Merge tag 'block-5.15-2021-09-05' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32
33 #define MAX_LSM_EVM_XATTR       2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45         [LOCKDOWN_NONE] = "none",
46         [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47         [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48         [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49         [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50         [LOCKDOWN_HIBERNATION] = "hibernation",
51         [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52         [LOCKDOWN_IOPORT] = "raw io port access",
53         [LOCKDOWN_MSR] = "raw MSR access",
54         [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55         [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56         [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57         [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58         [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59         [LOCKDOWN_DEBUGFS] = "debugfs access",
60         [LOCKDOWN_XMON_WR] = "xmon write access",
61         [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62         [LOCKDOWN_INTEGRITY_MAX] = "integrity",
63         [LOCKDOWN_KCORE] = "/proc/kcore access",
64         [LOCKDOWN_KPROBES] = "use of kprobes",
65         [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
66         [LOCKDOWN_PERF] = "unsafe use of perf",
67         [LOCKDOWN_TRACEFS] = "use of tracefs",
68         [LOCKDOWN_XMON_RW] = "xmon read and write access",
69         [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
70         [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
71 };
72
73 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
74 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
75
76 static struct kmem_cache *lsm_file_cache;
77 static struct kmem_cache *lsm_inode_cache;
78
79 char *lsm_names;
80 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
81
82 /* Boot-time LSM user choice */
83 static __initdata const char *chosen_lsm_order;
84 static __initdata const char *chosen_major_lsm;
85
86 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
87
88 /* Ordered list of LSMs to initialize. */
89 static __initdata struct lsm_info **ordered_lsms;
90 static __initdata struct lsm_info *exclusive;
91
92 static __initdata bool debug;
93 #define init_debug(...)                                         \
94         do {                                                    \
95                 if (debug)                                      \
96                         pr_info(__VA_ARGS__);                   \
97         } while (0)
98
99 static bool __init is_enabled(struct lsm_info *lsm)
100 {
101         if (!lsm->enabled)
102                 return false;
103
104         return *lsm->enabled;
105 }
106
107 /* Mark an LSM's enabled flag. */
108 static int lsm_enabled_true __initdata = 1;
109 static int lsm_enabled_false __initdata = 0;
110 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
111 {
112         /*
113          * When an LSM hasn't configured an enable variable, we can use
114          * a hard-coded location for storing the default enabled state.
115          */
116         if (!lsm->enabled) {
117                 if (enabled)
118                         lsm->enabled = &lsm_enabled_true;
119                 else
120                         lsm->enabled = &lsm_enabled_false;
121         } else if (lsm->enabled == &lsm_enabled_true) {
122                 if (!enabled)
123                         lsm->enabled = &lsm_enabled_false;
124         } else if (lsm->enabled == &lsm_enabled_false) {
125                 if (enabled)
126                         lsm->enabled = &lsm_enabled_true;
127         } else {
128                 *lsm->enabled = enabled;
129         }
130 }
131
132 /* Is an LSM already listed in the ordered LSMs list? */
133 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
134 {
135         struct lsm_info **check;
136
137         for (check = ordered_lsms; *check; check++)
138                 if (*check == lsm)
139                         return true;
140
141         return false;
142 }
143
144 /* Append an LSM to the list of ordered LSMs to initialize. */
145 static int last_lsm __initdata;
146 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
147 {
148         /* Ignore duplicate selections. */
149         if (exists_ordered_lsm(lsm))
150                 return;
151
152         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
153                 return;
154
155         /* Enable this LSM, if it is not already set. */
156         if (!lsm->enabled)
157                 lsm->enabled = &lsm_enabled_true;
158         ordered_lsms[last_lsm++] = lsm;
159
160         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
161                    is_enabled(lsm) ? "en" : "dis");
162 }
163
164 /* Is an LSM allowed to be initialized? */
165 static bool __init lsm_allowed(struct lsm_info *lsm)
166 {
167         /* Skip if the LSM is disabled. */
168         if (!is_enabled(lsm))
169                 return false;
170
171         /* Not allowed if another exclusive LSM already initialized. */
172         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
173                 init_debug("exclusive disabled: %s\n", lsm->name);
174                 return false;
175         }
176
177         return true;
178 }
179
180 static void __init lsm_set_blob_size(int *need, int *lbs)
181 {
182         int offset;
183
184         if (*need > 0) {
185                 offset = *lbs;
186                 *lbs += *need;
187                 *need = offset;
188         }
189 }
190
191 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
192 {
193         if (!needed)
194                 return;
195
196         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
197         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
198         /*
199          * The inode blob gets an rcu_head in addition to
200          * what the modules might need.
201          */
202         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
203                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
204         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
205         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
206         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
207         lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
208         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
209 }
210
211 /* Prepare LSM for initialization. */
212 static void __init prepare_lsm(struct lsm_info *lsm)
213 {
214         int enabled = lsm_allowed(lsm);
215
216         /* Record enablement (to handle any following exclusive LSMs). */
217         set_enabled(lsm, enabled);
218
219         /* If enabled, do pre-initialization work. */
220         if (enabled) {
221                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
222                         exclusive = lsm;
223                         init_debug("exclusive chosen: %s\n", lsm->name);
224                 }
225
226                 lsm_set_blob_sizes(lsm->blobs);
227         }
228 }
229
230 /* Initialize a given LSM, if it is enabled. */
231 static void __init initialize_lsm(struct lsm_info *lsm)
232 {
233         if (is_enabled(lsm)) {
234                 int ret;
235
236                 init_debug("initializing %s\n", lsm->name);
237                 ret = lsm->init();
238                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
239         }
240 }
241
242 /* Populate ordered LSMs list from comma-separated LSM name list. */
243 static void __init ordered_lsm_parse(const char *order, const char *origin)
244 {
245         struct lsm_info *lsm;
246         char *sep, *name, *next;
247
248         /* LSM_ORDER_FIRST is always first. */
249         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
250                 if (lsm->order == LSM_ORDER_FIRST)
251                         append_ordered_lsm(lsm, "first");
252         }
253
254         /* Process "security=", if given. */
255         if (chosen_major_lsm) {
256                 struct lsm_info *major;
257
258                 /*
259                  * To match the original "security=" behavior, this
260                  * explicitly does NOT fallback to another Legacy Major
261                  * if the selected one was separately disabled: disable
262                  * all non-matching Legacy Major LSMs.
263                  */
264                 for (major = __start_lsm_info; major < __end_lsm_info;
265                      major++) {
266                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
267                             strcmp(major->name, chosen_major_lsm) != 0) {
268                                 set_enabled(major, false);
269                                 init_debug("security=%s disabled: %s\n",
270                                            chosen_major_lsm, major->name);
271                         }
272                 }
273         }
274
275         sep = kstrdup(order, GFP_KERNEL);
276         next = sep;
277         /* Walk the list, looking for matching LSMs. */
278         while ((name = strsep(&next, ",")) != NULL) {
279                 bool found = false;
280
281                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
282                         if (lsm->order == LSM_ORDER_MUTABLE &&
283                             strcmp(lsm->name, name) == 0) {
284                                 append_ordered_lsm(lsm, origin);
285                                 found = true;
286                         }
287                 }
288
289                 if (!found)
290                         init_debug("%s ignored: %s\n", origin, name);
291         }
292
293         /* Process "security=", if given. */
294         if (chosen_major_lsm) {
295                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
296                         if (exists_ordered_lsm(lsm))
297                                 continue;
298                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
299                                 append_ordered_lsm(lsm, "security=");
300                 }
301         }
302
303         /* Disable all LSMs not in the ordered list. */
304         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
305                 if (exists_ordered_lsm(lsm))
306                         continue;
307                 set_enabled(lsm, false);
308                 init_debug("%s disabled: %s\n", origin, lsm->name);
309         }
310
311         kfree(sep);
312 }
313
314 static void __init lsm_early_cred(struct cred *cred);
315 static void __init lsm_early_task(struct task_struct *task);
316
317 static int lsm_append(const char *new, char **result);
318
319 static void __init ordered_lsm_init(void)
320 {
321         struct lsm_info **lsm;
322
323         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
324                                 GFP_KERNEL);
325
326         if (chosen_lsm_order) {
327                 if (chosen_major_lsm) {
328                         pr_info("security= is ignored because it is superseded by lsm=\n");
329                         chosen_major_lsm = NULL;
330                 }
331                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
332         } else
333                 ordered_lsm_parse(builtin_lsm_order, "builtin");
334
335         for (lsm = ordered_lsms; *lsm; lsm++)
336                 prepare_lsm(*lsm);
337
338         init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
339         init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
340         init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
341         init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
342         init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
343         init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
344         init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
345
346         /*
347          * Create any kmem_caches needed for blobs
348          */
349         if (blob_sizes.lbs_file)
350                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
351                                                    blob_sizes.lbs_file, 0,
352                                                    SLAB_PANIC, NULL);
353         if (blob_sizes.lbs_inode)
354                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
355                                                     blob_sizes.lbs_inode, 0,
356                                                     SLAB_PANIC, NULL);
357
358         lsm_early_cred((struct cred *) current->cred);
359         lsm_early_task(current);
360         for (lsm = ordered_lsms; *lsm; lsm++)
361                 initialize_lsm(*lsm);
362
363         kfree(ordered_lsms);
364 }
365
366 int __init early_security_init(void)
367 {
368         int i;
369         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
370         struct lsm_info *lsm;
371
372         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
373              i++)
374                 INIT_HLIST_HEAD(&list[i]);
375
376         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
377                 if (!lsm->enabled)
378                         lsm->enabled = &lsm_enabled_true;
379                 prepare_lsm(lsm);
380                 initialize_lsm(lsm);
381         }
382
383         return 0;
384 }
385
386 /**
387  * security_init - initializes the security framework
388  *
389  * This should be called early in the kernel initialization sequence.
390  */
391 int __init security_init(void)
392 {
393         struct lsm_info *lsm;
394
395         pr_info("Security Framework initializing\n");
396
397         /*
398          * Append the names of the early LSM modules now that kmalloc() is
399          * available
400          */
401         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
402                 if (lsm->enabled)
403                         lsm_append(lsm->name, &lsm_names);
404         }
405
406         /* Load LSMs in specified order. */
407         ordered_lsm_init();
408
409         return 0;
410 }
411
412 /* Save user chosen LSM */
413 static int __init choose_major_lsm(char *str)
414 {
415         chosen_major_lsm = str;
416         return 1;
417 }
418 __setup("security=", choose_major_lsm);
419
420 /* Explicitly choose LSM initialization order. */
421 static int __init choose_lsm_order(char *str)
422 {
423         chosen_lsm_order = str;
424         return 1;
425 }
426 __setup("lsm=", choose_lsm_order);
427
428 /* Enable LSM order debugging. */
429 static int __init enable_debug(char *str)
430 {
431         debug = true;
432         return 1;
433 }
434 __setup("lsm.debug", enable_debug);
435
436 static bool match_last_lsm(const char *list, const char *lsm)
437 {
438         const char *last;
439
440         if (WARN_ON(!list || !lsm))
441                 return false;
442         last = strrchr(list, ',');
443         if (last)
444                 /* Pass the comma, strcmp() will check for '\0' */
445                 last++;
446         else
447                 last = list;
448         return !strcmp(last, lsm);
449 }
450
451 static int lsm_append(const char *new, char **result)
452 {
453         char *cp;
454
455         if (*result == NULL) {
456                 *result = kstrdup(new, GFP_KERNEL);
457                 if (*result == NULL)
458                         return -ENOMEM;
459         } else {
460                 /* Check if it is the last registered name */
461                 if (match_last_lsm(*result, new))
462                         return 0;
463                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
464                 if (cp == NULL)
465                         return -ENOMEM;
466                 kfree(*result);
467                 *result = cp;
468         }
469         return 0;
470 }
471
472 /**
473  * security_add_hooks - Add a modules hooks to the hook lists.
474  * @hooks: the hooks to add
475  * @count: the number of hooks to add
476  * @lsm: the name of the security module
477  *
478  * Each LSM has to register its hooks with the infrastructure.
479  */
480 void __init security_add_hooks(struct security_hook_list *hooks, int count,
481                                 char *lsm)
482 {
483         int i;
484
485         for (i = 0; i < count; i++) {
486                 hooks[i].lsm = lsm;
487                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
488         }
489
490         /*
491          * Don't try to append during early_security_init(), we'll come back
492          * and fix this up afterwards.
493          */
494         if (slab_is_available()) {
495                 if (lsm_append(lsm, &lsm_names) < 0)
496                         panic("%s - Cannot get early memory.\n", __func__);
497         }
498 }
499
500 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
501 {
502         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
503                                             event, data);
504 }
505 EXPORT_SYMBOL(call_blocking_lsm_notifier);
506
507 int register_blocking_lsm_notifier(struct notifier_block *nb)
508 {
509         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
510                                                 nb);
511 }
512 EXPORT_SYMBOL(register_blocking_lsm_notifier);
513
514 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
515 {
516         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
517                                                   nb);
518 }
519 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
520
521 /**
522  * lsm_cred_alloc - allocate a composite cred blob
523  * @cred: the cred that needs a blob
524  * @gfp: allocation type
525  *
526  * Allocate the cred blob for all the modules
527  *
528  * Returns 0, or -ENOMEM if memory can't be allocated.
529  */
530 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
531 {
532         if (blob_sizes.lbs_cred == 0) {
533                 cred->security = NULL;
534                 return 0;
535         }
536
537         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
538         if (cred->security == NULL)
539                 return -ENOMEM;
540         return 0;
541 }
542
543 /**
544  * lsm_early_cred - during initialization allocate a composite cred blob
545  * @cred: the cred that needs a blob
546  *
547  * Allocate the cred blob for all the modules
548  */
549 static void __init lsm_early_cred(struct cred *cred)
550 {
551         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
552
553         if (rc)
554                 panic("%s: Early cred alloc failed.\n", __func__);
555 }
556
557 /**
558  * lsm_file_alloc - allocate a composite file blob
559  * @file: the file that needs a blob
560  *
561  * Allocate the file blob for all the modules
562  *
563  * Returns 0, or -ENOMEM if memory can't be allocated.
564  */
565 static int lsm_file_alloc(struct file *file)
566 {
567         if (!lsm_file_cache) {
568                 file->f_security = NULL;
569                 return 0;
570         }
571
572         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
573         if (file->f_security == NULL)
574                 return -ENOMEM;
575         return 0;
576 }
577
578 /**
579  * lsm_inode_alloc - allocate a composite inode blob
580  * @inode: the inode that needs a blob
581  *
582  * Allocate the inode blob for all the modules
583  *
584  * Returns 0, or -ENOMEM if memory can't be allocated.
585  */
586 int lsm_inode_alloc(struct inode *inode)
587 {
588         if (!lsm_inode_cache) {
589                 inode->i_security = NULL;
590                 return 0;
591         }
592
593         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
594         if (inode->i_security == NULL)
595                 return -ENOMEM;
596         return 0;
597 }
598
599 /**
600  * lsm_task_alloc - allocate a composite task blob
601  * @task: the task that needs a blob
602  *
603  * Allocate the task blob for all the modules
604  *
605  * Returns 0, or -ENOMEM if memory can't be allocated.
606  */
607 static int lsm_task_alloc(struct task_struct *task)
608 {
609         if (blob_sizes.lbs_task == 0) {
610                 task->security = NULL;
611                 return 0;
612         }
613
614         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
615         if (task->security == NULL)
616                 return -ENOMEM;
617         return 0;
618 }
619
620 /**
621  * lsm_ipc_alloc - allocate a composite ipc blob
622  * @kip: the ipc that needs a blob
623  *
624  * Allocate the ipc blob for all the modules
625  *
626  * Returns 0, or -ENOMEM if memory can't be allocated.
627  */
628 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
629 {
630         if (blob_sizes.lbs_ipc == 0) {
631                 kip->security = NULL;
632                 return 0;
633         }
634
635         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
636         if (kip->security == NULL)
637                 return -ENOMEM;
638         return 0;
639 }
640
641 /**
642  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
643  * @mp: the msg_msg that needs a blob
644  *
645  * Allocate the ipc blob for all the modules
646  *
647  * Returns 0, or -ENOMEM if memory can't be allocated.
648  */
649 static int lsm_msg_msg_alloc(struct msg_msg *mp)
650 {
651         if (blob_sizes.lbs_msg_msg == 0) {
652                 mp->security = NULL;
653                 return 0;
654         }
655
656         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
657         if (mp->security == NULL)
658                 return -ENOMEM;
659         return 0;
660 }
661
662 /**
663  * lsm_early_task - during initialization allocate a composite task blob
664  * @task: the task that needs a blob
665  *
666  * Allocate the task blob for all the modules
667  */
668 static void __init lsm_early_task(struct task_struct *task)
669 {
670         int rc = lsm_task_alloc(task);
671
672         if (rc)
673                 panic("%s: Early task alloc failed.\n", __func__);
674 }
675
676 /**
677  * lsm_superblock_alloc - allocate a composite superblock blob
678  * @sb: the superblock that needs a blob
679  *
680  * Allocate the superblock blob for all the modules
681  *
682  * Returns 0, or -ENOMEM if memory can't be allocated.
683  */
684 static int lsm_superblock_alloc(struct super_block *sb)
685 {
686         if (blob_sizes.lbs_superblock == 0) {
687                 sb->s_security = NULL;
688                 return 0;
689         }
690
691         sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
692         if (sb->s_security == NULL)
693                 return -ENOMEM;
694         return 0;
695 }
696
697 /*
698  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
699  * can be accessed with:
700  *
701  *      LSM_RET_DEFAULT(<hook_name>)
702  *
703  * The macros below define static constants for the default value of each
704  * LSM hook.
705  */
706 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
707 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
708 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
709         static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
710 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
711         DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
712
713 #include <linux/lsm_hook_defs.h>
714 #undef LSM_HOOK
715
716 /*
717  * Hook list operation macros.
718  *
719  * call_void_hook:
720  *      This is a hook that does not return a value.
721  *
722  * call_int_hook:
723  *      This is a hook that returns a value.
724  */
725
726 #define call_void_hook(FUNC, ...)                               \
727         do {                                                    \
728                 struct security_hook_list *P;                   \
729                                                                 \
730                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
731                         P->hook.FUNC(__VA_ARGS__);              \
732         } while (0)
733
734 #define call_int_hook(FUNC, IRC, ...) ({                        \
735         int RC = IRC;                                           \
736         do {                                                    \
737                 struct security_hook_list *P;                   \
738                                                                 \
739                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
740                         RC = P->hook.FUNC(__VA_ARGS__);         \
741                         if (RC != 0)                            \
742                                 break;                          \
743                 }                                               \
744         } while (0);                                            \
745         RC;                                                     \
746 })
747
748 /* Security operations */
749
750 int security_binder_set_context_mgr(struct task_struct *mgr)
751 {
752         return call_int_hook(binder_set_context_mgr, 0, mgr);
753 }
754
755 int security_binder_transaction(struct task_struct *from,
756                                 struct task_struct *to)
757 {
758         return call_int_hook(binder_transaction, 0, from, to);
759 }
760
761 int security_binder_transfer_binder(struct task_struct *from,
762                                     struct task_struct *to)
763 {
764         return call_int_hook(binder_transfer_binder, 0, from, to);
765 }
766
767 int security_binder_transfer_file(struct task_struct *from,
768                                   struct task_struct *to, struct file *file)
769 {
770         return call_int_hook(binder_transfer_file, 0, from, to, file);
771 }
772
773 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
774 {
775         return call_int_hook(ptrace_access_check, 0, child, mode);
776 }
777
778 int security_ptrace_traceme(struct task_struct *parent)
779 {
780         return call_int_hook(ptrace_traceme, 0, parent);
781 }
782
783 int security_capget(struct task_struct *target,
784                      kernel_cap_t *effective,
785                      kernel_cap_t *inheritable,
786                      kernel_cap_t *permitted)
787 {
788         return call_int_hook(capget, 0, target,
789                                 effective, inheritable, permitted);
790 }
791
792 int security_capset(struct cred *new, const struct cred *old,
793                     const kernel_cap_t *effective,
794                     const kernel_cap_t *inheritable,
795                     const kernel_cap_t *permitted)
796 {
797         return call_int_hook(capset, 0, new, old,
798                                 effective, inheritable, permitted);
799 }
800
801 int security_capable(const struct cred *cred,
802                      struct user_namespace *ns,
803                      int cap,
804                      unsigned int opts)
805 {
806         return call_int_hook(capable, 0, cred, ns, cap, opts);
807 }
808
809 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
810 {
811         return call_int_hook(quotactl, 0, cmds, type, id, sb);
812 }
813
814 int security_quota_on(struct dentry *dentry)
815 {
816         return call_int_hook(quota_on, 0, dentry);
817 }
818
819 int security_syslog(int type)
820 {
821         return call_int_hook(syslog, 0, type);
822 }
823
824 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
825 {
826         return call_int_hook(settime, 0, ts, tz);
827 }
828
829 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
830 {
831         struct security_hook_list *hp;
832         int cap_sys_admin = 1;
833         int rc;
834
835         /*
836          * The module will respond with a positive value if
837          * it thinks the __vm_enough_memory() call should be
838          * made with the cap_sys_admin set. If all of the modules
839          * agree that it should be set it will. If any module
840          * thinks it should not be set it won't.
841          */
842         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
843                 rc = hp->hook.vm_enough_memory(mm, pages);
844                 if (rc <= 0) {
845                         cap_sys_admin = 0;
846                         break;
847                 }
848         }
849         return __vm_enough_memory(mm, pages, cap_sys_admin);
850 }
851
852 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
853 {
854         return call_int_hook(bprm_creds_for_exec, 0, bprm);
855 }
856
857 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
858 {
859         return call_int_hook(bprm_creds_from_file, 0, bprm, file);
860 }
861
862 int security_bprm_check(struct linux_binprm *bprm)
863 {
864         int ret;
865
866         ret = call_int_hook(bprm_check_security, 0, bprm);
867         if (ret)
868                 return ret;
869         return ima_bprm_check(bprm);
870 }
871
872 void security_bprm_committing_creds(struct linux_binprm *bprm)
873 {
874         call_void_hook(bprm_committing_creds, bprm);
875 }
876
877 void security_bprm_committed_creds(struct linux_binprm *bprm)
878 {
879         call_void_hook(bprm_committed_creds, bprm);
880 }
881
882 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
883 {
884         return call_int_hook(fs_context_dup, 0, fc, src_fc);
885 }
886
887 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
888 {
889         return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
890 }
891
892 int security_sb_alloc(struct super_block *sb)
893 {
894         int rc = lsm_superblock_alloc(sb);
895
896         if (unlikely(rc))
897                 return rc;
898         rc = call_int_hook(sb_alloc_security, 0, sb);
899         if (unlikely(rc))
900                 security_sb_free(sb);
901         return rc;
902 }
903
904 void security_sb_delete(struct super_block *sb)
905 {
906         call_void_hook(sb_delete, sb);
907 }
908
909 void security_sb_free(struct super_block *sb)
910 {
911         call_void_hook(sb_free_security, sb);
912         kfree(sb->s_security);
913         sb->s_security = NULL;
914 }
915
916 void security_free_mnt_opts(void **mnt_opts)
917 {
918         if (!*mnt_opts)
919                 return;
920         call_void_hook(sb_free_mnt_opts, *mnt_opts);
921         *mnt_opts = NULL;
922 }
923 EXPORT_SYMBOL(security_free_mnt_opts);
924
925 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
926 {
927         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
928 }
929 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
930
931 int security_sb_mnt_opts_compat(struct super_block *sb,
932                                 void *mnt_opts)
933 {
934         return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
935 }
936 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
937
938 int security_sb_remount(struct super_block *sb,
939                         void *mnt_opts)
940 {
941         return call_int_hook(sb_remount, 0, sb, mnt_opts);
942 }
943 EXPORT_SYMBOL(security_sb_remount);
944
945 int security_sb_kern_mount(struct super_block *sb)
946 {
947         return call_int_hook(sb_kern_mount, 0, sb);
948 }
949
950 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
951 {
952         return call_int_hook(sb_show_options, 0, m, sb);
953 }
954
955 int security_sb_statfs(struct dentry *dentry)
956 {
957         return call_int_hook(sb_statfs, 0, dentry);
958 }
959
960 int security_sb_mount(const char *dev_name, const struct path *path,
961                        const char *type, unsigned long flags, void *data)
962 {
963         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
964 }
965
966 int security_sb_umount(struct vfsmount *mnt, int flags)
967 {
968         return call_int_hook(sb_umount, 0, mnt, flags);
969 }
970
971 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
972 {
973         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
974 }
975
976 int security_sb_set_mnt_opts(struct super_block *sb,
977                                 void *mnt_opts,
978                                 unsigned long kern_flags,
979                                 unsigned long *set_kern_flags)
980 {
981         return call_int_hook(sb_set_mnt_opts,
982                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
983                                 mnt_opts, kern_flags, set_kern_flags);
984 }
985 EXPORT_SYMBOL(security_sb_set_mnt_opts);
986
987 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
988                                 struct super_block *newsb,
989                                 unsigned long kern_flags,
990                                 unsigned long *set_kern_flags)
991 {
992         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
993                                 kern_flags, set_kern_flags);
994 }
995 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
996
997 int security_add_mnt_opt(const char *option, const char *val, int len,
998                          void **mnt_opts)
999 {
1000         return call_int_hook(sb_add_mnt_opt, -EINVAL,
1001                                         option, val, len, mnt_opts);
1002 }
1003 EXPORT_SYMBOL(security_add_mnt_opt);
1004
1005 int security_move_mount(const struct path *from_path, const struct path *to_path)
1006 {
1007         return call_int_hook(move_mount, 0, from_path, to_path);
1008 }
1009
1010 int security_path_notify(const struct path *path, u64 mask,
1011                                 unsigned int obj_type)
1012 {
1013         return call_int_hook(path_notify, 0, path, mask, obj_type);
1014 }
1015
1016 int security_inode_alloc(struct inode *inode)
1017 {
1018         int rc = lsm_inode_alloc(inode);
1019
1020         if (unlikely(rc))
1021                 return rc;
1022         rc = call_int_hook(inode_alloc_security, 0, inode);
1023         if (unlikely(rc))
1024                 security_inode_free(inode);
1025         return rc;
1026 }
1027
1028 static void inode_free_by_rcu(struct rcu_head *head)
1029 {
1030         /*
1031          * The rcu head is at the start of the inode blob
1032          */
1033         kmem_cache_free(lsm_inode_cache, head);
1034 }
1035
1036 void security_inode_free(struct inode *inode)
1037 {
1038         integrity_inode_free(inode);
1039         call_void_hook(inode_free_security, inode);
1040         /*
1041          * The inode may still be referenced in a path walk and
1042          * a call to security_inode_permission() can be made
1043          * after inode_free_security() is called. Ideally, the VFS
1044          * wouldn't do this, but fixing that is a much harder
1045          * job. For now, simply free the i_security via RCU, and
1046          * leave the current inode->i_security pointer intact.
1047          * The inode will be freed after the RCU grace period too.
1048          */
1049         if (inode->i_security)
1050                 call_rcu((struct rcu_head *)inode->i_security,
1051                                 inode_free_by_rcu);
1052 }
1053
1054 int security_dentry_init_security(struct dentry *dentry, int mode,
1055                                         const struct qstr *name, void **ctx,
1056                                         u32 *ctxlen)
1057 {
1058         return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1059                                 name, ctx, ctxlen);
1060 }
1061 EXPORT_SYMBOL(security_dentry_init_security);
1062
1063 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1064                                     struct qstr *name,
1065                                     const struct cred *old, struct cred *new)
1066 {
1067         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1068                                 name, old, new);
1069 }
1070 EXPORT_SYMBOL(security_dentry_create_files_as);
1071
1072 int security_inode_init_security(struct inode *inode, struct inode *dir,
1073                                  const struct qstr *qstr,
1074                                  const initxattrs initxattrs, void *fs_data)
1075 {
1076         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1077         struct xattr *lsm_xattr, *evm_xattr, *xattr;
1078         int ret;
1079
1080         if (unlikely(IS_PRIVATE(inode)))
1081                 return 0;
1082
1083         if (!initxattrs)
1084                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1085                                      dir, qstr, NULL, NULL, NULL);
1086         memset(new_xattrs, 0, sizeof(new_xattrs));
1087         lsm_xattr = new_xattrs;
1088         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1089                                                 &lsm_xattr->name,
1090                                                 &lsm_xattr->value,
1091                                                 &lsm_xattr->value_len);
1092         if (ret)
1093                 goto out;
1094
1095         evm_xattr = lsm_xattr + 1;
1096         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1097         if (ret)
1098                 goto out;
1099         ret = initxattrs(inode, new_xattrs, fs_data);
1100 out:
1101         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1102                 kfree(xattr->value);
1103         return (ret == -EOPNOTSUPP) ? 0 : ret;
1104 }
1105 EXPORT_SYMBOL(security_inode_init_security);
1106
1107 int security_inode_init_security_anon(struct inode *inode,
1108                                       const struct qstr *name,
1109                                       const struct inode *context_inode)
1110 {
1111         return call_int_hook(inode_init_security_anon, 0, inode, name,
1112                              context_inode);
1113 }
1114
1115 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1116                                      const struct qstr *qstr, const char **name,
1117                                      void **value, size_t *len)
1118 {
1119         if (unlikely(IS_PRIVATE(inode)))
1120                 return -EOPNOTSUPP;
1121         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1122                              qstr, name, value, len);
1123 }
1124 EXPORT_SYMBOL(security_old_inode_init_security);
1125
1126 #ifdef CONFIG_SECURITY_PATH
1127 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1128                         unsigned int dev)
1129 {
1130         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1131                 return 0;
1132         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1133 }
1134 EXPORT_SYMBOL(security_path_mknod);
1135
1136 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1137 {
1138         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1139                 return 0;
1140         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1141 }
1142 EXPORT_SYMBOL(security_path_mkdir);
1143
1144 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1145 {
1146         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1147                 return 0;
1148         return call_int_hook(path_rmdir, 0, dir, dentry);
1149 }
1150
1151 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1152 {
1153         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1154                 return 0;
1155         return call_int_hook(path_unlink, 0, dir, dentry);
1156 }
1157 EXPORT_SYMBOL(security_path_unlink);
1158
1159 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1160                           const char *old_name)
1161 {
1162         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1163                 return 0;
1164         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1165 }
1166
1167 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1168                        struct dentry *new_dentry)
1169 {
1170         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1171                 return 0;
1172         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1173 }
1174
1175 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1176                          const struct path *new_dir, struct dentry *new_dentry,
1177                          unsigned int flags)
1178 {
1179         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1180                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1181                 return 0;
1182
1183         if (flags & RENAME_EXCHANGE) {
1184                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1185                                         old_dir, old_dentry);
1186                 if (err)
1187                         return err;
1188         }
1189
1190         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1191                                 new_dentry);
1192 }
1193 EXPORT_SYMBOL(security_path_rename);
1194
1195 int security_path_truncate(const struct path *path)
1196 {
1197         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1198                 return 0;
1199         return call_int_hook(path_truncate, 0, path);
1200 }
1201
1202 int security_path_chmod(const struct path *path, umode_t mode)
1203 {
1204         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1205                 return 0;
1206         return call_int_hook(path_chmod, 0, path, mode);
1207 }
1208
1209 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1210 {
1211         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1212                 return 0;
1213         return call_int_hook(path_chown, 0, path, uid, gid);
1214 }
1215
1216 int security_path_chroot(const struct path *path)
1217 {
1218         return call_int_hook(path_chroot, 0, path);
1219 }
1220 #endif
1221
1222 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1223 {
1224         if (unlikely(IS_PRIVATE(dir)))
1225                 return 0;
1226         return call_int_hook(inode_create, 0, dir, dentry, mode);
1227 }
1228 EXPORT_SYMBOL_GPL(security_inode_create);
1229
1230 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1231                          struct dentry *new_dentry)
1232 {
1233         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1234                 return 0;
1235         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1236 }
1237
1238 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1239 {
1240         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1241                 return 0;
1242         return call_int_hook(inode_unlink, 0, dir, dentry);
1243 }
1244
1245 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1246                             const char *old_name)
1247 {
1248         if (unlikely(IS_PRIVATE(dir)))
1249                 return 0;
1250         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1251 }
1252
1253 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1254 {
1255         if (unlikely(IS_PRIVATE(dir)))
1256                 return 0;
1257         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1258 }
1259 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1260
1261 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1262 {
1263         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1264                 return 0;
1265         return call_int_hook(inode_rmdir, 0, dir, dentry);
1266 }
1267
1268 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1269 {
1270         if (unlikely(IS_PRIVATE(dir)))
1271                 return 0;
1272         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1273 }
1274
1275 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1276                            struct inode *new_dir, struct dentry *new_dentry,
1277                            unsigned int flags)
1278 {
1279         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1280             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1281                 return 0;
1282
1283         if (flags & RENAME_EXCHANGE) {
1284                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1285                                                      old_dir, old_dentry);
1286                 if (err)
1287                         return err;
1288         }
1289
1290         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1291                                            new_dir, new_dentry);
1292 }
1293
1294 int security_inode_readlink(struct dentry *dentry)
1295 {
1296         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1297                 return 0;
1298         return call_int_hook(inode_readlink, 0, dentry);
1299 }
1300
1301 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1302                                bool rcu)
1303 {
1304         if (unlikely(IS_PRIVATE(inode)))
1305                 return 0;
1306         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1307 }
1308
1309 int security_inode_permission(struct inode *inode, int mask)
1310 {
1311         if (unlikely(IS_PRIVATE(inode)))
1312                 return 0;
1313         return call_int_hook(inode_permission, 0, inode, mask);
1314 }
1315
1316 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1317 {
1318         int ret;
1319
1320         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1321                 return 0;
1322         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1323         if (ret)
1324                 return ret;
1325         return evm_inode_setattr(dentry, attr);
1326 }
1327 EXPORT_SYMBOL_GPL(security_inode_setattr);
1328
1329 int security_inode_getattr(const struct path *path)
1330 {
1331         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1332                 return 0;
1333         return call_int_hook(inode_getattr, 0, path);
1334 }
1335
1336 int security_inode_setxattr(struct user_namespace *mnt_userns,
1337                             struct dentry *dentry, const char *name,
1338                             const void *value, size_t size, int flags)
1339 {
1340         int ret;
1341
1342         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1343                 return 0;
1344         /*
1345          * SELinux and Smack integrate the cap call,
1346          * so assume that all LSMs supplying this call do so.
1347          */
1348         ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1349                             size, flags);
1350
1351         if (ret == 1)
1352                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1353         if (ret)
1354                 return ret;
1355         ret = ima_inode_setxattr(dentry, name, value, size);
1356         if (ret)
1357                 return ret;
1358         return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1359 }
1360
1361 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1362                                   const void *value, size_t size, int flags)
1363 {
1364         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1365                 return;
1366         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1367         evm_inode_post_setxattr(dentry, name, value, size);
1368 }
1369
1370 int security_inode_getxattr(struct dentry *dentry, const char *name)
1371 {
1372         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1373                 return 0;
1374         return call_int_hook(inode_getxattr, 0, dentry, name);
1375 }
1376
1377 int security_inode_listxattr(struct dentry *dentry)
1378 {
1379         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1380                 return 0;
1381         return call_int_hook(inode_listxattr, 0, dentry);
1382 }
1383
1384 int security_inode_removexattr(struct user_namespace *mnt_userns,
1385                                struct dentry *dentry, const char *name)
1386 {
1387         int ret;
1388
1389         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1390                 return 0;
1391         /*
1392          * SELinux and Smack integrate the cap call,
1393          * so assume that all LSMs supplying this call do so.
1394          */
1395         ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1396         if (ret == 1)
1397                 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1398         if (ret)
1399                 return ret;
1400         ret = ima_inode_removexattr(dentry, name);
1401         if (ret)
1402                 return ret;
1403         return evm_inode_removexattr(mnt_userns, dentry, name);
1404 }
1405
1406 int security_inode_need_killpriv(struct dentry *dentry)
1407 {
1408         return call_int_hook(inode_need_killpriv, 0, dentry);
1409 }
1410
1411 int security_inode_killpriv(struct user_namespace *mnt_userns,
1412                             struct dentry *dentry)
1413 {
1414         return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1415 }
1416
1417 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1418                                struct inode *inode, const char *name,
1419                                void **buffer, bool alloc)
1420 {
1421         struct security_hook_list *hp;
1422         int rc;
1423
1424         if (unlikely(IS_PRIVATE(inode)))
1425                 return LSM_RET_DEFAULT(inode_getsecurity);
1426         /*
1427          * Only one module will provide an attribute with a given name.
1428          */
1429         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1430                 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1431                 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1432                         return rc;
1433         }
1434         return LSM_RET_DEFAULT(inode_getsecurity);
1435 }
1436
1437 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1438 {
1439         struct security_hook_list *hp;
1440         int rc;
1441
1442         if (unlikely(IS_PRIVATE(inode)))
1443                 return LSM_RET_DEFAULT(inode_setsecurity);
1444         /*
1445          * Only one module will provide an attribute with a given name.
1446          */
1447         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1448                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1449                                                                 flags);
1450                 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1451                         return rc;
1452         }
1453         return LSM_RET_DEFAULT(inode_setsecurity);
1454 }
1455
1456 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1457 {
1458         if (unlikely(IS_PRIVATE(inode)))
1459                 return 0;
1460         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1461 }
1462 EXPORT_SYMBOL(security_inode_listsecurity);
1463
1464 void security_inode_getsecid(struct inode *inode, u32 *secid)
1465 {
1466         call_void_hook(inode_getsecid, inode, secid);
1467 }
1468
1469 int security_inode_copy_up(struct dentry *src, struct cred **new)
1470 {
1471         return call_int_hook(inode_copy_up, 0, src, new);
1472 }
1473 EXPORT_SYMBOL(security_inode_copy_up);
1474
1475 int security_inode_copy_up_xattr(const char *name)
1476 {
1477         struct security_hook_list *hp;
1478         int rc;
1479
1480         /*
1481          * The implementation can return 0 (accept the xattr), 1 (discard the
1482          * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1483          * any other error code incase of an error.
1484          */
1485         hlist_for_each_entry(hp,
1486                 &security_hook_heads.inode_copy_up_xattr, list) {
1487                 rc = hp->hook.inode_copy_up_xattr(name);
1488                 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1489                         return rc;
1490         }
1491
1492         return LSM_RET_DEFAULT(inode_copy_up_xattr);
1493 }
1494 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1495
1496 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1497                                   struct kernfs_node *kn)
1498 {
1499         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1500 }
1501
1502 int security_file_permission(struct file *file, int mask)
1503 {
1504         int ret;
1505
1506         ret = call_int_hook(file_permission, 0, file, mask);
1507         if (ret)
1508                 return ret;
1509
1510         return fsnotify_perm(file, mask);
1511 }
1512
1513 int security_file_alloc(struct file *file)
1514 {
1515         int rc = lsm_file_alloc(file);
1516
1517         if (rc)
1518                 return rc;
1519         rc = call_int_hook(file_alloc_security, 0, file);
1520         if (unlikely(rc))
1521                 security_file_free(file);
1522         return rc;
1523 }
1524
1525 void security_file_free(struct file *file)
1526 {
1527         void *blob;
1528
1529         call_void_hook(file_free_security, file);
1530
1531         blob = file->f_security;
1532         if (blob) {
1533                 file->f_security = NULL;
1534                 kmem_cache_free(lsm_file_cache, blob);
1535         }
1536 }
1537
1538 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1539 {
1540         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1541 }
1542 EXPORT_SYMBOL_GPL(security_file_ioctl);
1543
1544 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1545 {
1546         /*
1547          * Does we have PROT_READ and does the application expect
1548          * it to imply PROT_EXEC?  If not, nothing to talk about...
1549          */
1550         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1551                 return prot;
1552         if (!(current->personality & READ_IMPLIES_EXEC))
1553                 return prot;
1554         /*
1555          * if that's an anonymous mapping, let it.
1556          */
1557         if (!file)
1558                 return prot | PROT_EXEC;
1559         /*
1560          * ditto if it's not on noexec mount, except that on !MMU we need
1561          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1562          */
1563         if (!path_noexec(&file->f_path)) {
1564 #ifndef CONFIG_MMU
1565                 if (file->f_op->mmap_capabilities) {
1566                         unsigned caps = file->f_op->mmap_capabilities(file);
1567                         if (!(caps & NOMMU_MAP_EXEC))
1568                                 return prot;
1569                 }
1570 #endif
1571                 return prot | PROT_EXEC;
1572         }
1573         /* anything on noexec mount won't get PROT_EXEC */
1574         return prot;
1575 }
1576
1577 int security_mmap_file(struct file *file, unsigned long prot,
1578                         unsigned long flags)
1579 {
1580         int ret;
1581         ret = call_int_hook(mmap_file, 0, file, prot,
1582                                         mmap_prot(file, prot), flags);
1583         if (ret)
1584                 return ret;
1585         return ima_file_mmap(file, prot);
1586 }
1587
1588 int security_mmap_addr(unsigned long addr)
1589 {
1590         return call_int_hook(mmap_addr, 0, addr);
1591 }
1592
1593 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1594                             unsigned long prot)
1595 {
1596         int ret;
1597
1598         ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1599         if (ret)
1600                 return ret;
1601         return ima_file_mprotect(vma, prot);
1602 }
1603
1604 int security_file_lock(struct file *file, unsigned int cmd)
1605 {
1606         return call_int_hook(file_lock, 0, file, cmd);
1607 }
1608
1609 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1610 {
1611         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1612 }
1613
1614 void security_file_set_fowner(struct file *file)
1615 {
1616         call_void_hook(file_set_fowner, file);
1617 }
1618
1619 int security_file_send_sigiotask(struct task_struct *tsk,
1620                                   struct fown_struct *fown, int sig)
1621 {
1622         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1623 }
1624
1625 int security_file_receive(struct file *file)
1626 {
1627         return call_int_hook(file_receive, 0, file);
1628 }
1629
1630 int security_file_open(struct file *file)
1631 {
1632         int ret;
1633
1634         ret = call_int_hook(file_open, 0, file);
1635         if (ret)
1636                 return ret;
1637
1638         return fsnotify_perm(file, MAY_OPEN);
1639 }
1640
1641 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1642 {
1643         int rc = lsm_task_alloc(task);
1644
1645         if (rc)
1646                 return rc;
1647         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1648         if (unlikely(rc))
1649                 security_task_free(task);
1650         return rc;
1651 }
1652
1653 void security_task_free(struct task_struct *task)
1654 {
1655         call_void_hook(task_free, task);
1656
1657         kfree(task->security);
1658         task->security = NULL;
1659 }
1660
1661 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1662 {
1663         int rc = lsm_cred_alloc(cred, gfp);
1664
1665         if (rc)
1666                 return rc;
1667
1668         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1669         if (unlikely(rc))
1670                 security_cred_free(cred);
1671         return rc;
1672 }
1673
1674 void security_cred_free(struct cred *cred)
1675 {
1676         /*
1677          * There is a failure case in prepare_creds() that
1678          * may result in a call here with ->security being NULL.
1679          */
1680         if (unlikely(cred->security == NULL))
1681                 return;
1682
1683         call_void_hook(cred_free, cred);
1684
1685         kfree(cred->security);
1686         cred->security = NULL;
1687 }
1688
1689 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1690 {
1691         int rc = lsm_cred_alloc(new, gfp);
1692
1693         if (rc)
1694                 return rc;
1695
1696         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1697         if (unlikely(rc))
1698                 security_cred_free(new);
1699         return rc;
1700 }
1701
1702 void security_transfer_creds(struct cred *new, const struct cred *old)
1703 {
1704         call_void_hook(cred_transfer, new, old);
1705 }
1706
1707 void security_cred_getsecid(const struct cred *c, u32 *secid)
1708 {
1709         *secid = 0;
1710         call_void_hook(cred_getsecid, c, secid);
1711 }
1712 EXPORT_SYMBOL(security_cred_getsecid);
1713
1714 int security_kernel_act_as(struct cred *new, u32 secid)
1715 {
1716         return call_int_hook(kernel_act_as, 0, new, secid);
1717 }
1718
1719 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1720 {
1721         return call_int_hook(kernel_create_files_as, 0, new, inode);
1722 }
1723
1724 int security_kernel_module_request(char *kmod_name)
1725 {
1726         int ret;
1727
1728         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1729         if (ret)
1730                 return ret;
1731         return integrity_kernel_module_request(kmod_name);
1732 }
1733
1734 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1735                               bool contents)
1736 {
1737         int ret;
1738
1739         ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1740         if (ret)
1741                 return ret;
1742         return ima_read_file(file, id, contents);
1743 }
1744 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1745
1746 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1747                                    enum kernel_read_file_id id)
1748 {
1749         int ret;
1750
1751         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1752         if (ret)
1753                 return ret;
1754         return ima_post_read_file(file, buf, size, id);
1755 }
1756 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1757
1758 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1759 {
1760         int ret;
1761
1762         ret = call_int_hook(kernel_load_data, 0, id, contents);
1763         if (ret)
1764                 return ret;
1765         return ima_load_data(id, contents);
1766 }
1767 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1768
1769 int security_kernel_post_load_data(char *buf, loff_t size,
1770                                    enum kernel_load_data_id id,
1771                                    char *description)
1772 {
1773         int ret;
1774
1775         ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1776                             description);
1777         if (ret)
1778                 return ret;
1779         return ima_post_load_data(buf, size, id, description);
1780 }
1781 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1782
1783 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1784                              int flags)
1785 {
1786         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1787 }
1788
1789 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1790                                  int flags)
1791 {
1792         return call_int_hook(task_fix_setgid, 0, new, old, flags);
1793 }
1794
1795 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1796 {
1797         return call_int_hook(task_setpgid, 0, p, pgid);
1798 }
1799
1800 int security_task_getpgid(struct task_struct *p)
1801 {
1802         return call_int_hook(task_getpgid, 0, p);
1803 }
1804
1805 int security_task_getsid(struct task_struct *p)
1806 {
1807         return call_int_hook(task_getsid, 0, p);
1808 }
1809
1810 void security_task_getsecid_subj(struct task_struct *p, u32 *secid)
1811 {
1812         *secid = 0;
1813         call_void_hook(task_getsecid_subj, p, secid);
1814 }
1815 EXPORT_SYMBOL(security_task_getsecid_subj);
1816
1817 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1818 {
1819         *secid = 0;
1820         call_void_hook(task_getsecid_obj, p, secid);
1821 }
1822 EXPORT_SYMBOL(security_task_getsecid_obj);
1823
1824 int security_task_setnice(struct task_struct *p, int nice)
1825 {
1826         return call_int_hook(task_setnice, 0, p, nice);
1827 }
1828
1829 int security_task_setioprio(struct task_struct *p, int ioprio)
1830 {
1831         return call_int_hook(task_setioprio, 0, p, ioprio);
1832 }
1833
1834 int security_task_getioprio(struct task_struct *p)
1835 {
1836         return call_int_hook(task_getioprio, 0, p);
1837 }
1838
1839 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1840                           unsigned int flags)
1841 {
1842         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1843 }
1844
1845 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1846                 struct rlimit *new_rlim)
1847 {
1848         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1849 }
1850
1851 int security_task_setscheduler(struct task_struct *p)
1852 {
1853         return call_int_hook(task_setscheduler, 0, p);
1854 }
1855
1856 int security_task_getscheduler(struct task_struct *p)
1857 {
1858         return call_int_hook(task_getscheduler, 0, p);
1859 }
1860
1861 int security_task_movememory(struct task_struct *p)
1862 {
1863         return call_int_hook(task_movememory, 0, p);
1864 }
1865
1866 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1867                         int sig, const struct cred *cred)
1868 {
1869         return call_int_hook(task_kill, 0, p, info, sig, cred);
1870 }
1871
1872 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1873                          unsigned long arg4, unsigned long arg5)
1874 {
1875         int thisrc;
1876         int rc = LSM_RET_DEFAULT(task_prctl);
1877         struct security_hook_list *hp;
1878
1879         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1880                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1881                 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1882                         rc = thisrc;
1883                         if (thisrc != 0)
1884                                 break;
1885                 }
1886         }
1887         return rc;
1888 }
1889
1890 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1891 {
1892         call_void_hook(task_to_inode, p, inode);
1893 }
1894
1895 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1896 {
1897         return call_int_hook(ipc_permission, 0, ipcp, flag);
1898 }
1899
1900 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1901 {
1902         *secid = 0;
1903         call_void_hook(ipc_getsecid, ipcp, secid);
1904 }
1905
1906 int security_msg_msg_alloc(struct msg_msg *msg)
1907 {
1908         int rc = lsm_msg_msg_alloc(msg);
1909
1910         if (unlikely(rc))
1911                 return rc;
1912         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1913         if (unlikely(rc))
1914                 security_msg_msg_free(msg);
1915         return rc;
1916 }
1917
1918 void security_msg_msg_free(struct msg_msg *msg)
1919 {
1920         call_void_hook(msg_msg_free_security, msg);
1921         kfree(msg->security);
1922         msg->security = NULL;
1923 }
1924
1925 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1926 {
1927         int rc = lsm_ipc_alloc(msq);
1928
1929         if (unlikely(rc))
1930                 return rc;
1931         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1932         if (unlikely(rc))
1933                 security_msg_queue_free(msq);
1934         return rc;
1935 }
1936
1937 void security_msg_queue_free(struct kern_ipc_perm *msq)
1938 {
1939         call_void_hook(msg_queue_free_security, msq);
1940         kfree(msq->security);
1941         msq->security = NULL;
1942 }
1943
1944 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1945 {
1946         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1947 }
1948
1949 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1950 {
1951         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1952 }
1953
1954 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1955                                struct msg_msg *msg, int msqflg)
1956 {
1957         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1958 }
1959
1960 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1961                                struct task_struct *target, long type, int mode)
1962 {
1963         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1964 }
1965
1966 int security_shm_alloc(struct kern_ipc_perm *shp)
1967 {
1968         int rc = lsm_ipc_alloc(shp);
1969
1970         if (unlikely(rc))
1971                 return rc;
1972         rc = call_int_hook(shm_alloc_security, 0, shp);
1973         if (unlikely(rc))
1974                 security_shm_free(shp);
1975         return rc;
1976 }
1977
1978 void security_shm_free(struct kern_ipc_perm *shp)
1979 {
1980         call_void_hook(shm_free_security, shp);
1981         kfree(shp->security);
1982         shp->security = NULL;
1983 }
1984
1985 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1986 {
1987         return call_int_hook(shm_associate, 0, shp, shmflg);
1988 }
1989
1990 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1991 {
1992         return call_int_hook(shm_shmctl, 0, shp, cmd);
1993 }
1994
1995 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1996 {
1997         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1998 }
1999
2000 int security_sem_alloc(struct kern_ipc_perm *sma)
2001 {
2002         int rc = lsm_ipc_alloc(sma);
2003
2004         if (unlikely(rc))
2005                 return rc;
2006         rc = call_int_hook(sem_alloc_security, 0, sma);
2007         if (unlikely(rc))
2008                 security_sem_free(sma);
2009         return rc;
2010 }
2011
2012 void security_sem_free(struct kern_ipc_perm *sma)
2013 {
2014         call_void_hook(sem_free_security, sma);
2015         kfree(sma->security);
2016         sma->security = NULL;
2017 }
2018
2019 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2020 {
2021         return call_int_hook(sem_associate, 0, sma, semflg);
2022 }
2023
2024 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2025 {
2026         return call_int_hook(sem_semctl, 0, sma, cmd);
2027 }
2028
2029 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2030                         unsigned nsops, int alter)
2031 {
2032         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2033 }
2034
2035 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2036 {
2037         if (unlikely(inode && IS_PRIVATE(inode)))
2038                 return;
2039         call_void_hook(d_instantiate, dentry, inode);
2040 }
2041 EXPORT_SYMBOL(security_d_instantiate);
2042
2043 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2044                                 char **value)
2045 {
2046         struct security_hook_list *hp;
2047
2048         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2049                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2050                         continue;
2051                 return hp->hook.getprocattr(p, name, value);
2052         }
2053         return LSM_RET_DEFAULT(getprocattr);
2054 }
2055
2056 int security_setprocattr(const char *lsm, const char *name, void *value,
2057                          size_t size)
2058 {
2059         struct security_hook_list *hp;
2060
2061         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2062                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2063                         continue;
2064                 return hp->hook.setprocattr(name, value, size);
2065         }
2066         return LSM_RET_DEFAULT(setprocattr);
2067 }
2068
2069 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2070 {
2071         return call_int_hook(netlink_send, 0, sk, skb);
2072 }
2073
2074 int security_ismaclabel(const char *name)
2075 {
2076         return call_int_hook(ismaclabel, 0, name);
2077 }
2078 EXPORT_SYMBOL(security_ismaclabel);
2079
2080 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2081 {
2082         struct security_hook_list *hp;
2083         int rc;
2084
2085         /*
2086          * Currently, only one LSM can implement secid_to_secctx (i.e this
2087          * LSM hook is not "stackable").
2088          */
2089         hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2090                 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2091                 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2092                         return rc;
2093         }
2094
2095         return LSM_RET_DEFAULT(secid_to_secctx);
2096 }
2097 EXPORT_SYMBOL(security_secid_to_secctx);
2098
2099 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2100 {
2101         *secid = 0;
2102         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2103 }
2104 EXPORT_SYMBOL(security_secctx_to_secid);
2105
2106 void security_release_secctx(char *secdata, u32 seclen)
2107 {
2108         call_void_hook(release_secctx, secdata, seclen);
2109 }
2110 EXPORT_SYMBOL(security_release_secctx);
2111
2112 void security_inode_invalidate_secctx(struct inode *inode)
2113 {
2114         call_void_hook(inode_invalidate_secctx, inode);
2115 }
2116 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2117
2118 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2119 {
2120         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2121 }
2122 EXPORT_SYMBOL(security_inode_notifysecctx);
2123
2124 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2125 {
2126         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2127 }
2128 EXPORT_SYMBOL(security_inode_setsecctx);
2129
2130 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2131 {
2132         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2133 }
2134 EXPORT_SYMBOL(security_inode_getsecctx);
2135
2136 #ifdef CONFIG_WATCH_QUEUE
2137 int security_post_notification(const struct cred *w_cred,
2138                                const struct cred *cred,
2139                                struct watch_notification *n)
2140 {
2141         return call_int_hook(post_notification, 0, w_cred, cred, n);
2142 }
2143 #endif /* CONFIG_WATCH_QUEUE */
2144
2145 #ifdef CONFIG_KEY_NOTIFICATIONS
2146 int security_watch_key(struct key *key)
2147 {
2148         return call_int_hook(watch_key, 0, key);
2149 }
2150 #endif
2151
2152 #ifdef CONFIG_SECURITY_NETWORK
2153
2154 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2155 {
2156         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2157 }
2158 EXPORT_SYMBOL(security_unix_stream_connect);
2159
2160 int security_unix_may_send(struct socket *sock,  struct socket *other)
2161 {
2162         return call_int_hook(unix_may_send, 0, sock, other);
2163 }
2164 EXPORT_SYMBOL(security_unix_may_send);
2165
2166 int security_socket_create(int family, int type, int protocol, int kern)
2167 {
2168         return call_int_hook(socket_create, 0, family, type, protocol, kern);
2169 }
2170
2171 int security_socket_post_create(struct socket *sock, int family,
2172                                 int type, int protocol, int kern)
2173 {
2174         return call_int_hook(socket_post_create, 0, sock, family, type,
2175                                                 protocol, kern);
2176 }
2177
2178 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2179 {
2180         return call_int_hook(socket_socketpair, 0, socka, sockb);
2181 }
2182 EXPORT_SYMBOL(security_socket_socketpair);
2183
2184 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2185 {
2186         return call_int_hook(socket_bind, 0, sock, address, addrlen);
2187 }
2188
2189 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2190 {
2191         return call_int_hook(socket_connect, 0, sock, address, addrlen);
2192 }
2193
2194 int security_socket_listen(struct socket *sock, int backlog)
2195 {
2196         return call_int_hook(socket_listen, 0, sock, backlog);
2197 }
2198
2199 int security_socket_accept(struct socket *sock, struct socket *newsock)
2200 {
2201         return call_int_hook(socket_accept, 0, sock, newsock);
2202 }
2203
2204 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2205 {
2206         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2207 }
2208
2209 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2210                             int size, int flags)
2211 {
2212         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2213 }
2214
2215 int security_socket_getsockname(struct socket *sock)
2216 {
2217         return call_int_hook(socket_getsockname, 0, sock);
2218 }
2219
2220 int security_socket_getpeername(struct socket *sock)
2221 {
2222         return call_int_hook(socket_getpeername, 0, sock);
2223 }
2224
2225 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2226 {
2227         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2228 }
2229
2230 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2231 {
2232         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2233 }
2234
2235 int security_socket_shutdown(struct socket *sock, int how)
2236 {
2237         return call_int_hook(socket_shutdown, 0, sock, how);
2238 }
2239
2240 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2241 {
2242         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2243 }
2244 EXPORT_SYMBOL(security_sock_rcv_skb);
2245
2246 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2247                                       int __user *optlen, unsigned len)
2248 {
2249         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2250                                 optval, optlen, len);
2251 }
2252
2253 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2254 {
2255         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2256                              skb, secid);
2257 }
2258 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2259
2260 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2261 {
2262         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2263 }
2264
2265 void security_sk_free(struct sock *sk)
2266 {
2267         call_void_hook(sk_free_security, sk);
2268 }
2269
2270 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2271 {
2272         call_void_hook(sk_clone_security, sk, newsk);
2273 }
2274 EXPORT_SYMBOL(security_sk_clone);
2275
2276 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2277 {
2278         call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2279 }
2280 EXPORT_SYMBOL(security_sk_classify_flow);
2281
2282 void security_req_classify_flow(const struct request_sock *req,
2283                                 struct flowi_common *flic)
2284 {
2285         call_void_hook(req_classify_flow, req, flic);
2286 }
2287 EXPORT_SYMBOL(security_req_classify_flow);
2288
2289 void security_sock_graft(struct sock *sk, struct socket *parent)
2290 {
2291         call_void_hook(sock_graft, sk, parent);
2292 }
2293 EXPORT_SYMBOL(security_sock_graft);
2294
2295 int security_inet_conn_request(const struct sock *sk,
2296                         struct sk_buff *skb, struct request_sock *req)
2297 {
2298         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2299 }
2300 EXPORT_SYMBOL(security_inet_conn_request);
2301
2302 void security_inet_csk_clone(struct sock *newsk,
2303                         const struct request_sock *req)
2304 {
2305         call_void_hook(inet_csk_clone, newsk, req);
2306 }
2307
2308 void security_inet_conn_established(struct sock *sk,
2309                         struct sk_buff *skb)
2310 {
2311         call_void_hook(inet_conn_established, sk, skb);
2312 }
2313 EXPORT_SYMBOL(security_inet_conn_established);
2314
2315 int security_secmark_relabel_packet(u32 secid)
2316 {
2317         return call_int_hook(secmark_relabel_packet, 0, secid);
2318 }
2319 EXPORT_SYMBOL(security_secmark_relabel_packet);
2320
2321 void security_secmark_refcount_inc(void)
2322 {
2323         call_void_hook(secmark_refcount_inc);
2324 }
2325 EXPORT_SYMBOL(security_secmark_refcount_inc);
2326
2327 void security_secmark_refcount_dec(void)
2328 {
2329         call_void_hook(secmark_refcount_dec);
2330 }
2331 EXPORT_SYMBOL(security_secmark_refcount_dec);
2332
2333 int security_tun_dev_alloc_security(void **security)
2334 {
2335         return call_int_hook(tun_dev_alloc_security, 0, security);
2336 }
2337 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2338
2339 void security_tun_dev_free_security(void *security)
2340 {
2341         call_void_hook(tun_dev_free_security, security);
2342 }
2343 EXPORT_SYMBOL(security_tun_dev_free_security);
2344
2345 int security_tun_dev_create(void)
2346 {
2347         return call_int_hook(tun_dev_create, 0);
2348 }
2349 EXPORT_SYMBOL(security_tun_dev_create);
2350
2351 int security_tun_dev_attach_queue(void *security)
2352 {
2353         return call_int_hook(tun_dev_attach_queue, 0, security);
2354 }
2355 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2356
2357 int security_tun_dev_attach(struct sock *sk, void *security)
2358 {
2359         return call_int_hook(tun_dev_attach, 0, sk, security);
2360 }
2361 EXPORT_SYMBOL(security_tun_dev_attach);
2362
2363 int security_tun_dev_open(void *security)
2364 {
2365         return call_int_hook(tun_dev_open, 0, security);
2366 }
2367 EXPORT_SYMBOL(security_tun_dev_open);
2368
2369 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2370 {
2371         return call_int_hook(sctp_assoc_request, 0, ep, skb);
2372 }
2373 EXPORT_SYMBOL(security_sctp_assoc_request);
2374
2375 int security_sctp_bind_connect(struct sock *sk, int optname,
2376                                struct sockaddr *address, int addrlen)
2377 {
2378         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2379                              address, addrlen);
2380 }
2381 EXPORT_SYMBOL(security_sctp_bind_connect);
2382
2383 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2384                             struct sock *newsk)
2385 {
2386         call_void_hook(sctp_sk_clone, ep, sk, newsk);
2387 }
2388 EXPORT_SYMBOL(security_sctp_sk_clone);
2389
2390 #endif  /* CONFIG_SECURITY_NETWORK */
2391
2392 #ifdef CONFIG_SECURITY_INFINIBAND
2393
2394 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2395 {
2396         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2397 }
2398 EXPORT_SYMBOL(security_ib_pkey_access);
2399
2400 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2401 {
2402         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2403 }
2404 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2405
2406 int security_ib_alloc_security(void **sec)
2407 {
2408         return call_int_hook(ib_alloc_security, 0, sec);
2409 }
2410 EXPORT_SYMBOL(security_ib_alloc_security);
2411
2412 void security_ib_free_security(void *sec)
2413 {
2414         call_void_hook(ib_free_security, sec);
2415 }
2416 EXPORT_SYMBOL(security_ib_free_security);
2417 #endif  /* CONFIG_SECURITY_INFINIBAND */
2418
2419 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2420
2421 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2422                                struct xfrm_user_sec_ctx *sec_ctx,
2423                                gfp_t gfp)
2424 {
2425         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2426 }
2427 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2428
2429 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2430                               struct xfrm_sec_ctx **new_ctxp)
2431 {
2432         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2433 }
2434
2435 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2436 {
2437         call_void_hook(xfrm_policy_free_security, ctx);
2438 }
2439 EXPORT_SYMBOL(security_xfrm_policy_free);
2440
2441 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2442 {
2443         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2444 }
2445
2446 int security_xfrm_state_alloc(struct xfrm_state *x,
2447                               struct xfrm_user_sec_ctx *sec_ctx)
2448 {
2449         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2450 }
2451 EXPORT_SYMBOL(security_xfrm_state_alloc);
2452
2453 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2454                                       struct xfrm_sec_ctx *polsec, u32 secid)
2455 {
2456         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2457 }
2458
2459 int security_xfrm_state_delete(struct xfrm_state *x)
2460 {
2461         return call_int_hook(xfrm_state_delete_security, 0, x);
2462 }
2463 EXPORT_SYMBOL(security_xfrm_state_delete);
2464
2465 void security_xfrm_state_free(struct xfrm_state *x)
2466 {
2467         call_void_hook(xfrm_state_free_security, x);
2468 }
2469
2470 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2471 {
2472         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2473 }
2474
2475 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2476                                        struct xfrm_policy *xp,
2477                                        const struct flowi_common *flic)
2478 {
2479         struct security_hook_list *hp;
2480         int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2481
2482         /*
2483          * Since this function is expected to return 0 or 1, the judgment
2484          * becomes difficult if multiple LSMs supply this call. Fortunately,
2485          * we can use the first LSM's judgment because currently only SELinux
2486          * supplies this call.
2487          *
2488          * For speed optimization, we explicitly break the loop rather than
2489          * using the macro
2490          */
2491         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2492                                 list) {
2493                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2494                 break;
2495         }
2496         return rc;
2497 }
2498
2499 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2500 {
2501         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2502 }
2503
2504 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2505 {
2506         int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2507                                 0);
2508
2509         BUG_ON(rc);
2510 }
2511 EXPORT_SYMBOL(security_skb_classify_flow);
2512
2513 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2514
2515 #ifdef CONFIG_KEYS
2516
2517 int security_key_alloc(struct key *key, const struct cred *cred,
2518                        unsigned long flags)
2519 {
2520         return call_int_hook(key_alloc, 0, key, cred, flags);
2521 }
2522
2523 void security_key_free(struct key *key)
2524 {
2525         call_void_hook(key_free, key);
2526 }
2527
2528 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2529                             enum key_need_perm need_perm)
2530 {
2531         return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2532 }
2533
2534 int security_key_getsecurity(struct key *key, char **_buffer)
2535 {
2536         *_buffer = NULL;
2537         return call_int_hook(key_getsecurity, 0, key, _buffer);
2538 }
2539
2540 #endif  /* CONFIG_KEYS */
2541
2542 #ifdef CONFIG_AUDIT
2543
2544 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2545 {
2546         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2547 }
2548
2549 int security_audit_rule_known(struct audit_krule *krule)
2550 {
2551         return call_int_hook(audit_rule_known, 0, krule);
2552 }
2553
2554 void security_audit_rule_free(void *lsmrule)
2555 {
2556         call_void_hook(audit_rule_free, lsmrule);
2557 }
2558
2559 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2560 {
2561         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2562 }
2563 #endif /* CONFIG_AUDIT */
2564
2565 #ifdef CONFIG_BPF_SYSCALL
2566 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2567 {
2568         return call_int_hook(bpf, 0, cmd, attr, size);
2569 }
2570 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2571 {
2572         return call_int_hook(bpf_map, 0, map, fmode);
2573 }
2574 int security_bpf_prog(struct bpf_prog *prog)
2575 {
2576         return call_int_hook(bpf_prog, 0, prog);
2577 }
2578 int security_bpf_map_alloc(struct bpf_map *map)
2579 {
2580         return call_int_hook(bpf_map_alloc_security, 0, map);
2581 }
2582 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2583 {
2584         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2585 }
2586 void security_bpf_map_free(struct bpf_map *map)
2587 {
2588         call_void_hook(bpf_map_free_security, map);
2589 }
2590 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2591 {
2592         call_void_hook(bpf_prog_free_security, aux);
2593 }
2594 #endif /* CONFIG_BPF_SYSCALL */
2595
2596 int security_locked_down(enum lockdown_reason what)
2597 {
2598         return call_int_hook(locked_down, 0, what);
2599 }
2600 EXPORT_SYMBOL(security_locked_down);
2601
2602 #ifdef CONFIG_PERF_EVENTS
2603 int security_perf_event_open(struct perf_event_attr *attr, int type)
2604 {
2605         return call_int_hook(perf_event_open, 0, attr, type);
2606 }
2607
2608 int security_perf_event_alloc(struct perf_event *event)
2609 {
2610         return call_int_hook(perf_event_alloc, 0, event);
2611 }
2612
2613 void security_perf_event_free(struct perf_event *event)
2614 {
2615         call_void_hook(perf_event_free, event);
2616 }
2617
2618 int security_perf_event_read(struct perf_event *event)
2619 {
2620         return call_int_hook(perf_event_read, 0, event);
2621 }
2622
2623 int security_perf_event_write(struct perf_event *event)
2624 {
2625         return call_int_hook(perf_event_write, 0, event);
2626 }
2627 #endif /* CONFIG_PERF_EVENTS */