tools headers UAPI: Sync drm/i915_drm.h with the kernel sources
[linux-2.6-microblaze.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
59 #include <linux/fs.h>
60
61 #define ZSPAGE_MAGIC    0x58
62
63 /*
64  * This must be power of 2 and greater than of equal to sizeof(link_free).
65  * These two conditions ensure that any 'struct link_free' itself doesn't
66  * span more than 1 page which avoids complex case of mapping 2 pages simply
67  * to restore link_free pointer values.
68  */
69 #define ZS_ALIGN                8
70
71 /*
72  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74  */
75 #define ZS_MAX_ZSPAGE_ORDER 2
76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
80 /*
81  * Object location (<PFN>, <obj_idx>) is encoded as
82  * a single (unsigned long) handle value.
83  *
84  * Note that object index <obj_idx> starts from 0.
85  *
86  * This is made more complicated by various memory models and PAE.
87  */
88
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 #else
93 /*
94  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95  * be PAGE_SHIFT
96  */
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98 #endif
99 #endif
100
101 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102
103 /*
104  * Memory for allocating for handle keeps object position by
105  * encoding <page, obj_idx> and the encoded value has a room
106  * in least bit(ie, look at obj_to_location).
107  * We use the bit to synchronize between object access by
108  * user and migration.
109  */
110 #define HANDLE_PIN_BIT  0
111
112 /*
113  * Head in allocated object should have OBJ_ALLOCATED_TAG
114  * to identify the object was allocated or not.
115  * It's okay to add the status bit in the least bit because
116  * header keeps handle which is 4byte-aligned address so we
117  * have room for two bit at least.
118  */
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
124 #define FULLNESS_BITS   2
125 #define CLASS_BITS      8
126 #define ISOLATED_BITS   3
127 #define MAGIC_VAL_BITS  8
128
129 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131 #define ZS_MIN_ALLOC_SIZE \
132         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133 /* each chunk includes extra space to keep handle */
134 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
135
136 /*
137  * On systems with 4K page size, this gives 255 size classes! There is a
138  * trader-off here:
139  *  - Large number of size classes is potentially wasteful as free page are
140  *    spread across these classes
141  *  - Small number of size classes causes large internal fragmentation
142  *  - Probably its better to use specific size classes (empirically
143  *    determined). NOTE: all those class sizes must be set as multiple of
144  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145  *
146  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147  *  (reason above)
148  */
149 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151                                       ZS_SIZE_CLASS_DELTA) + 1)
152
153 enum fullness_group {
154         ZS_EMPTY,
155         ZS_ALMOST_EMPTY,
156         ZS_ALMOST_FULL,
157         ZS_FULL,
158         NR_ZS_FULLNESS,
159 };
160
161 enum zs_stat_type {
162         CLASS_EMPTY,
163         CLASS_ALMOST_EMPTY,
164         CLASS_ALMOST_FULL,
165         CLASS_FULL,
166         OBJ_ALLOCATED,
167         OBJ_USED,
168         NR_ZS_STAT_TYPE,
169 };
170
171 struct zs_size_stat {
172         unsigned long objs[NR_ZS_STAT_TYPE];
173 };
174
175 #ifdef CONFIG_ZSMALLOC_STAT
176 static struct dentry *zs_stat_root;
177 #endif
178
179 #ifdef CONFIG_COMPACTION
180 static struct vfsmount *zsmalloc_mnt;
181 #endif
182
183 /*
184  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185  *      n <= N / f, where
186  * n = number of allocated objects
187  * N = total number of objects zspage can store
188  * f = fullness_threshold_frac
189  *
190  * Similarly, we assign zspage to:
191  *      ZS_ALMOST_FULL  when n > N / f
192  *      ZS_EMPTY        when n == 0
193  *      ZS_FULL         when n == N
194  *
195  * (see: fix_fullness_group())
196  */
197 static const int fullness_threshold_frac = 4;
198 static size_t huge_class_size;
199
200 struct size_class {
201         spinlock_t lock;
202         struct list_head fullness_list[NR_ZS_FULLNESS];
203         /*
204          * Size of objects stored in this class. Must be multiple
205          * of ZS_ALIGN.
206          */
207         int size;
208         int objs_per_zspage;
209         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210         int pages_per_zspage;
211
212         unsigned int index;
213         struct zs_size_stat stats;
214 };
215
216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217 static void SetPageHugeObject(struct page *page)
218 {
219         SetPageOwnerPriv1(page);
220 }
221
222 static void ClearPageHugeObject(struct page *page)
223 {
224         ClearPageOwnerPriv1(page);
225 }
226
227 static int PageHugeObject(struct page *page)
228 {
229         return PageOwnerPriv1(page);
230 }
231
232 /*
233  * Placed within free objects to form a singly linked list.
234  * For every zspage, zspage->freeobj gives head of this list.
235  *
236  * This must be power of 2 and less than or equal to ZS_ALIGN
237  */
238 struct link_free {
239         union {
240                 /*
241                  * Free object index;
242                  * It's valid for non-allocated object
243                  */
244                 unsigned long next;
245                 /*
246                  * Handle of allocated object.
247                  */
248                 unsigned long handle;
249         };
250 };
251
252 struct zs_pool {
253         const char *name;
254
255         struct size_class *size_class[ZS_SIZE_CLASSES];
256         struct kmem_cache *handle_cachep;
257         struct kmem_cache *zspage_cachep;
258
259         atomic_long_t pages_allocated;
260
261         struct zs_pool_stats stats;
262
263         /* Compact classes */
264         struct shrinker shrinker;
265
266 #ifdef CONFIG_ZSMALLOC_STAT
267         struct dentry *stat_dentry;
268 #endif
269 #ifdef CONFIG_COMPACTION
270         struct inode *inode;
271         struct work_struct free_work;
272         /* A wait queue for when migration races with async_free_zspage() */
273         struct wait_queue_head migration_wait;
274         atomic_long_t isolated_pages;
275         bool destroying;
276 #endif
277 };
278
279 struct zspage {
280         struct {
281                 unsigned int fullness:FULLNESS_BITS;
282                 unsigned int class:CLASS_BITS + 1;
283                 unsigned int isolated:ISOLATED_BITS;
284                 unsigned int magic:MAGIC_VAL_BITS;
285         };
286         unsigned int inuse;
287         unsigned int freeobj;
288         struct page *first_page;
289         struct list_head list; /* fullness list */
290 #ifdef CONFIG_COMPACTION
291         rwlock_t lock;
292 #endif
293 };
294
295 struct mapping_area {
296         char *vm_buf; /* copy buffer for objects that span pages */
297         char *vm_addr; /* address of kmap_atomic()'ed pages */
298         enum zs_mapmode vm_mm; /* mapping mode */
299 };
300
301 #ifdef CONFIG_COMPACTION
302 static int zs_register_migration(struct zs_pool *pool);
303 static void zs_unregister_migration(struct zs_pool *pool);
304 static void migrate_lock_init(struct zspage *zspage);
305 static void migrate_read_lock(struct zspage *zspage);
306 static void migrate_read_unlock(struct zspage *zspage);
307 static void kick_deferred_free(struct zs_pool *pool);
308 static void init_deferred_free(struct zs_pool *pool);
309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
310 #else
311 static int zsmalloc_mount(void) { return 0; }
312 static void zsmalloc_unmount(void) {}
313 static int zs_register_migration(struct zs_pool *pool) { return 0; }
314 static void zs_unregister_migration(struct zs_pool *pool) {}
315 static void migrate_lock_init(struct zspage *zspage) {}
316 static void migrate_read_lock(struct zspage *zspage) {}
317 static void migrate_read_unlock(struct zspage *zspage) {}
318 static void kick_deferred_free(struct zs_pool *pool) {}
319 static void init_deferred_free(struct zs_pool *pool) {}
320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321 #endif
322
323 static int create_cache(struct zs_pool *pool)
324 {
325         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326                                         0, 0, NULL);
327         if (!pool->handle_cachep)
328                 return 1;
329
330         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331                                         0, 0, NULL);
332         if (!pool->zspage_cachep) {
333                 kmem_cache_destroy(pool->handle_cachep);
334                 pool->handle_cachep = NULL;
335                 return 1;
336         }
337
338         return 0;
339 }
340
341 static void destroy_cache(struct zs_pool *pool)
342 {
343         kmem_cache_destroy(pool->handle_cachep);
344         kmem_cache_destroy(pool->zspage_cachep);
345 }
346
347 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
348 {
349         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
350                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351 }
352
353 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
354 {
355         kmem_cache_free(pool->handle_cachep, (void *)handle);
356 }
357
358 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359 {
360         return kmem_cache_alloc(pool->zspage_cachep,
361                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
362 }
363
364 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365 {
366         kmem_cache_free(pool->zspage_cachep, zspage);
367 }
368
369 static void record_obj(unsigned long handle, unsigned long obj)
370 {
371         /*
372          * lsb of @obj represents handle lock while other bits
373          * represent object value the handle is pointing so
374          * updating shouldn't do store tearing.
375          */
376         WRITE_ONCE(*(unsigned long *)handle, obj);
377 }
378
379 /* zpool driver */
380
381 #ifdef CONFIG_ZPOOL
382
383 static void *zs_zpool_create(const char *name, gfp_t gfp,
384                              const struct zpool_ops *zpool_ops,
385                              struct zpool *zpool)
386 {
387         /*
388          * Ignore global gfp flags: zs_malloc() may be invoked from
389          * different contexts and its caller must provide a valid
390          * gfp mask.
391          */
392         return zs_create_pool(name);
393 }
394
395 static void zs_zpool_destroy(void *pool)
396 {
397         zs_destroy_pool(pool);
398 }
399
400 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
401                         unsigned long *handle)
402 {
403         *handle = zs_malloc(pool, size, gfp);
404         return *handle ? 0 : -1;
405 }
406 static void zs_zpool_free(void *pool, unsigned long handle)
407 {
408         zs_free(pool, handle);
409 }
410
411 static void *zs_zpool_map(void *pool, unsigned long handle,
412                         enum zpool_mapmode mm)
413 {
414         enum zs_mapmode zs_mm;
415
416         switch (mm) {
417         case ZPOOL_MM_RO:
418                 zs_mm = ZS_MM_RO;
419                 break;
420         case ZPOOL_MM_WO:
421                 zs_mm = ZS_MM_WO;
422                 break;
423         case ZPOOL_MM_RW:
424         default:
425                 zs_mm = ZS_MM_RW;
426                 break;
427         }
428
429         return zs_map_object(pool, handle, zs_mm);
430 }
431 static void zs_zpool_unmap(void *pool, unsigned long handle)
432 {
433         zs_unmap_object(pool, handle);
434 }
435
436 static u64 zs_zpool_total_size(void *pool)
437 {
438         return zs_get_total_pages(pool) << PAGE_SHIFT;
439 }
440
441 static struct zpool_driver zs_zpool_driver = {
442         .type =                   "zsmalloc",
443         .owner =                  THIS_MODULE,
444         .create =                 zs_zpool_create,
445         .destroy =                zs_zpool_destroy,
446         .malloc_support_movable = true,
447         .malloc =                 zs_zpool_malloc,
448         .free =                   zs_zpool_free,
449         .map =                    zs_zpool_map,
450         .unmap =                  zs_zpool_unmap,
451         .total_size =             zs_zpool_total_size,
452 };
453
454 MODULE_ALIAS("zpool-zsmalloc");
455 #endif /* CONFIG_ZPOOL */
456
457 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
458 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
459
460 static bool is_zspage_isolated(struct zspage *zspage)
461 {
462         return zspage->isolated;
463 }
464
465 static __maybe_unused int is_first_page(struct page *page)
466 {
467         return PagePrivate(page);
468 }
469
470 /* Protected by class->lock */
471 static inline int get_zspage_inuse(struct zspage *zspage)
472 {
473         return zspage->inuse;
474 }
475
476
477 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
478 {
479         zspage->inuse += val;
480 }
481
482 static inline struct page *get_first_page(struct zspage *zspage)
483 {
484         struct page *first_page = zspage->first_page;
485
486         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487         return first_page;
488 }
489
490 static inline int get_first_obj_offset(struct page *page)
491 {
492         return page->units;
493 }
494
495 static inline void set_first_obj_offset(struct page *page, int offset)
496 {
497         page->units = offset;
498 }
499
500 static inline unsigned int get_freeobj(struct zspage *zspage)
501 {
502         return zspage->freeobj;
503 }
504
505 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
506 {
507         zspage->freeobj = obj;
508 }
509
510 static void get_zspage_mapping(struct zspage *zspage,
511                                 unsigned int *class_idx,
512                                 enum fullness_group *fullness)
513 {
514         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515
516         *fullness = zspage->fullness;
517         *class_idx = zspage->class;
518 }
519
520 static void set_zspage_mapping(struct zspage *zspage,
521                                 unsigned int class_idx,
522                                 enum fullness_group fullness)
523 {
524         zspage->class = class_idx;
525         zspage->fullness = fullness;
526 }
527
528 /*
529  * zsmalloc divides the pool into various size classes where each
530  * class maintains a list of zspages where each zspage is divided
531  * into equal sized chunks. Each allocation falls into one of these
532  * classes depending on its size. This function returns index of the
533  * size class which has chunk size big enough to hold the give size.
534  */
535 static int get_size_class_index(int size)
536 {
537         int idx = 0;
538
539         if (likely(size > ZS_MIN_ALLOC_SIZE))
540                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541                                 ZS_SIZE_CLASS_DELTA);
542
543         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
544 }
545
546 /* type can be of enum type zs_stat_type or fullness_group */
547 static inline void zs_stat_inc(struct size_class *class,
548                                 int type, unsigned long cnt)
549 {
550         class->stats.objs[type] += cnt;
551 }
552
553 /* type can be of enum type zs_stat_type or fullness_group */
554 static inline void zs_stat_dec(struct size_class *class,
555                                 int type, unsigned long cnt)
556 {
557         class->stats.objs[type] -= cnt;
558 }
559
560 /* type can be of enum type zs_stat_type or fullness_group */
561 static inline unsigned long zs_stat_get(struct size_class *class,
562                                 int type)
563 {
564         return class->stats.objs[type];
565 }
566
567 #ifdef CONFIG_ZSMALLOC_STAT
568
569 static void __init zs_stat_init(void)
570 {
571         if (!debugfs_initialized()) {
572                 pr_warn("debugfs not available, stat dir not created\n");
573                 return;
574         }
575
576         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
577 }
578
579 static void __exit zs_stat_exit(void)
580 {
581         debugfs_remove_recursive(zs_stat_root);
582 }
583
584 static unsigned long zs_can_compact(struct size_class *class);
585
586 static int zs_stats_size_show(struct seq_file *s, void *v)
587 {
588         int i;
589         struct zs_pool *pool = s->private;
590         struct size_class *class;
591         int objs_per_zspage;
592         unsigned long class_almost_full, class_almost_empty;
593         unsigned long obj_allocated, obj_used, pages_used, freeable;
594         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
595         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
596         unsigned long total_freeable = 0;
597
598         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
599                         "class", "size", "almost_full", "almost_empty",
600                         "obj_allocated", "obj_used", "pages_used",
601                         "pages_per_zspage", "freeable");
602
603         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
604                 class = pool->size_class[i];
605
606                 if (class->index != i)
607                         continue;
608
609                 spin_lock(&class->lock);
610                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
611                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
612                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
613                 obj_used = zs_stat_get(class, OBJ_USED);
614                 freeable = zs_can_compact(class);
615                 spin_unlock(&class->lock);
616
617                 objs_per_zspage = class->objs_per_zspage;
618                 pages_used = obj_allocated / objs_per_zspage *
619                                 class->pages_per_zspage;
620
621                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
622                                 " %10lu %10lu %16d %8lu\n",
623                         i, class->size, class_almost_full, class_almost_empty,
624                         obj_allocated, obj_used, pages_used,
625                         class->pages_per_zspage, freeable);
626
627                 total_class_almost_full += class_almost_full;
628                 total_class_almost_empty += class_almost_empty;
629                 total_objs += obj_allocated;
630                 total_used_objs += obj_used;
631                 total_pages += pages_used;
632                 total_freeable += freeable;
633         }
634
635         seq_puts(s, "\n");
636         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
637                         "Total", "", total_class_almost_full,
638                         total_class_almost_empty, total_objs,
639                         total_used_objs, total_pages, "", total_freeable);
640
641         return 0;
642 }
643 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
644
645 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
646 {
647         if (!zs_stat_root) {
648                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
649                 return;
650         }
651
652         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
653
654         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
655                             &zs_stats_size_fops);
656 }
657
658 static void zs_pool_stat_destroy(struct zs_pool *pool)
659 {
660         debugfs_remove_recursive(pool->stat_dentry);
661 }
662
663 #else /* CONFIG_ZSMALLOC_STAT */
664 static void __init zs_stat_init(void)
665 {
666 }
667
668 static void __exit zs_stat_exit(void)
669 {
670 }
671
672 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
673 {
674 }
675
676 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
677 {
678 }
679 #endif
680
681
682 /*
683  * For each size class, zspages are divided into different groups
684  * depending on how "full" they are. This was done so that we could
685  * easily find empty or nearly empty zspages when we try to shrink
686  * the pool (not yet implemented). This function returns fullness
687  * status of the given page.
688  */
689 static enum fullness_group get_fullness_group(struct size_class *class,
690                                                 struct zspage *zspage)
691 {
692         int inuse, objs_per_zspage;
693         enum fullness_group fg;
694
695         inuse = get_zspage_inuse(zspage);
696         objs_per_zspage = class->objs_per_zspage;
697
698         if (inuse == 0)
699                 fg = ZS_EMPTY;
700         else if (inuse == objs_per_zspage)
701                 fg = ZS_FULL;
702         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
703                 fg = ZS_ALMOST_EMPTY;
704         else
705                 fg = ZS_ALMOST_FULL;
706
707         return fg;
708 }
709
710 /*
711  * Each size class maintains various freelists and zspages are assigned
712  * to one of these freelists based on the number of live objects they
713  * have. This functions inserts the given zspage into the freelist
714  * identified by <class, fullness_group>.
715  */
716 static void insert_zspage(struct size_class *class,
717                                 struct zspage *zspage,
718                                 enum fullness_group fullness)
719 {
720         struct zspage *head;
721
722         zs_stat_inc(class, fullness, 1);
723         head = list_first_entry_or_null(&class->fullness_list[fullness],
724                                         struct zspage, list);
725         /*
726          * We want to see more ZS_FULL pages and less almost empty/full.
727          * Put pages with higher ->inuse first.
728          */
729         if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
730                 list_add(&zspage->list, &head->list);
731         else
732                 list_add(&zspage->list, &class->fullness_list[fullness]);
733 }
734
735 /*
736  * This function removes the given zspage from the freelist identified
737  * by <class, fullness_group>.
738  */
739 static void remove_zspage(struct size_class *class,
740                                 struct zspage *zspage,
741                                 enum fullness_group fullness)
742 {
743         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
744         VM_BUG_ON(is_zspage_isolated(zspage));
745
746         list_del_init(&zspage->list);
747         zs_stat_dec(class, fullness, 1);
748 }
749
750 /*
751  * Each size class maintains zspages in different fullness groups depending
752  * on the number of live objects they contain. When allocating or freeing
753  * objects, the fullness status of the page can change, say, from ALMOST_FULL
754  * to ALMOST_EMPTY when freeing an object. This function checks if such
755  * a status change has occurred for the given page and accordingly moves the
756  * page from the freelist of the old fullness group to that of the new
757  * fullness group.
758  */
759 static enum fullness_group fix_fullness_group(struct size_class *class,
760                                                 struct zspage *zspage)
761 {
762         int class_idx;
763         enum fullness_group currfg, newfg;
764
765         get_zspage_mapping(zspage, &class_idx, &currfg);
766         newfg = get_fullness_group(class, zspage);
767         if (newfg == currfg)
768                 goto out;
769
770         if (!is_zspage_isolated(zspage)) {
771                 remove_zspage(class, zspage, currfg);
772                 insert_zspage(class, zspage, newfg);
773         }
774
775         set_zspage_mapping(zspage, class_idx, newfg);
776
777 out:
778         return newfg;
779 }
780
781 /*
782  * We have to decide on how many pages to link together
783  * to form a zspage for each size class. This is important
784  * to reduce wastage due to unusable space left at end of
785  * each zspage which is given as:
786  *     wastage = Zp % class_size
787  *     usage = Zp - wastage
788  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
789  *
790  * For example, for size class of 3/8 * PAGE_SIZE, we should
791  * link together 3 PAGE_SIZE sized pages to form a zspage
792  * since then we can perfectly fit in 8 such objects.
793  */
794 static int get_pages_per_zspage(int class_size)
795 {
796         int i, max_usedpc = 0;
797         /* zspage order which gives maximum used size per KB */
798         int max_usedpc_order = 1;
799
800         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
801                 int zspage_size;
802                 int waste, usedpc;
803
804                 zspage_size = i * PAGE_SIZE;
805                 waste = zspage_size % class_size;
806                 usedpc = (zspage_size - waste) * 100 / zspage_size;
807
808                 if (usedpc > max_usedpc) {
809                         max_usedpc = usedpc;
810                         max_usedpc_order = i;
811                 }
812         }
813
814         return max_usedpc_order;
815 }
816
817 static struct zspage *get_zspage(struct page *page)
818 {
819         struct zspage *zspage = (struct zspage *)page->private;
820
821         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
822         return zspage;
823 }
824
825 static struct page *get_next_page(struct page *page)
826 {
827         if (unlikely(PageHugeObject(page)))
828                 return NULL;
829
830         return page->freelist;
831 }
832
833 /**
834  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
835  * @obj: the encoded object value
836  * @page: page object resides in zspage
837  * @obj_idx: object index
838  */
839 static void obj_to_location(unsigned long obj, struct page **page,
840                                 unsigned int *obj_idx)
841 {
842         obj >>= OBJ_TAG_BITS;
843         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
844         *obj_idx = (obj & OBJ_INDEX_MASK);
845 }
846
847 /**
848  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
849  * @page: page object resides in zspage
850  * @obj_idx: object index
851  */
852 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
853 {
854         unsigned long obj;
855
856         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
857         obj |= obj_idx & OBJ_INDEX_MASK;
858         obj <<= OBJ_TAG_BITS;
859
860         return obj;
861 }
862
863 static unsigned long handle_to_obj(unsigned long handle)
864 {
865         return *(unsigned long *)handle;
866 }
867
868 static unsigned long obj_to_head(struct page *page, void *obj)
869 {
870         if (unlikely(PageHugeObject(page))) {
871                 VM_BUG_ON_PAGE(!is_first_page(page), page);
872                 return page->index;
873         } else
874                 return *(unsigned long *)obj;
875 }
876
877 static inline int testpin_tag(unsigned long handle)
878 {
879         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
880 }
881
882 static inline int trypin_tag(unsigned long handle)
883 {
884         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
885 }
886
887 static void pin_tag(unsigned long handle) __acquires(bitlock)
888 {
889         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
890 }
891
892 static void unpin_tag(unsigned long handle) __releases(bitlock)
893 {
894         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
895 }
896
897 static void reset_page(struct page *page)
898 {
899         __ClearPageMovable(page);
900         ClearPagePrivate(page);
901         set_page_private(page, 0);
902         page_mapcount_reset(page);
903         ClearPageHugeObject(page);
904         page->freelist = NULL;
905 }
906
907 static int trylock_zspage(struct zspage *zspage)
908 {
909         struct page *cursor, *fail;
910
911         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
912                                         get_next_page(cursor)) {
913                 if (!trylock_page(cursor)) {
914                         fail = cursor;
915                         goto unlock;
916                 }
917         }
918
919         return 1;
920 unlock:
921         for (cursor = get_first_page(zspage); cursor != fail; cursor =
922                                         get_next_page(cursor))
923                 unlock_page(cursor);
924
925         return 0;
926 }
927
928 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
929                                 struct zspage *zspage)
930 {
931         struct page *page, *next;
932         enum fullness_group fg;
933         unsigned int class_idx;
934
935         get_zspage_mapping(zspage, &class_idx, &fg);
936
937         assert_spin_locked(&class->lock);
938
939         VM_BUG_ON(get_zspage_inuse(zspage));
940         VM_BUG_ON(fg != ZS_EMPTY);
941
942         next = page = get_first_page(zspage);
943         do {
944                 VM_BUG_ON_PAGE(!PageLocked(page), page);
945                 next = get_next_page(page);
946                 reset_page(page);
947                 unlock_page(page);
948                 dec_zone_page_state(page, NR_ZSPAGES);
949                 put_page(page);
950                 page = next;
951         } while (page != NULL);
952
953         cache_free_zspage(pool, zspage);
954
955         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
956         atomic_long_sub(class->pages_per_zspage,
957                                         &pool->pages_allocated);
958 }
959
960 static void free_zspage(struct zs_pool *pool, struct size_class *class,
961                                 struct zspage *zspage)
962 {
963         VM_BUG_ON(get_zspage_inuse(zspage));
964         VM_BUG_ON(list_empty(&zspage->list));
965
966         if (!trylock_zspage(zspage)) {
967                 kick_deferred_free(pool);
968                 return;
969         }
970
971         remove_zspage(class, zspage, ZS_EMPTY);
972         __free_zspage(pool, class, zspage);
973 }
974
975 /* Initialize a newly allocated zspage */
976 static void init_zspage(struct size_class *class, struct zspage *zspage)
977 {
978         unsigned int freeobj = 1;
979         unsigned long off = 0;
980         struct page *page = get_first_page(zspage);
981
982         while (page) {
983                 struct page *next_page;
984                 struct link_free *link;
985                 void *vaddr;
986
987                 set_first_obj_offset(page, off);
988
989                 vaddr = kmap_atomic(page);
990                 link = (struct link_free *)vaddr + off / sizeof(*link);
991
992                 while ((off += class->size) < PAGE_SIZE) {
993                         link->next = freeobj++ << OBJ_TAG_BITS;
994                         link += class->size / sizeof(*link);
995                 }
996
997                 /*
998                  * We now come to the last (full or partial) object on this
999                  * page, which must point to the first object on the next
1000                  * page (if present)
1001                  */
1002                 next_page = get_next_page(page);
1003                 if (next_page) {
1004                         link->next = freeobj++ << OBJ_TAG_BITS;
1005                 } else {
1006                         /*
1007                          * Reset OBJ_TAG_BITS bit to last link to tell
1008                          * whether it's allocated object or not.
1009                          */
1010                         link->next = -1UL << OBJ_TAG_BITS;
1011                 }
1012                 kunmap_atomic(vaddr);
1013                 page = next_page;
1014                 off %= PAGE_SIZE;
1015         }
1016
1017         set_freeobj(zspage, 0);
1018 }
1019
1020 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1021                                 struct page *pages[])
1022 {
1023         int i;
1024         struct page *page;
1025         struct page *prev_page = NULL;
1026         int nr_pages = class->pages_per_zspage;
1027
1028         /*
1029          * Allocate individual pages and link them together as:
1030          * 1. all pages are linked together using page->freelist
1031          * 2. each sub-page point to zspage using page->private
1032          *
1033          * we set PG_private to identify the first page (i.e. no other sub-page
1034          * has this flag set).
1035          */
1036         for (i = 0; i < nr_pages; i++) {
1037                 page = pages[i];
1038                 set_page_private(page, (unsigned long)zspage);
1039                 page->freelist = NULL;
1040                 if (i == 0) {
1041                         zspage->first_page = page;
1042                         SetPagePrivate(page);
1043                         if (unlikely(class->objs_per_zspage == 1 &&
1044                                         class->pages_per_zspage == 1))
1045                                 SetPageHugeObject(page);
1046                 } else {
1047                         prev_page->freelist = page;
1048                 }
1049                 prev_page = page;
1050         }
1051 }
1052
1053 /*
1054  * Allocate a zspage for the given size class
1055  */
1056 static struct zspage *alloc_zspage(struct zs_pool *pool,
1057                                         struct size_class *class,
1058                                         gfp_t gfp)
1059 {
1060         int i;
1061         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1062         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1063
1064         if (!zspage)
1065                 return NULL;
1066
1067         memset(zspage, 0, sizeof(struct zspage));
1068         zspage->magic = ZSPAGE_MAGIC;
1069         migrate_lock_init(zspage);
1070
1071         for (i = 0; i < class->pages_per_zspage; i++) {
1072                 struct page *page;
1073
1074                 page = alloc_page(gfp);
1075                 if (!page) {
1076                         while (--i >= 0) {
1077                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1078                                 __free_page(pages[i]);
1079                         }
1080                         cache_free_zspage(pool, zspage);
1081                         return NULL;
1082                 }
1083
1084                 inc_zone_page_state(page, NR_ZSPAGES);
1085                 pages[i] = page;
1086         }
1087
1088         create_page_chain(class, zspage, pages);
1089         init_zspage(class, zspage);
1090
1091         return zspage;
1092 }
1093
1094 static struct zspage *find_get_zspage(struct size_class *class)
1095 {
1096         int i;
1097         struct zspage *zspage;
1098
1099         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1100                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1101                                 struct zspage, list);
1102                 if (zspage)
1103                         break;
1104         }
1105
1106         return zspage;
1107 }
1108
1109 static inline int __zs_cpu_up(struct mapping_area *area)
1110 {
1111         /*
1112          * Make sure we don't leak memory if a cpu UP notification
1113          * and zs_init() race and both call zs_cpu_up() on the same cpu
1114          */
1115         if (area->vm_buf)
1116                 return 0;
1117         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1118         if (!area->vm_buf)
1119                 return -ENOMEM;
1120         return 0;
1121 }
1122
1123 static inline void __zs_cpu_down(struct mapping_area *area)
1124 {
1125         kfree(area->vm_buf);
1126         area->vm_buf = NULL;
1127 }
1128
1129 static void *__zs_map_object(struct mapping_area *area,
1130                         struct page *pages[2], int off, int size)
1131 {
1132         int sizes[2];
1133         void *addr;
1134         char *buf = area->vm_buf;
1135
1136         /* disable page faults to match kmap_atomic() return conditions */
1137         pagefault_disable();
1138
1139         /* no read fastpath */
1140         if (area->vm_mm == ZS_MM_WO)
1141                 goto out;
1142
1143         sizes[0] = PAGE_SIZE - off;
1144         sizes[1] = size - sizes[0];
1145
1146         /* copy object to per-cpu buffer */
1147         addr = kmap_atomic(pages[0]);
1148         memcpy(buf, addr + off, sizes[0]);
1149         kunmap_atomic(addr);
1150         addr = kmap_atomic(pages[1]);
1151         memcpy(buf + sizes[0], addr, sizes[1]);
1152         kunmap_atomic(addr);
1153 out:
1154         return area->vm_buf;
1155 }
1156
1157 static void __zs_unmap_object(struct mapping_area *area,
1158                         struct page *pages[2], int off, int size)
1159 {
1160         int sizes[2];
1161         void *addr;
1162         char *buf;
1163
1164         /* no write fastpath */
1165         if (area->vm_mm == ZS_MM_RO)
1166                 goto out;
1167
1168         buf = area->vm_buf;
1169         buf = buf + ZS_HANDLE_SIZE;
1170         size -= ZS_HANDLE_SIZE;
1171         off += ZS_HANDLE_SIZE;
1172
1173         sizes[0] = PAGE_SIZE - off;
1174         sizes[1] = size - sizes[0];
1175
1176         /* copy per-cpu buffer to object */
1177         addr = kmap_atomic(pages[0]);
1178         memcpy(addr + off, buf, sizes[0]);
1179         kunmap_atomic(addr);
1180         addr = kmap_atomic(pages[1]);
1181         memcpy(addr, buf + sizes[0], sizes[1]);
1182         kunmap_atomic(addr);
1183
1184 out:
1185         /* enable page faults to match kunmap_atomic() return conditions */
1186         pagefault_enable();
1187 }
1188
1189 static int zs_cpu_prepare(unsigned int cpu)
1190 {
1191         struct mapping_area *area;
1192
1193         area = &per_cpu(zs_map_area, cpu);
1194         return __zs_cpu_up(area);
1195 }
1196
1197 static int zs_cpu_dead(unsigned int cpu)
1198 {
1199         struct mapping_area *area;
1200
1201         area = &per_cpu(zs_map_area, cpu);
1202         __zs_cpu_down(area);
1203         return 0;
1204 }
1205
1206 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1207                                         int objs_per_zspage)
1208 {
1209         if (prev->pages_per_zspage == pages_per_zspage &&
1210                 prev->objs_per_zspage == objs_per_zspage)
1211                 return true;
1212
1213         return false;
1214 }
1215
1216 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1217 {
1218         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1219 }
1220
1221 unsigned long zs_get_total_pages(struct zs_pool *pool)
1222 {
1223         return atomic_long_read(&pool->pages_allocated);
1224 }
1225 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1226
1227 /**
1228  * zs_map_object - get address of allocated object from handle.
1229  * @pool: pool from which the object was allocated
1230  * @handle: handle returned from zs_malloc
1231  * @mm: maping mode to use
1232  *
1233  * Before using an object allocated from zs_malloc, it must be mapped using
1234  * this function. When done with the object, it must be unmapped using
1235  * zs_unmap_object.
1236  *
1237  * Only one object can be mapped per cpu at a time. There is no protection
1238  * against nested mappings.
1239  *
1240  * This function returns with preemption and page faults disabled.
1241  */
1242 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1243                         enum zs_mapmode mm)
1244 {
1245         struct zspage *zspage;
1246         struct page *page;
1247         unsigned long obj, off;
1248         unsigned int obj_idx;
1249
1250         unsigned int class_idx;
1251         enum fullness_group fg;
1252         struct size_class *class;
1253         struct mapping_area *area;
1254         struct page *pages[2];
1255         void *ret;
1256
1257         /*
1258          * Because we use per-cpu mapping areas shared among the
1259          * pools/users, we can't allow mapping in interrupt context
1260          * because it can corrupt another users mappings.
1261          */
1262         BUG_ON(in_interrupt());
1263
1264         /* From now on, migration cannot move the object */
1265         pin_tag(handle);
1266
1267         obj = handle_to_obj(handle);
1268         obj_to_location(obj, &page, &obj_idx);
1269         zspage = get_zspage(page);
1270
1271         /* migration cannot move any subpage in this zspage */
1272         migrate_read_lock(zspage);
1273
1274         get_zspage_mapping(zspage, &class_idx, &fg);
1275         class = pool->size_class[class_idx];
1276         off = (class->size * obj_idx) & ~PAGE_MASK;
1277
1278         area = &get_cpu_var(zs_map_area);
1279         area->vm_mm = mm;
1280         if (off + class->size <= PAGE_SIZE) {
1281                 /* this object is contained entirely within a page */
1282                 area->vm_addr = kmap_atomic(page);
1283                 ret = area->vm_addr + off;
1284                 goto out;
1285         }
1286
1287         /* this object spans two pages */
1288         pages[0] = page;
1289         pages[1] = get_next_page(page);
1290         BUG_ON(!pages[1]);
1291
1292         ret = __zs_map_object(area, pages, off, class->size);
1293 out:
1294         if (likely(!PageHugeObject(page)))
1295                 ret += ZS_HANDLE_SIZE;
1296
1297         return ret;
1298 }
1299 EXPORT_SYMBOL_GPL(zs_map_object);
1300
1301 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1302 {
1303         struct zspage *zspage;
1304         struct page *page;
1305         unsigned long obj, off;
1306         unsigned int obj_idx;
1307
1308         unsigned int class_idx;
1309         enum fullness_group fg;
1310         struct size_class *class;
1311         struct mapping_area *area;
1312
1313         obj = handle_to_obj(handle);
1314         obj_to_location(obj, &page, &obj_idx);
1315         zspage = get_zspage(page);
1316         get_zspage_mapping(zspage, &class_idx, &fg);
1317         class = pool->size_class[class_idx];
1318         off = (class->size * obj_idx) & ~PAGE_MASK;
1319
1320         area = this_cpu_ptr(&zs_map_area);
1321         if (off + class->size <= PAGE_SIZE)
1322                 kunmap_atomic(area->vm_addr);
1323         else {
1324                 struct page *pages[2];
1325
1326                 pages[0] = page;
1327                 pages[1] = get_next_page(page);
1328                 BUG_ON(!pages[1]);
1329
1330                 __zs_unmap_object(area, pages, off, class->size);
1331         }
1332         put_cpu_var(zs_map_area);
1333
1334         migrate_read_unlock(zspage);
1335         unpin_tag(handle);
1336 }
1337 EXPORT_SYMBOL_GPL(zs_unmap_object);
1338
1339 /**
1340  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1341  *                        zsmalloc &size_class.
1342  * @pool: zsmalloc pool to use
1343  *
1344  * The function returns the size of the first huge class - any object of equal
1345  * or bigger size will be stored in zspage consisting of a single physical
1346  * page.
1347  *
1348  * Context: Any context.
1349  *
1350  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1351  */
1352 size_t zs_huge_class_size(struct zs_pool *pool)
1353 {
1354         return huge_class_size;
1355 }
1356 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1357
1358 static unsigned long obj_malloc(struct size_class *class,
1359                                 struct zspage *zspage, unsigned long handle)
1360 {
1361         int i, nr_page, offset;
1362         unsigned long obj;
1363         struct link_free *link;
1364
1365         struct page *m_page;
1366         unsigned long m_offset;
1367         void *vaddr;
1368
1369         handle |= OBJ_ALLOCATED_TAG;
1370         obj = get_freeobj(zspage);
1371
1372         offset = obj * class->size;
1373         nr_page = offset >> PAGE_SHIFT;
1374         m_offset = offset & ~PAGE_MASK;
1375         m_page = get_first_page(zspage);
1376
1377         for (i = 0; i < nr_page; i++)
1378                 m_page = get_next_page(m_page);
1379
1380         vaddr = kmap_atomic(m_page);
1381         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1382         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1383         if (likely(!PageHugeObject(m_page)))
1384                 /* record handle in the header of allocated chunk */
1385                 link->handle = handle;
1386         else
1387                 /* record handle to page->index */
1388                 zspage->first_page->index = handle;
1389
1390         kunmap_atomic(vaddr);
1391         mod_zspage_inuse(zspage, 1);
1392         zs_stat_inc(class, OBJ_USED, 1);
1393
1394         obj = location_to_obj(m_page, obj);
1395
1396         return obj;
1397 }
1398
1399
1400 /**
1401  * zs_malloc - Allocate block of given size from pool.
1402  * @pool: pool to allocate from
1403  * @size: size of block to allocate
1404  * @gfp: gfp flags when allocating object
1405  *
1406  * On success, handle to the allocated object is returned,
1407  * otherwise 0.
1408  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1409  */
1410 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1411 {
1412         unsigned long handle, obj;
1413         struct size_class *class;
1414         enum fullness_group newfg;
1415         struct zspage *zspage;
1416
1417         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1418                 return 0;
1419
1420         handle = cache_alloc_handle(pool, gfp);
1421         if (!handle)
1422                 return 0;
1423
1424         /* extra space in chunk to keep the handle */
1425         size += ZS_HANDLE_SIZE;
1426         class = pool->size_class[get_size_class_index(size)];
1427
1428         spin_lock(&class->lock);
1429         zspage = find_get_zspage(class);
1430         if (likely(zspage)) {
1431                 obj = obj_malloc(class, zspage, handle);
1432                 /* Now move the zspage to another fullness group, if required */
1433                 fix_fullness_group(class, zspage);
1434                 record_obj(handle, obj);
1435                 spin_unlock(&class->lock);
1436
1437                 return handle;
1438         }
1439
1440         spin_unlock(&class->lock);
1441
1442         zspage = alloc_zspage(pool, class, gfp);
1443         if (!zspage) {
1444                 cache_free_handle(pool, handle);
1445                 return 0;
1446         }
1447
1448         spin_lock(&class->lock);
1449         obj = obj_malloc(class, zspage, handle);
1450         newfg = get_fullness_group(class, zspage);
1451         insert_zspage(class, zspage, newfg);
1452         set_zspage_mapping(zspage, class->index, newfg);
1453         record_obj(handle, obj);
1454         atomic_long_add(class->pages_per_zspage,
1455                                 &pool->pages_allocated);
1456         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1457
1458         /* We completely set up zspage so mark them as movable */
1459         SetZsPageMovable(pool, zspage);
1460         spin_unlock(&class->lock);
1461
1462         return handle;
1463 }
1464 EXPORT_SYMBOL_GPL(zs_malloc);
1465
1466 static void obj_free(struct size_class *class, unsigned long obj)
1467 {
1468         struct link_free *link;
1469         struct zspage *zspage;
1470         struct page *f_page;
1471         unsigned long f_offset;
1472         unsigned int f_objidx;
1473         void *vaddr;
1474
1475         obj &= ~OBJ_ALLOCATED_TAG;
1476         obj_to_location(obj, &f_page, &f_objidx);
1477         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1478         zspage = get_zspage(f_page);
1479
1480         vaddr = kmap_atomic(f_page);
1481
1482         /* Insert this object in containing zspage's freelist */
1483         link = (struct link_free *)(vaddr + f_offset);
1484         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1485         kunmap_atomic(vaddr);
1486         set_freeobj(zspage, f_objidx);
1487         mod_zspage_inuse(zspage, -1);
1488         zs_stat_dec(class, OBJ_USED, 1);
1489 }
1490
1491 void zs_free(struct zs_pool *pool, unsigned long handle)
1492 {
1493         struct zspage *zspage;
1494         struct page *f_page;
1495         unsigned long obj;
1496         unsigned int f_objidx;
1497         int class_idx;
1498         struct size_class *class;
1499         enum fullness_group fullness;
1500         bool isolated;
1501
1502         if (unlikely(!handle))
1503                 return;
1504
1505         pin_tag(handle);
1506         obj = handle_to_obj(handle);
1507         obj_to_location(obj, &f_page, &f_objidx);
1508         zspage = get_zspage(f_page);
1509
1510         migrate_read_lock(zspage);
1511
1512         get_zspage_mapping(zspage, &class_idx, &fullness);
1513         class = pool->size_class[class_idx];
1514
1515         spin_lock(&class->lock);
1516         obj_free(class, obj);
1517         fullness = fix_fullness_group(class, zspage);
1518         if (fullness != ZS_EMPTY) {
1519                 migrate_read_unlock(zspage);
1520                 goto out;
1521         }
1522
1523         isolated = is_zspage_isolated(zspage);
1524         migrate_read_unlock(zspage);
1525         /* If zspage is isolated, zs_page_putback will free the zspage */
1526         if (likely(!isolated))
1527                 free_zspage(pool, class, zspage);
1528 out:
1529
1530         spin_unlock(&class->lock);
1531         unpin_tag(handle);
1532         cache_free_handle(pool, handle);
1533 }
1534 EXPORT_SYMBOL_GPL(zs_free);
1535
1536 static void zs_object_copy(struct size_class *class, unsigned long dst,
1537                                 unsigned long src)
1538 {
1539         struct page *s_page, *d_page;
1540         unsigned int s_objidx, d_objidx;
1541         unsigned long s_off, d_off;
1542         void *s_addr, *d_addr;
1543         int s_size, d_size, size;
1544         int written = 0;
1545
1546         s_size = d_size = class->size;
1547
1548         obj_to_location(src, &s_page, &s_objidx);
1549         obj_to_location(dst, &d_page, &d_objidx);
1550
1551         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1552         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1553
1554         if (s_off + class->size > PAGE_SIZE)
1555                 s_size = PAGE_SIZE - s_off;
1556
1557         if (d_off + class->size > PAGE_SIZE)
1558                 d_size = PAGE_SIZE - d_off;
1559
1560         s_addr = kmap_atomic(s_page);
1561         d_addr = kmap_atomic(d_page);
1562
1563         while (1) {
1564                 size = min(s_size, d_size);
1565                 memcpy(d_addr + d_off, s_addr + s_off, size);
1566                 written += size;
1567
1568                 if (written == class->size)
1569                         break;
1570
1571                 s_off += size;
1572                 s_size -= size;
1573                 d_off += size;
1574                 d_size -= size;
1575
1576                 if (s_off >= PAGE_SIZE) {
1577                         kunmap_atomic(d_addr);
1578                         kunmap_atomic(s_addr);
1579                         s_page = get_next_page(s_page);
1580                         s_addr = kmap_atomic(s_page);
1581                         d_addr = kmap_atomic(d_page);
1582                         s_size = class->size - written;
1583                         s_off = 0;
1584                 }
1585
1586                 if (d_off >= PAGE_SIZE) {
1587                         kunmap_atomic(d_addr);
1588                         d_page = get_next_page(d_page);
1589                         d_addr = kmap_atomic(d_page);
1590                         d_size = class->size - written;
1591                         d_off = 0;
1592                 }
1593         }
1594
1595         kunmap_atomic(d_addr);
1596         kunmap_atomic(s_addr);
1597 }
1598
1599 /*
1600  * Find alloced object in zspage from index object and
1601  * return handle.
1602  */
1603 static unsigned long find_alloced_obj(struct size_class *class,
1604                                         struct page *page, int *obj_idx)
1605 {
1606         unsigned long head;
1607         int offset = 0;
1608         int index = *obj_idx;
1609         unsigned long handle = 0;
1610         void *addr = kmap_atomic(page);
1611
1612         offset = get_first_obj_offset(page);
1613         offset += class->size * index;
1614
1615         while (offset < PAGE_SIZE) {
1616                 head = obj_to_head(page, addr + offset);
1617                 if (head & OBJ_ALLOCATED_TAG) {
1618                         handle = head & ~OBJ_ALLOCATED_TAG;
1619                         if (trypin_tag(handle))
1620                                 break;
1621                         handle = 0;
1622                 }
1623
1624                 offset += class->size;
1625                 index++;
1626         }
1627
1628         kunmap_atomic(addr);
1629
1630         *obj_idx = index;
1631
1632         return handle;
1633 }
1634
1635 struct zs_compact_control {
1636         /* Source spage for migration which could be a subpage of zspage */
1637         struct page *s_page;
1638         /* Destination page for migration which should be a first page
1639          * of zspage. */
1640         struct page *d_page;
1641          /* Starting object index within @s_page which used for live object
1642           * in the subpage. */
1643         int obj_idx;
1644 };
1645
1646 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1647                                 struct zs_compact_control *cc)
1648 {
1649         unsigned long used_obj, free_obj;
1650         unsigned long handle;
1651         struct page *s_page = cc->s_page;
1652         struct page *d_page = cc->d_page;
1653         int obj_idx = cc->obj_idx;
1654         int ret = 0;
1655
1656         while (1) {
1657                 handle = find_alloced_obj(class, s_page, &obj_idx);
1658                 if (!handle) {
1659                         s_page = get_next_page(s_page);
1660                         if (!s_page)
1661                                 break;
1662                         obj_idx = 0;
1663                         continue;
1664                 }
1665
1666                 /* Stop if there is no more space */
1667                 if (zspage_full(class, get_zspage(d_page))) {
1668                         unpin_tag(handle);
1669                         ret = -ENOMEM;
1670                         break;
1671                 }
1672
1673                 used_obj = handle_to_obj(handle);
1674                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1675                 zs_object_copy(class, free_obj, used_obj);
1676                 obj_idx++;
1677                 /*
1678                  * record_obj updates handle's value to free_obj and it will
1679                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1680                  * breaks synchronization using pin_tag(e,g, zs_free) so
1681                  * let's keep the lock bit.
1682                  */
1683                 free_obj |= BIT(HANDLE_PIN_BIT);
1684                 record_obj(handle, free_obj);
1685                 unpin_tag(handle);
1686                 obj_free(class, used_obj);
1687         }
1688
1689         /* Remember last position in this iteration */
1690         cc->s_page = s_page;
1691         cc->obj_idx = obj_idx;
1692
1693         return ret;
1694 }
1695
1696 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1697 {
1698         int i;
1699         struct zspage *zspage;
1700         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1701
1702         if (!source) {
1703                 fg[0] = ZS_ALMOST_FULL;
1704                 fg[1] = ZS_ALMOST_EMPTY;
1705         }
1706
1707         for (i = 0; i < 2; i++) {
1708                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1709                                                         struct zspage, list);
1710                 if (zspage) {
1711                         VM_BUG_ON(is_zspage_isolated(zspage));
1712                         remove_zspage(class, zspage, fg[i]);
1713                         return zspage;
1714                 }
1715         }
1716
1717         return zspage;
1718 }
1719
1720 /*
1721  * putback_zspage - add @zspage into right class's fullness list
1722  * @class: destination class
1723  * @zspage: target page
1724  *
1725  * Return @zspage's fullness_group
1726  */
1727 static enum fullness_group putback_zspage(struct size_class *class,
1728                         struct zspage *zspage)
1729 {
1730         enum fullness_group fullness;
1731
1732         VM_BUG_ON(is_zspage_isolated(zspage));
1733
1734         fullness = get_fullness_group(class, zspage);
1735         insert_zspage(class, zspage, fullness);
1736         set_zspage_mapping(zspage, class->index, fullness);
1737
1738         return fullness;
1739 }
1740
1741 #ifdef CONFIG_COMPACTION
1742 /*
1743  * To prevent zspage destroy during migration, zspage freeing should
1744  * hold locks of all pages in the zspage.
1745  */
1746 static void lock_zspage(struct zspage *zspage)
1747 {
1748         struct page *page = get_first_page(zspage);
1749
1750         do {
1751                 lock_page(page);
1752         } while ((page = get_next_page(page)) != NULL);
1753 }
1754
1755 static int zs_init_fs_context(struct fs_context *fc)
1756 {
1757         return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1758 }
1759
1760 static struct file_system_type zsmalloc_fs = {
1761         .name           = "zsmalloc",
1762         .init_fs_context = zs_init_fs_context,
1763         .kill_sb        = kill_anon_super,
1764 };
1765
1766 static int zsmalloc_mount(void)
1767 {
1768         int ret = 0;
1769
1770         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1771         if (IS_ERR(zsmalloc_mnt))
1772                 ret = PTR_ERR(zsmalloc_mnt);
1773
1774         return ret;
1775 }
1776
1777 static void zsmalloc_unmount(void)
1778 {
1779         kern_unmount(zsmalloc_mnt);
1780 }
1781
1782 static void migrate_lock_init(struct zspage *zspage)
1783 {
1784         rwlock_init(&zspage->lock);
1785 }
1786
1787 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1788 {
1789         read_lock(&zspage->lock);
1790 }
1791
1792 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1793 {
1794         read_unlock(&zspage->lock);
1795 }
1796
1797 static void migrate_write_lock(struct zspage *zspage)
1798 {
1799         write_lock(&zspage->lock);
1800 }
1801
1802 static void migrate_write_unlock(struct zspage *zspage)
1803 {
1804         write_unlock(&zspage->lock);
1805 }
1806
1807 /* Number of isolated subpage for *page migration* in this zspage */
1808 static void inc_zspage_isolation(struct zspage *zspage)
1809 {
1810         zspage->isolated++;
1811 }
1812
1813 static void dec_zspage_isolation(struct zspage *zspage)
1814 {
1815         zspage->isolated--;
1816 }
1817
1818 static void putback_zspage_deferred(struct zs_pool *pool,
1819                                     struct size_class *class,
1820                                     struct zspage *zspage)
1821 {
1822         enum fullness_group fg;
1823
1824         fg = putback_zspage(class, zspage);
1825         if (fg == ZS_EMPTY)
1826                 schedule_work(&pool->free_work);
1827
1828 }
1829
1830 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1831 {
1832         VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1833         atomic_long_dec(&pool->isolated_pages);
1834         /*
1835          * There's no possibility of racing, since wait_for_isolated_drain()
1836          * checks the isolated count under &class->lock after enqueuing
1837          * on migration_wait.
1838          */
1839         if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1840                 wake_up_all(&pool->migration_wait);
1841 }
1842
1843 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1844                                 struct page *newpage, struct page *oldpage)
1845 {
1846         struct page *page;
1847         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1848         int idx = 0;
1849
1850         page = get_first_page(zspage);
1851         do {
1852                 if (page == oldpage)
1853                         pages[idx] = newpage;
1854                 else
1855                         pages[idx] = page;
1856                 idx++;
1857         } while ((page = get_next_page(page)) != NULL);
1858
1859         create_page_chain(class, zspage, pages);
1860         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1861         if (unlikely(PageHugeObject(oldpage)))
1862                 newpage->index = oldpage->index;
1863         __SetPageMovable(newpage, page_mapping(oldpage));
1864 }
1865
1866 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1867 {
1868         struct zs_pool *pool;
1869         struct size_class *class;
1870         int class_idx;
1871         enum fullness_group fullness;
1872         struct zspage *zspage;
1873         struct address_space *mapping;
1874
1875         /*
1876          * Page is locked so zspage couldn't be destroyed. For detail, look at
1877          * lock_zspage in free_zspage.
1878          */
1879         VM_BUG_ON_PAGE(!PageMovable(page), page);
1880         VM_BUG_ON_PAGE(PageIsolated(page), page);
1881
1882         zspage = get_zspage(page);
1883
1884         /*
1885          * Without class lock, fullness could be stale while class_idx is okay
1886          * because class_idx is constant unless page is freed so we should get
1887          * fullness again under class lock.
1888          */
1889         get_zspage_mapping(zspage, &class_idx, &fullness);
1890         mapping = page_mapping(page);
1891         pool = mapping->private_data;
1892         class = pool->size_class[class_idx];
1893
1894         spin_lock(&class->lock);
1895         if (get_zspage_inuse(zspage) == 0) {
1896                 spin_unlock(&class->lock);
1897                 return false;
1898         }
1899
1900         /* zspage is isolated for object migration */
1901         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1902                 spin_unlock(&class->lock);
1903                 return false;
1904         }
1905
1906         /*
1907          * If this is first time isolation for the zspage, isolate zspage from
1908          * size_class to prevent further object allocation from the zspage.
1909          */
1910         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1911                 get_zspage_mapping(zspage, &class_idx, &fullness);
1912                 atomic_long_inc(&pool->isolated_pages);
1913                 remove_zspage(class, zspage, fullness);
1914         }
1915
1916         inc_zspage_isolation(zspage);
1917         spin_unlock(&class->lock);
1918
1919         return true;
1920 }
1921
1922 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1923                 struct page *page, enum migrate_mode mode)
1924 {
1925         struct zs_pool *pool;
1926         struct size_class *class;
1927         int class_idx;
1928         enum fullness_group fullness;
1929         struct zspage *zspage;
1930         struct page *dummy;
1931         void *s_addr, *d_addr, *addr;
1932         int offset, pos;
1933         unsigned long handle, head;
1934         unsigned long old_obj, new_obj;
1935         unsigned int obj_idx;
1936         int ret = -EAGAIN;
1937
1938         /*
1939          * We cannot support the _NO_COPY case here, because copy needs to
1940          * happen under the zs lock, which does not work with
1941          * MIGRATE_SYNC_NO_COPY workflow.
1942          */
1943         if (mode == MIGRATE_SYNC_NO_COPY)
1944                 return -EINVAL;
1945
1946         VM_BUG_ON_PAGE(!PageMovable(page), page);
1947         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1948
1949         zspage = get_zspage(page);
1950
1951         /* Concurrent compactor cannot migrate any subpage in zspage */
1952         migrate_write_lock(zspage);
1953         get_zspage_mapping(zspage, &class_idx, &fullness);
1954         pool = mapping->private_data;
1955         class = pool->size_class[class_idx];
1956         offset = get_first_obj_offset(page);
1957
1958         spin_lock(&class->lock);
1959         if (!get_zspage_inuse(zspage)) {
1960                 /*
1961                  * Set "offset" to end of the page so that every loops
1962                  * skips unnecessary object scanning.
1963                  */
1964                 offset = PAGE_SIZE;
1965         }
1966
1967         pos = offset;
1968         s_addr = kmap_atomic(page);
1969         while (pos < PAGE_SIZE) {
1970                 head = obj_to_head(page, s_addr + pos);
1971                 if (head & OBJ_ALLOCATED_TAG) {
1972                         handle = head & ~OBJ_ALLOCATED_TAG;
1973                         if (!trypin_tag(handle))
1974                                 goto unpin_objects;
1975                 }
1976                 pos += class->size;
1977         }
1978
1979         /*
1980          * Here, any user cannot access all objects in the zspage so let's move.
1981          */
1982         d_addr = kmap_atomic(newpage);
1983         memcpy(d_addr, s_addr, PAGE_SIZE);
1984         kunmap_atomic(d_addr);
1985
1986         for (addr = s_addr + offset; addr < s_addr + pos;
1987                                         addr += class->size) {
1988                 head = obj_to_head(page, addr);
1989                 if (head & OBJ_ALLOCATED_TAG) {
1990                         handle = head & ~OBJ_ALLOCATED_TAG;
1991                         if (!testpin_tag(handle))
1992                                 BUG();
1993
1994                         old_obj = handle_to_obj(handle);
1995                         obj_to_location(old_obj, &dummy, &obj_idx);
1996                         new_obj = (unsigned long)location_to_obj(newpage,
1997                                                                 obj_idx);
1998                         new_obj |= BIT(HANDLE_PIN_BIT);
1999                         record_obj(handle, new_obj);
2000                 }
2001         }
2002
2003         replace_sub_page(class, zspage, newpage, page);
2004         get_page(newpage);
2005
2006         dec_zspage_isolation(zspage);
2007
2008         /*
2009          * Page migration is done so let's putback isolated zspage to
2010          * the list if @page is final isolated subpage in the zspage.
2011          */
2012         if (!is_zspage_isolated(zspage)) {
2013                 /*
2014                  * We cannot race with zs_destroy_pool() here because we wait
2015                  * for isolation to hit zero before we start destroying.
2016                  * Also, we ensure that everyone can see pool->destroying before
2017                  * we start waiting.
2018                  */
2019                 putback_zspage_deferred(pool, class, zspage);
2020                 zs_pool_dec_isolated(pool);
2021         }
2022
2023         if (page_zone(newpage) != page_zone(page)) {
2024                 dec_zone_page_state(page, NR_ZSPAGES);
2025                 inc_zone_page_state(newpage, NR_ZSPAGES);
2026         }
2027
2028         reset_page(page);
2029         put_page(page);
2030         page = newpage;
2031
2032         ret = MIGRATEPAGE_SUCCESS;
2033 unpin_objects:
2034         for (addr = s_addr + offset; addr < s_addr + pos;
2035                                                 addr += class->size) {
2036                 head = obj_to_head(page, addr);
2037                 if (head & OBJ_ALLOCATED_TAG) {
2038                         handle = head & ~OBJ_ALLOCATED_TAG;
2039                         if (!testpin_tag(handle))
2040                                 BUG();
2041                         unpin_tag(handle);
2042                 }
2043         }
2044         kunmap_atomic(s_addr);
2045         spin_unlock(&class->lock);
2046         migrate_write_unlock(zspage);
2047
2048         return ret;
2049 }
2050
2051 static void zs_page_putback(struct page *page)
2052 {
2053         struct zs_pool *pool;
2054         struct size_class *class;
2055         int class_idx;
2056         enum fullness_group fg;
2057         struct address_space *mapping;
2058         struct zspage *zspage;
2059
2060         VM_BUG_ON_PAGE(!PageMovable(page), page);
2061         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2062
2063         zspage = get_zspage(page);
2064         get_zspage_mapping(zspage, &class_idx, &fg);
2065         mapping = page_mapping(page);
2066         pool = mapping->private_data;
2067         class = pool->size_class[class_idx];
2068
2069         spin_lock(&class->lock);
2070         dec_zspage_isolation(zspage);
2071         if (!is_zspage_isolated(zspage)) {
2072                 /*
2073                  * Due to page_lock, we cannot free zspage immediately
2074                  * so let's defer.
2075                  */
2076                 putback_zspage_deferred(pool, class, zspage);
2077                 zs_pool_dec_isolated(pool);
2078         }
2079         spin_unlock(&class->lock);
2080 }
2081
2082 static const struct address_space_operations zsmalloc_aops = {
2083         .isolate_page = zs_page_isolate,
2084         .migratepage = zs_page_migrate,
2085         .putback_page = zs_page_putback,
2086 };
2087
2088 static int zs_register_migration(struct zs_pool *pool)
2089 {
2090         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2091         if (IS_ERR(pool->inode)) {
2092                 pool->inode = NULL;
2093                 return 1;
2094         }
2095
2096         pool->inode->i_mapping->private_data = pool;
2097         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2098         return 0;
2099 }
2100
2101 static bool pool_isolated_are_drained(struct zs_pool *pool)
2102 {
2103         return atomic_long_read(&pool->isolated_pages) == 0;
2104 }
2105
2106 /* Function for resolving migration */
2107 static void wait_for_isolated_drain(struct zs_pool *pool)
2108 {
2109
2110         /*
2111          * We're in the process of destroying the pool, so there are no
2112          * active allocations. zs_page_isolate() fails for completely free
2113          * zspages, so we need only wait for the zs_pool's isolated
2114          * count to hit zero.
2115          */
2116         wait_event(pool->migration_wait,
2117                    pool_isolated_are_drained(pool));
2118 }
2119
2120 static void zs_unregister_migration(struct zs_pool *pool)
2121 {
2122         pool->destroying = true;
2123         /*
2124          * We need a memory barrier here to ensure global visibility of
2125          * pool->destroying. Thus pool->isolated pages will either be 0 in which
2126          * case we don't care, or it will be > 0 and pool->destroying will
2127          * ensure that we wake up once isolation hits 0.
2128          */
2129         smp_mb();
2130         wait_for_isolated_drain(pool); /* This can block */
2131         flush_work(&pool->free_work);
2132         iput(pool->inode);
2133 }
2134
2135 /*
2136  * Caller should hold page_lock of all pages in the zspage
2137  * In here, we cannot use zspage meta data.
2138  */
2139 static void async_free_zspage(struct work_struct *work)
2140 {
2141         int i;
2142         struct size_class *class;
2143         unsigned int class_idx;
2144         enum fullness_group fullness;
2145         struct zspage *zspage, *tmp;
2146         LIST_HEAD(free_pages);
2147         struct zs_pool *pool = container_of(work, struct zs_pool,
2148                                         free_work);
2149
2150         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2151                 class = pool->size_class[i];
2152                 if (class->index != i)
2153                         continue;
2154
2155                 spin_lock(&class->lock);
2156                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2157                 spin_unlock(&class->lock);
2158         }
2159
2160
2161         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2162                 list_del(&zspage->list);
2163                 lock_zspage(zspage);
2164
2165                 get_zspage_mapping(zspage, &class_idx, &fullness);
2166                 VM_BUG_ON(fullness != ZS_EMPTY);
2167                 class = pool->size_class[class_idx];
2168                 spin_lock(&class->lock);
2169                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2170                 spin_unlock(&class->lock);
2171         }
2172 };
2173
2174 static void kick_deferred_free(struct zs_pool *pool)
2175 {
2176         schedule_work(&pool->free_work);
2177 }
2178
2179 static void init_deferred_free(struct zs_pool *pool)
2180 {
2181         INIT_WORK(&pool->free_work, async_free_zspage);
2182 }
2183
2184 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2185 {
2186         struct page *page = get_first_page(zspage);
2187
2188         do {
2189                 WARN_ON(!trylock_page(page));
2190                 __SetPageMovable(page, pool->inode->i_mapping);
2191                 unlock_page(page);
2192         } while ((page = get_next_page(page)) != NULL);
2193 }
2194 #endif
2195
2196 /*
2197  *
2198  * Based on the number of unused allocated objects calculate
2199  * and return the number of pages that we can free.
2200  */
2201 static unsigned long zs_can_compact(struct size_class *class)
2202 {
2203         unsigned long obj_wasted;
2204         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2205         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2206
2207         if (obj_allocated <= obj_used)
2208                 return 0;
2209
2210         obj_wasted = obj_allocated - obj_used;
2211         obj_wasted /= class->objs_per_zspage;
2212
2213         return obj_wasted * class->pages_per_zspage;
2214 }
2215
2216 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2217 {
2218         struct zs_compact_control cc;
2219         struct zspage *src_zspage;
2220         struct zspage *dst_zspage = NULL;
2221
2222         spin_lock(&class->lock);
2223         while ((src_zspage = isolate_zspage(class, true))) {
2224
2225                 if (!zs_can_compact(class))
2226                         break;
2227
2228                 cc.obj_idx = 0;
2229                 cc.s_page = get_first_page(src_zspage);
2230
2231                 while ((dst_zspage = isolate_zspage(class, false))) {
2232                         cc.d_page = get_first_page(dst_zspage);
2233                         /*
2234                          * If there is no more space in dst_page, resched
2235                          * and see if anyone had allocated another zspage.
2236                          */
2237                         if (!migrate_zspage(pool, class, &cc))
2238                                 break;
2239
2240                         putback_zspage(class, dst_zspage);
2241                 }
2242
2243                 /* Stop if we couldn't find slot */
2244                 if (dst_zspage == NULL)
2245                         break;
2246
2247                 putback_zspage(class, dst_zspage);
2248                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2249                         free_zspage(pool, class, src_zspage);
2250                         pool->stats.pages_compacted += class->pages_per_zspage;
2251                 }
2252                 spin_unlock(&class->lock);
2253                 cond_resched();
2254                 spin_lock(&class->lock);
2255         }
2256
2257         if (src_zspage)
2258                 putback_zspage(class, src_zspage);
2259
2260         spin_unlock(&class->lock);
2261 }
2262
2263 unsigned long zs_compact(struct zs_pool *pool)
2264 {
2265         int i;
2266         struct size_class *class;
2267
2268         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2269                 class = pool->size_class[i];
2270                 if (!class)
2271                         continue;
2272                 if (class->index != i)
2273                         continue;
2274                 __zs_compact(pool, class);
2275         }
2276
2277         return pool->stats.pages_compacted;
2278 }
2279 EXPORT_SYMBOL_GPL(zs_compact);
2280
2281 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2282 {
2283         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2284 }
2285 EXPORT_SYMBOL_GPL(zs_pool_stats);
2286
2287 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2288                 struct shrink_control *sc)
2289 {
2290         unsigned long pages_freed;
2291         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2292                         shrinker);
2293
2294         pages_freed = pool->stats.pages_compacted;
2295         /*
2296          * Compact classes and calculate compaction delta.
2297          * Can run concurrently with a manually triggered
2298          * (by user) compaction.
2299          */
2300         pages_freed = zs_compact(pool) - pages_freed;
2301
2302         return pages_freed ? pages_freed : SHRINK_STOP;
2303 }
2304
2305 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2306                 struct shrink_control *sc)
2307 {
2308         int i;
2309         struct size_class *class;
2310         unsigned long pages_to_free = 0;
2311         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2312                         shrinker);
2313
2314         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2315                 class = pool->size_class[i];
2316                 if (!class)
2317                         continue;
2318                 if (class->index != i)
2319                         continue;
2320
2321                 pages_to_free += zs_can_compact(class);
2322         }
2323
2324         return pages_to_free;
2325 }
2326
2327 static void zs_unregister_shrinker(struct zs_pool *pool)
2328 {
2329         unregister_shrinker(&pool->shrinker);
2330 }
2331
2332 static int zs_register_shrinker(struct zs_pool *pool)
2333 {
2334         pool->shrinker.scan_objects = zs_shrinker_scan;
2335         pool->shrinker.count_objects = zs_shrinker_count;
2336         pool->shrinker.batch = 0;
2337         pool->shrinker.seeks = DEFAULT_SEEKS;
2338
2339         return register_shrinker(&pool->shrinker);
2340 }
2341
2342 /**
2343  * zs_create_pool - Creates an allocation pool to work from.
2344  * @name: pool name to be created
2345  *
2346  * This function must be called before anything when using
2347  * the zsmalloc allocator.
2348  *
2349  * On success, a pointer to the newly created pool is returned,
2350  * otherwise NULL.
2351  */
2352 struct zs_pool *zs_create_pool(const char *name)
2353 {
2354         int i;
2355         struct zs_pool *pool;
2356         struct size_class *prev_class = NULL;
2357
2358         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2359         if (!pool)
2360                 return NULL;
2361
2362         init_deferred_free(pool);
2363
2364         pool->name = kstrdup(name, GFP_KERNEL);
2365         if (!pool->name)
2366                 goto err;
2367
2368 #ifdef CONFIG_COMPACTION
2369         init_waitqueue_head(&pool->migration_wait);
2370 #endif
2371
2372         if (create_cache(pool))
2373                 goto err;
2374
2375         /*
2376          * Iterate reversely, because, size of size_class that we want to use
2377          * for merging should be larger or equal to current size.
2378          */
2379         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2380                 int size;
2381                 int pages_per_zspage;
2382                 int objs_per_zspage;
2383                 struct size_class *class;
2384                 int fullness = 0;
2385
2386                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2387                 if (size > ZS_MAX_ALLOC_SIZE)
2388                         size = ZS_MAX_ALLOC_SIZE;
2389                 pages_per_zspage = get_pages_per_zspage(size);
2390                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2391
2392                 /*
2393                  * We iterate from biggest down to smallest classes,
2394                  * so huge_class_size holds the size of the first huge
2395                  * class. Any object bigger than or equal to that will
2396                  * endup in the huge class.
2397                  */
2398                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2399                                 !huge_class_size) {
2400                         huge_class_size = size;
2401                         /*
2402                          * The object uses ZS_HANDLE_SIZE bytes to store the
2403                          * handle. We need to subtract it, because zs_malloc()
2404                          * unconditionally adds handle size before it performs
2405                          * size class search - so object may be smaller than
2406                          * huge class size, yet it still can end up in the huge
2407                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2408                          * right before class lookup.
2409                          */
2410                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2411                 }
2412
2413                 /*
2414                  * size_class is used for normal zsmalloc operation such
2415                  * as alloc/free for that size. Although it is natural that we
2416                  * have one size_class for each size, there is a chance that we
2417                  * can get more memory utilization if we use one size_class for
2418                  * many different sizes whose size_class have same
2419                  * characteristics. So, we makes size_class point to
2420                  * previous size_class if possible.
2421                  */
2422                 if (prev_class) {
2423                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2424                                 pool->size_class[i] = prev_class;
2425                                 continue;
2426                         }
2427                 }
2428
2429                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2430                 if (!class)
2431                         goto err;
2432
2433                 class->size = size;
2434                 class->index = i;
2435                 class->pages_per_zspage = pages_per_zspage;
2436                 class->objs_per_zspage = objs_per_zspage;
2437                 spin_lock_init(&class->lock);
2438                 pool->size_class[i] = class;
2439                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2440                                                         fullness++)
2441                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2442
2443                 prev_class = class;
2444         }
2445
2446         /* debug only, don't abort if it fails */
2447         zs_pool_stat_create(pool, name);
2448
2449         if (zs_register_migration(pool))
2450                 goto err;
2451
2452         /*
2453          * Not critical since shrinker is only used to trigger internal
2454          * defragmentation of the pool which is pretty optional thing.  If
2455          * registration fails we still can use the pool normally and user can
2456          * trigger compaction manually. Thus, ignore return code.
2457          */
2458         zs_register_shrinker(pool);
2459
2460         return pool;
2461
2462 err:
2463         zs_destroy_pool(pool);
2464         return NULL;
2465 }
2466 EXPORT_SYMBOL_GPL(zs_create_pool);
2467
2468 void zs_destroy_pool(struct zs_pool *pool)
2469 {
2470         int i;
2471
2472         zs_unregister_shrinker(pool);
2473         zs_unregister_migration(pool);
2474         zs_pool_stat_destroy(pool);
2475
2476         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2477                 int fg;
2478                 struct size_class *class = pool->size_class[i];
2479
2480                 if (!class)
2481                         continue;
2482
2483                 if (class->index != i)
2484                         continue;
2485
2486                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2487                         if (!list_empty(&class->fullness_list[fg])) {
2488                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2489                                         class->size, fg);
2490                         }
2491                 }
2492                 kfree(class);
2493         }
2494
2495         destroy_cache(pool);
2496         kfree(pool->name);
2497         kfree(pool);
2498 }
2499 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2500
2501 static int __init zs_init(void)
2502 {
2503         int ret;
2504
2505         ret = zsmalloc_mount();
2506         if (ret)
2507                 goto out;
2508
2509         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2510                                 zs_cpu_prepare, zs_cpu_dead);
2511         if (ret)
2512                 goto hp_setup_fail;
2513
2514 #ifdef CONFIG_ZPOOL
2515         zpool_register_driver(&zs_zpool_driver);
2516 #endif
2517
2518         zs_stat_init();
2519
2520         return 0;
2521
2522 hp_setup_fail:
2523         zsmalloc_unmount();
2524 out:
2525         return ret;
2526 }
2527
2528 static void __exit zs_exit(void)
2529 {
2530 #ifdef CONFIG_ZPOOL
2531         zpool_unregister_driver(&zs_zpool_driver);
2532 #endif
2533         zsmalloc_unmount();
2534         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2535
2536         zs_stat_exit();
2537 }
2538
2539 module_init(zs_init);
2540 module_exit(zs_exit);
2541
2542 MODULE_LICENSE("Dual BSD/GPL");
2543 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");