Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83                 if (chan == 14)
84                         return MHZ_TO_KHZ(2484);
85                 else if (chan < 14)
86                         return MHZ_TO_KHZ(2407 + chan * 5);
87                 break;
88         case NL80211_BAND_5GHZ:
89                 if (chan >= 182 && chan <= 196)
90                         return MHZ_TO_KHZ(4000 + chan * 5);
91                 else
92                         return MHZ_TO_KHZ(5000 + chan * 5);
93                 break;
94         case NL80211_BAND_6GHZ:
95                 /* see 802.11ax D6.1 27.3.23.2 */
96                 if (chan == 2)
97                         return MHZ_TO_KHZ(5935);
98                 if (chan <= 233)
99                         return MHZ_TO_KHZ(5950 + chan * 5);
100                 break;
101         case NL80211_BAND_60GHZ:
102                 if (chan < 7)
103                         return MHZ_TO_KHZ(56160 + chan * 2160);
104                 break;
105         case NL80211_BAND_S1GHZ:
106                 return 902000 + chan * 500;
107         default:
108                 ;
109         }
110         return 0; /* not supported */
111 }
112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
113
114 enum nl80211_chan_width
115 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
116 {
117         if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
118                 return NL80211_CHAN_WIDTH_20_NOHT;
119
120         /*S1G defines a single allowed channel width per channel.
121          * Extract that width here.
122          */
123         if (chan->flags & IEEE80211_CHAN_1MHZ)
124                 return NL80211_CHAN_WIDTH_1;
125         else if (chan->flags & IEEE80211_CHAN_2MHZ)
126                 return NL80211_CHAN_WIDTH_2;
127         else if (chan->flags & IEEE80211_CHAN_4MHZ)
128                 return NL80211_CHAN_WIDTH_4;
129         else if (chan->flags & IEEE80211_CHAN_8MHZ)
130                 return NL80211_CHAN_WIDTH_8;
131         else if (chan->flags & IEEE80211_CHAN_16MHZ)
132                 return NL80211_CHAN_WIDTH_16;
133
134         pr_err("unknown channel width for channel at %dKHz?\n",
135                ieee80211_channel_to_khz(chan));
136
137         return NL80211_CHAN_WIDTH_1;
138 }
139 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
140
141 int ieee80211_freq_khz_to_channel(u32 freq)
142 {
143         /* TODO: just handle MHz for now */
144         freq = KHZ_TO_MHZ(freq);
145
146         /* see 802.11 17.3.8.3.2 and Annex J */
147         if (freq == 2484)
148                 return 14;
149         else if (freq < 2484)
150                 return (freq - 2407) / 5;
151         else if (freq >= 4910 && freq <= 4980)
152                 return (freq - 4000) / 5;
153         else if (freq < 5925)
154                 return (freq - 5000) / 5;
155         else if (freq == 5935)
156                 return 2;
157         else if (freq <= 45000) /* DMG band lower limit */
158                 /* see 802.11ax D6.1 27.3.22.2 */
159                 return (freq - 5950) / 5;
160         else if (freq >= 58320 && freq <= 70200)
161                 return (freq - 56160) / 2160;
162         else
163                 return 0;
164 }
165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
166
167 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
168                                                     u32 freq)
169 {
170         enum nl80211_band band;
171         struct ieee80211_supported_band *sband;
172         int i;
173
174         for (band = 0; band < NUM_NL80211_BANDS; band++) {
175                 sband = wiphy->bands[band];
176
177                 if (!sband)
178                         continue;
179
180                 for (i = 0; i < sband->n_channels; i++) {
181                         struct ieee80211_channel *chan = &sband->channels[i];
182
183                         if (ieee80211_channel_to_khz(chan) == freq)
184                                 return chan;
185                 }
186         }
187
188         return NULL;
189 }
190 EXPORT_SYMBOL(ieee80211_get_channel_khz);
191
192 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
193 {
194         int i, want;
195
196         switch (sband->band) {
197         case NL80211_BAND_5GHZ:
198         case NL80211_BAND_6GHZ:
199                 want = 3;
200                 for (i = 0; i < sband->n_bitrates; i++) {
201                         if (sband->bitrates[i].bitrate == 60 ||
202                             sband->bitrates[i].bitrate == 120 ||
203                             sband->bitrates[i].bitrate == 240) {
204                                 sband->bitrates[i].flags |=
205                                         IEEE80211_RATE_MANDATORY_A;
206                                 want--;
207                         }
208                 }
209                 WARN_ON(want);
210                 break;
211         case NL80211_BAND_2GHZ:
212                 want = 7;
213                 for (i = 0; i < sband->n_bitrates; i++) {
214                         switch (sband->bitrates[i].bitrate) {
215                         case 10:
216                         case 20:
217                         case 55:
218                         case 110:
219                                 sband->bitrates[i].flags |=
220                                         IEEE80211_RATE_MANDATORY_B |
221                                         IEEE80211_RATE_MANDATORY_G;
222                                 want--;
223                                 break;
224                         case 60:
225                         case 120:
226                         case 240:
227                                 sband->bitrates[i].flags |=
228                                         IEEE80211_RATE_MANDATORY_G;
229                                 want--;
230                                 fallthrough;
231                         default:
232                                 sband->bitrates[i].flags |=
233                                         IEEE80211_RATE_ERP_G;
234                                 break;
235                         }
236                 }
237                 WARN_ON(want != 0 && want != 3);
238                 break;
239         case NL80211_BAND_60GHZ:
240                 /* check for mandatory HT MCS 1..4 */
241                 WARN_ON(!sband->ht_cap.ht_supported);
242                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
243                 break;
244         case NL80211_BAND_S1GHZ:
245                 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
246                  * mandatory is ok.
247                  */
248                 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
249                 break;
250         case NUM_NL80211_BANDS:
251         default:
252                 WARN_ON(1);
253                 break;
254         }
255 }
256
257 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
258 {
259         enum nl80211_band band;
260
261         for (band = 0; band < NUM_NL80211_BANDS; band++)
262                 if (wiphy->bands[band])
263                         set_mandatory_flags_band(wiphy->bands[band]);
264 }
265
266 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
267 {
268         int i;
269         for (i = 0; i < wiphy->n_cipher_suites; i++)
270                 if (cipher == wiphy->cipher_suites[i])
271                         return true;
272         return false;
273 }
274
275 static bool
276 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
277 {
278         struct wiphy *wiphy = &rdev->wiphy;
279         int i;
280
281         for (i = 0; i < wiphy->n_cipher_suites; i++) {
282                 switch (wiphy->cipher_suites[i]) {
283                 case WLAN_CIPHER_SUITE_AES_CMAC:
284                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
285                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
286                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
287                         return true;
288                 }
289         }
290
291         return false;
292 }
293
294 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
295                             int key_idx, bool pairwise)
296 {
297         int max_key_idx;
298
299         if (pairwise)
300                 max_key_idx = 3;
301         else if (wiphy_ext_feature_isset(&rdev->wiphy,
302                                          NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
303                  wiphy_ext_feature_isset(&rdev->wiphy,
304                                          NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
305                 max_key_idx = 7;
306         else if (cfg80211_igtk_cipher_supported(rdev))
307                 max_key_idx = 5;
308         else
309                 max_key_idx = 3;
310
311         if (key_idx < 0 || key_idx > max_key_idx)
312                 return false;
313
314         return true;
315 }
316
317 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
318                                    struct key_params *params, int key_idx,
319                                    bool pairwise, const u8 *mac_addr)
320 {
321         if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
322                 return -EINVAL;
323
324         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
325                 return -EINVAL;
326
327         if (pairwise && !mac_addr)
328                 return -EINVAL;
329
330         switch (params->cipher) {
331         case WLAN_CIPHER_SUITE_TKIP:
332                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
333                 if ((pairwise && key_idx) ||
334                     params->mode != NL80211_KEY_RX_TX)
335                         return -EINVAL;
336                 break;
337         case WLAN_CIPHER_SUITE_CCMP:
338         case WLAN_CIPHER_SUITE_CCMP_256:
339         case WLAN_CIPHER_SUITE_GCMP:
340         case WLAN_CIPHER_SUITE_GCMP_256:
341                 /* IEEE802.11-2016 allows only 0 and - when supporting
342                  * Extended Key ID - 1 as index for pairwise keys.
343                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
344                  * the driver supports Extended Key ID.
345                  * @NL80211_KEY_SET_TX can't be set when installing and
346                  * validating a key.
347                  */
348                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
349                     params->mode == NL80211_KEY_SET_TX)
350                         return -EINVAL;
351                 if (wiphy_ext_feature_isset(&rdev->wiphy,
352                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
353                         if (pairwise && (key_idx < 0 || key_idx > 1))
354                                 return -EINVAL;
355                 } else if (pairwise && key_idx) {
356                         return -EINVAL;
357                 }
358                 break;
359         case WLAN_CIPHER_SUITE_AES_CMAC:
360         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
361         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
362         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
363                 /* Disallow BIP (group-only) cipher as pairwise cipher */
364                 if (pairwise)
365                         return -EINVAL;
366                 if (key_idx < 4)
367                         return -EINVAL;
368                 break;
369         case WLAN_CIPHER_SUITE_WEP40:
370         case WLAN_CIPHER_SUITE_WEP104:
371                 if (key_idx > 3)
372                         return -EINVAL;
373                 break;
374         default:
375                 break;
376         }
377
378         switch (params->cipher) {
379         case WLAN_CIPHER_SUITE_WEP40:
380                 if (params->key_len != WLAN_KEY_LEN_WEP40)
381                         return -EINVAL;
382                 break;
383         case WLAN_CIPHER_SUITE_TKIP:
384                 if (params->key_len != WLAN_KEY_LEN_TKIP)
385                         return -EINVAL;
386                 break;
387         case WLAN_CIPHER_SUITE_CCMP:
388                 if (params->key_len != WLAN_KEY_LEN_CCMP)
389                         return -EINVAL;
390                 break;
391         case WLAN_CIPHER_SUITE_CCMP_256:
392                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
393                         return -EINVAL;
394                 break;
395         case WLAN_CIPHER_SUITE_GCMP:
396                 if (params->key_len != WLAN_KEY_LEN_GCMP)
397                         return -EINVAL;
398                 break;
399         case WLAN_CIPHER_SUITE_GCMP_256:
400                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
401                         return -EINVAL;
402                 break;
403         case WLAN_CIPHER_SUITE_WEP104:
404                 if (params->key_len != WLAN_KEY_LEN_WEP104)
405                         return -EINVAL;
406                 break;
407         case WLAN_CIPHER_SUITE_AES_CMAC:
408                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
409                         return -EINVAL;
410                 break;
411         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
412                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
413                         return -EINVAL;
414                 break;
415         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
416                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
417                         return -EINVAL;
418                 break;
419         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
420                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
421                         return -EINVAL;
422                 break;
423         default:
424                 /*
425                  * We don't know anything about this algorithm,
426                  * allow using it -- but the driver must check
427                  * all parameters! We still check below whether
428                  * or not the driver supports this algorithm,
429                  * of course.
430                  */
431                 break;
432         }
433
434         if (params->seq) {
435                 switch (params->cipher) {
436                 case WLAN_CIPHER_SUITE_WEP40:
437                 case WLAN_CIPHER_SUITE_WEP104:
438                         /* These ciphers do not use key sequence */
439                         return -EINVAL;
440                 case WLAN_CIPHER_SUITE_TKIP:
441                 case WLAN_CIPHER_SUITE_CCMP:
442                 case WLAN_CIPHER_SUITE_CCMP_256:
443                 case WLAN_CIPHER_SUITE_GCMP:
444                 case WLAN_CIPHER_SUITE_GCMP_256:
445                 case WLAN_CIPHER_SUITE_AES_CMAC:
446                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
447                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
448                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
449                         if (params->seq_len != 6)
450                                 return -EINVAL;
451                         break;
452                 }
453         }
454
455         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
456                 return -EINVAL;
457
458         return 0;
459 }
460
461 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
462 {
463         unsigned int hdrlen = 24;
464
465         if (ieee80211_is_ext(fc)) {
466                 hdrlen = 4;
467                 goto out;
468         }
469
470         if (ieee80211_is_data(fc)) {
471                 if (ieee80211_has_a4(fc))
472                         hdrlen = 30;
473                 if (ieee80211_is_data_qos(fc)) {
474                         hdrlen += IEEE80211_QOS_CTL_LEN;
475                         if (ieee80211_has_order(fc))
476                                 hdrlen += IEEE80211_HT_CTL_LEN;
477                 }
478                 goto out;
479         }
480
481         if (ieee80211_is_mgmt(fc)) {
482                 if (ieee80211_has_order(fc))
483                         hdrlen += IEEE80211_HT_CTL_LEN;
484                 goto out;
485         }
486
487         if (ieee80211_is_ctl(fc)) {
488                 /*
489                  * ACK and CTS are 10 bytes, all others 16. To see how
490                  * to get this condition consider
491                  *   subtype mask:   0b0000000011110000 (0x00F0)
492                  *   ACK subtype:    0b0000000011010000 (0x00D0)
493                  *   CTS subtype:    0b0000000011000000 (0x00C0)
494                  *   bits that matter:         ^^^      (0x00E0)
495                  *   value of those: 0b0000000011000000 (0x00C0)
496                  */
497                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
498                         hdrlen = 10;
499                 else
500                         hdrlen = 16;
501         }
502 out:
503         return hdrlen;
504 }
505 EXPORT_SYMBOL(ieee80211_hdrlen);
506
507 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
508 {
509         const struct ieee80211_hdr *hdr =
510                         (const struct ieee80211_hdr *)skb->data;
511         unsigned int hdrlen;
512
513         if (unlikely(skb->len < 10))
514                 return 0;
515         hdrlen = ieee80211_hdrlen(hdr->frame_control);
516         if (unlikely(hdrlen > skb->len))
517                 return 0;
518         return hdrlen;
519 }
520 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
521
522 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
523 {
524         int ae = flags & MESH_FLAGS_AE;
525         /* 802.11-2012, 8.2.4.7.3 */
526         switch (ae) {
527         default:
528         case 0:
529                 return 6;
530         case MESH_FLAGS_AE_A4:
531                 return 12;
532         case MESH_FLAGS_AE_A5_A6:
533                 return 18;
534         }
535 }
536
537 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
538 {
539         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
540 }
541 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
542
543 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
544                                   const u8 *addr, enum nl80211_iftype iftype,
545                                   u8 data_offset, bool is_amsdu)
546 {
547         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
548         struct {
549                 u8 hdr[ETH_ALEN] __aligned(2);
550                 __be16 proto;
551         } payload;
552         struct ethhdr tmp;
553         u16 hdrlen;
554         u8 mesh_flags = 0;
555
556         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
557                 return -1;
558
559         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
560         if (skb->len < hdrlen + 8)
561                 return -1;
562
563         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
564          * header
565          * IEEE 802.11 address fields:
566          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
567          *   0     0   DA    SA    BSSID n/a
568          *   0     1   DA    BSSID SA    n/a
569          *   1     0   BSSID SA    DA    n/a
570          *   1     1   RA    TA    DA    SA
571          */
572         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
573         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
574
575         if (iftype == NL80211_IFTYPE_MESH_POINT)
576                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
577
578         mesh_flags &= MESH_FLAGS_AE;
579
580         switch (hdr->frame_control &
581                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
582         case cpu_to_le16(IEEE80211_FCTL_TODS):
583                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
584                              iftype != NL80211_IFTYPE_AP_VLAN &&
585                              iftype != NL80211_IFTYPE_P2P_GO))
586                         return -1;
587                 break;
588         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
589                 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
590                              iftype != NL80211_IFTYPE_AP_VLAN &&
591                              iftype != NL80211_IFTYPE_STATION))
592                         return -1;
593                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
594                         if (mesh_flags == MESH_FLAGS_AE_A4)
595                                 return -1;
596                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
597                                 skb_copy_bits(skb, hdrlen +
598                                         offsetof(struct ieee80211s_hdr, eaddr1),
599                                         tmp.h_dest, 2 * ETH_ALEN);
600                         }
601                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
602                 }
603                 break;
604         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
605                 if ((iftype != NL80211_IFTYPE_STATION &&
606                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
607                      iftype != NL80211_IFTYPE_MESH_POINT) ||
608                     (is_multicast_ether_addr(tmp.h_dest) &&
609                      ether_addr_equal(tmp.h_source, addr)))
610                         return -1;
611                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
612                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
613                                 return -1;
614                         if (mesh_flags == MESH_FLAGS_AE_A4)
615                                 skb_copy_bits(skb, hdrlen +
616                                         offsetof(struct ieee80211s_hdr, eaddr1),
617                                         tmp.h_source, ETH_ALEN);
618                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
619                 }
620                 break;
621         case cpu_to_le16(0):
622                 if (iftype != NL80211_IFTYPE_ADHOC &&
623                     iftype != NL80211_IFTYPE_STATION &&
624                     iftype != NL80211_IFTYPE_OCB)
625                                 return -1;
626                 break;
627         }
628
629         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
630         tmp.h_proto = payload.proto;
631
632         if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
633                     tmp.h_proto != htons(ETH_P_AARP) &&
634                     tmp.h_proto != htons(ETH_P_IPX)) ||
635                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
636                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
637                  * replace EtherType */
638                 hdrlen += ETH_ALEN + 2;
639         else
640                 tmp.h_proto = htons(skb->len - hdrlen);
641
642         pskb_pull(skb, hdrlen);
643
644         if (!ehdr)
645                 ehdr = skb_push(skb, sizeof(struct ethhdr));
646         memcpy(ehdr, &tmp, sizeof(tmp));
647
648         return 0;
649 }
650 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
651
652 static void
653 __frame_add_frag(struct sk_buff *skb, struct page *page,
654                  void *ptr, int len, int size)
655 {
656         struct skb_shared_info *sh = skb_shinfo(skb);
657         int page_offset;
658
659         get_page(page);
660         page_offset = ptr - page_address(page);
661         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
662 }
663
664 static void
665 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
666                             int offset, int len)
667 {
668         struct skb_shared_info *sh = skb_shinfo(skb);
669         const skb_frag_t *frag = &sh->frags[0];
670         struct page *frag_page;
671         void *frag_ptr;
672         int frag_len, frag_size;
673         int head_size = skb->len - skb->data_len;
674         int cur_len;
675
676         frag_page = virt_to_head_page(skb->head);
677         frag_ptr = skb->data;
678         frag_size = head_size;
679
680         while (offset >= frag_size) {
681                 offset -= frag_size;
682                 frag_page = skb_frag_page(frag);
683                 frag_ptr = skb_frag_address(frag);
684                 frag_size = skb_frag_size(frag);
685                 frag++;
686         }
687
688         frag_ptr += offset;
689         frag_len = frag_size - offset;
690
691         cur_len = min(len, frag_len);
692
693         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
694         len -= cur_len;
695
696         while (len > 0) {
697                 frag_len = skb_frag_size(frag);
698                 cur_len = min(len, frag_len);
699                 __frame_add_frag(frame, skb_frag_page(frag),
700                                  skb_frag_address(frag), cur_len, frag_len);
701                 len -= cur_len;
702                 frag++;
703         }
704 }
705
706 static struct sk_buff *
707 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
708                        int offset, int len, bool reuse_frag)
709 {
710         struct sk_buff *frame;
711         int cur_len = len;
712
713         if (skb->len - offset < len)
714                 return NULL;
715
716         /*
717          * When reusing framents, copy some data to the head to simplify
718          * ethernet header handling and speed up protocol header processing
719          * in the stack later.
720          */
721         if (reuse_frag)
722                 cur_len = min_t(int, len, 32);
723
724         /*
725          * Allocate and reserve two bytes more for payload
726          * alignment since sizeof(struct ethhdr) is 14.
727          */
728         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
729         if (!frame)
730                 return NULL;
731
732         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
733         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
734
735         len -= cur_len;
736         if (!len)
737                 return frame;
738
739         offset += cur_len;
740         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
741
742         return frame;
743 }
744
745 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
746                               const u8 *addr, enum nl80211_iftype iftype,
747                               const unsigned int extra_headroom,
748                               const u8 *check_da, const u8 *check_sa)
749 {
750         unsigned int hlen = ALIGN(extra_headroom, 4);
751         struct sk_buff *frame = NULL;
752         u16 ethertype;
753         u8 *payload;
754         int offset = 0, remaining;
755         struct ethhdr eth;
756         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
757         bool reuse_skb = false;
758         bool last = false;
759
760         while (!last) {
761                 unsigned int subframe_len;
762                 int len;
763                 u8 padding;
764
765                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
766                 len = ntohs(eth.h_proto);
767                 subframe_len = sizeof(struct ethhdr) + len;
768                 padding = (4 - subframe_len) & 0x3;
769
770                 /* the last MSDU has no padding */
771                 remaining = skb->len - offset;
772                 if (subframe_len > remaining)
773                         goto purge;
774                 /* mitigate A-MSDU aggregation injection attacks */
775                 if (ether_addr_equal(eth.h_dest, rfc1042_header))
776                         goto purge;
777
778                 offset += sizeof(struct ethhdr);
779                 last = remaining <= subframe_len + padding;
780
781                 /* FIXME: should we really accept multicast DA? */
782                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
783                      !ether_addr_equal(check_da, eth.h_dest)) ||
784                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
785                         offset += len + padding;
786                         continue;
787                 }
788
789                 /* reuse skb for the last subframe */
790                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
791                         skb_pull(skb, offset);
792                         frame = skb;
793                         reuse_skb = true;
794                 } else {
795                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
796                                                        reuse_frag);
797                         if (!frame)
798                                 goto purge;
799
800                         offset += len + padding;
801                 }
802
803                 skb_reset_network_header(frame);
804                 frame->dev = skb->dev;
805                 frame->priority = skb->priority;
806
807                 payload = frame->data;
808                 ethertype = (payload[6] << 8) | payload[7];
809                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
810                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
811                            ether_addr_equal(payload, bridge_tunnel_header))) {
812                         eth.h_proto = htons(ethertype);
813                         skb_pull(frame, ETH_ALEN + 2);
814                 }
815
816                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
817                 __skb_queue_tail(list, frame);
818         }
819
820         if (!reuse_skb)
821                 dev_kfree_skb(skb);
822
823         return;
824
825  purge:
826         __skb_queue_purge(list);
827         dev_kfree_skb(skb);
828 }
829 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
830
831 /* Given a data frame determine the 802.1p/1d tag to use. */
832 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
833                                     struct cfg80211_qos_map *qos_map)
834 {
835         unsigned int dscp;
836         unsigned char vlan_priority;
837         unsigned int ret;
838
839         /* skb->priority values from 256->263 are magic values to
840          * directly indicate a specific 802.1d priority.  This is used
841          * to allow 802.1d priority to be passed directly in from VLAN
842          * tags, etc.
843          */
844         if (skb->priority >= 256 && skb->priority <= 263) {
845                 ret = skb->priority - 256;
846                 goto out;
847         }
848
849         if (skb_vlan_tag_present(skb)) {
850                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
851                         >> VLAN_PRIO_SHIFT;
852                 if (vlan_priority > 0) {
853                         ret = vlan_priority;
854                         goto out;
855                 }
856         }
857
858         switch (skb->protocol) {
859         case htons(ETH_P_IP):
860                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
861                 break;
862         case htons(ETH_P_IPV6):
863                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
864                 break;
865         case htons(ETH_P_MPLS_UC):
866         case htons(ETH_P_MPLS_MC): {
867                 struct mpls_label mpls_tmp, *mpls;
868
869                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
870                                           sizeof(*mpls), &mpls_tmp);
871                 if (!mpls)
872                         return 0;
873
874                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
875                         >> MPLS_LS_TC_SHIFT;
876                 goto out;
877         }
878         case htons(ETH_P_80221):
879                 /* 802.21 is always network control traffic */
880                 return 7;
881         default:
882                 return 0;
883         }
884
885         if (qos_map) {
886                 unsigned int i, tmp_dscp = dscp >> 2;
887
888                 for (i = 0; i < qos_map->num_des; i++) {
889                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
890                                 ret = qos_map->dscp_exception[i].up;
891                                 goto out;
892                         }
893                 }
894
895                 for (i = 0; i < 8; i++) {
896                         if (tmp_dscp >= qos_map->up[i].low &&
897                             tmp_dscp <= qos_map->up[i].high) {
898                                 ret = i;
899                                 goto out;
900                         }
901                 }
902         }
903
904         ret = dscp >> 5;
905 out:
906         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
907 }
908 EXPORT_SYMBOL(cfg80211_classify8021d);
909
910 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
911 {
912         const struct cfg80211_bss_ies *ies;
913
914         ies = rcu_dereference(bss->ies);
915         if (!ies)
916                 return NULL;
917
918         return cfg80211_find_elem(id, ies->data, ies->len);
919 }
920 EXPORT_SYMBOL(ieee80211_bss_get_elem);
921
922 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
923 {
924         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
925         struct net_device *dev = wdev->netdev;
926         int i;
927
928         if (!wdev->connect_keys)
929                 return;
930
931         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
932                 if (!wdev->connect_keys->params[i].cipher)
933                         continue;
934                 if (rdev_add_key(rdev, dev, i, false, NULL,
935                                  &wdev->connect_keys->params[i])) {
936                         netdev_err(dev, "failed to set key %d\n", i);
937                         continue;
938                 }
939                 if (wdev->connect_keys->def == i &&
940                     rdev_set_default_key(rdev, dev, i, true, true)) {
941                         netdev_err(dev, "failed to set defkey %d\n", i);
942                         continue;
943                 }
944         }
945
946         kfree_sensitive(wdev->connect_keys);
947         wdev->connect_keys = NULL;
948 }
949
950 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
951 {
952         struct cfg80211_event *ev;
953         unsigned long flags;
954
955         spin_lock_irqsave(&wdev->event_lock, flags);
956         while (!list_empty(&wdev->event_list)) {
957                 ev = list_first_entry(&wdev->event_list,
958                                       struct cfg80211_event, list);
959                 list_del(&ev->list);
960                 spin_unlock_irqrestore(&wdev->event_lock, flags);
961
962                 wdev_lock(wdev);
963                 switch (ev->type) {
964                 case EVENT_CONNECT_RESULT:
965                         __cfg80211_connect_result(
966                                 wdev->netdev,
967                                 &ev->cr,
968                                 ev->cr.status == WLAN_STATUS_SUCCESS);
969                         break;
970                 case EVENT_ROAMED:
971                         __cfg80211_roamed(wdev, &ev->rm);
972                         break;
973                 case EVENT_DISCONNECTED:
974                         __cfg80211_disconnected(wdev->netdev,
975                                                 ev->dc.ie, ev->dc.ie_len,
976                                                 ev->dc.reason,
977                                                 !ev->dc.locally_generated);
978                         break;
979                 case EVENT_IBSS_JOINED:
980                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
981                                                ev->ij.channel);
982                         break;
983                 case EVENT_STOPPED:
984                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
985                         break;
986                 case EVENT_PORT_AUTHORIZED:
987                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
988                         break;
989                 }
990                 wdev_unlock(wdev);
991
992                 kfree(ev);
993
994                 spin_lock_irqsave(&wdev->event_lock, flags);
995         }
996         spin_unlock_irqrestore(&wdev->event_lock, flags);
997 }
998
999 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1000 {
1001         struct wireless_dev *wdev;
1002
1003         lockdep_assert_held(&rdev->wiphy.mtx);
1004
1005         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1006                 cfg80211_process_wdev_events(wdev);
1007 }
1008
1009 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1010                           struct net_device *dev, enum nl80211_iftype ntype,
1011                           struct vif_params *params)
1012 {
1013         int err;
1014         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1015
1016         lockdep_assert_held(&rdev->wiphy.mtx);
1017
1018         /* don't support changing VLANs, you just re-create them */
1019         if (otype == NL80211_IFTYPE_AP_VLAN)
1020                 return -EOPNOTSUPP;
1021
1022         /* cannot change into P2P device or NAN */
1023         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1024             ntype == NL80211_IFTYPE_NAN)
1025                 return -EOPNOTSUPP;
1026
1027         if (!rdev->ops->change_virtual_intf ||
1028             !(rdev->wiphy.interface_modes & (1 << ntype)))
1029                 return -EOPNOTSUPP;
1030
1031         /* if it's part of a bridge, reject changing type to station/ibss */
1032         if (netif_is_bridge_port(dev) &&
1033             (ntype == NL80211_IFTYPE_ADHOC ||
1034              ntype == NL80211_IFTYPE_STATION ||
1035              ntype == NL80211_IFTYPE_P2P_CLIENT))
1036                 return -EBUSY;
1037
1038         if (ntype != otype) {
1039                 dev->ieee80211_ptr->use_4addr = false;
1040                 dev->ieee80211_ptr->mesh_id_up_len = 0;
1041                 wdev_lock(dev->ieee80211_ptr);
1042                 rdev_set_qos_map(rdev, dev, NULL);
1043                 wdev_unlock(dev->ieee80211_ptr);
1044
1045                 switch (otype) {
1046                 case NL80211_IFTYPE_AP:
1047                         cfg80211_stop_ap(rdev, dev, true);
1048                         break;
1049                 case NL80211_IFTYPE_ADHOC:
1050                         cfg80211_leave_ibss(rdev, dev, false);
1051                         break;
1052                 case NL80211_IFTYPE_STATION:
1053                 case NL80211_IFTYPE_P2P_CLIENT:
1054                         wdev_lock(dev->ieee80211_ptr);
1055                         cfg80211_disconnect(rdev, dev,
1056                                             WLAN_REASON_DEAUTH_LEAVING, true);
1057                         wdev_unlock(dev->ieee80211_ptr);
1058                         break;
1059                 case NL80211_IFTYPE_MESH_POINT:
1060                         /* mesh should be handled? */
1061                         break;
1062                 case NL80211_IFTYPE_OCB:
1063                         cfg80211_leave_ocb(rdev, dev);
1064                         break;
1065                 default:
1066                         break;
1067                 }
1068
1069                 cfg80211_process_rdev_events(rdev);
1070                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1071         }
1072
1073         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1074
1075         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1076
1077         if (!err && params && params->use_4addr != -1)
1078                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1079
1080         if (!err) {
1081                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1082                 switch (ntype) {
1083                 case NL80211_IFTYPE_STATION:
1084                         if (dev->ieee80211_ptr->use_4addr)
1085                                 break;
1086                         fallthrough;
1087                 case NL80211_IFTYPE_OCB:
1088                 case NL80211_IFTYPE_P2P_CLIENT:
1089                 case NL80211_IFTYPE_ADHOC:
1090                         dev->priv_flags |= IFF_DONT_BRIDGE;
1091                         break;
1092                 case NL80211_IFTYPE_P2P_GO:
1093                 case NL80211_IFTYPE_AP:
1094                 case NL80211_IFTYPE_AP_VLAN:
1095                 case NL80211_IFTYPE_MESH_POINT:
1096                         /* bridging OK */
1097                         break;
1098                 case NL80211_IFTYPE_MONITOR:
1099                         /* monitor can't bridge anyway */
1100                         break;
1101                 case NL80211_IFTYPE_UNSPECIFIED:
1102                 case NUM_NL80211_IFTYPES:
1103                         /* not happening */
1104                         break;
1105                 case NL80211_IFTYPE_P2P_DEVICE:
1106                 case NL80211_IFTYPE_WDS:
1107                 case NL80211_IFTYPE_NAN:
1108                         WARN_ON(1);
1109                         break;
1110                 }
1111         }
1112
1113         if (!err && ntype != otype && netif_running(dev)) {
1114                 cfg80211_update_iface_num(rdev, ntype, 1);
1115                 cfg80211_update_iface_num(rdev, otype, -1);
1116         }
1117
1118         return err;
1119 }
1120
1121 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1122 {
1123         int modulation, streams, bitrate;
1124
1125         /* the formula below does only work for MCS values smaller than 32 */
1126         if (WARN_ON_ONCE(rate->mcs >= 32))
1127                 return 0;
1128
1129         modulation = rate->mcs & 7;
1130         streams = (rate->mcs >> 3) + 1;
1131
1132         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1133
1134         if (modulation < 4)
1135                 bitrate *= (modulation + 1);
1136         else if (modulation == 4)
1137                 bitrate *= (modulation + 2);
1138         else
1139                 bitrate *= (modulation + 3);
1140
1141         bitrate *= streams;
1142
1143         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1144                 bitrate = (bitrate / 9) * 10;
1145
1146         /* do NOT round down here */
1147         return (bitrate + 50000) / 100000;
1148 }
1149
1150 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1151 {
1152         static const u32 __mcs2bitrate[] = {
1153                 /* control PHY */
1154                 [0] =   275,
1155                 /* SC PHY */
1156                 [1] =  3850,
1157                 [2] =  7700,
1158                 [3] =  9625,
1159                 [4] = 11550,
1160                 [5] = 12512, /* 1251.25 mbps */
1161                 [6] = 15400,
1162                 [7] = 19250,
1163                 [8] = 23100,
1164                 [9] = 25025,
1165                 [10] = 30800,
1166                 [11] = 38500,
1167                 [12] = 46200,
1168                 /* OFDM PHY */
1169                 [13] =  6930,
1170                 [14] =  8662, /* 866.25 mbps */
1171                 [15] = 13860,
1172                 [16] = 17325,
1173                 [17] = 20790,
1174                 [18] = 27720,
1175                 [19] = 34650,
1176                 [20] = 41580,
1177                 [21] = 45045,
1178                 [22] = 51975,
1179                 [23] = 62370,
1180                 [24] = 67568, /* 6756.75 mbps */
1181                 /* LP-SC PHY */
1182                 [25] =  6260,
1183                 [26] =  8340,
1184                 [27] = 11120,
1185                 [28] = 12510,
1186                 [29] = 16680,
1187                 [30] = 22240,
1188                 [31] = 25030,
1189         };
1190
1191         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1192                 return 0;
1193
1194         return __mcs2bitrate[rate->mcs];
1195 }
1196
1197 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1198 {
1199         static const u32 __mcs2bitrate[] = {
1200                 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1201                 [7 - 6] = 50050, /* MCS 12.1 */
1202                 [8 - 6] = 53900,
1203                 [9 - 6] = 57750,
1204                 [10 - 6] = 63900,
1205                 [11 - 6] = 75075,
1206                 [12 - 6] = 80850,
1207         };
1208
1209         /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1210         if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1211                 return 0;
1212
1213         return __mcs2bitrate[rate->mcs - 6];
1214 }
1215
1216 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1217 {
1218         static const u32 __mcs2bitrate[] = {
1219                 /* control PHY */
1220                 [0] =   275,
1221                 /* SC PHY */
1222                 [1] =  3850,
1223                 [2] =  7700,
1224                 [3] =  9625,
1225                 [4] = 11550,
1226                 [5] = 12512, /* 1251.25 mbps */
1227                 [6] = 13475,
1228                 [7] = 15400,
1229                 [8] = 19250,
1230                 [9] = 23100,
1231                 [10] = 25025,
1232                 [11] = 26950,
1233                 [12] = 30800,
1234                 [13] = 38500,
1235                 [14] = 46200,
1236                 [15] = 50050,
1237                 [16] = 53900,
1238                 [17] = 57750,
1239                 [18] = 69300,
1240                 [19] = 75075,
1241                 [20] = 80850,
1242         };
1243
1244         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1245                 return 0;
1246
1247         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1248 }
1249
1250 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1251 {
1252         static const u32 base[4][12] = {
1253                 {   6500000,
1254                    13000000,
1255                    19500000,
1256                    26000000,
1257                    39000000,
1258                    52000000,
1259                    58500000,
1260                    65000000,
1261                    78000000,
1262                 /* not in the spec, but some devices use this: */
1263                    86700000,
1264                    97500000,
1265                   108300000,
1266                 },
1267                 {  13500000,
1268                    27000000,
1269                    40500000,
1270                    54000000,
1271                    81000000,
1272                   108000000,
1273                   121500000,
1274                   135000000,
1275                   162000000,
1276                   180000000,
1277                   202500000,
1278                   225000000,
1279                 },
1280                 {  29300000,
1281                    58500000,
1282                    87800000,
1283                   117000000,
1284                   175500000,
1285                   234000000,
1286                   263300000,
1287                   292500000,
1288                   351000000,
1289                   390000000,
1290                   438800000,
1291                   487500000,
1292                 },
1293                 {  58500000,
1294                   117000000,
1295                   175500000,
1296                   234000000,
1297                   351000000,
1298                   468000000,
1299                   526500000,
1300                   585000000,
1301                   702000000,
1302                   780000000,
1303                   877500000,
1304                   975000000,
1305                 },
1306         };
1307         u32 bitrate;
1308         int idx;
1309
1310         if (rate->mcs > 11)
1311                 goto warn;
1312
1313         switch (rate->bw) {
1314         case RATE_INFO_BW_160:
1315                 idx = 3;
1316                 break;
1317         case RATE_INFO_BW_80:
1318                 idx = 2;
1319                 break;
1320         case RATE_INFO_BW_40:
1321                 idx = 1;
1322                 break;
1323         case RATE_INFO_BW_5:
1324         case RATE_INFO_BW_10:
1325         default:
1326                 goto warn;
1327         case RATE_INFO_BW_20:
1328                 idx = 0;
1329         }
1330
1331         bitrate = base[idx][rate->mcs];
1332         bitrate *= rate->nss;
1333
1334         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1335                 bitrate = (bitrate / 9) * 10;
1336
1337         /* do NOT round down here */
1338         return (bitrate + 50000) / 100000;
1339  warn:
1340         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1341                   rate->bw, rate->mcs, rate->nss);
1342         return 0;
1343 }
1344
1345 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1346 {
1347 #define SCALE 6144
1348         u32 mcs_divisors[14] = {
1349                 102399, /* 16.666666... */
1350                  51201, /*  8.333333... */
1351                  34134, /*  5.555555... */
1352                  25599, /*  4.166666... */
1353                  17067, /*  2.777777... */
1354                  12801, /*  2.083333... */
1355                  11769, /*  1.851851... */
1356                  10239, /*  1.666666... */
1357                   8532, /*  1.388888... */
1358                   7680, /*  1.250000... */
1359                   6828, /*  1.111111... */
1360                   6144, /*  1.000000... */
1361                   5690, /*  0.926106... */
1362                   5120, /*  0.833333... */
1363         };
1364         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1365         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1366         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1367         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1368         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1369         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1370         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1371         u64 tmp;
1372         u32 result;
1373
1374         if (WARN_ON_ONCE(rate->mcs > 13))
1375                 return 0;
1376
1377         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1378                 return 0;
1379         if (WARN_ON_ONCE(rate->he_ru_alloc >
1380                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1381                 return 0;
1382         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1383                 return 0;
1384
1385         if (rate->bw == RATE_INFO_BW_160)
1386                 result = rates_160M[rate->he_gi];
1387         else if (rate->bw == RATE_INFO_BW_80 ||
1388                  (rate->bw == RATE_INFO_BW_HE_RU &&
1389                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1390                 result = rates_969[rate->he_gi];
1391         else if (rate->bw == RATE_INFO_BW_40 ||
1392                  (rate->bw == RATE_INFO_BW_HE_RU &&
1393                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1394                 result = rates_484[rate->he_gi];
1395         else if (rate->bw == RATE_INFO_BW_20 ||
1396                  (rate->bw == RATE_INFO_BW_HE_RU &&
1397                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1398                 result = rates_242[rate->he_gi];
1399         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1400                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1401                 result = rates_106[rate->he_gi];
1402         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1403                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1404                 result = rates_52[rate->he_gi];
1405         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1406                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1407                 result = rates_26[rate->he_gi];
1408         else {
1409                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1410                      rate->bw, rate->he_ru_alloc);
1411                 return 0;
1412         }
1413
1414         /* now scale to the appropriate MCS */
1415         tmp = result;
1416         tmp *= SCALE;
1417         do_div(tmp, mcs_divisors[rate->mcs]);
1418         result = tmp;
1419
1420         /* and take NSS, DCM into account */
1421         result = (result * rate->nss) / 8;
1422         if (rate->he_dcm)
1423                 result /= 2;
1424
1425         return result / 10000;
1426 }
1427
1428 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1429 {
1430         if (rate->flags & RATE_INFO_FLAGS_MCS)
1431                 return cfg80211_calculate_bitrate_ht(rate);
1432         if (rate->flags & RATE_INFO_FLAGS_DMG)
1433                 return cfg80211_calculate_bitrate_dmg(rate);
1434         if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1435                 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1436         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1437                 return cfg80211_calculate_bitrate_edmg(rate);
1438         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1439                 return cfg80211_calculate_bitrate_vht(rate);
1440         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1441                 return cfg80211_calculate_bitrate_he(rate);
1442
1443         return rate->legacy;
1444 }
1445 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1446
1447 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1448                           enum ieee80211_p2p_attr_id attr,
1449                           u8 *buf, unsigned int bufsize)
1450 {
1451         u8 *out = buf;
1452         u16 attr_remaining = 0;
1453         bool desired_attr = false;
1454         u16 desired_len = 0;
1455
1456         while (len > 0) {
1457                 unsigned int iedatalen;
1458                 unsigned int copy;
1459                 const u8 *iedata;
1460
1461                 if (len < 2)
1462                         return -EILSEQ;
1463                 iedatalen = ies[1];
1464                 if (iedatalen + 2 > len)
1465                         return -EILSEQ;
1466
1467                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1468                         goto cont;
1469
1470                 if (iedatalen < 4)
1471                         goto cont;
1472
1473                 iedata = ies + 2;
1474
1475                 /* check WFA OUI, P2P subtype */
1476                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1477                     iedata[2] != 0x9a || iedata[3] != 0x09)
1478                         goto cont;
1479
1480                 iedatalen -= 4;
1481                 iedata += 4;
1482
1483                 /* check attribute continuation into this IE */
1484                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1485                 if (copy && desired_attr) {
1486                         desired_len += copy;
1487                         if (out) {
1488                                 memcpy(out, iedata, min(bufsize, copy));
1489                                 out += min(bufsize, copy);
1490                                 bufsize -= min(bufsize, copy);
1491                         }
1492
1493
1494                         if (copy == attr_remaining)
1495                                 return desired_len;
1496                 }
1497
1498                 attr_remaining -= copy;
1499                 if (attr_remaining)
1500                         goto cont;
1501
1502                 iedatalen -= copy;
1503                 iedata += copy;
1504
1505                 while (iedatalen > 0) {
1506                         u16 attr_len;
1507
1508                         /* P2P attribute ID & size must fit */
1509                         if (iedatalen < 3)
1510                                 return -EILSEQ;
1511                         desired_attr = iedata[0] == attr;
1512                         attr_len = get_unaligned_le16(iedata + 1);
1513                         iedatalen -= 3;
1514                         iedata += 3;
1515
1516                         copy = min_t(unsigned int, attr_len, iedatalen);
1517
1518                         if (desired_attr) {
1519                                 desired_len += copy;
1520                                 if (out) {
1521                                         memcpy(out, iedata, min(bufsize, copy));
1522                                         out += min(bufsize, copy);
1523                                         bufsize -= min(bufsize, copy);
1524                                 }
1525
1526                                 if (copy == attr_len)
1527                                         return desired_len;
1528                         }
1529
1530                         iedata += copy;
1531                         iedatalen -= copy;
1532                         attr_remaining = attr_len - copy;
1533                 }
1534
1535  cont:
1536                 len -= ies[1] + 2;
1537                 ies += ies[1] + 2;
1538         }
1539
1540         if (attr_remaining && desired_attr)
1541                 return -EILSEQ;
1542
1543         return -ENOENT;
1544 }
1545 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1546
1547 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1548 {
1549         int i;
1550
1551         /* Make sure array values are legal */
1552         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1553                 return false;
1554
1555         i = 0;
1556         while (i < n_ids) {
1557                 if (ids[i] == WLAN_EID_EXTENSION) {
1558                         if (id_ext && (ids[i + 1] == id))
1559                                 return true;
1560
1561                         i += 2;
1562                         continue;
1563                 }
1564
1565                 if (ids[i] == id && !id_ext)
1566                         return true;
1567
1568                 i++;
1569         }
1570         return false;
1571 }
1572
1573 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1574 {
1575         /* we assume a validly formed IEs buffer */
1576         u8 len = ies[pos + 1];
1577
1578         pos += 2 + len;
1579
1580         /* the IE itself must have 255 bytes for fragments to follow */
1581         if (len < 255)
1582                 return pos;
1583
1584         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1585                 len = ies[pos + 1];
1586                 pos += 2 + len;
1587         }
1588
1589         return pos;
1590 }
1591
1592 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1593                               const u8 *ids, int n_ids,
1594                               const u8 *after_ric, int n_after_ric,
1595                               size_t offset)
1596 {
1597         size_t pos = offset;
1598
1599         while (pos < ielen) {
1600                 u8 ext = 0;
1601
1602                 if (ies[pos] == WLAN_EID_EXTENSION)
1603                         ext = 2;
1604                 if ((pos + ext) >= ielen)
1605                         break;
1606
1607                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1608                                           ies[pos] == WLAN_EID_EXTENSION))
1609                         break;
1610
1611                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1612                         pos = skip_ie(ies, ielen, pos);
1613
1614                         while (pos < ielen) {
1615                                 if (ies[pos] == WLAN_EID_EXTENSION)
1616                                         ext = 2;
1617                                 else
1618                                         ext = 0;
1619
1620                                 if ((pos + ext) >= ielen)
1621                                         break;
1622
1623                                 if (!ieee80211_id_in_list(after_ric,
1624                                                           n_after_ric,
1625                                                           ies[pos + ext],
1626                                                           ext == 2))
1627                                         pos = skip_ie(ies, ielen, pos);
1628                                 else
1629                                         break;
1630                         }
1631                 } else {
1632                         pos = skip_ie(ies, ielen, pos);
1633                 }
1634         }
1635
1636         return pos;
1637 }
1638 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1639
1640 bool ieee80211_operating_class_to_band(u8 operating_class,
1641                                        enum nl80211_band *band)
1642 {
1643         switch (operating_class) {
1644         case 112:
1645         case 115 ... 127:
1646         case 128 ... 130:
1647                 *band = NL80211_BAND_5GHZ;
1648                 return true;
1649         case 131 ... 135:
1650                 *band = NL80211_BAND_6GHZ;
1651                 return true;
1652         case 81:
1653         case 82:
1654         case 83:
1655         case 84:
1656                 *band = NL80211_BAND_2GHZ;
1657                 return true;
1658         case 180:
1659                 *band = NL80211_BAND_60GHZ;
1660                 return true;
1661         }
1662
1663         return false;
1664 }
1665 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1666
1667 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1668                                           u8 *op_class)
1669 {
1670         u8 vht_opclass;
1671         u32 freq = chandef->center_freq1;
1672
1673         if (freq >= 2412 && freq <= 2472) {
1674                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1675                         return false;
1676
1677                 /* 2.407 GHz, channels 1..13 */
1678                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1679                         if (freq > chandef->chan->center_freq)
1680                                 *op_class = 83; /* HT40+ */
1681                         else
1682                                 *op_class = 84; /* HT40- */
1683                 } else {
1684                         *op_class = 81;
1685                 }
1686
1687                 return true;
1688         }
1689
1690         if (freq == 2484) {
1691                 /* channel 14 is only for IEEE 802.11b */
1692                 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1693                         return false;
1694
1695                 *op_class = 82; /* channel 14 */
1696                 return true;
1697         }
1698
1699         switch (chandef->width) {
1700         case NL80211_CHAN_WIDTH_80:
1701                 vht_opclass = 128;
1702                 break;
1703         case NL80211_CHAN_WIDTH_160:
1704                 vht_opclass = 129;
1705                 break;
1706         case NL80211_CHAN_WIDTH_80P80:
1707                 vht_opclass = 130;
1708                 break;
1709         case NL80211_CHAN_WIDTH_10:
1710         case NL80211_CHAN_WIDTH_5:
1711                 return false; /* unsupported for now */
1712         default:
1713                 vht_opclass = 0;
1714                 break;
1715         }
1716
1717         /* 5 GHz, channels 36..48 */
1718         if (freq >= 5180 && freq <= 5240) {
1719                 if (vht_opclass) {
1720                         *op_class = vht_opclass;
1721                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1722                         if (freq > chandef->chan->center_freq)
1723                                 *op_class = 116;
1724                         else
1725                                 *op_class = 117;
1726                 } else {
1727                         *op_class = 115;
1728                 }
1729
1730                 return true;
1731         }
1732
1733         /* 5 GHz, channels 52..64 */
1734         if (freq >= 5260 && freq <= 5320) {
1735                 if (vht_opclass) {
1736                         *op_class = vht_opclass;
1737                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1738                         if (freq > chandef->chan->center_freq)
1739                                 *op_class = 119;
1740                         else
1741                                 *op_class = 120;
1742                 } else {
1743                         *op_class = 118;
1744                 }
1745
1746                 return true;
1747         }
1748
1749         /* 5 GHz, channels 100..144 */
1750         if (freq >= 5500 && freq <= 5720) {
1751                 if (vht_opclass) {
1752                         *op_class = vht_opclass;
1753                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1754                         if (freq > chandef->chan->center_freq)
1755                                 *op_class = 122;
1756                         else
1757                                 *op_class = 123;
1758                 } else {
1759                         *op_class = 121;
1760                 }
1761
1762                 return true;
1763         }
1764
1765         /* 5 GHz, channels 149..169 */
1766         if (freq >= 5745 && freq <= 5845) {
1767                 if (vht_opclass) {
1768                         *op_class = vht_opclass;
1769                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1770                         if (freq > chandef->chan->center_freq)
1771                                 *op_class = 126;
1772                         else
1773                                 *op_class = 127;
1774                 } else if (freq <= 5805) {
1775                         *op_class = 124;
1776                 } else {
1777                         *op_class = 125;
1778                 }
1779
1780                 return true;
1781         }
1782
1783         /* 56.16 GHz, channel 1..4 */
1784         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1785                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1786                         return false;
1787
1788                 *op_class = 180;
1789                 return true;
1790         }
1791
1792         /* not supported yet */
1793         return false;
1794 }
1795 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1796
1797 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1798                                        u32 *beacon_int_gcd,
1799                                        bool *beacon_int_different)
1800 {
1801         struct wireless_dev *wdev;
1802
1803         *beacon_int_gcd = 0;
1804         *beacon_int_different = false;
1805
1806         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1807                 if (!wdev->beacon_interval)
1808                         continue;
1809
1810                 if (!*beacon_int_gcd) {
1811                         *beacon_int_gcd = wdev->beacon_interval;
1812                         continue;
1813                 }
1814
1815                 if (wdev->beacon_interval == *beacon_int_gcd)
1816                         continue;
1817
1818                 *beacon_int_different = true;
1819                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1820         }
1821
1822         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1823                 if (*beacon_int_gcd)
1824                         *beacon_int_different = true;
1825                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1826         }
1827 }
1828
1829 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1830                                  enum nl80211_iftype iftype, u32 beacon_int)
1831 {
1832         /*
1833          * This is just a basic pre-condition check; if interface combinations
1834          * are possible the driver must already be checking those with a call
1835          * to cfg80211_check_combinations(), in which case we'll validate more
1836          * through the cfg80211_calculate_bi_data() call and code in
1837          * cfg80211_iter_combinations().
1838          */
1839
1840         if (beacon_int < 10 || beacon_int > 10000)
1841                 return -EINVAL;
1842
1843         return 0;
1844 }
1845
1846 int cfg80211_iter_combinations(struct wiphy *wiphy,
1847                                struct iface_combination_params *params,
1848                                void (*iter)(const struct ieee80211_iface_combination *c,
1849                                             void *data),
1850                                void *data)
1851 {
1852         const struct ieee80211_regdomain *regdom;
1853         enum nl80211_dfs_regions region = 0;
1854         int i, j, iftype;
1855         int num_interfaces = 0;
1856         u32 used_iftypes = 0;
1857         u32 beacon_int_gcd;
1858         bool beacon_int_different;
1859
1860         /*
1861          * This is a bit strange, since the iteration used to rely only on
1862          * the data given by the driver, but here it now relies on context,
1863          * in form of the currently operating interfaces.
1864          * This is OK for all current users, and saves us from having to
1865          * push the GCD calculations into all the drivers.
1866          * In the future, this should probably rely more on data that's in
1867          * cfg80211 already - the only thing not would appear to be any new
1868          * interfaces (while being brought up) and channel/radar data.
1869          */
1870         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1871                                    &beacon_int_gcd, &beacon_int_different);
1872
1873         if (params->radar_detect) {
1874                 rcu_read_lock();
1875                 regdom = rcu_dereference(cfg80211_regdomain);
1876                 if (regdom)
1877                         region = regdom->dfs_region;
1878                 rcu_read_unlock();
1879         }
1880
1881         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1882                 num_interfaces += params->iftype_num[iftype];
1883                 if (params->iftype_num[iftype] > 0 &&
1884                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1885                         used_iftypes |= BIT(iftype);
1886         }
1887
1888         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1889                 const struct ieee80211_iface_combination *c;
1890                 struct ieee80211_iface_limit *limits;
1891                 u32 all_iftypes = 0;
1892
1893                 c = &wiphy->iface_combinations[i];
1894
1895                 if (num_interfaces > c->max_interfaces)
1896                         continue;
1897                 if (params->num_different_channels > c->num_different_channels)
1898                         continue;
1899
1900                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1901                                  GFP_KERNEL);
1902                 if (!limits)
1903                         return -ENOMEM;
1904
1905                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1906                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1907                                 continue;
1908                         for (j = 0; j < c->n_limits; j++) {
1909                                 all_iftypes |= limits[j].types;
1910                                 if (!(limits[j].types & BIT(iftype)))
1911                                         continue;
1912                                 if (limits[j].max < params->iftype_num[iftype])
1913                                         goto cont;
1914                                 limits[j].max -= params->iftype_num[iftype];
1915                         }
1916                 }
1917
1918                 if (params->radar_detect !=
1919                         (c->radar_detect_widths & params->radar_detect))
1920                         goto cont;
1921
1922                 if (params->radar_detect && c->radar_detect_regions &&
1923                     !(c->radar_detect_regions & BIT(region)))
1924                         goto cont;
1925
1926                 /* Finally check that all iftypes that we're currently
1927                  * using are actually part of this combination. If they
1928                  * aren't then we can't use this combination and have
1929                  * to continue to the next.
1930                  */
1931                 if ((all_iftypes & used_iftypes) != used_iftypes)
1932                         goto cont;
1933
1934                 if (beacon_int_gcd) {
1935                         if (c->beacon_int_min_gcd &&
1936                             beacon_int_gcd < c->beacon_int_min_gcd)
1937                                 goto cont;
1938                         if (!c->beacon_int_min_gcd && beacon_int_different)
1939                                 goto cont;
1940                 }
1941
1942                 /* This combination covered all interface types and
1943                  * supported the requested numbers, so we're good.
1944                  */
1945
1946                 (*iter)(c, data);
1947  cont:
1948                 kfree(limits);
1949         }
1950
1951         return 0;
1952 }
1953 EXPORT_SYMBOL(cfg80211_iter_combinations);
1954
1955 static void
1956 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1957                           void *data)
1958 {
1959         int *num = data;
1960         (*num)++;
1961 }
1962
1963 int cfg80211_check_combinations(struct wiphy *wiphy,
1964                                 struct iface_combination_params *params)
1965 {
1966         int err, num = 0;
1967
1968         err = cfg80211_iter_combinations(wiphy, params,
1969                                          cfg80211_iter_sum_ifcombs, &num);
1970         if (err)
1971                 return err;
1972         if (num == 0)
1973                 return -EBUSY;
1974
1975         return 0;
1976 }
1977 EXPORT_SYMBOL(cfg80211_check_combinations);
1978
1979 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1980                            const u8 *rates, unsigned int n_rates,
1981                            u32 *mask)
1982 {
1983         int i, j;
1984
1985         if (!sband)
1986                 return -EINVAL;
1987
1988         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1989                 return -EINVAL;
1990
1991         *mask = 0;
1992
1993         for (i = 0; i < n_rates; i++) {
1994                 int rate = (rates[i] & 0x7f) * 5;
1995                 bool found = false;
1996
1997                 for (j = 0; j < sband->n_bitrates; j++) {
1998                         if (sband->bitrates[j].bitrate == rate) {
1999                                 found = true;
2000                                 *mask |= BIT(j);
2001                                 break;
2002                         }
2003                 }
2004                 if (!found)
2005                         return -EINVAL;
2006         }
2007
2008         /*
2009          * mask must have at least one bit set here since we
2010          * didn't accept a 0-length rates array nor allowed
2011          * entries in the array that didn't exist
2012          */
2013
2014         return 0;
2015 }
2016
2017 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2018 {
2019         enum nl80211_band band;
2020         unsigned int n_channels = 0;
2021
2022         for (band = 0; band < NUM_NL80211_BANDS; band++)
2023                 if (wiphy->bands[band])
2024                         n_channels += wiphy->bands[band]->n_channels;
2025
2026         return n_channels;
2027 }
2028 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2029
2030 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2031                          struct station_info *sinfo)
2032 {
2033         struct cfg80211_registered_device *rdev;
2034         struct wireless_dev *wdev;
2035
2036         wdev = dev->ieee80211_ptr;
2037         if (!wdev)
2038                 return -EOPNOTSUPP;
2039
2040         rdev = wiphy_to_rdev(wdev->wiphy);
2041         if (!rdev->ops->get_station)
2042                 return -EOPNOTSUPP;
2043
2044         memset(sinfo, 0, sizeof(*sinfo));
2045
2046         return rdev_get_station(rdev, dev, mac_addr, sinfo);
2047 }
2048 EXPORT_SYMBOL(cfg80211_get_station);
2049
2050 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2051 {
2052         int i;
2053
2054         if (!f)
2055                 return;
2056
2057         kfree(f->serv_spec_info);
2058         kfree(f->srf_bf);
2059         kfree(f->srf_macs);
2060         for (i = 0; i < f->num_rx_filters; i++)
2061                 kfree(f->rx_filters[i].filter);
2062
2063         for (i = 0; i < f->num_tx_filters; i++)
2064                 kfree(f->tx_filters[i].filter);
2065
2066         kfree(f->rx_filters);
2067         kfree(f->tx_filters);
2068         kfree(f);
2069 }
2070 EXPORT_SYMBOL(cfg80211_free_nan_func);
2071
2072 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2073                                 u32 center_freq_khz, u32 bw_khz)
2074 {
2075         u32 start_freq_khz, end_freq_khz;
2076
2077         start_freq_khz = center_freq_khz - (bw_khz / 2);
2078         end_freq_khz = center_freq_khz + (bw_khz / 2);
2079
2080         if (start_freq_khz >= freq_range->start_freq_khz &&
2081             end_freq_khz <= freq_range->end_freq_khz)
2082                 return true;
2083
2084         return false;
2085 }
2086
2087 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2088 {
2089         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2090                                 sizeof(*(sinfo->pertid)),
2091                                 gfp);
2092         if (!sinfo->pertid)
2093                 return -ENOMEM;
2094
2095         return 0;
2096 }
2097 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2098
2099 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2100 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2101 const unsigned char rfc1042_header[] __aligned(2) =
2102         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2103 EXPORT_SYMBOL(rfc1042_header);
2104
2105 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2106 const unsigned char bridge_tunnel_header[] __aligned(2) =
2107         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2108 EXPORT_SYMBOL(bridge_tunnel_header);
2109
2110 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2111 struct iapp_layer2_update {
2112         u8 da[ETH_ALEN];        /* broadcast */
2113         u8 sa[ETH_ALEN];        /* STA addr */
2114         __be16 len;             /* 6 */
2115         u8 dsap;                /* 0 */
2116         u8 ssap;                /* 0 */
2117         u8 control;
2118         u8 xid_info[3];
2119 } __packed;
2120
2121 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2122 {
2123         struct iapp_layer2_update *msg;
2124         struct sk_buff *skb;
2125
2126         /* Send Level 2 Update Frame to update forwarding tables in layer 2
2127          * bridge devices */
2128
2129         skb = dev_alloc_skb(sizeof(*msg));
2130         if (!skb)
2131                 return;
2132         msg = skb_put(skb, sizeof(*msg));
2133
2134         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2135          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2136
2137         eth_broadcast_addr(msg->da);
2138         ether_addr_copy(msg->sa, addr);
2139         msg->len = htons(6);
2140         msg->dsap = 0;
2141         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2142         msg->control = 0xaf;    /* XID response lsb.1111F101.
2143                                  * F=0 (no poll command; unsolicited frame) */
2144         msg->xid_info[0] = 0x81;        /* XID format identifier */
2145         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2146         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2147
2148         skb->dev = dev;
2149         skb->protocol = eth_type_trans(skb, dev);
2150         memset(skb->cb, 0, sizeof(skb->cb));
2151         netif_rx_ni(skb);
2152 }
2153 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2154
2155 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2156                               enum ieee80211_vht_chanwidth bw,
2157                               int mcs, bool ext_nss_bw_capable,
2158                               unsigned int max_vht_nss)
2159 {
2160         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2161         int ext_nss_bw;
2162         int supp_width;
2163         int i, mcs_encoding;
2164
2165         if (map == 0xffff)
2166                 return 0;
2167
2168         if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2169                 return 0;
2170         if (mcs <= 7)
2171                 mcs_encoding = 0;
2172         else if (mcs == 8)
2173                 mcs_encoding = 1;
2174         else
2175                 mcs_encoding = 2;
2176
2177         if (!max_vht_nss) {
2178                 /* find max_vht_nss for the given MCS */
2179                 for (i = 7; i >= 0; i--) {
2180                         int supp = (map >> (2 * i)) & 3;
2181
2182                         if (supp == 3)
2183                                 continue;
2184
2185                         if (supp >= mcs_encoding) {
2186                                 max_vht_nss = i + 1;
2187                                 break;
2188                         }
2189                 }
2190         }
2191
2192         if (!(cap->supp_mcs.tx_mcs_map &
2193                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2194                 return max_vht_nss;
2195
2196         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2197                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2198         supp_width = le32_get_bits(cap->vht_cap_info,
2199                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2200
2201         /* if not capable, treat ext_nss_bw as 0 */
2202         if (!ext_nss_bw_capable)
2203                 ext_nss_bw = 0;
2204
2205         /* This is invalid */
2206         if (supp_width == 3)
2207                 return 0;
2208
2209         /* This is an invalid combination so pretend nothing is supported */
2210         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2211                 return 0;
2212
2213         /*
2214          * Cover all the special cases according to IEEE 802.11-2016
2215          * Table 9-250. All other cases are either factor of 1 or not
2216          * valid/supported.
2217          */
2218         switch (bw) {
2219         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2220         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2221                 if ((supp_width == 1 || supp_width == 2) &&
2222                     ext_nss_bw == 3)
2223                         return 2 * max_vht_nss;
2224                 break;
2225         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2226                 if (supp_width == 0 &&
2227                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2228                         return max_vht_nss / 2;
2229                 if (supp_width == 0 &&
2230                     ext_nss_bw == 3)
2231                         return (3 * max_vht_nss) / 4;
2232                 if (supp_width == 1 &&
2233                     ext_nss_bw == 3)
2234                         return 2 * max_vht_nss;
2235                 break;
2236         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2237                 if (supp_width == 0 && ext_nss_bw == 1)
2238                         return 0; /* not possible */
2239                 if (supp_width == 0 &&
2240                     ext_nss_bw == 2)
2241                         return max_vht_nss / 2;
2242                 if (supp_width == 0 &&
2243                     ext_nss_bw == 3)
2244                         return (3 * max_vht_nss) / 4;
2245                 if (supp_width == 1 &&
2246                     ext_nss_bw == 0)
2247                         return 0; /* not possible */
2248                 if (supp_width == 1 &&
2249                     ext_nss_bw == 1)
2250                         return max_vht_nss / 2;
2251                 if (supp_width == 1 &&
2252                     ext_nss_bw == 2)
2253                         return (3 * max_vht_nss) / 4;
2254                 break;
2255         }
2256
2257         /* not covered or invalid combination received */
2258         return max_vht_nss;
2259 }
2260 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2261
2262 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2263                              bool is_4addr, u8 check_swif)
2264
2265 {
2266         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2267
2268         switch (check_swif) {
2269         case 0:
2270                 if (is_vlan && is_4addr)
2271                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2272                 return wiphy->interface_modes & BIT(iftype);
2273         case 1:
2274                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2275                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2276                 return wiphy->software_iftypes & BIT(iftype);
2277         default:
2278                 break;
2279         }
2280
2281         return false;
2282 }
2283 EXPORT_SYMBOL(cfg80211_iftype_allowed);