues.queue_array[j].cpu == cpu)
2718                         return pt->queues.queue_array[j].priv;
2719         }
2720
2721         return NULL;
2722 }
2723
2724 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2725                                 u64 timestamp)
2726 {
2727         struct intel_pt_queue *ptq;
2728         int err;
2729
2730         if (!pt->sync_switch)
2731                 return 1;
2732
2733         ptq = intel_pt_cpu_to_ptq(pt, cpu);
2734         if (!ptq || !ptq->sync_switch)
2735                 return 1;
2736
2737         switch (ptq->switch_state) {
2738         case INTEL_PT_SS_NOT_TRACING:
2739                 break;
2740         case INTEL_PT_SS_UNKNOWN:
2741         case INTEL_PT_SS_TRACING:
2742                 ptq->next_tid = tid;
2743                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2744                 return 0;
2745         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2746                 if (!ptq->on_heap) {
2747                         ptq->timestamp = perf_time_to_tsc(timestamp,
2748                                                           &pt->tc);
2749                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2750                                                  ptq->timestamp);
2751                         if (err)
2752                                 return err;
2753                         ptq->on_heap = true;
2754                 }
2755                 ptq->switch_state = INTEL_PT_SS_TRACING;
2756                 break;
2757         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2758                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2759                 break;
2760         default:
2761                 break;
2762         }
2763
2764         ptq->next_tid = -1;
2765
2766         return 1;
2767 }
2768
2769 static int intel_pt_process_switch(struct intel_pt *pt,
2770                                    struct perf_sample *sample)
2771 {
2772         pid_t tid;
2773         int cpu, ret;
2774         struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
2775
2776         if (evsel != pt->switch_evsel)
2777                 return 0;
2778
2779         tid = evsel__intval(evsel, sample, "next_pid");
2780         cpu = sample->cpu;
2781
2782         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2783                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2784                      &pt->tc));
2785
2786         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2787         if (ret <= 0)
2788                 return ret;
2789
2790         return machine__set_current_tid(pt->machine, cpu, -1, tid);
2791 }
2792
2793 static int intel_pt_context_switch_in(struct intel_pt *pt,
2794                                       struct perf_sample *sample)
2795 {
2796         pid_t pid = sample->pid;
2797         pid_t tid = sample->tid;
2798         int cpu = sample->cpu;
2799
2800         if (pt->sync_switch) {
2801                 struct intel_pt_queue *ptq;
2802
2803                 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2804                 if (ptq && ptq->sync_switch) {
2805                         ptq->next_tid = -1;
2806                         switch (ptq->switch_state) {
2807                         case INTEL_PT_SS_NOT_TRACING:
2808                         case INTEL_PT_SS_UNKNOWN:
2809                         case INTEL_PT_SS_TRACING:
2810                                 break;
2811                         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2812                         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2813                                 ptq->switch_state = INTEL_PT_SS_TRACING;
2814                                 break;
2815                         default:
2816                                 break;
2817                         }
2818                 }
2819         }
2820
2821         /*
2822          * If the current tid has not been updated yet, ensure it is now that
2823          * a "switch in" event has occurred.
2824          */
2825         if (machine__get_current_tid(pt->machine, cpu) == tid)
2826                 return 0;
2827
2828         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2829 }
2830
2831 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2832                                    struct perf_sample *sample)
2833 {
2834         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2835         pid_t pid, tid;
2836         int cpu, ret;
2837
2838         cpu = sample->cpu;
2839
2840         if (pt->have_sched_switch == 3) {
2841                 if (!out)
2842                         return intel_pt_context_switch_in(pt, sample);
2843                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2844                         pr_err("Expecting CPU-wide context switch event\n");
2845                         return -EINVAL;
2846                 }
2847                 pid = event->context_switch.next_prev_pid;
2848                 tid = event->context_switch.next_prev_tid;
2849         } else {
2850                 if (out)
2851                         return 0;
2852                 pid = sample->pid;
2853                 tid = sample->tid;
2854         }
2855
2856         if (tid == -1)
2857                 intel_pt_log("context_switch event has no tid\n");
2858
2859         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2860         if (ret <= 0)
2861                 return ret;
2862
2863         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2864 }
2865
2866 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2867                                          union perf_event *event,
2868                                          struct perf_sample *sample)
2869 {
2870         if (!pt->per_cpu_mmaps)
2871                 return 0;
2872
2873         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2874                      sample->cpu, event->itrace_start.pid,
2875                      event->itrace_start.tid, sample->time,
2876                      perf_time_to_tsc(sample->time, &pt->tc));
2877
2878         return machine__set_current_tid(pt->machine, sample->cpu,
2879                                         event->itrace_start.pid,
2880                                         event->itrace_start.tid);
2881 }
2882
2883 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2884                              struct addr_location *al)
2885 {
2886         if (!al->map || addr < al->map->start || addr >= al->map->end) {
2887                 if (!thread__find_map(thread, cpumode, addr, al))
2888                         return -1;
2889         }
2890
2891         return 0;
2892 }
2893
2894 /* Invalidate all instruction cache entries that overlap the text poke */
2895 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2896 {
2897         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2898         u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2899         /* Assume text poke begins in a basic block no more than 4096 bytes */
2900         int cnt = 4096 + event->text_poke.new_len;
2901         struct thread *thread = pt->unknown_thread;
2902         struct addr_location al = { .map = NULL };
2903         struct machine *machine = pt->machine;
2904         struct intel_pt_cache_entry *e;
2905         u64 offset;
2906
2907         if (!event->text_poke.new_len)
2908                 return 0;
2909
2910         for (; cnt; cnt--, addr--) {
2911                 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2912                         if (addr < event->text_poke.addr)
2913                                 return 0;
2914                         continue;
2915                 }
2916
2917                 if (!al.map->dso || !al.map->dso->auxtrace_cache)
2918                         continue;
2919
2920                 offset = al.map->map_ip(al.map, addr);
2921
2922                 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2923                 if (!e)
2924                         continue;
2925
2926                 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2927                         /*
2928                          * No overlap. Working backwards there cannot be another
2929                          * basic block that overlaps the text poke if there is a
2930                          * branch instruction before the text poke address.
2931                          */
2932                         if (e->branch != INTEL_PT_BR_NO_BRANCH)
2933                                 return 0;
2934                 } else {
2935                         intel_pt_cache_invalidate(al.map->dso, machine, offset);
2936                         intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2937                                      al.map->dso->long_name, addr);
2938                 }
2939         }
2940
2941         return 0;
2942 }
2943
2944 static int intel_pt_process_event(struct perf_session *session,
2945                                   union perf_event *event,
2946                                   struct perf_sample *sample,
2947                                   struct perf_tool *tool)
2948 {
2949         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2950                                            auxtrace);
2951         u64 timestamp;
2952         int err = 0;
2953
2954         if (dump_trace)
2955                 return 0;
2956
2957         if (!tool->ordered_events) {
2958                 pr_err("Intel Processor Trace requires ordered events\n");
2959                 return -EINVAL;
2960         }
2961
2962         if (sample->time && sample->time != (u64)-1)
2963                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2964         else
2965                 timestamp = 0;
2966
2967         if (timestamp || pt->timeless_decoding) {
2968                 err = intel_pt_update_queues(pt);
2969                 if (err)
2970                         return err;
2971         }
2972
2973         if (pt->timeless_decoding) {
2974                 if (pt->sampling_mode) {
2975                         if (sample->aux_sample.size)
2976                                 err = intel_pt_process_timeless_sample(pt,
2977                                                                        sample);
2978                 } else if (event->header.type == PERF_RECORD_EXIT) {
2979                         err = intel_pt_process_timeless_queues(pt,
2980                                                                event->fork.tid,
2981                                                                sample->time);
2982                 }
2983         } else if (timestamp) {
2984                 if (!pt->first_timestamp)
2985                         intel_pt_first_timestamp(pt, timestamp);
2986                 err = intel_pt_process_queues(pt, timestamp);
2987         }
2988         if (err)
2989                 return err;
2990
2991         if (event->header.type == PERF_RECORD_SAMPLE) {
2992                 if (pt->synth_opts.add_callchain && !sample->callchain)
2993                         intel_pt_add_callchain(pt, sample);
2994                 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2995                         intel_pt_add_br_stack(pt, sample);
2996         }
2997
2998         if (event->header.type == PERF_RECORD_AUX &&
2999             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3000             pt->synth_opts.errors) {
3001                 err = intel_pt_lost(pt, sample);
3002                 if (err)
3003                         return err;
3004         }
3005
3006         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3007                 err = intel_pt_process_switch(pt, sample);
3008         else if (event->header.type == PERF_RECORD_ITRACE_START)
3009                 err = intel_pt_process_itrace_start(pt, event, sample);
3010         else if (event->header.type == PERF_RECORD_SWITCH ||
3011                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3012                 err = intel_pt_context_switch(pt, event, sample);
3013
3014         if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3015                 err = intel_pt_text_poke(pt, event);
3016
3017         if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3018                 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3019                              event->header.type, sample->cpu, sample->time, timestamp);
3020                 intel_pt_log_event(event);
3021         }
3022
3023         return err;
3024 }
3025
3026 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3027 {
3028         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3029                                            auxtrace);
3030         int ret;
3031
3032         if (dump_trace)
3033                 return 0;
3034
3035         if (!tool->ordered_events)
3036                 return -EINVAL;
3037
3038         ret = intel_pt_update_queues(pt);
3039         if (ret < 0)
3040                 return ret;
3041
3042         if (pt->timeless_decoding)
3043                 return intel_pt_process_timeless_queues(pt, -1,
3044                                                         MAX_TIMESTAMP - 1);
3045
3046         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3047 }
3048
3049 static void intel_pt_free_events(struct perf_session *session)
3050 {
3051         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3052                                            auxtrace);
3053         struct auxtrace_queues *queues = &pt->queues;
3054         unsigned int i;
3055
3056         for (i = 0; i < queues->nr_queues; i++) {
3057                 intel_pt_free_queue(queues->queue_array[i].priv);
3058                 queues->queue_array[i].priv = NULL;
3059         }
3060         intel_pt_log_disable();
3061         auxtrace_queues__free(queues);
3062 }
3063
3064 static void intel_pt_free(struct perf_session *session)
3065 {
3066         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3067                                            auxtrace);
3068
3069         auxtrace_heap__free(&pt->heap);
3070         intel_pt_free_events(session);
3071         session->auxtrace = NULL;
3072         intel_pt_free_vmcs_info(pt);
3073         thread__put(pt->unknown_thread);
3074         addr_filters__exit(&pt->filts);
3075         zfree(&pt->chain);
3076         zfree(&pt->filter);
3077         zfree(&pt->time_ranges);
3078         free(pt);
3079 }
3080
3081 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3082                                        struct evsel *evsel)
3083 {
3084         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3085                                            auxtrace);
3086
3087         return evsel->core.attr.type == pt->pmu_type;
3088 }
3089
3090 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3091                                            union perf_event *event,
3092                                            struct perf_tool *tool __maybe_unused)
3093 {
3094         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3095                                            auxtrace);
3096
3097         if (!pt->data_queued) {
3098                 struct auxtrace_buffer *buffer;
3099                 off_t data_offset;
3100                 int fd = perf_data__fd(session->data);
3101                 int err;
3102
3103                 if (perf_data__is_pipe(session->data)) {
3104                         data_offset = 0;
3105                 } else {
3106                         data_offset = lseek(fd, 0, SEEK_CUR);
3107                         if (data_offset == -1)
3108                                 return -errno;
3109                 }
3110
3111                 err = auxtrace_queues__add_event(&pt->queues, session, event,
3112                                                  data_offset, &buffer);
3113                 if (err)
3114                         return err;
3115
3116                 /* Dump here now we have copied a piped trace out of the pipe */
3117                 if (dump_trace) {
3118                         if (auxtrace_buffer__get_data(buffer, fd)) {
3119                                 intel_pt_dump_event(pt, buffer->data,
3120                                                     buffer->size);
3121                                 auxtrace_buffer__put_data(buffer);
3122                         }
3123                 }
3124         }
3125
3126         return 0;
3127 }
3128
3129 static int intel_pt_queue_data(struct perf_session *session,
3130                                struct perf_sample *sample,
3131                                union perf_event *event, u64 data_offset)
3132 {
3133         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3134                                            auxtrace);
3135         u64 timestamp;
3136
3137         if (event) {
3138                 return auxtrace_queues__add_event(&pt->queues, session, event,
3139                                                   data_offset, NULL);
3140         }
3141
3142         if (sample->time && sample->time != (u64)-1)
3143                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3144         else
3145                 timestamp = 0;
3146
3147         return auxtrace_queues__add_sample(&pt->queues, session, sample,
3148                                            data_offset, timestamp);
3149 }
3150
3151 struct intel_pt_synth {
3152         struct perf_tool dummy_tool;
3153         struct perf_session *session;
3154 };
3155
3156 static int intel_pt_event_synth(struct perf_tool *tool,
3157                                 union perf_event *event,
3158                                 struct perf_sample *sample __maybe_unused,
3159                                 struct machine *machine __maybe_unused)
3160 {
3161         struct intel_pt_synth *intel_pt_synth =
3162                         container_of(tool, struct intel_pt_synth, dummy_tool);
3163
3164         return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3165                                                  NULL);
3166 }
3167
3168 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3169                                 struct perf_event_attr *attr, u64 id)
3170 {
3171         struct intel_pt_synth intel_pt_synth;
3172         int err;
3173
3174         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3175                  name, id, (u64)attr->sample_type);
3176
3177         memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3178         intel_pt_synth.session = session;
3179
3180         err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3181                                           &id, intel_pt_event_synth);
3182         if (err)
3183                 pr_err("%s: failed to synthesize '%s' event type\n",
3184                        __func__, name);
3185
3186         return err;
3187 }
3188
3189 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3190                                     const char *name)
3191 {
3192         struct evsel *evsel;
3193
3194         evlist__for_each_entry(evlist, evsel) {
3195                 if (evsel->core.id && evsel->core.id[0] == id) {
3196                         if (evsel->name)
3197                                 zfree(&evsel->name);
3198                         evsel->name = strdup(name);
3199                         break;
3200                 }
3201         }
3202 }
3203
3204 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3205                                          struct evlist *evlist)
3206 {
3207         struct evsel *evsel;
3208
3209         evlist__for_each_entry(evlist, evsel) {
3210                 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3211                         return evsel;
3212         }
3213
3214         return NULL;
3215 }
3216
3217 static int intel_pt_synth_events(struct intel_pt *pt,
3218                                  struct perf_session *session)
3219 {
3220         struct evlist *evlist = session->evlist;
3221         struct evsel *evsel = intel_pt_evsel(pt, evlist);
3222         struct perf_event_attr attr;
3223         u64 id;
3224         int err;
3225
3226         if (!evsel) {
3227                 pr_debug("There are no selected events with Intel Processor Trace data\n");
3228                 return 0;
3229         }
3230
3231         memset(&attr, 0, sizeof(struct perf_event_attr));
3232         attr.size = sizeof(struct perf_event_attr);
3233         attr.type = PERF_TYPE_HARDWARE;
3234         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3235         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3236                             PERF_SAMPLE_PERIOD;
3237         if (pt->timeless_decoding)
3238                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3239         else
3240                 attr.sample_type |= PERF_SAMPLE_TIME;
3241         if (!pt->per_cpu_mmaps)
3242                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3243         attr.exclude_user = evsel->core.attr.exclude_user;
3244         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3245         attr.exclude_hv = evsel->core.attr.exclude_hv;
3246         attr.exclude_host = evsel->core.attr.exclude_host;
3247         attr.exclude_guest = evsel->core.attr.exclude_guest;
3248         attr.sample_id_all = evsel->core.attr.sample_id_all;
3249         attr.read_format = evsel->core.attr.read_format;
3250
3251         id = evsel->core.id[0] + 1000000000;
3252         if (!id)
3253                 id = 1;
3254
3255         if (pt->synth_opts.branches) {
3256                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3257                 attr.sample_period = 1;
3258                 attr.sample_type |= PERF_SAMPLE_ADDR;
3259                 err = intel_pt_synth_event(session, "branches", &attr, id);
3260                 if (err)
3261                         return err;
3262                 pt->sample_branches = true;
3263                 pt->branches_sample_type = attr.sample_type;
3264                 pt->branches_id = id;
3265                 id += 1;
3266                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3267         }
3268
3269         if (pt->synth_opts.callchain)
3270                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3271         if (pt->synth_opts.last_branch) {
3272                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3273                 /*
3274                  * We don't use the hardware index, but the sample generation
3275                  * code uses the new format branch_stack with this field,
3276                  * so the event attributes must indicate that it's present.
3277                  */
3278                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3279         }
3280
3281         if (pt->synth_opts.instructions) {
3282                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3283                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3284                         attr.sample_period =
3285                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3286                 else
3287                         attr.sample_period = pt->synth_opts.period;
3288                 err = intel_pt_synth_event(session, "instructions", &attr, id);
3289                 if (err)
3290                         return err;
3291                 pt->sample_instructions = true;
3292                 pt->instructions_sample_type = attr.sample_type;
3293                 pt->instructions_id = id;
3294                 id += 1;
3295         }
3296
3297         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3298         attr.sample_period = 1;
3299
3300         if (pt->synth_opts.transactions) {
3301                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3302                 err = intel_pt_synth_event(session, "transactions", &attr, id);
3303                 if (err)
3304                         return err;
3305                 pt->sample_transactions = true;
3306                 pt->transactions_sample_type = attr.sample_type;
3307                 pt->transactions_id = id;
3308                 intel_pt_set_event_name(evlist, id, "transactions");
3309                 id += 1;
3310         }
3311
3312         attr.type = PERF_TYPE_SYNTH;
3313         attr.sample_type |= PERF_SAMPLE_RAW;
3314
3315         if (pt->synth_opts.ptwrites) {
3316                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3317                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3318                 if (err)
3319                         return err;
3320                 pt->sample_ptwrites = true;
3321                 pt->ptwrites_sample_type = attr.sample_type;
3322                 pt->ptwrites_id = id;
3323                 intel_pt_set_event_name(evlist, id, "ptwrite");
3324                 id += 1;
3325         }
3326
3327         if (pt->synth_opts.pwr_events) {
3328                 pt->sample_pwr_events = true;
3329                 pt->pwr_events_sample_type = attr.sample_type;
3330
3331                 attr.config = PERF_SYNTH_INTEL_CBR;
3332                 err = intel_pt_synth_event(session, "cbr", &attr, id);
3333                 if (err)
3334                         return err;
3335                 pt->cbr_id = id;
3336                 intel_pt_set_event_name(evlist, id, "cbr");
3337                 id += 1;
3338
3339                 attr.config = PERF_SYNTH_INTEL_PSB;
3340                 err = intel_pt_synth_event(session, "psb", &attr, id);
3341                 if (err)
3342                         return err;
3343                 pt->psb_id = id;
3344                 intel_pt_set_event_name(evlist, id, "psb");
3345                 id += 1;
3346         }
3347
3348         if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3349                 attr.config = PERF_SYNTH_INTEL_MWAIT;
3350                 err = intel_pt_synth_event(session, "mwait", &attr, id);
3351                 if (err)
3352                         return err;
3353                 pt->mwait_id = id;
3354                 intel_pt_set_event_name(evlist, id, "mwait");
3355                 id += 1;
3356
3357                 attr.config = PERF_SYNTH_INTEL_PWRE;
3358                 err = intel_pt_synth_event(session, "pwre", &attr, id);
3359                 if (err)
3360                         return err;
3361                 pt->pwre_id = id;
3362                 intel_pt_set_event_name(evlist, id, "pwre");
3363                 id += 1;
3364
3365                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3366                 err = intel_pt_synth_event(session, "exstop", &attr, id);
3367                 if (err)
3368                         return err;
3369                 pt->exstop_id = id;
3370                 intel_pt_set_event_name(evlist, id, "exstop");
3371                 id += 1;
3372
3373                 attr.config = PERF_SYNTH_INTEL_PWRX;
3374                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3375                 if (err)
3376                         return err;
3377                 pt->pwrx_id = id;
3378                 intel_pt_set_event_name(evlist, id, "pwrx");
3379                 id += 1;
3380         }
3381
3382         return 0;
3383 }
3384
3385 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3386 {
3387         struct evsel *evsel;
3388
3389         if (!pt->synth_opts.other_events)
3390                 return;
3391
3392         evlist__for_each_entry(pt->session->evlist, evsel) {
3393                 if (evsel->core.attr.aux_output && evsel->core.id) {
3394                         pt->sample_pebs = true;
3395                         pt->pebs_evsel = evsel;
3396                         return;
3397                 }
3398         }
3399 }
3400
3401 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3402 {
3403         struct evsel *evsel;
3404
3405         evlist__for_each_entry_reverse(evlist, evsel) {
3406                 const char *name = evsel__name(evsel);
3407
3408                 if (!strcmp(name, "sched:sched_switch"))
3409                         return evsel;
3410         }
3411
3412         return NULL;
3413 }
3414
3415 static bool intel_pt_find_switch(struct evlist *evlist)
3416 {
3417         struct evsel *evsel;
3418
3419         evlist__for_each_entry(evlist, evsel) {
3420                 if (evsel->core.attr.context_switch)
3421                         return true;
3422         }
3423
3424         return false;
3425 }
3426
3427 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3428 {
3429         struct intel_pt *pt = data;
3430
3431         if (!strcmp(var, "intel-pt.mispred-all"))
3432                 pt->mispred_all = perf_config_bool(var, value);
3433
3434         return 0;
3435 }
3436
3437 /* Find least TSC which converts to ns or later */
3438 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3439 {
3440         u64 tsc, tm;
3441
3442         tsc = perf_time_to_tsc(ns, &pt->tc);
3443
3444         while (1) {
3445                 tm = tsc_to_perf_time(tsc, &pt->tc);
3446                 if (tm < ns)
3447                         break;
3448                 tsc -= 1;
3449         }
3450
3451         while (tm < ns)
3452                 tm = tsc_to_perf_time(++tsc, &pt->tc);
3453
3454         return tsc;
3455 }
3456
3457 /* Find greatest TSC which converts to ns or earlier */
3458 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3459 {
3460         u64 tsc, tm;
3461
3462         tsc = perf_time_to_tsc(ns, &pt->tc);
3463
3464         while (1) {
3465                 tm = tsc_to_perf_time(tsc, &pt->tc);
3466                 if (tm > ns)
3467                         break;
3468                 tsc += 1;
3469         }
3470
3471         while (tm > ns)
3472                 tm = tsc_to_perf_time(--tsc, &pt->tc);
3473
3474         return tsc;
3475 }
3476
3477 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3478                                       struct itrace_synth_opts *opts)
3479 {
3480         struct perf_time_interval *p = opts->ptime_range;
3481         int n = opts->range_num;
3482         int i;
3483
3484         if (!n || !p || pt->timeless_decoding)
3485                 return 0;
3486
3487         pt->time_ranges = calloc(n, sizeof(struct range));
3488         if (!pt->time_ranges)
3489                 return -ENOMEM;
3490
3491         pt->range_cnt = n;
3492
3493         intel_pt_log("%s: %u range(s)\n", __func__, n);
3494
3495         for (i = 0; i < n; i++) {
3496                 struct range *r = &pt->time_ranges[i];
3497                 u64 ts = p[i].start;
3498                 u64 te = p[i].end;
3499
3500                 /*
3501                  * Take care to ensure the TSC range matches the perf-time range
3502                  * when converted back to perf-time.
3503                  */
3504                 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3505                 r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3506
3507                 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3508                              i, ts, te);
3509                 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3510                              i, r->start, r->end);
3511         }
3512
3513         return 0;
3514 }
3515
3516 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
3517 {
3518         struct intel_pt_vmcs_info *vmcs_info;
3519         u64 tsc_offset, vmcs;
3520         char *p = *args;
3521
3522         errno = 0;
3523
3524         p = skip_spaces(p);
3525         if (!*p)
3526                 return 1;
3527
3528         tsc_offset = strtoull(p, &p, 0);
3529         if (errno)
3530                 return -errno;
3531         p = skip_spaces(p);
3532         if (*p != ':') {
3533                 pt->dflt_tsc_offset = tsc_offset;
3534                 *args = p;
3535                 return 0;
3536         }
3537         while (1) {
3538                 vmcs = strtoull(p, &p, 0);
3539                 if (errno)
3540                         return -errno;
3541                 if (!vmcs)
3542                         return -EINVAL;
3543                 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
3544                 if (!vmcs_info)
3545                         return -ENOMEM;
3546                 p = skip_spaces(p);
3547                 if (*p != ',')
3548                         break;
3549                 p += 1;
3550         }
3551         *args = p;
3552         return 0;
3553 }
3554
3555 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
3556 {
3557         char *args = pt->synth_opts.vm_tm_corr_args;
3558         int ret;
3559
3560         if (!args)
3561                 return 0;
3562
3563         do {
3564                 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
3565         } while (!ret);
3566
3567         if (ret < 0) {
3568                 pr_err("Failed to parse VM Time Correlation options\n");
3569                 return ret;
3570         }
3571
3572         return 0;
3573 }
3574
3575 static const char * const intel_pt_info_fmts[] = {
3576         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
3577         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
3578         [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
3579         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
3580         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
3581         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
3582         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
3583         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
3584         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
3585         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
3586         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
3587         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
3588         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
3589         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
3590         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
3591         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
3592 };
3593
3594 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3595 {
3596         int i;
3597
3598         if (!dump_trace)
3599                 return;
3600
3601         for (i = start; i <= finish; i++)
3602                 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3603 }
3604
3605 static void intel_pt_print_info_str(const char *name, const char *str)
3606 {
3607         if (!dump_trace)
3608                 return;
3609
3610         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3611 }
3612
3613 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3614 {
3615         return auxtrace_info->header.size >=
3616                 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3617 }
3618
3619 int intel_pt_process_auxtrace_info(union perf_event *event,
3620                                    struct perf_session *session)
3621 {
3622         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3623         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3624         struct intel_pt *pt;
3625         void *info_end;
3626         __u64 *info;
3627         int err;
3628
3629         if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3630                                         min_sz)
3631                 return -EINVAL;
3632
3633         pt = zalloc(sizeof(struct intel_pt));
3634         if (!pt)
3635                 return -ENOMEM;
3636
3637         pt->vmcs_info = RB_ROOT;
3638
3639         addr_filters__init(&pt->filts);
3640
3641         err = perf_config(intel_pt_perf_config, pt);
3642         if (err)
3643                 goto err_free;
3644
3645         err = auxtrace_queues__init(&pt->queues);
3646         if (err)
3647                 goto err_free;
3648
3649         intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3650
3651         if (session->itrace_synth_opts->set) {
3652                 pt->synth_opts = *session->itrace_synth_opts;
3653         } else {
3654                 struct itrace_synth_opts *opts = session->itrace_synth_opts;
3655
3656                 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
3657                 if (!opts->default_no_sample && !opts->inject) {
3658                         pt->synth_opts.branches = false;
3659                         pt->synth_opts.callchain = true;
3660                         pt->synth_opts.add_callchain = true;
3661                 }
3662                 pt->synth_opts.thread_stack = opts->thread_stack;
3663         }
3664
3665         pt->session = session;
3666         pt->machine = &session->machines.host; /* No kvm support */
3667         pt->auxtrace_type = auxtrace_info->type;
3668         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3669         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3670         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3671         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3672         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3673         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3674         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3675         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3676         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3677         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3678         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3679                             INTEL_PT_PER_CPU_MMAPS);
3680
3681         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3682                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3683                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3684                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3685                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3686                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3687                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3688                                     INTEL_PT_CYC_BIT);
3689         }
3690
3691         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3692                 pt->max_non_turbo_ratio =
3693                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3694                 intel_pt_print_info(&auxtrace_info->priv[0],
3695                                     INTEL_PT_MAX_NONTURBO_RATIO,
3696                                     INTEL_PT_MAX_NONTURBO_RATIO);
3697         }
3698
3699         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3700         info_end = (void *)info + auxtrace_info->header.size;
3701
3702         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3703                 size_t len;
3704
3705                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3706                 intel_pt_print_info(&auxtrace_info->priv[0],
3707                                     INTEL_PT_FILTER_STR_LEN,
3708                                     INTEL_PT_FILTER_STR_LEN);
3709                 if (len) {
3710                         const char *filter = (const char *)info;
3711
3712                         len = roundup(len + 1, 8);
3713                         info += len >> 3;
3714                         if ((void *)info > info_end) {
3715                                 pr_err("%s: bad filter string length\n", __func__);
3716                                 err = -EINVAL;
3717                                 goto err_free_queues;
3718                         }
3719                         pt->filter = memdup(filter, len);
3720                         if (!pt->filter) {
3721                                 err = -ENOMEM;
3722                                 goto err_free_queues;
3723                         }
3724                         if (session->header.needs_swap)
3725                                 mem_bswap_64(pt->filter, len);
3726                         if (pt->filter[len - 1]) {
3727                                 pr_err("%s: filter string not null terminated\n", __func__);
3728                                 err = -EINVAL;
3729                                 goto err_free_queues;
3730                         }
3731                         err = addr_filters__parse_bare_filter(&pt->filts,
3732                                                               filter);
3733                         if (err)
3734                                 goto err_free_queues;
3735                 }
3736                 intel_pt_print_info_str("Filter string", pt->filter);
3737         }
3738
3739         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3740         if (pt->timeless_decoding && !pt->tc.time_mult)
3741                 pt->tc.time_mult = 1;
3742         pt->have_tsc = intel_pt_have_tsc(pt);
3743         pt->sampling_mode = intel_pt_sampling_mode(pt);
3744         pt->est_tsc = !pt->timeless_decoding;
3745
3746         if (pt->synth_opts.vm_time_correlation) {
3747                 if (pt->timeless_decoding) {
3748                         pr_err("Intel PT has no time information for VM Time Correlation\n");
3749                         err = -EINVAL;
3750                         goto err_free_queues;
3751                 }
3752                 if (session->itrace_synth_opts->ptime_range) {
3753                         pr_err("Time ranges cannot be specified with VM Time Correlation\n");
3754                         err = -EINVAL;
3755                         goto err_free_queues;
3756                 }
3757                 /* Currently TSC Offset is calculated using MTC packets */
3758                 if (!intel_pt_have_mtc(pt)) {
3759                         pr_err("MTC packets must have been enabled for VM Time Correlation\n");
3760                         err = -EINVAL;
3761                         goto err_free_queues;
3762                 }
3763                 err = intel_pt_parse_vm_tm_corr_args(pt);
3764                 if (err)
3765                         goto err_free_queues;
3766         }
3767
3768         pt->unknown_thread = thread__new(999999999, 999999999);
3769         if (!pt->unknown_thread) {
3770                 err = -ENOMEM;
3771                 goto err_free_queues;
3772         }
3773
3774         /*
3775          * Since this thread will not be kept in any rbtree not in a
3776          * list, initialize its list node so that at thread__put() the
3777          * current thread lifetime assumption is kept and we don't segfault
3778          * at list_del_init().
3779          */
3780         INIT_LIST_HEAD(&pt->unknown_thread->node);
3781
3782         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3783         if (err)
3784                 goto err_delete_thread;
3785         if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3786                 err = -ENOMEM;
3787                 goto err_delete_thread;
3788         }
3789
3790         pt->auxtrace.process_event = intel_pt_process_event;
3791         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3792         pt->auxtrace.queue_data = intel_pt_queue_data;
3793         pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3794         pt->auxtrace.flush_events = intel_pt_flush;
3795         pt->auxtrace.free_events = intel_pt_free_events;
3796         pt->auxtrace.free = intel_pt_free;
3797         pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3798         session->auxtrace = &pt->auxtrace;
3799
3800         if (dump_trace)
3801                 return 0;
3802
3803         if (pt->have_sched_switch == 1) {
3804                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3805                 if (!pt->switch_evsel) {
3806                         pr_err("%s: missing sched_switch event\n", __func__);
3807                         err = -EINVAL;
3808                         goto err_delete_thread;
3809                 }
3810         } else if (pt->have_sched_switch == 2 &&
3811                    !intel_pt_find_switch(session->evlist)) {
3812                 pr_err("%s: missing context_switch attribute flag\n", __func__);
3813                 err = -EINVAL;
3814                 goto err_delete_thread;
3815         }
3816
3817         if (pt->synth_opts.log)
3818                 intel_pt_log_enable();
3819
3820         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
3821         if (pt->tc.time_mult) {
3822                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3823
3824                 if (!pt->max_non_turbo_ratio)
3825                         pt->max_non_turbo_ratio =
3826                                         (tsc_freq + 50000000) / 100000000;
3827                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3828                 intel_pt_log("Maximum non-turbo ratio %u\n",
3829                              pt->max_non_turbo_ratio);
3830                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3831         }
3832
3833         err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3834         if (err)
3835                 goto err_delete_thread;
3836
3837         if (pt->synth_opts.calls)
3838                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3839                                        PERF_IP_FLAG_TRACE_END;
3840         if (pt->synth_opts.returns)
3841                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
3842                                        PERF_IP_FLAG_TRACE_BEGIN;
3843
3844         if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3845             !symbol_conf.use_callchain) {
3846                 symbol_conf.use_callchain = true;
3847                 if (callchain_register_param(&callchain_param) < 0) {
3848                         symbol_conf.use_callchain = false;
3849                         pt->synth_opts.callchain = false;
3850                         pt->synth_opts.add_callchain = false;
3851                 }
3852         }
3853
3854         if (pt->synth_opts.add_callchain) {
3855                 err = intel_pt_callchain_init(pt);
3856                 if (err)
3857                         goto err_delete_thread;
3858         }
3859
3860         if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3861                 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3862                 pt->br_stack_sz_plus = pt->br_stack_sz;
3863         }
3864
3865         if (pt->synth_opts.add_last_branch) {
3866                 err = intel_pt_br_stack_init(pt);
3867                 if (err)
3868                         goto err_delete_thread;
3869                 /*
3870                  * Additional branch stack size to cater for tracing from the
3871                  * actual sample ip to where the sample time is recorded.
3872                  * Measured at about 200 branches, but generously set to 1024.
3873                  * If kernel space is not being traced, then add just 1 for the
3874                  * branch to kernel space.
3875                  */
3876                 if (intel_pt_tracing_kernel(pt))
3877                         pt->br_stack_sz_plus += 1024;
3878                 else
3879                         pt->br_stack_sz_plus += 1;
3880         }
3881
3882         pt->use_thread_stack = pt->synth_opts.callchain ||
3883                                pt->synth_opts.add_callchain ||
3884                                pt->synth_opts.thread_stack ||
3885                                pt->synth_opts.last_branch ||
3886                                pt->synth_opts.add_last_branch;
3887
3888         pt->callstack = pt->synth_opts.callchain ||
3889                         pt->synth_opts.add_callchain ||
3890                         pt->synth_opts.thread_stack;
3891
3892         err = intel_pt_synth_events(pt, session);
3893         if (err)
3894                 goto err_delete_thread;
3895
3896         intel_pt_setup_pebs_events(pt);
3897
3898         if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3899                 err = auxtrace_queue_data(session, true, true);
3900         else
3901                 err = auxtrace_queues__process_index(&pt->queues, session);
3902         if (err)
3903                 goto err_delete_thread;
3904
3905         if (pt->queues.populated)
3906                 pt->data_queued = true;
3907
3908         if (pt->timeless_decoding)
3909                 pr_debug2("Intel PT decoding without timestamps\n");
3910
3911         return 0;
3912
3913 err_delete_thread:
3914         zfree(&pt->chain);
3915         thread__zput(pt->unknown_thread);
3916 err_free_queues:
3917         intel_pt_log_disable();
3918         auxtrace_queues__free(&pt->queues);
3919         session->auxtrace = NULL;
3920 err_free:
3921         addr_filters__exit(&pt->filts);
3922         zfree(&pt->filter);
3923         zfree(&pt->time_ranges);
3924         free(pt);
3925         return err;
3926 }