Linux 6.0-rc1
[linux-2.6-microblaze.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32
33 #define MAX_LSM_EVM_XATTR       2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45         [LOCKDOWN_NONE] = "none",
46         [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47         [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48         [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49         [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50         [LOCKDOWN_HIBERNATION] = "hibernation",
51         [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52         [LOCKDOWN_IOPORT] = "raw io port access",
53         [LOCKDOWN_MSR] = "raw MSR access",
54         [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55         [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56         [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57         [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58         [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59         [LOCKDOWN_DEBUGFS] = "debugfs access",
60         [LOCKDOWN_XMON_WR] = "xmon write access",
61         [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62         [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
63         [LOCKDOWN_INTEGRITY_MAX] = "integrity",
64         [LOCKDOWN_KCORE] = "/proc/kcore access",
65         [LOCKDOWN_KPROBES] = "use of kprobes",
66         [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
67         [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
68         [LOCKDOWN_PERF] = "unsafe use of perf",
69         [LOCKDOWN_TRACEFS] = "use of tracefs",
70         [LOCKDOWN_XMON_RW] = "xmon read and write access",
71         [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
72         [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
73 };
74
75 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
76 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
77
78 static struct kmem_cache *lsm_file_cache;
79 static struct kmem_cache *lsm_inode_cache;
80
81 char *lsm_names;
82 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
83
84 /* Boot-time LSM user choice */
85 static __initdata const char *chosen_lsm_order;
86 static __initdata const char *chosen_major_lsm;
87
88 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
89
90 /* Ordered list of LSMs to initialize. */
91 static __initdata struct lsm_info **ordered_lsms;
92 static __initdata struct lsm_info *exclusive;
93
94 static __initdata bool debug;
95 #define init_debug(...)                                         \
96         do {                                                    \
97                 if (debug)                                      \
98                         pr_info(__VA_ARGS__);                   \
99         } while (0)
100
101 static bool __init is_enabled(struct lsm_info *lsm)
102 {
103         if (!lsm->enabled)
104                 return false;
105
106         return *lsm->enabled;
107 }
108
109 /* Mark an LSM's enabled flag. */
110 static int lsm_enabled_true __initdata = 1;
111 static int lsm_enabled_false __initdata = 0;
112 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
113 {
114         /*
115          * When an LSM hasn't configured an enable variable, we can use
116          * a hard-coded location for storing the default enabled state.
117          */
118         if (!lsm->enabled) {
119                 if (enabled)
120                         lsm->enabled = &lsm_enabled_true;
121                 else
122                         lsm->enabled = &lsm_enabled_false;
123         } else if (lsm->enabled == &lsm_enabled_true) {
124                 if (!enabled)
125                         lsm->enabled = &lsm_enabled_false;
126         } else if (lsm->enabled == &lsm_enabled_false) {
127                 if (enabled)
128                         lsm->enabled = &lsm_enabled_true;
129         } else {
130                 *lsm->enabled = enabled;
131         }
132 }
133
134 /* Is an LSM already listed in the ordered LSMs list? */
135 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
136 {
137         struct lsm_info **check;
138
139         for (check = ordered_lsms; *check; check++)
140                 if (*check == lsm)
141                         return true;
142
143         return false;
144 }
145
146 /* Append an LSM to the list of ordered LSMs to initialize. */
147 static int last_lsm __initdata;
148 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
149 {
150         /* Ignore duplicate selections. */
151         if (exists_ordered_lsm(lsm))
152                 return;
153
154         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
155                 return;
156
157         /* Enable this LSM, if it is not already set. */
158         if (!lsm->enabled)
159                 lsm->enabled = &lsm_enabled_true;
160         ordered_lsms[last_lsm++] = lsm;
161
162         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
163                    is_enabled(lsm) ? "en" : "dis");
164 }
165
166 /* Is an LSM allowed to be initialized? */
167 static bool __init lsm_allowed(struct lsm_info *lsm)
168 {
169         /* Skip if the LSM is disabled. */
170         if (!is_enabled(lsm))
171                 return false;
172
173         /* Not allowed if another exclusive LSM already initialized. */
174         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
175                 init_debug("exclusive disabled: %s\n", lsm->name);
176                 return false;
177         }
178
179         return true;
180 }
181
182 static void __init lsm_set_blob_size(int *need, int *lbs)
183 {
184         int offset;
185
186         if (*need > 0) {
187                 offset = *lbs;
188                 *lbs += *need;
189                 *need = offset;
190         }
191 }
192
193 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
194 {
195         if (!needed)
196                 return;
197
198         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
199         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
200         /*
201          * The inode blob gets an rcu_head in addition to
202          * what the modules might need.
203          */
204         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
205                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
206         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
207         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
208         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
209         lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
210         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
211 }
212
213 /* Prepare LSM for initialization. */
214 static void __init prepare_lsm(struct lsm_info *lsm)
215 {
216         int enabled = lsm_allowed(lsm);
217
218         /* Record enablement (to handle any following exclusive LSMs). */
219         set_enabled(lsm, enabled);
220
221         /* If enabled, do pre-initialization work. */
222         if (enabled) {
223                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
224                         exclusive = lsm;
225                         init_debug("exclusive chosen: %s\n", lsm->name);
226                 }
227
228                 lsm_set_blob_sizes(lsm->blobs);
229         }
230 }
231
232 /* Initialize a given LSM, if it is enabled. */
233 static void __init initialize_lsm(struct lsm_info *lsm)
234 {
235         if (is_enabled(lsm)) {
236                 int ret;
237
238                 init_debug("initializing %s\n", lsm->name);
239                 ret = lsm->init();
240                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
241         }
242 }
243
244 /* Populate ordered LSMs list from comma-separated LSM name list. */
245 static void __init ordered_lsm_parse(const char *order, const char *origin)
246 {
247         struct lsm_info *lsm;
248         char *sep, *name, *next;
249
250         /* LSM_ORDER_FIRST is always first. */
251         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
252                 if (lsm->order == LSM_ORDER_FIRST)
253                         append_ordered_lsm(lsm, "first");
254         }
255
256         /* Process "security=", if given. */
257         if (chosen_major_lsm) {
258                 struct lsm_info *major;
259
260                 /*
261                  * To match the original "security=" behavior, this
262                  * explicitly does NOT fallback to another Legacy Major
263                  * if the selected one was separately disabled: disable
264                  * all non-matching Legacy Major LSMs.
265                  */
266                 for (major = __start_lsm_info; major < __end_lsm_info;
267                      major++) {
268                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
269                             strcmp(major->name, chosen_major_lsm) != 0) {
270                                 set_enabled(major, false);
271                                 init_debug("security=%s disabled: %s\n",
272                                            chosen_major_lsm, major->name);
273                         }
274                 }
275         }
276
277         sep = kstrdup(order, GFP_KERNEL);
278         next = sep;
279         /* Walk the list, looking for matching LSMs. */
280         while ((name = strsep(&next, ",")) != NULL) {
281                 bool found = false;
282
283                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
284                         if (lsm->order == LSM_ORDER_MUTABLE &&
285                             strcmp(lsm->name, name) == 0) {
286                                 append_ordered_lsm(lsm, origin);
287                                 found = true;
288                         }
289                 }
290
291                 if (!found)
292                         init_debug("%s ignored: %s\n", origin, name);
293         }
294
295         /* Process "security=", if given. */
296         if (chosen_major_lsm) {
297                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
298                         if (exists_ordered_lsm(lsm))
299                                 continue;
300                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
301                                 append_ordered_lsm(lsm, "security=");
302                 }
303         }
304
305         /* Disable all LSMs not in the ordered list. */
306         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
307                 if (exists_ordered_lsm(lsm))
308                         continue;
309                 set_enabled(lsm, false);
310                 init_debug("%s disabled: %s\n", origin, lsm->name);
311         }
312
313         kfree(sep);
314 }
315
316 static void __init lsm_early_cred(struct cred *cred);
317 static void __init lsm_early_task(struct task_struct *task);
318
319 static int lsm_append(const char *new, char **result);
320
321 static void __init ordered_lsm_init(void)
322 {
323         struct lsm_info **lsm;
324
325         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
326                                 GFP_KERNEL);
327
328         if (chosen_lsm_order) {
329                 if (chosen_major_lsm) {
330                         pr_info("security= is ignored because it is superseded by lsm=\n");
331                         chosen_major_lsm = NULL;
332                 }
333                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
334         } else
335                 ordered_lsm_parse(builtin_lsm_order, "builtin");
336
337         for (lsm = ordered_lsms; *lsm; lsm++)
338                 prepare_lsm(*lsm);
339
340         init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
341         init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
342         init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
343         init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
344         init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
345         init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
346         init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
347
348         /*
349          * Create any kmem_caches needed for blobs
350          */
351         if (blob_sizes.lbs_file)
352                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
353                                                    blob_sizes.lbs_file, 0,
354                                                    SLAB_PANIC, NULL);
355         if (blob_sizes.lbs_inode)
356                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
357                                                     blob_sizes.lbs_inode, 0,
358                                                     SLAB_PANIC, NULL);
359
360         lsm_early_cred((struct cred *) current->cred);
361         lsm_early_task(current);
362         for (lsm = ordered_lsms; *lsm; lsm++)
363                 initialize_lsm(*lsm);
364
365         kfree(ordered_lsms);
366 }
367
368 int __init early_security_init(void)
369 {
370         struct lsm_info *lsm;
371
372 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
373         INIT_HLIST_HEAD(&security_hook_heads.NAME);
374 #include "linux/lsm_hook_defs.h"
375 #undef LSM_HOOK
376
377         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
378                 if (!lsm->enabled)
379                         lsm->enabled = &lsm_enabled_true;
380                 prepare_lsm(lsm);
381                 initialize_lsm(lsm);
382         }
383
384         return 0;
385 }
386
387 /**
388  * security_init - initializes the security framework
389  *
390  * This should be called early in the kernel initialization sequence.
391  */
392 int __init security_init(void)
393 {
394         struct lsm_info *lsm;
395
396         pr_info("Security Framework initializing\n");
397
398         /*
399          * Append the names of the early LSM modules now that kmalloc() is
400          * available
401          */
402         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
403                 if (lsm->enabled)
404                         lsm_append(lsm->name, &lsm_names);
405         }
406
407         /* Load LSMs in specified order. */
408         ordered_lsm_init();
409
410         return 0;
411 }
412
413 /* Save user chosen LSM */
414 static int __init choose_major_lsm(char *str)
415 {
416         chosen_major_lsm = str;
417         return 1;
418 }
419 __setup("security=", choose_major_lsm);
420
421 /* Explicitly choose LSM initialization order. */
422 static int __init choose_lsm_order(char *str)
423 {
424         chosen_lsm_order = str;
425         return 1;
426 }
427 __setup("lsm=", choose_lsm_order);
428
429 /* Enable LSM order debugging. */
430 static int __init enable_debug(char *str)
431 {
432         debug = true;
433         return 1;
434 }
435 __setup("lsm.debug", enable_debug);
436
437 static bool match_last_lsm(const char *list, const char *lsm)
438 {
439         const char *last;
440
441         if (WARN_ON(!list || !lsm))
442                 return false;
443         last = strrchr(list, ',');
444         if (last)
445                 /* Pass the comma, strcmp() will check for '\0' */
446                 last++;
447         else
448                 last = list;
449         return !strcmp(last, lsm);
450 }
451
452 static int lsm_append(const char *new, char **result)
453 {
454         char *cp;
455
456         if (*result == NULL) {
457                 *result = kstrdup(new, GFP_KERNEL);
458                 if (*result == NULL)
459                         return -ENOMEM;
460         } else {
461                 /* Check if it is the last registered name */
462                 if (match_last_lsm(*result, new))
463                         return 0;
464                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
465                 if (cp == NULL)
466                         return -ENOMEM;
467                 kfree(*result);
468                 *result = cp;
469         }
470         return 0;
471 }
472
473 /**
474  * security_add_hooks - Add a modules hooks to the hook lists.
475  * @hooks: the hooks to add
476  * @count: the number of hooks to add
477  * @lsm: the name of the security module
478  *
479  * Each LSM has to register its hooks with the infrastructure.
480  */
481 void __init security_add_hooks(struct security_hook_list *hooks, int count,
482                                 const char *lsm)
483 {
484         int i;
485
486         for (i = 0; i < count; i++) {
487                 hooks[i].lsm = lsm;
488                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
489         }
490
491         /*
492          * Don't try to append during early_security_init(), we'll come back
493          * and fix this up afterwards.
494          */
495         if (slab_is_available()) {
496                 if (lsm_append(lsm, &lsm_names) < 0)
497                         panic("%s - Cannot get early memory.\n", __func__);
498         }
499 }
500
501 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
502 {
503         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
504                                             event, data);
505 }
506 EXPORT_SYMBOL(call_blocking_lsm_notifier);
507
508 int register_blocking_lsm_notifier(struct notifier_block *nb)
509 {
510         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
511                                                 nb);
512 }
513 EXPORT_SYMBOL(register_blocking_lsm_notifier);
514
515 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
516 {
517         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
518                                                   nb);
519 }
520 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
521
522 /**
523  * lsm_cred_alloc - allocate a composite cred blob
524  * @cred: the cred that needs a blob
525  * @gfp: allocation type
526  *
527  * Allocate the cred blob for all the modules
528  *
529  * Returns 0, or -ENOMEM if memory can't be allocated.
530  */
531 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
532 {
533         if (blob_sizes.lbs_cred == 0) {
534                 cred->security = NULL;
535                 return 0;
536         }
537
538         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
539         if (cred->security == NULL)
540                 return -ENOMEM;
541         return 0;
542 }
543
544 /**
545  * lsm_early_cred - during initialization allocate a composite cred blob
546  * @cred: the cred that needs a blob
547  *
548  * Allocate the cred blob for all the modules
549  */
550 static void __init lsm_early_cred(struct cred *cred)
551 {
552         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
553
554         if (rc)
555                 panic("%s: Early cred alloc failed.\n", __func__);
556 }
557
558 /**
559  * lsm_file_alloc - allocate a composite file blob
560  * @file: the file that needs a blob
561  *
562  * Allocate the file blob for all the modules
563  *
564  * Returns 0, or -ENOMEM if memory can't be allocated.
565  */
566 static int lsm_file_alloc(struct file *file)
567 {
568         if (!lsm_file_cache) {
569                 file->f_security = NULL;
570                 return 0;
571         }
572
573         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
574         if (file->f_security == NULL)
575                 return -ENOMEM;
576         return 0;
577 }
578
579 /**
580  * lsm_inode_alloc - allocate a composite inode blob
581  * @inode: the inode that needs a blob
582  *
583  * Allocate the inode blob for all the modules
584  *
585  * Returns 0, or -ENOMEM if memory can't be allocated.
586  */
587 int lsm_inode_alloc(struct inode *inode)
588 {
589         if (!lsm_inode_cache) {
590                 inode->i_security = NULL;
591                 return 0;
592         }
593
594         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
595         if (inode->i_security == NULL)
596                 return -ENOMEM;
597         return 0;
598 }
599
600 /**
601  * lsm_task_alloc - allocate a composite task blob
602  * @task: the task that needs a blob
603  *
604  * Allocate the task blob for all the modules
605  *
606  * Returns 0, or -ENOMEM if memory can't be allocated.
607  */
608 static int lsm_task_alloc(struct task_struct *task)
609 {
610         if (blob_sizes.lbs_task == 0) {
611                 task->security = NULL;
612                 return 0;
613         }
614
615         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
616         if (task->security == NULL)
617                 return -ENOMEM;
618         return 0;
619 }
620
621 /**
622  * lsm_ipc_alloc - allocate a composite ipc blob
623  * @kip: the ipc that needs a blob
624  *
625  * Allocate the ipc blob for all the modules
626  *
627  * Returns 0, or -ENOMEM if memory can't be allocated.
628  */
629 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
630 {
631         if (blob_sizes.lbs_ipc == 0) {
632                 kip->security = NULL;
633                 return 0;
634         }
635
636         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
637         if (kip->security == NULL)
638                 return -ENOMEM;
639         return 0;
640 }
641
642 /**
643  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
644  * @mp: the msg_msg that needs a blob
645  *
646  * Allocate the ipc blob for all the modules
647  *
648  * Returns 0, or -ENOMEM if memory can't be allocated.
649  */
650 static int lsm_msg_msg_alloc(struct msg_msg *mp)
651 {
652         if (blob_sizes.lbs_msg_msg == 0) {
653                 mp->security = NULL;
654                 return 0;
655         }
656
657         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
658         if (mp->security == NULL)
659                 return -ENOMEM;
660         return 0;
661 }
662
663 /**
664  * lsm_early_task - during initialization allocate a composite task blob
665  * @task: the task that needs a blob
666  *
667  * Allocate the task blob for all the modules
668  */
669 static void __init lsm_early_task(struct task_struct *task)
670 {
671         int rc = lsm_task_alloc(task);
672
673         if (rc)
674                 panic("%s: Early task alloc failed.\n", __func__);
675 }
676
677 /**
678  * lsm_superblock_alloc - allocate a composite superblock blob
679  * @sb: the superblock that needs a blob
680  *
681  * Allocate the superblock blob for all the modules
682  *
683  * Returns 0, or -ENOMEM if memory can't be allocated.
684  */
685 static int lsm_superblock_alloc(struct super_block *sb)
686 {
687         if (blob_sizes.lbs_superblock == 0) {
688                 sb->s_security = NULL;
689                 return 0;
690         }
691
692         sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
693         if (sb->s_security == NULL)
694                 return -ENOMEM;
695         return 0;
696 }
697
698 /*
699  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
700  * can be accessed with:
701  *
702  *      LSM_RET_DEFAULT(<hook_name>)
703  *
704  * The macros below define static constants for the default value of each
705  * LSM hook.
706  */
707 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
708 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
709 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
710         static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
711 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
712         DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
713
714 #include <linux/lsm_hook_defs.h>
715 #undef LSM_HOOK
716
717 /*
718  * Hook list operation macros.
719  *
720  * call_void_hook:
721  *      This is a hook that does not return a value.
722  *
723  * call_int_hook:
724  *      This is a hook that returns a value.
725  */
726
727 #define call_void_hook(FUNC, ...)                               \
728         do {                                                    \
729                 struct security_hook_list *P;                   \
730                                                                 \
731                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
732                         P->hook.FUNC(__VA_ARGS__);              \
733         } while (0)
734
735 #define call_int_hook(FUNC, IRC, ...) ({                        \
736         int RC = IRC;                                           \
737         do {                                                    \
738                 struct security_hook_list *P;                   \
739                                                                 \
740                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
741                         RC = P->hook.FUNC(__VA_ARGS__);         \
742                         if (RC != 0)                            \
743                                 break;                          \
744                 }                                               \
745         } while (0);                                            \
746         RC;                                                     \
747 })
748
749 /* Security operations */
750
751 int security_binder_set_context_mgr(const struct cred *mgr)
752 {
753         return call_int_hook(binder_set_context_mgr, 0, mgr);
754 }
755
756 int security_binder_transaction(const struct cred *from,
757                                 const struct cred *to)
758 {
759         return call_int_hook(binder_transaction, 0, from, to);
760 }
761
762 int security_binder_transfer_binder(const struct cred *from,
763                                     const struct cred *to)
764 {
765         return call_int_hook(binder_transfer_binder, 0, from, to);
766 }
767
768 int security_binder_transfer_file(const struct cred *from,
769                                   const struct cred *to, struct file *file)
770 {
771         return call_int_hook(binder_transfer_file, 0, from, to, file);
772 }
773
774 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
775 {
776         return call_int_hook(ptrace_access_check, 0, child, mode);
777 }
778
779 int security_ptrace_traceme(struct task_struct *parent)
780 {
781         return call_int_hook(ptrace_traceme, 0, parent);
782 }
783
784 int security_capget(struct task_struct *target,
785                      kernel_cap_t *effective,
786                      kernel_cap_t *inheritable,
787                      kernel_cap_t *permitted)
788 {
789         return call_int_hook(capget, 0, target,
790                                 effective, inheritable, permitted);
791 }
792
793 int security_capset(struct cred *new, const struct cred *old,
794                     const kernel_cap_t *effective,
795                     const kernel_cap_t *inheritable,
796                     const kernel_cap_t *permitted)
797 {
798         return call_int_hook(capset, 0, new, old,
799                                 effective, inheritable, permitted);
800 }
801
802 int security_capable(const struct cred *cred,
803                      struct user_namespace *ns,
804                      int cap,
805                      unsigned int opts)
806 {
807         return call_int_hook(capable, 0, cred, ns, cap, opts);
808 }
809
810 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
811 {
812         return call_int_hook(quotactl, 0, cmds, type, id, sb);
813 }
814
815 int security_quota_on(struct dentry *dentry)
816 {
817         return call_int_hook(quota_on, 0, dentry);
818 }
819
820 int security_syslog(int type)
821 {
822         return call_int_hook(syslog, 0, type);
823 }
824
825 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
826 {
827         return call_int_hook(settime, 0, ts, tz);
828 }
829
830 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
831 {
832         struct security_hook_list *hp;
833         int cap_sys_admin = 1;
834         int rc;
835
836         /*
837          * The module will respond with a positive value if
838          * it thinks the __vm_enough_memory() call should be
839          * made with the cap_sys_admin set. If all of the modules
840          * agree that it should be set it will. If any module
841          * thinks it should not be set it won't.
842          */
843         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
844                 rc = hp->hook.vm_enough_memory(mm, pages);
845                 if (rc <= 0) {
846                         cap_sys_admin = 0;
847                         break;
848                 }
849         }
850         return __vm_enough_memory(mm, pages, cap_sys_admin);
851 }
852
853 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
854 {
855         return call_int_hook(bprm_creds_for_exec, 0, bprm);
856 }
857
858 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
859 {
860         return call_int_hook(bprm_creds_from_file, 0, bprm, file);
861 }
862
863 int security_bprm_check(struct linux_binprm *bprm)
864 {
865         int ret;
866
867         ret = call_int_hook(bprm_check_security, 0, bprm);
868         if (ret)
869                 return ret;
870         return ima_bprm_check(bprm);
871 }
872
873 void security_bprm_committing_creds(struct linux_binprm *bprm)
874 {
875         call_void_hook(bprm_committing_creds, bprm);
876 }
877
878 void security_bprm_committed_creds(struct linux_binprm *bprm)
879 {
880         call_void_hook(bprm_committed_creds, bprm);
881 }
882
883 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
884 {
885         return call_int_hook(fs_context_dup, 0, fc, src_fc);
886 }
887
888 int security_fs_context_parse_param(struct fs_context *fc,
889                                     struct fs_parameter *param)
890 {
891         struct security_hook_list *hp;
892         int trc;
893         int rc = -ENOPARAM;
894
895         hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
896                              list) {
897                 trc = hp->hook.fs_context_parse_param(fc, param);
898                 if (trc == 0)
899                         rc = 0;
900                 else if (trc != -ENOPARAM)
901                         return trc;
902         }
903         return rc;
904 }
905
906 int security_sb_alloc(struct super_block *sb)
907 {
908         int rc = lsm_superblock_alloc(sb);
909
910         if (unlikely(rc))
911                 return rc;
912         rc = call_int_hook(sb_alloc_security, 0, sb);
913         if (unlikely(rc))
914                 security_sb_free(sb);
915         return rc;
916 }
917
918 void security_sb_delete(struct super_block *sb)
919 {
920         call_void_hook(sb_delete, sb);
921 }
922
923 void security_sb_free(struct super_block *sb)
924 {
925         call_void_hook(sb_free_security, sb);
926         kfree(sb->s_security);
927         sb->s_security = NULL;
928 }
929
930 void security_free_mnt_opts(void **mnt_opts)
931 {
932         if (!*mnt_opts)
933                 return;
934         call_void_hook(sb_free_mnt_opts, *mnt_opts);
935         *mnt_opts = NULL;
936 }
937 EXPORT_SYMBOL(security_free_mnt_opts);
938
939 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
940 {
941         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
942 }
943 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
944
945 int security_sb_mnt_opts_compat(struct super_block *sb,
946                                 void *mnt_opts)
947 {
948         return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
949 }
950 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
951
952 int security_sb_remount(struct super_block *sb,
953                         void *mnt_opts)
954 {
955         return call_int_hook(sb_remount, 0, sb, mnt_opts);
956 }
957 EXPORT_SYMBOL(security_sb_remount);
958
959 int security_sb_kern_mount(struct super_block *sb)
960 {
961         return call_int_hook(sb_kern_mount, 0, sb);
962 }
963
964 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
965 {
966         return call_int_hook(sb_show_options, 0, m, sb);
967 }
968
969 int security_sb_statfs(struct dentry *dentry)
970 {
971         return call_int_hook(sb_statfs, 0, dentry);
972 }
973
974 int security_sb_mount(const char *dev_name, const struct path *path,
975                        const char *type, unsigned long flags, void *data)
976 {
977         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
978 }
979
980 int security_sb_umount(struct vfsmount *mnt, int flags)
981 {
982         return call_int_hook(sb_umount, 0, mnt, flags);
983 }
984
985 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
986 {
987         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
988 }
989
990 int security_sb_set_mnt_opts(struct super_block *sb,
991                                 void *mnt_opts,
992                                 unsigned long kern_flags,
993                                 unsigned long *set_kern_flags)
994 {
995         return call_int_hook(sb_set_mnt_opts,
996                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
997                                 mnt_opts, kern_flags, set_kern_flags);
998 }
999 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1000
1001 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1002                                 struct super_block *newsb,
1003                                 unsigned long kern_flags,
1004                                 unsigned long *set_kern_flags)
1005 {
1006         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1007                                 kern_flags, set_kern_flags);
1008 }
1009 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1010
1011 int security_move_mount(const struct path *from_path, const struct path *to_path)
1012 {
1013         return call_int_hook(move_mount, 0, from_path, to_path);
1014 }
1015
1016 int security_path_notify(const struct path *path, u64 mask,
1017                                 unsigned int obj_type)
1018 {
1019         return call_int_hook(path_notify, 0, path, mask, obj_type);
1020 }
1021
1022 int security_inode_alloc(struct inode *inode)
1023 {
1024         int rc = lsm_inode_alloc(inode);
1025
1026         if (unlikely(rc))
1027                 return rc;
1028         rc = call_int_hook(inode_alloc_security, 0, inode);
1029         if (unlikely(rc))
1030                 security_inode_free(inode);
1031         return rc;
1032 }
1033
1034 static void inode_free_by_rcu(struct rcu_head *head)
1035 {
1036         /*
1037          * The rcu head is at the start of the inode blob
1038          */
1039         kmem_cache_free(lsm_inode_cache, head);
1040 }
1041
1042 void security_inode_free(struct inode *inode)
1043 {
1044         integrity_inode_free(inode);
1045         call_void_hook(inode_free_security, inode);
1046         /*
1047          * The inode may still be referenced in a path walk and
1048          * a call to security_inode_permission() can be made
1049          * after inode_free_security() is called. Ideally, the VFS
1050          * wouldn't do this, but fixing that is a much harder
1051          * job. For now, simply free the i_security via RCU, and
1052          * leave the current inode->i_security pointer intact.
1053          * The inode will be freed after the RCU grace period too.
1054          */
1055         if (inode->i_security)
1056                 call_rcu((struct rcu_head *)inode->i_security,
1057                                 inode_free_by_rcu);
1058 }
1059
1060 int security_dentry_init_security(struct dentry *dentry, int mode,
1061                                   const struct qstr *name,
1062                                   const char **xattr_name, void **ctx,
1063                                   u32 *ctxlen)
1064 {
1065         struct security_hook_list *hp;
1066         int rc;
1067
1068         /*
1069          * Only one module will provide a security context.
1070          */
1071         hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1072                 rc = hp->hook.dentry_init_security(dentry, mode, name,
1073                                                    xattr_name, ctx, ctxlen);
1074                 if (rc != LSM_RET_DEFAULT(dentry_init_security))
1075                         return rc;
1076         }
1077         return LSM_RET_DEFAULT(dentry_init_security);
1078 }
1079 EXPORT_SYMBOL(security_dentry_init_security);
1080
1081 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1082                                     struct qstr *name,
1083                                     const struct cred *old, struct cred *new)
1084 {
1085         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1086                                 name, old, new);
1087 }
1088 EXPORT_SYMBOL(security_dentry_create_files_as);
1089
1090 int security_inode_init_security(struct inode *inode, struct inode *dir,
1091                                  const struct qstr *qstr,
1092                                  const initxattrs initxattrs, void *fs_data)
1093 {
1094         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1095         struct xattr *lsm_xattr, *evm_xattr, *xattr;
1096         int ret;
1097
1098         if (unlikely(IS_PRIVATE(inode)))
1099                 return 0;
1100
1101         if (!initxattrs)
1102                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1103                                      dir, qstr, NULL, NULL, NULL);
1104         memset(new_xattrs, 0, sizeof(new_xattrs));
1105         lsm_xattr = new_xattrs;
1106         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1107                                                 &lsm_xattr->name,
1108                                                 &lsm_xattr->value,
1109                                                 &lsm_xattr->value_len);
1110         if (ret)
1111                 goto out;
1112
1113         evm_xattr = lsm_xattr + 1;
1114         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1115         if (ret)
1116                 goto out;
1117         ret = initxattrs(inode, new_xattrs, fs_data);
1118 out:
1119         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1120                 kfree(xattr->value);
1121         return (ret == -EOPNOTSUPP) ? 0 : ret;
1122 }
1123 EXPORT_SYMBOL(security_inode_init_security);
1124
1125 int security_inode_init_security_anon(struct inode *inode,
1126                                       const struct qstr *name,
1127                                       const struct inode *context_inode)
1128 {
1129         return call_int_hook(inode_init_security_anon, 0, inode, name,
1130                              context_inode);
1131 }
1132
1133 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1134                                      const struct qstr *qstr, const char **name,
1135                                      void **value, size_t *len)
1136 {
1137         if (unlikely(IS_PRIVATE(inode)))
1138                 return -EOPNOTSUPP;
1139         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1140                              qstr, name, value, len);
1141 }
1142 EXPORT_SYMBOL(security_old_inode_init_security);
1143
1144 #ifdef CONFIG_SECURITY_PATH
1145 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1146                         unsigned int dev)
1147 {
1148         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1149                 return 0;
1150         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1151 }
1152 EXPORT_SYMBOL(security_path_mknod);
1153
1154 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1155 {
1156         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1157                 return 0;
1158         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1159 }
1160 EXPORT_SYMBOL(security_path_mkdir);
1161
1162 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1163 {
1164         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1165                 return 0;
1166         return call_int_hook(path_rmdir, 0, dir, dentry);
1167 }
1168
1169 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1170 {
1171         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1172                 return 0;
1173         return call_int_hook(path_unlink, 0, dir, dentry);
1174 }
1175 EXPORT_SYMBOL(security_path_unlink);
1176
1177 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1178                           const char *old_name)
1179 {
1180         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1181                 return 0;
1182         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1183 }
1184
1185 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1186                        struct dentry *new_dentry)
1187 {
1188         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1189                 return 0;
1190         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1191 }
1192
1193 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1194                          const struct path *new_dir, struct dentry *new_dentry,
1195                          unsigned int flags)
1196 {
1197         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1198                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1199                 return 0;
1200
1201         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1202                                 new_dentry, flags);
1203 }
1204 EXPORT_SYMBOL(security_path_rename);
1205
1206 int security_path_truncate(const struct path *path)
1207 {
1208         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1209                 return 0;
1210         return call_int_hook(path_truncate, 0, path);
1211 }
1212
1213 int security_path_chmod(const struct path *path, umode_t mode)
1214 {
1215         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1216                 return 0;
1217         return call_int_hook(path_chmod, 0, path, mode);
1218 }
1219
1220 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1221 {
1222         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1223                 return 0;
1224         return call_int_hook(path_chown, 0, path, uid, gid);
1225 }
1226
1227 int security_path_chroot(const struct path *path)
1228 {
1229         return call_int_hook(path_chroot, 0, path);
1230 }
1231 #endif
1232
1233 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1234 {
1235         if (unlikely(IS_PRIVATE(dir)))
1236                 return 0;
1237         return call_int_hook(inode_create, 0, dir, dentry, mode);
1238 }
1239 EXPORT_SYMBOL_GPL(security_inode_create);
1240
1241 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1242                          struct dentry *new_dentry)
1243 {
1244         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1245                 return 0;
1246         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1247 }
1248
1249 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1250 {
1251         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1252                 return 0;
1253         return call_int_hook(inode_unlink, 0, dir, dentry);
1254 }
1255
1256 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1257                             const char *old_name)
1258 {
1259         if (unlikely(IS_PRIVATE(dir)))
1260                 return 0;
1261         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1262 }
1263
1264 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1265 {
1266         if (unlikely(IS_PRIVATE(dir)))
1267                 return 0;
1268         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1269 }
1270 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1271
1272 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1273 {
1274         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1275                 return 0;
1276         return call_int_hook(inode_rmdir, 0, dir, dentry);
1277 }
1278
1279 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1280 {
1281         if (unlikely(IS_PRIVATE(dir)))
1282                 return 0;
1283         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1284 }
1285
1286 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1287                            struct inode *new_dir, struct dentry *new_dentry,
1288                            unsigned int flags)
1289 {
1290         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1291             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1292                 return 0;
1293
1294         if (flags & RENAME_EXCHANGE) {
1295                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1296                                                      old_dir, old_dentry);
1297                 if (err)
1298                         return err;
1299         }
1300
1301         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1302                                            new_dir, new_dentry);
1303 }
1304
1305 int security_inode_readlink(struct dentry *dentry)
1306 {
1307         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1308                 return 0;
1309         return call_int_hook(inode_readlink, 0, dentry);
1310 }
1311
1312 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1313                                bool rcu)
1314 {
1315         if (unlikely(IS_PRIVATE(inode)))
1316                 return 0;
1317         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1318 }
1319
1320 int security_inode_permission(struct inode *inode, int mask)
1321 {
1322         if (unlikely(IS_PRIVATE(inode)))
1323                 return 0;
1324         return call_int_hook(inode_permission, 0, inode, mask);
1325 }
1326
1327 int security_inode_setattr(struct user_namespace *mnt_userns,
1328                            struct dentry *dentry, struct iattr *attr)
1329 {
1330         int ret;
1331
1332         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1333                 return 0;
1334         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1335         if (ret)
1336                 return ret;
1337         return evm_inode_setattr(mnt_userns, dentry, attr);
1338 }
1339 EXPORT_SYMBOL_GPL(security_inode_setattr);
1340
1341 int security_inode_getattr(const struct path *path)
1342 {
1343         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1344                 return 0;
1345         return call_int_hook(inode_getattr, 0, path);
1346 }
1347
1348 int security_inode_setxattr(struct user_namespace *mnt_userns,
1349                             struct dentry *dentry, const char *name,
1350                             const void *value, size_t size, int flags)
1351 {
1352         int ret;
1353
1354         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1355                 return 0;
1356         /*
1357          * SELinux and Smack integrate the cap call,
1358          * so assume that all LSMs supplying this call do so.
1359          */
1360         ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1361                             size, flags);
1362
1363         if (ret == 1)
1364                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1365         if (ret)
1366                 return ret;
1367         ret = ima_inode_setxattr(dentry, name, value, size);
1368         if (ret)
1369                 return ret;
1370         return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1371 }
1372
1373 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1374                                   const void *value, size_t size, int flags)
1375 {
1376         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1377                 return;
1378         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1379         evm_inode_post_setxattr(dentry, name, value, size);
1380 }
1381
1382 int security_inode_getxattr(struct dentry *dentry, const char *name)
1383 {
1384         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1385                 return 0;
1386         return call_int_hook(inode_getxattr, 0, dentry, name);
1387 }
1388
1389 int security_inode_listxattr(struct dentry *dentry)
1390 {
1391         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1392                 return 0;
1393         return call_int_hook(inode_listxattr, 0, dentry);
1394 }
1395
1396 int security_inode_removexattr(struct user_namespace *mnt_userns,
1397                                struct dentry *dentry, const char *name)
1398 {
1399         int ret;
1400
1401         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1402                 return 0;
1403         /*
1404          * SELinux and Smack integrate the cap call,
1405          * so assume that all LSMs supplying this call do so.
1406          */
1407         ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1408         if (ret == 1)
1409                 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1410         if (ret)
1411                 return ret;
1412         ret = ima_inode_removexattr(dentry, name);
1413         if (ret)
1414                 return ret;
1415         return evm_inode_removexattr(mnt_userns, dentry, name);
1416 }
1417
1418 int security_inode_need_killpriv(struct dentry *dentry)
1419 {
1420         return call_int_hook(inode_need_killpriv, 0, dentry);
1421 }
1422
1423 int security_inode_killpriv(struct user_namespace *mnt_userns,
1424                             struct dentry *dentry)
1425 {
1426         return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1427 }
1428
1429 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1430                                struct inode *inode, const char *name,
1431                                void **buffer, bool alloc)
1432 {
1433         struct security_hook_list *hp;
1434         int rc;
1435
1436         if (unlikely(IS_PRIVATE(inode)))
1437                 return LSM_RET_DEFAULT(inode_getsecurity);
1438         /*
1439          * Only one module will provide an attribute with a given name.
1440          */
1441         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1442                 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1443                 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1444                         return rc;
1445         }
1446         return LSM_RET_DEFAULT(inode_getsecurity);
1447 }
1448
1449 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1450 {
1451         struct security_hook_list *hp;
1452         int rc;
1453
1454         if (unlikely(IS_PRIVATE(inode)))
1455                 return LSM_RET_DEFAULT(inode_setsecurity);
1456         /*
1457          * Only one module will provide an attribute with a given name.
1458          */
1459         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1460                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1461                                                                 flags);
1462                 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1463                         return rc;
1464         }
1465         return LSM_RET_DEFAULT(inode_setsecurity);
1466 }
1467
1468 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1469 {
1470         if (unlikely(IS_PRIVATE(inode)))
1471                 return 0;
1472         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1473 }
1474 EXPORT_SYMBOL(security_inode_listsecurity);
1475
1476 void security_inode_getsecid(struct inode *inode, u32 *secid)
1477 {
1478         call_void_hook(inode_getsecid, inode, secid);
1479 }
1480
1481 int security_inode_copy_up(struct dentry *src, struct cred **new)
1482 {
1483         return call_int_hook(inode_copy_up, 0, src, new);
1484 }
1485 EXPORT_SYMBOL(security_inode_copy_up);
1486
1487 int security_inode_copy_up_xattr(const char *name)
1488 {
1489         struct security_hook_list *hp;
1490         int rc;
1491
1492         /*
1493          * The implementation can return 0 (accept the xattr), 1 (discard the
1494          * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1495          * any other error code incase of an error.
1496          */
1497         hlist_for_each_entry(hp,
1498                 &security_hook_heads.inode_copy_up_xattr, list) {
1499                 rc = hp->hook.inode_copy_up_xattr(name);
1500                 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1501                         return rc;
1502         }
1503
1504         return LSM_RET_DEFAULT(inode_copy_up_xattr);
1505 }
1506 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1507
1508 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1509                                   struct kernfs_node *kn)
1510 {
1511         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1512 }
1513
1514 int security_file_permission(struct file *file, int mask)
1515 {
1516         int ret;
1517
1518         ret = call_int_hook(file_permission, 0, file, mask);
1519         if (ret)
1520                 return ret;
1521
1522         return fsnotify_perm(file, mask);
1523 }
1524
1525 int security_file_alloc(struct file *file)
1526 {
1527         int rc = lsm_file_alloc(file);
1528
1529         if (rc)
1530                 return rc;
1531         rc = call_int_hook(file_alloc_security, 0, file);
1532         if (unlikely(rc))
1533                 security_file_free(file);
1534         return rc;
1535 }
1536
1537 void security_file_free(struct file *file)
1538 {
1539         void *blob;
1540
1541         call_void_hook(file_free_security, file);
1542
1543         blob = file->f_security;
1544         if (blob) {
1545                 file->f_security = NULL;
1546                 kmem_cache_free(lsm_file_cache, blob);
1547         }
1548 }
1549
1550 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1551 {
1552         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1553 }
1554 EXPORT_SYMBOL_GPL(security_file_ioctl);
1555
1556 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1557 {
1558         /*
1559          * Does we have PROT_READ and does the application expect
1560          * it to imply PROT_EXEC?  If not, nothing to talk about...
1561          */
1562         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1563                 return prot;
1564         if (!(current->personality & READ_IMPLIES_EXEC))
1565                 return prot;
1566         /*
1567          * if that's an anonymous mapping, let it.
1568          */
1569         if (!file)
1570                 return prot | PROT_EXEC;
1571         /*
1572          * ditto if it's not on noexec mount, except that on !MMU we need
1573          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1574          */
1575         if (!path_noexec(&file->f_path)) {
1576 #ifndef CONFIG_MMU
1577                 if (file->f_op->mmap_capabilities) {
1578                         unsigned caps = file->f_op->mmap_capabilities(file);
1579                         if (!(caps & NOMMU_MAP_EXEC))
1580                                 return prot;
1581                 }
1582 #endif
1583                 return prot | PROT_EXEC;
1584         }
1585         /* anything on noexec mount won't get PROT_EXEC */
1586         return prot;
1587 }
1588
1589 int security_mmap_file(struct file *file, unsigned long prot,
1590                         unsigned long flags)
1591 {
1592         int ret;
1593         ret = call_int_hook(mmap_file, 0, file, prot,
1594                                         mmap_prot(file, prot), flags);
1595         if (ret)
1596                 return ret;
1597         return ima_file_mmap(file, prot);
1598 }
1599
1600 int security_mmap_addr(unsigned long addr)
1601 {
1602         return call_int_hook(mmap_addr, 0, addr);
1603 }
1604
1605 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1606                             unsigned long prot)
1607 {
1608         int ret;
1609
1610         ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1611         if (ret)
1612                 return ret;
1613         return ima_file_mprotect(vma, prot);
1614 }
1615
1616 int security_file_lock(struct file *file, unsigned int cmd)
1617 {
1618         return call_int_hook(file_lock, 0, file, cmd);
1619 }
1620
1621 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1622 {
1623         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1624 }
1625
1626 void security_file_set_fowner(struct file *file)
1627 {
1628         call_void_hook(file_set_fowner, file);
1629 }
1630
1631 int security_file_send_sigiotask(struct task_struct *tsk,
1632                                   struct fown_struct *fown, int sig)
1633 {
1634         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1635 }
1636
1637 int security_file_receive(struct file *file)
1638 {
1639         return call_int_hook(file_receive, 0, file);
1640 }
1641
1642 int security_file_open(struct file *file)
1643 {
1644         int ret;
1645
1646         ret = call_int_hook(file_open, 0, file);
1647         if (ret)
1648                 return ret;
1649
1650         return fsnotify_perm(file, MAY_OPEN);
1651 }
1652
1653 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1654 {
1655         int rc = lsm_task_alloc(task);
1656
1657         if (rc)
1658                 return rc;
1659         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1660         if (unlikely(rc))
1661                 security_task_free(task);
1662         return rc;
1663 }
1664
1665 void security_task_free(struct task_struct *task)
1666 {
1667         call_void_hook(task_free, task);
1668
1669         kfree(task->security);
1670         task->security = NULL;
1671 }
1672
1673 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1674 {
1675         int rc = lsm_cred_alloc(cred, gfp);
1676
1677         if (rc)
1678                 return rc;
1679
1680         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1681         if (unlikely(rc))
1682                 security_cred_free(cred);
1683         return rc;
1684 }
1685
1686 void security_cred_free(struct cred *cred)
1687 {
1688         /*
1689          * There is a failure case in prepare_creds() that
1690          * may result in a call here with ->security being NULL.
1691          */
1692         if (unlikely(cred->security == NULL))
1693                 return;
1694
1695         call_void_hook(cred_free, cred);
1696
1697         kfree(cred->security);
1698         cred->security = NULL;
1699 }
1700
1701 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1702 {
1703         int rc = lsm_cred_alloc(new, gfp);
1704
1705         if (rc)
1706                 return rc;
1707
1708         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1709         if (unlikely(rc))
1710                 security_cred_free(new);
1711         return rc;
1712 }
1713
1714 void security_transfer_creds(struct cred *new, const struct cred *old)
1715 {
1716         call_void_hook(cred_transfer, new, old);
1717 }
1718
1719 void security_cred_getsecid(const struct cred *c, u32 *secid)
1720 {
1721         *secid = 0;
1722         call_void_hook(cred_getsecid, c, secid);
1723 }
1724 EXPORT_SYMBOL(security_cred_getsecid);
1725
1726 int security_kernel_act_as(struct cred *new, u32 secid)
1727 {
1728         return call_int_hook(kernel_act_as, 0, new, secid);
1729 }
1730
1731 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1732 {
1733         return call_int_hook(kernel_create_files_as, 0, new, inode);
1734 }
1735
1736 int security_kernel_module_request(char *kmod_name)
1737 {
1738         int ret;
1739
1740         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1741         if (ret)
1742                 return ret;
1743         return integrity_kernel_module_request(kmod_name);
1744 }
1745
1746 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1747                               bool contents)
1748 {
1749         int ret;
1750
1751         ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1752         if (ret)
1753                 return ret;
1754         return ima_read_file(file, id, contents);
1755 }
1756 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1757
1758 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1759                                    enum kernel_read_file_id id)
1760 {
1761         int ret;
1762
1763         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1764         if (ret)
1765                 return ret;
1766         return ima_post_read_file(file, buf, size, id);
1767 }
1768 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1769
1770 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1771 {
1772         int ret;
1773
1774         ret = call_int_hook(kernel_load_data, 0, id, contents);
1775         if (ret)
1776                 return ret;
1777         return ima_load_data(id, contents);
1778 }
1779 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1780
1781 int security_kernel_post_load_data(char *buf, loff_t size,
1782                                    enum kernel_load_data_id id,
1783                                    char *description)
1784 {
1785         int ret;
1786
1787         ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1788                             description);
1789         if (ret)
1790                 return ret;
1791         return ima_post_load_data(buf, size, id, description);
1792 }
1793 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1794
1795 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1796                              int flags)
1797 {
1798         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1799 }
1800
1801 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1802                                  int flags)
1803 {
1804         return call_int_hook(task_fix_setgid, 0, new, old, flags);
1805 }
1806
1807 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
1808 {
1809         return call_int_hook(task_fix_setgroups, 0, new, old);
1810 }
1811
1812 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1813 {
1814         return call_int_hook(task_setpgid, 0, p, pgid);
1815 }
1816
1817 int security_task_getpgid(struct task_struct *p)
1818 {
1819         return call_int_hook(task_getpgid, 0, p);
1820 }
1821
1822 int security_task_getsid(struct task_struct *p)
1823 {
1824         return call_int_hook(task_getsid, 0, p);
1825 }
1826
1827 void security_current_getsecid_subj(u32 *secid)
1828 {
1829         *secid = 0;
1830         call_void_hook(current_getsecid_subj, secid);
1831 }
1832 EXPORT_SYMBOL(security_current_getsecid_subj);
1833
1834 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1835 {
1836         *secid = 0;
1837         call_void_hook(task_getsecid_obj, p, secid);
1838 }
1839 EXPORT_SYMBOL(security_task_getsecid_obj);
1840
1841 int security_task_setnice(struct task_struct *p, int nice)
1842 {
1843         return call_int_hook(task_setnice, 0, p, nice);
1844 }
1845
1846 int security_task_setioprio(struct task_struct *p, int ioprio)
1847 {
1848         return call_int_hook(task_setioprio, 0, p, ioprio);
1849 }
1850
1851 int security_task_getioprio(struct task_struct *p)
1852 {
1853         return call_int_hook(task_getioprio, 0, p);
1854 }
1855
1856 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1857                           unsigned int flags)
1858 {
1859         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1860 }
1861
1862 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1863                 struct rlimit *new_rlim)
1864 {
1865         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1866 }
1867
1868 int security_task_setscheduler(struct task_struct *p)
1869 {
1870         return call_int_hook(task_setscheduler, 0, p);
1871 }
1872
1873 int security_task_getscheduler(struct task_struct *p)
1874 {
1875         return call_int_hook(task_getscheduler, 0, p);
1876 }
1877
1878 int security_task_movememory(struct task_struct *p)
1879 {
1880         return call_int_hook(task_movememory, 0, p);
1881 }
1882
1883 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1884                         int sig, const struct cred *cred)
1885 {
1886         return call_int_hook(task_kill, 0, p, info, sig, cred);
1887 }
1888
1889 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1890                          unsigned long arg4, unsigned long arg5)
1891 {
1892         int thisrc;
1893         int rc = LSM_RET_DEFAULT(task_prctl);
1894         struct security_hook_list *hp;
1895
1896         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1897                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1898                 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1899                         rc = thisrc;
1900                         if (thisrc != 0)
1901                                 break;
1902                 }
1903         }
1904         return rc;
1905 }
1906
1907 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1908 {
1909         call_void_hook(task_to_inode, p, inode);
1910 }
1911
1912 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1913 {
1914         return call_int_hook(ipc_permission, 0, ipcp, flag);
1915 }
1916
1917 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1918 {
1919         *secid = 0;
1920         call_void_hook(ipc_getsecid, ipcp, secid);
1921 }
1922
1923 int security_msg_msg_alloc(struct msg_msg *msg)
1924 {
1925         int rc = lsm_msg_msg_alloc(msg);
1926
1927         if (unlikely(rc))
1928                 return rc;
1929         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1930         if (unlikely(rc))
1931                 security_msg_msg_free(msg);
1932         return rc;
1933 }
1934
1935 void security_msg_msg_free(struct msg_msg *msg)
1936 {
1937         call_void_hook(msg_msg_free_security, msg);
1938         kfree(msg->security);
1939         msg->security = NULL;
1940 }
1941
1942 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1943 {
1944         int rc = lsm_ipc_alloc(msq);
1945
1946         if (unlikely(rc))
1947                 return rc;
1948         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1949         if (unlikely(rc))
1950                 security_msg_queue_free(msq);
1951         return rc;
1952 }
1953
1954 void security_msg_queue_free(struct kern_ipc_perm *msq)
1955 {
1956         call_void_hook(msg_queue_free_security, msq);
1957         kfree(msq->security);
1958         msq->security = NULL;
1959 }
1960
1961 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1962 {
1963         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1964 }
1965
1966 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1967 {
1968         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1969 }
1970
1971 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1972                                struct msg_msg *msg, int msqflg)
1973 {
1974         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1975 }
1976
1977 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1978                                struct task_struct *target, long type, int mode)
1979 {
1980         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1981 }
1982
1983 int security_shm_alloc(struct kern_ipc_perm *shp)
1984 {
1985         int rc = lsm_ipc_alloc(shp);
1986
1987         if (unlikely(rc))
1988                 return rc;
1989         rc = call_int_hook(shm_alloc_security, 0, shp);
1990         if (unlikely(rc))
1991                 security_shm_free(shp);
1992         return rc;
1993 }
1994
1995 void security_shm_free(struct kern_ipc_perm *shp)
1996 {
1997         call_void_hook(shm_free_security, shp);
1998         kfree(shp->security);
1999         shp->security = NULL;
2000 }
2001
2002 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
2003 {
2004         return call_int_hook(shm_associate, 0, shp, shmflg);
2005 }
2006
2007 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2008 {
2009         return call_int_hook(shm_shmctl, 0, shp, cmd);
2010 }
2011
2012 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2013 {
2014         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2015 }
2016
2017 int security_sem_alloc(struct kern_ipc_perm *sma)
2018 {
2019         int rc = lsm_ipc_alloc(sma);
2020
2021         if (unlikely(rc))
2022                 return rc;
2023         rc = call_int_hook(sem_alloc_security, 0, sma);
2024         if (unlikely(rc))
2025                 security_sem_free(sma);
2026         return rc;
2027 }
2028
2029 void security_sem_free(struct kern_ipc_perm *sma)
2030 {
2031         call_void_hook(sem_free_security, sma);
2032         kfree(sma->security);
2033         sma->security = NULL;
2034 }
2035
2036 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2037 {
2038         return call_int_hook(sem_associate, 0, sma, semflg);
2039 }
2040
2041 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2042 {
2043         return call_int_hook(sem_semctl, 0, sma, cmd);
2044 }
2045
2046 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2047                         unsigned nsops, int alter)
2048 {
2049         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2050 }
2051
2052 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2053 {
2054         if (unlikely(inode && IS_PRIVATE(inode)))
2055                 return;
2056         call_void_hook(d_instantiate, dentry, inode);
2057 }
2058 EXPORT_SYMBOL(security_d_instantiate);
2059
2060 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2061                                 char **value)
2062 {
2063         struct security_hook_list *hp;
2064
2065         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2066                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2067                         continue;
2068                 return hp->hook.getprocattr(p, name, value);
2069         }
2070         return LSM_RET_DEFAULT(getprocattr);
2071 }
2072
2073 int security_setprocattr(const char *lsm, const char *name, void *value,
2074                          size_t size)
2075 {
2076         struct security_hook_list *hp;
2077
2078         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2079                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2080                         continue;
2081                 return hp->hook.setprocattr(name, value, size);
2082         }
2083         return LSM_RET_DEFAULT(setprocattr);
2084 }
2085
2086 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2087 {
2088         return call_int_hook(netlink_send, 0, sk, skb);
2089 }
2090
2091 int security_ismaclabel(const char *name)
2092 {
2093         return call_int_hook(ismaclabel, 0, name);
2094 }
2095 EXPORT_SYMBOL(security_ismaclabel);
2096
2097 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2098 {
2099         struct security_hook_list *hp;
2100         int rc;
2101
2102         /*
2103          * Currently, only one LSM can implement secid_to_secctx (i.e this
2104          * LSM hook is not "stackable").
2105          */
2106         hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2107                 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2108                 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2109                         return rc;
2110         }
2111
2112         return LSM_RET_DEFAULT(secid_to_secctx);
2113 }
2114 EXPORT_SYMBOL(security_secid_to_secctx);
2115
2116 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2117 {
2118         *secid = 0;
2119         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2120 }
2121 EXPORT_SYMBOL(security_secctx_to_secid);
2122
2123 void security_release_secctx(char *secdata, u32 seclen)
2124 {
2125         call_void_hook(release_secctx, secdata, seclen);
2126 }
2127 EXPORT_SYMBOL(security_release_secctx);
2128
2129 void security_inode_invalidate_secctx(struct inode *inode)
2130 {
2131         call_void_hook(inode_invalidate_secctx, inode);
2132 }
2133 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2134
2135 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2136 {
2137         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2138 }
2139 EXPORT_SYMBOL(security_inode_notifysecctx);
2140
2141 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2142 {
2143         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2144 }
2145 EXPORT_SYMBOL(security_inode_setsecctx);
2146
2147 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2148 {
2149         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2150 }
2151 EXPORT_SYMBOL(security_inode_getsecctx);
2152
2153 #ifdef CONFIG_WATCH_QUEUE
2154 int security_post_notification(const struct cred *w_cred,
2155                                const struct cred *cred,
2156                                struct watch_notification *n)
2157 {
2158         return call_int_hook(post_notification, 0, w_cred, cred, n);
2159 }
2160 #endif /* CONFIG_WATCH_QUEUE */
2161
2162 #ifdef CONFIG_KEY_NOTIFICATIONS
2163 int security_watch_key(struct key *key)
2164 {
2165         return call_int_hook(watch_key, 0, key);
2166 }
2167 #endif
2168
2169 #ifdef CONFIG_SECURITY_NETWORK
2170
2171 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2172 {
2173         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2174 }
2175 EXPORT_SYMBOL(security_unix_stream_connect);
2176
2177 int security_unix_may_send(struct socket *sock,  struct socket *other)
2178 {
2179         return call_int_hook(unix_may_send, 0, sock, other);
2180 }
2181 EXPORT_SYMBOL(security_unix_may_send);
2182
2183 int security_socket_create(int family, int type, int protocol, int kern)
2184 {
2185         return call_int_hook(socket_create, 0, family, type, protocol, kern);
2186 }
2187
2188 int security_socket_post_create(struct socket *sock, int family,
2189                                 int type, int protocol, int kern)
2190 {
2191         return call_int_hook(socket_post_create, 0, sock, family, type,
2192                                                 protocol, kern);
2193 }
2194
2195 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2196 {
2197         return call_int_hook(socket_socketpair, 0, socka, sockb);
2198 }
2199 EXPORT_SYMBOL(security_socket_socketpair);
2200
2201 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2202 {
2203         return call_int_hook(socket_bind, 0, sock, address, addrlen);
2204 }
2205
2206 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2207 {
2208         return call_int_hook(socket_connect, 0, sock, address, addrlen);
2209 }
2210
2211 int security_socket_listen(struct socket *sock, int backlog)
2212 {
2213         return call_int_hook(socket_listen, 0, sock, backlog);
2214 }
2215
2216 int security_socket_accept(struct socket *sock, struct socket *newsock)
2217 {
2218         return call_int_hook(socket_accept, 0, sock, newsock);
2219 }
2220
2221 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2222 {
2223         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2224 }
2225
2226 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2227                             int size, int flags)
2228 {
2229         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2230 }
2231
2232 int security_socket_getsockname(struct socket *sock)
2233 {
2234         return call_int_hook(socket_getsockname, 0, sock);
2235 }
2236
2237 int security_socket_getpeername(struct socket *sock)
2238 {
2239         return call_int_hook(socket_getpeername, 0, sock);
2240 }
2241
2242 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2243 {
2244         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2245 }
2246
2247 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2248 {
2249         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2250 }
2251
2252 int security_socket_shutdown(struct socket *sock, int how)
2253 {
2254         return call_int_hook(socket_shutdown, 0, sock, how);
2255 }
2256
2257 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2258 {
2259         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2260 }
2261 EXPORT_SYMBOL(security_sock_rcv_skb);
2262
2263 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2264                                       int __user *optlen, unsigned len)
2265 {
2266         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2267                                 optval, optlen, len);
2268 }
2269
2270 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2271 {
2272         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2273                              skb, secid);
2274 }
2275 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2276
2277 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2278 {
2279         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2280 }
2281
2282 void security_sk_free(struct sock *sk)
2283 {
2284         call_void_hook(sk_free_security, sk);
2285 }
2286
2287 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2288 {
2289         call_void_hook(sk_clone_security, sk, newsk);
2290 }
2291 EXPORT_SYMBOL(security_sk_clone);
2292
2293 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2294 {
2295         call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2296 }
2297 EXPORT_SYMBOL(security_sk_classify_flow);
2298
2299 void security_req_classify_flow(const struct request_sock *req,
2300                                 struct flowi_common *flic)
2301 {
2302         call_void_hook(req_classify_flow, req, flic);
2303 }
2304 EXPORT_SYMBOL(security_req_classify_flow);
2305
2306 void security_sock_graft(struct sock *sk, struct socket *parent)
2307 {
2308         call_void_hook(sock_graft, sk, parent);
2309 }
2310 EXPORT_SYMBOL(security_sock_graft);
2311
2312 int security_inet_conn_request(const struct sock *sk,
2313                         struct sk_buff *skb, struct request_sock *req)
2314 {
2315         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2316 }
2317 EXPORT_SYMBOL(security_inet_conn_request);
2318
2319 void security_inet_csk_clone(struct sock *newsk,
2320                         const struct request_sock *req)
2321 {
2322         call_void_hook(inet_csk_clone, newsk, req);
2323 }
2324
2325 void security_inet_conn_established(struct sock *sk,
2326                         struct sk_buff *skb)
2327 {
2328         call_void_hook(inet_conn_established, sk, skb);
2329 }
2330 EXPORT_SYMBOL(security_inet_conn_established);
2331
2332 int security_secmark_relabel_packet(u32 secid)
2333 {
2334         return call_int_hook(secmark_relabel_packet, 0, secid);
2335 }
2336 EXPORT_SYMBOL(security_secmark_relabel_packet);
2337
2338 void security_secmark_refcount_inc(void)
2339 {
2340         call_void_hook(secmark_refcount_inc);
2341 }
2342 EXPORT_SYMBOL(security_secmark_refcount_inc);
2343
2344 void security_secmark_refcount_dec(void)
2345 {
2346         call_void_hook(secmark_refcount_dec);
2347 }
2348 EXPORT_SYMBOL(security_secmark_refcount_dec);
2349
2350 int security_tun_dev_alloc_security(void **security)
2351 {
2352         return call_int_hook(tun_dev_alloc_security, 0, security);
2353 }
2354 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2355
2356 void security_tun_dev_free_security(void *security)
2357 {
2358         call_void_hook(tun_dev_free_security, security);
2359 }
2360 EXPORT_SYMBOL(security_tun_dev_free_security);
2361
2362 int security_tun_dev_create(void)
2363 {
2364         return call_int_hook(tun_dev_create, 0);
2365 }
2366 EXPORT_SYMBOL(security_tun_dev_create);
2367
2368 int security_tun_dev_attach_queue(void *security)
2369 {
2370         return call_int_hook(tun_dev_attach_queue, 0, security);
2371 }
2372 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2373
2374 int security_tun_dev_attach(struct sock *sk, void *security)
2375 {
2376         return call_int_hook(tun_dev_attach, 0, sk, security);
2377 }
2378 EXPORT_SYMBOL(security_tun_dev_attach);
2379
2380 int security_tun_dev_open(void *security)
2381 {
2382         return call_int_hook(tun_dev_open, 0, security);
2383 }
2384 EXPORT_SYMBOL(security_tun_dev_open);
2385
2386 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2387 {
2388         return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2389 }
2390 EXPORT_SYMBOL(security_sctp_assoc_request);
2391
2392 int security_sctp_bind_connect(struct sock *sk, int optname,
2393                                struct sockaddr *address, int addrlen)
2394 {
2395         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2396                              address, addrlen);
2397 }
2398 EXPORT_SYMBOL(security_sctp_bind_connect);
2399
2400 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2401                             struct sock *newsk)
2402 {
2403         call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2404 }
2405 EXPORT_SYMBOL(security_sctp_sk_clone);
2406
2407 int security_sctp_assoc_established(struct sctp_association *asoc,
2408                                     struct sk_buff *skb)
2409 {
2410         return call_int_hook(sctp_assoc_established, 0, asoc, skb);
2411 }
2412 EXPORT_SYMBOL(security_sctp_assoc_established);
2413
2414 #endif  /* CONFIG_SECURITY_NETWORK */
2415
2416 #ifdef CONFIG_SECURITY_INFINIBAND
2417
2418 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2419 {
2420         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2421 }
2422 EXPORT_SYMBOL(security_ib_pkey_access);
2423
2424 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2425 {
2426         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2427 }
2428 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2429
2430 int security_ib_alloc_security(void **sec)
2431 {
2432         return call_int_hook(ib_alloc_security, 0, sec);
2433 }
2434 EXPORT_SYMBOL(security_ib_alloc_security);
2435
2436 void security_ib_free_security(void *sec)
2437 {
2438         call_void_hook(ib_free_security, sec);
2439 }
2440 EXPORT_SYMBOL(security_ib_free_security);
2441 #endif  /* CONFIG_SECURITY_INFINIBAND */
2442
2443 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2444
2445 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2446                                struct xfrm_user_sec_ctx *sec_ctx,
2447                                gfp_t gfp)
2448 {
2449         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2450 }
2451 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2452
2453 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2454                               struct xfrm_sec_ctx **new_ctxp)
2455 {
2456         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2457 }
2458
2459 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2460 {
2461         call_void_hook(xfrm_policy_free_security, ctx);
2462 }
2463 EXPORT_SYMBOL(security_xfrm_policy_free);
2464
2465 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2466 {
2467         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2468 }
2469
2470 int security_xfrm_state_alloc(struct xfrm_state *x,
2471                               struct xfrm_user_sec_ctx *sec_ctx)
2472 {
2473         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2474 }
2475 EXPORT_SYMBOL(security_xfrm_state_alloc);
2476
2477 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2478                                       struct xfrm_sec_ctx *polsec, u32 secid)
2479 {
2480         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2481 }
2482
2483 int security_xfrm_state_delete(struct xfrm_state *x)
2484 {
2485         return call_int_hook(xfrm_state_delete_security, 0, x);
2486 }
2487 EXPORT_SYMBOL(security_xfrm_state_delete);
2488
2489 void security_xfrm_state_free(struct xfrm_state *x)
2490 {
2491         call_void_hook(xfrm_state_free_security, x);
2492 }
2493
2494 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2495 {
2496         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2497 }
2498
2499 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2500                                        struct xfrm_policy *xp,
2501                                        const struct flowi_common *flic)
2502 {
2503         struct security_hook_list *hp;
2504         int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2505
2506         /*
2507          * Since this function is expected to return 0 or 1, the judgment
2508          * becomes difficult if multiple LSMs supply this call. Fortunately,
2509          * we can use the first LSM's judgment because currently only SELinux
2510          * supplies this call.
2511          *
2512          * For speed optimization, we explicitly break the loop rather than
2513          * using the macro
2514          */
2515         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2516                                 list) {
2517                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2518                 break;
2519         }
2520         return rc;
2521 }
2522
2523 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2524 {
2525         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2526 }
2527
2528 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2529 {
2530         int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2531                                 0);
2532
2533         BUG_ON(rc);
2534 }
2535 EXPORT_SYMBOL(security_skb_classify_flow);
2536
2537 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2538
2539 #ifdef CONFIG_KEYS
2540
2541 int security_key_alloc(struct key *key, const struct cred *cred,
2542                        unsigned long flags)
2543 {
2544         return call_int_hook(key_alloc, 0, key, cred, flags);
2545 }
2546
2547 void security_key_free(struct key *key)
2548 {
2549         call_void_hook(key_free, key);
2550 }
2551
2552 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2553                             enum key_need_perm need_perm)
2554 {
2555         return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2556 }
2557
2558 int security_key_getsecurity(struct key *key, char **_buffer)
2559 {
2560         *_buffer = NULL;
2561         return call_int_hook(key_getsecurity, 0, key, _buffer);
2562 }
2563
2564 #endif  /* CONFIG_KEYS */
2565
2566 #ifdef CONFIG_AUDIT
2567
2568 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2569 {
2570         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2571 }
2572
2573 int security_audit_rule_known(struct audit_krule *krule)
2574 {
2575         return call_int_hook(audit_rule_known, 0, krule);
2576 }
2577
2578 void security_audit_rule_free(void *lsmrule)
2579 {
2580         call_void_hook(audit_rule_free, lsmrule);
2581 }
2582
2583 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2584 {
2585         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2586 }
2587 #endif /* CONFIG_AUDIT */
2588
2589 #ifdef CONFIG_BPF_SYSCALL
2590 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2591 {
2592         return call_int_hook(bpf, 0, cmd, attr, size);
2593 }
2594 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2595 {
2596         return call_int_hook(bpf_map, 0, map, fmode);
2597 }
2598 int security_bpf_prog(struct bpf_prog *prog)
2599 {
2600         return call_int_hook(bpf_prog, 0, prog);
2601 }
2602 int security_bpf_map_alloc(struct bpf_map *map)
2603 {
2604         return call_int_hook(bpf_map_alloc_security, 0, map);
2605 }
2606 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2607 {
2608         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2609 }
2610 void security_bpf_map_free(struct bpf_map *map)
2611 {
2612         call_void_hook(bpf_map_free_security, map);
2613 }
2614 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2615 {
2616         call_void_hook(bpf_prog_free_security, aux);
2617 }
2618 #endif /* CONFIG_BPF_SYSCALL */
2619
2620 int security_locked_down(enum lockdown_reason what)
2621 {
2622         return call_int_hook(locked_down, 0, what);
2623 }
2624 EXPORT_SYMBOL(security_locked_down);
2625
2626 #ifdef CONFIG_PERF_EVENTS
2627 int security_perf_event_open(struct perf_event_attr *attr, int type)
2628 {
2629         return call_int_hook(perf_event_open, 0, attr, type);
2630 }
2631
2632 int security_perf_event_alloc(struct perf_event *event)
2633 {
2634         return call_int_hook(perf_event_alloc, 0, event);
2635 }
2636
2637 void security_perf_event_free(struct perf_event *event)
2638 {
2639         call_void_hook(perf_event_free, event);
2640 }
2641
2642 int security_perf_event_read(struct perf_event *event)
2643 {
2644         return call_int_hook(perf_event_read, 0, event);
2645 }
2646
2647 int security_perf_event_write(struct perf_event *event)
2648 {
2649         return call_int_hook(perf_event_write, 0, event);
2650 }
2651 #endif /* CONFIG_PERF_EVENTS */
2652
2653 #ifdef CONFIG_IO_URING
2654 int security_uring_override_creds(const struct cred *new)
2655 {
2656         return call_int_hook(uring_override_creds, 0, new);
2657 }
2658
2659 int security_uring_sqpoll(void)
2660 {
2661         return call_int_hook(uring_sqpoll, 0);
2662 }
2663 #endif /* CONFIG_IO_URING */