Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50
51 DEFINE_SPINLOCK(swap_lock);
52 static unsigned int nr_swapfiles;
53 atomic_long_t nr_swap_pages;
54 /*
55  * Some modules use swappable objects and may try to swap them out under
56  * memory pressure (via the shrinker). Before doing so, they may wish to
57  * check to see if any swap space is available.
58  */
59 EXPORT_SYMBOL_GPL(nr_swap_pages);
60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
61 long total_swap_pages;
62 static int least_priority = -1;
63
64 static const char Bad_file[] = "Bad swap file entry ";
65 static const char Unused_file[] = "Unused swap file entry ";
66 static const char Bad_offset[] = "Bad swap offset entry ";
67 static const char Unused_offset[] = "Unused swap offset entry ";
68
69 /*
70  * all active swap_info_structs
71  * protected with swap_lock, and ordered by priority.
72  */
73 PLIST_HEAD(swap_active_head);
74
75 /*
76  * all available (active, not full) swap_info_structs
77  * protected with swap_avail_lock, ordered by priority.
78  * This is used by get_swap_page() instead of swap_active_head
79  * because swap_active_head includes all swap_info_structs,
80  * but get_swap_page() doesn't need to look at full ones.
81  * This uses its own lock instead of swap_lock because when a
82  * swap_info_struct changes between not-full/full, it needs to
83  * add/remove itself to/from this list, but the swap_info_struct->lock
84  * is held and the locking order requires swap_lock to be taken
85  * before any swap_info_struct->lock.
86  */
87 static struct plist_head *swap_avail_heads;
88 static DEFINE_SPINLOCK(swap_avail_lock);
89
90 struct swap_info_struct *swap_info[MAX_SWAPFILES];
91
92 static DEFINE_MUTEX(swapon_mutex);
93
94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
95 /* Activity counter to indicate that a swapon or swapoff has occurred */
96 static atomic_t proc_poll_event = ATOMIC_INIT(0);
97
98 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
99
100 static struct swap_info_struct *swap_type_to_swap_info(int type)
101 {
102         if (type >= READ_ONCE(nr_swapfiles))
103                 return NULL;
104
105         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
106         return READ_ONCE(swap_info[type]);
107 }
108
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
112 }
113
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY             0x1
116 /*
117  * Reclaim the swap entry if there are no more mappings of the
118  * corresponding page
119  */
120 #define TTRS_UNMAPPED           0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL               0x4
123
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126                                  unsigned long offset, unsigned long flags)
127 {
128         swp_entry_t entry = swp_entry(si->type, offset);
129         struct page *page;
130         int ret = 0;
131
132         page = find_get_page(swap_address_space(entry), offset);
133         if (!page)
134                 return 0;
135         /*
136          * When this function is called from scan_swap_map_slots() and it's
137          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138          * here. We have to use trylock for avoiding deadlock. This is a special
139          * case and you should use try_to_free_swap() with explicit lock_page()
140          * in usual operations.
141          */
142         if (trylock_page(page)) {
143                 if ((flags & TTRS_ANYWAY) ||
144                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146                         ret = try_to_free_swap(page);
147                 unlock_page(page);
148         }
149         put_page(page);
150         return ret;
151 }
152
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155         struct rb_node *rb = rb_first(&sis->swap_extent_root);
156         return rb_entry(rb, struct swap_extent, rb_node);
157 }
158
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161         struct rb_node *rb = rb_next(&se->rb_node);
162         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164
165 /*
166  * swapon tell device that all the old swap contents can be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171         struct swap_extent *se;
172         sector_t start_block;
173         sector_t nr_blocks;
174         int err = 0;
175
176         /* Do not discard the swap header page! */
177         se = first_se(si);
178         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180         if (nr_blocks) {
181                 err = blkdev_issue_discard(si->bdev, start_block,
182                                 nr_blocks, GFP_KERNEL, 0);
183                 if (err)
184                         return err;
185                 cond_resched();
186         }
187
188         for (se = next_se(se); se; se = next_se(se)) {
189                 start_block = se->start_block << (PAGE_SHIFT - 9);
190                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191
192                 err = blkdev_issue_discard(si->bdev, start_block,
193                                 nr_blocks, GFP_KERNEL, 0);
194                 if (err)
195                         break;
196
197                 cond_resched();
198         }
199         return err;             /* That will often be -EOPNOTSUPP */
200 }
201
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205         struct swap_extent *se;
206         struct rb_node *rb;
207
208         rb = sis->swap_extent_root.rb_node;
209         while (rb) {
210                 se = rb_entry(rb, struct swap_extent, rb_node);
211                 if (offset < se->start_page)
212                         rb = rb->rb_left;
213                 else if (offset >= se->start_page + se->nr_pages)
214                         rb = rb->rb_right;
215                 else
216                         return se;
217         }
218         /* It *must* be present */
219         BUG();
220 }
221
222 sector_t swap_page_sector(struct page *page)
223 {
224         struct swap_info_struct *sis = page_swap_info(page);
225         struct swap_extent *se;
226         sector_t sector;
227         pgoff_t offset;
228
229         offset = __page_file_index(page);
230         se = offset_to_swap_extent(sis, offset);
231         sector = se->start_block + (offset - se->start_page);
232         return sector << (PAGE_SHIFT - 9);
233 }
234
235 /*
236  * swap allocation tell device that a cluster of swap can now be discarded,
237  * to allow the swap device to optimize its wear-levelling.
238  */
239 static void discard_swap_cluster(struct swap_info_struct *si,
240                                  pgoff_t start_page, pgoff_t nr_pages)
241 {
242         struct swap_extent *se = offset_to_swap_extent(si, start_page);
243
244         while (nr_pages) {
245                 pgoff_t offset = start_page - se->start_page;
246                 sector_t start_block = se->start_block + offset;
247                 sector_t nr_blocks = se->nr_pages - offset;
248
249                 if (nr_blocks > nr_pages)
250                         nr_blocks = nr_pages;
251                 start_page += nr_blocks;
252                 nr_pages -= nr_blocks;
253
254                 start_block <<= PAGE_SHIFT - 9;
255                 nr_blocks <<= PAGE_SHIFT - 9;
256                 if (blkdev_issue_discard(si->bdev, start_block,
257                                         nr_blocks, GFP_NOIO, 0))
258                         break;
259
260                 se = next_se(se);
261         }
262 }
263
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
266
267 #define swap_entry_size(size)   (size)
268 #else
269 #define SWAPFILE_CLUSTER        256
270
271 /*
272  * Define swap_entry_size() as constant to let compiler to optimize
273  * out some code if !CONFIG_THP_SWAP
274  */
275 #define swap_entry_size(size)   1
276 #endif
277 #define LATENCY_LIMIT           256
278
279 static inline void cluster_set_flag(struct swap_cluster_info *info,
280         unsigned int flag)
281 {
282         info->flags = flag;
283 }
284
285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
286 {
287         return info->data;
288 }
289
290 static inline void cluster_set_count(struct swap_cluster_info *info,
291                                      unsigned int c)
292 {
293         info->data = c;
294 }
295
296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297                                          unsigned int c, unsigned int f)
298 {
299         info->flags = f;
300         info->data = c;
301 }
302
303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
304 {
305         return info->data;
306 }
307
308 static inline void cluster_set_next(struct swap_cluster_info *info,
309                                     unsigned int n)
310 {
311         info->data = n;
312 }
313
314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315                                          unsigned int n, unsigned int f)
316 {
317         info->flags = f;
318         info->data = n;
319 }
320
321 static inline bool cluster_is_free(struct swap_cluster_info *info)
322 {
323         return info->flags & CLUSTER_FLAG_FREE;
324 }
325
326 static inline bool cluster_is_null(struct swap_cluster_info *info)
327 {
328         return info->flags & CLUSTER_FLAG_NEXT_NULL;
329 }
330
331 static inline void cluster_set_null(struct swap_cluster_info *info)
332 {
333         info->flags = CLUSTER_FLAG_NEXT_NULL;
334         info->data = 0;
335 }
336
337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
338 {
339         if (IS_ENABLED(CONFIG_THP_SWAP))
340                 return info->flags & CLUSTER_FLAG_HUGE;
341         return false;
342 }
343
344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
345 {
346         info->flags &= ~CLUSTER_FLAG_HUGE;
347 }
348
349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350                                                      unsigned long offset)
351 {
352         struct swap_cluster_info *ci;
353
354         ci = si->cluster_info;
355         if (ci) {
356                 ci += offset / SWAPFILE_CLUSTER;
357                 spin_lock(&ci->lock);
358         }
359         return ci;
360 }
361
362 static inline void unlock_cluster(struct swap_cluster_info *ci)
363 {
364         if (ci)
365                 spin_unlock(&ci->lock);
366 }
367
368 /*
369  * Determine the locking method in use for this device.  Return
370  * swap_cluster_info if SSD-style cluster-based locking is in place.
371  */
372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373                 struct swap_info_struct *si, unsigned long offset)
374 {
375         struct swap_cluster_info *ci;
376
377         /* Try to use fine-grained SSD-style locking if available: */
378         ci = lock_cluster(si, offset);
379         /* Otherwise, fall back to traditional, coarse locking: */
380         if (!ci)
381                 spin_lock(&si->lock);
382
383         return ci;
384 }
385
386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387                                                struct swap_cluster_info *ci)
388 {
389         if (ci)
390                 unlock_cluster(ci);
391         else
392                 spin_unlock(&si->lock);
393 }
394
395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
396 {
397         return cluster_is_null(&list->head);
398 }
399
400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401 {
402         return cluster_next(&list->head);
403 }
404
405 static void cluster_list_init(struct swap_cluster_list *list)
406 {
407         cluster_set_null(&list->head);
408         cluster_set_null(&list->tail);
409 }
410
411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412                                   struct swap_cluster_info *ci,
413                                   unsigned int idx)
414 {
415         if (cluster_list_empty(list)) {
416                 cluster_set_next_flag(&list->head, idx, 0);
417                 cluster_set_next_flag(&list->tail, idx, 0);
418         } else {
419                 struct swap_cluster_info *ci_tail;
420                 unsigned int tail = cluster_next(&list->tail);
421
422                 /*
423                  * Nested cluster lock, but both cluster locks are
424                  * only acquired when we held swap_info_struct->lock
425                  */
426                 ci_tail = ci + tail;
427                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428                 cluster_set_next(ci_tail, idx);
429                 spin_unlock(&ci_tail->lock);
430                 cluster_set_next_flag(&list->tail, idx, 0);
431         }
432 }
433
434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435                                            struct swap_cluster_info *ci)
436 {
437         unsigned int idx;
438
439         idx = cluster_next(&list->head);
440         if (cluster_next(&list->tail) == idx) {
441                 cluster_set_null(&list->head);
442                 cluster_set_null(&list->tail);
443         } else
444                 cluster_set_next_flag(&list->head,
445                                       cluster_next(&ci[idx]), 0);
446
447         return idx;
448 }
449
450 /* Add a cluster to discard list and schedule it to do discard */
451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452                 unsigned int idx)
453 {
454         /*
455          * If scan_swap_map() can't find a free cluster, it will check
456          * si->swap_map directly. To make sure the discarding cluster isn't
457          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
458          * will be cleared after discard
459          */
460         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462
463         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464
465         schedule_work(&si->discard_work);
466 }
467
468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470         struct swap_cluster_info *ci = si->cluster_info;
471
472         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473         cluster_list_add_tail(&si->free_clusters, ci, idx);
474 }
475
476 /*
477  * Doing discard actually. After a cluster discard is finished, the cluster
478  * will be added to free cluster list. caller should hold si->lock.
479 */
480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
481 {
482         struct swap_cluster_info *info, *ci;
483         unsigned int idx;
484
485         info = si->cluster_info;
486
487         while (!cluster_list_empty(&si->discard_clusters)) {
488                 idx = cluster_list_del_first(&si->discard_clusters, info);
489                 spin_unlock(&si->lock);
490
491                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492                                 SWAPFILE_CLUSTER);
493
494                 spin_lock(&si->lock);
495                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496                 __free_cluster(si, idx);
497                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498                                 0, SWAPFILE_CLUSTER);
499                 unlock_cluster(ci);
500         }
501 }
502
503 static void swap_discard_work(struct work_struct *work)
504 {
505         struct swap_info_struct *si;
506
507         si = container_of(work, struct swap_info_struct, discard_work);
508
509         spin_lock(&si->lock);
510         swap_do_scheduled_discard(si);
511         spin_unlock(&si->lock);
512 }
513
514 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
515 {
516         struct swap_cluster_info *ci = si->cluster_info;
517
518         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
519         cluster_list_del_first(&si->free_clusters, ci);
520         cluster_set_count_flag(ci + idx, 0, 0);
521 }
522
523 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
524 {
525         struct swap_cluster_info *ci = si->cluster_info + idx;
526
527         VM_BUG_ON(cluster_count(ci) != 0);
528         /*
529          * If the swap is discardable, prepare discard the cluster
530          * instead of free it immediately. The cluster will be freed
531          * after discard.
532          */
533         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
534             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
535                 swap_cluster_schedule_discard(si, idx);
536                 return;
537         }
538
539         __free_cluster(si, idx);
540 }
541
542 /*
543  * The cluster corresponding to page_nr will be used. The cluster will be
544  * removed from free cluster list and its usage counter will be increased.
545  */
546 static void inc_cluster_info_page(struct swap_info_struct *p,
547         struct swap_cluster_info *cluster_info, unsigned long page_nr)
548 {
549         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
550
551         if (!cluster_info)
552                 return;
553         if (cluster_is_free(&cluster_info[idx]))
554                 alloc_cluster(p, idx);
555
556         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
557         cluster_set_count(&cluster_info[idx],
558                 cluster_count(&cluster_info[idx]) + 1);
559 }
560
561 /*
562  * The cluster corresponding to page_nr decreases one usage. If the usage
563  * counter becomes 0, which means no page in the cluster is in using, we can
564  * optionally discard the cluster and add it to free cluster list.
565  */
566 static void dec_cluster_info_page(struct swap_info_struct *p,
567         struct swap_cluster_info *cluster_info, unsigned long page_nr)
568 {
569         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
570
571         if (!cluster_info)
572                 return;
573
574         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
575         cluster_set_count(&cluster_info[idx],
576                 cluster_count(&cluster_info[idx]) - 1);
577
578         if (cluster_count(&cluster_info[idx]) == 0)
579                 free_cluster(p, idx);
580 }
581
582 /*
583  * It's possible scan_swap_map() uses a free cluster in the middle of free
584  * cluster list. Avoiding such abuse to avoid list corruption.
585  */
586 static bool
587 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
588         unsigned long offset)
589 {
590         struct percpu_cluster *percpu_cluster;
591         bool conflict;
592
593         offset /= SWAPFILE_CLUSTER;
594         conflict = !cluster_list_empty(&si->free_clusters) &&
595                 offset != cluster_list_first(&si->free_clusters) &&
596                 cluster_is_free(&si->cluster_info[offset]);
597
598         if (!conflict)
599                 return false;
600
601         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
602         cluster_set_null(&percpu_cluster->index);
603         return true;
604 }
605
606 /*
607  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
608  * might involve allocating a new cluster for current CPU too.
609  */
610 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
611         unsigned long *offset, unsigned long *scan_base)
612 {
613         struct percpu_cluster *cluster;
614         struct swap_cluster_info *ci;
615         unsigned long tmp, max;
616
617 new_cluster:
618         cluster = this_cpu_ptr(si->percpu_cluster);
619         if (cluster_is_null(&cluster->index)) {
620                 if (!cluster_list_empty(&si->free_clusters)) {
621                         cluster->index = si->free_clusters.head;
622                         cluster->next = cluster_next(&cluster->index) *
623                                         SWAPFILE_CLUSTER;
624                 } else if (!cluster_list_empty(&si->discard_clusters)) {
625                         /*
626                          * we don't have free cluster but have some clusters in
627                          * discarding, do discard now and reclaim them, then
628                          * reread cluster_next_cpu since we dropped si->lock
629                          */
630                         swap_do_scheduled_discard(si);
631                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
632                         *offset = *scan_base;
633                         goto new_cluster;
634                 } else
635                         return false;
636         }
637
638         /*
639          * Other CPUs can use our cluster if they can't find a free cluster,
640          * check if there is still free entry in the cluster
641          */
642         tmp = cluster->next;
643         max = min_t(unsigned long, si->max,
644                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
645         if (tmp < max) {
646                 ci = lock_cluster(si, tmp);
647                 while (tmp < max) {
648                         if (!si->swap_map[tmp])
649                                 break;
650                         tmp++;
651                 }
652                 unlock_cluster(ci);
653         }
654         if (tmp >= max) {
655                 cluster_set_null(&cluster->index);
656                 goto new_cluster;
657         }
658         cluster->next = tmp + 1;
659         *offset = tmp;
660         *scan_base = tmp;
661         return true;
662 }
663
664 static void __del_from_avail_list(struct swap_info_struct *p)
665 {
666         int nid;
667
668         for_each_node(nid)
669                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
670 }
671
672 static void del_from_avail_list(struct swap_info_struct *p)
673 {
674         spin_lock(&swap_avail_lock);
675         __del_from_avail_list(p);
676         spin_unlock(&swap_avail_lock);
677 }
678
679 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
680                              unsigned int nr_entries)
681 {
682         unsigned int end = offset + nr_entries - 1;
683
684         if (offset == si->lowest_bit)
685                 si->lowest_bit += nr_entries;
686         if (end == si->highest_bit)
687                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
688         si->inuse_pages += nr_entries;
689         if (si->inuse_pages == si->pages) {
690                 si->lowest_bit = si->max;
691                 si->highest_bit = 0;
692                 del_from_avail_list(si);
693         }
694 }
695
696 static void add_to_avail_list(struct swap_info_struct *p)
697 {
698         int nid;
699
700         spin_lock(&swap_avail_lock);
701         for_each_node(nid) {
702                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
703                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
704         }
705         spin_unlock(&swap_avail_lock);
706 }
707
708 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
709                             unsigned int nr_entries)
710 {
711         unsigned long begin = offset;
712         unsigned long end = offset + nr_entries - 1;
713         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
714
715         if (offset < si->lowest_bit)
716                 si->lowest_bit = offset;
717         if (end > si->highest_bit) {
718                 bool was_full = !si->highest_bit;
719
720                 WRITE_ONCE(si->highest_bit, end);
721                 if (was_full && (si->flags & SWP_WRITEOK))
722                         add_to_avail_list(si);
723         }
724         atomic_long_add(nr_entries, &nr_swap_pages);
725         si->inuse_pages -= nr_entries;
726         if (si->flags & SWP_BLKDEV)
727                 swap_slot_free_notify =
728                         si->bdev->bd_disk->fops->swap_slot_free_notify;
729         else
730                 swap_slot_free_notify = NULL;
731         while (offset <= end) {
732                 arch_swap_invalidate_page(si->type, offset);
733                 frontswap_invalidate_page(si->type, offset);
734                 if (swap_slot_free_notify)
735                         swap_slot_free_notify(si->bdev, offset);
736                 offset++;
737         }
738         clear_shadow_from_swap_cache(si->type, begin, end);
739 }
740
741 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
742 {
743         unsigned long prev;
744
745         if (!(si->flags & SWP_SOLIDSTATE)) {
746                 si->cluster_next = next;
747                 return;
748         }
749
750         prev = this_cpu_read(*si->cluster_next_cpu);
751         /*
752          * Cross the swap address space size aligned trunk, choose
753          * another trunk randomly to avoid lock contention on swap
754          * address space if possible.
755          */
756         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
757             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
758                 /* No free swap slots available */
759                 if (si->highest_bit <= si->lowest_bit)
760                         return;
761                 next = si->lowest_bit +
762                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
763                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
764                 next = max_t(unsigned int, next, si->lowest_bit);
765         }
766         this_cpu_write(*si->cluster_next_cpu, next);
767 }
768
769 static int scan_swap_map_slots(struct swap_info_struct *si,
770                                unsigned char usage, int nr,
771                                swp_entry_t slots[])
772 {
773         struct swap_cluster_info *ci;
774         unsigned long offset;
775         unsigned long scan_base;
776         unsigned long last_in_cluster = 0;
777         int latency_ration = LATENCY_LIMIT;
778         int n_ret = 0;
779         bool scanned_many = false;
780
781         /*
782          * We try to cluster swap pages by allocating them sequentially
783          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
784          * way, however, we resort to first-free allocation, starting
785          * a new cluster.  This prevents us from scattering swap pages
786          * all over the entire swap partition, so that we reduce
787          * overall disk seek times between swap pages.  -- sct
788          * But we do now try to find an empty cluster.  -Andrea
789          * And we let swap pages go all over an SSD partition.  Hugh
790          */
791
792         si->flags += SWP_SCANNING;
793         /*
794          * Use percpu scan base for SSD to reduce lock contention on
795          * cluster and swap cache.  For HDD, sequential access is more
796          * important.
797          */
798         if (si->flags & SWP_SOLIDSTATE)
799                 scan_base = this_cpu_read(*si->cluster_next_cpu);
800         else
801                 scan_base = si->cluster_next;
802         offset = scan_base;
803
804         /* SSD algorithm */
805         if (si->cluster_info) {
806                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
807                         goto scan;
808         } else if (unlikely(!si->cluster_nr--)) {
809                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
810                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
811                         goto checks;
812                 }
813
814                 spin_unlock(&si->lock);
815
816                 /*
817                  * If seek is expensive, start searching for new cluster from
818                  * start of partition, to minimize the span of allocated swap.
819                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
820                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
821                  */
822                 scan_base = offset = si->lowest_bit;
823                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
824
825                 /* Locate the first empty (unaligned) cluster */
826                 for (; last_in_cluster <= si->highest_bit; offset++) {
827                         if (si->swap_map[offset])
828                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
829                         else if (offset == last_in_cluster) {
830                                 spin_lock(&si->lock);
831                                 offset -= SWAPFILE_CLUSTER - 1;
832                                 si->cluster_next = offset;
833                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
834                                 goto checks;
835                         }
836                         if (unlikely(--latency_ration < 0)) {
837                                 cond_resched();
838                                 latency_ration = LATENCY_LIMIT;
839                         }
840                 }
841
842                 offset = scan_base;
843                 spin_lock(&si->lock);
844                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
845         }
846
847 checks:
848         if (si->cluster_info) {
849                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
850                 /* take a break if we already got some slots */
851                         if (n_ret)
852                                 goto done;
853                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
854                                                         &scan_base))
855                                 goto scan;
856                 }
857         }
858         if (!(si->flags & SWP_WRITEOK))
859                 goto no_page;
860         if (!si->highest_bit)
861                 goto no_page;
862         if (offset > si->highest_bit)
863                 scan_base = offset = si->lowest_bit;
864
865         ci = lock_cluster(si, offset);
866         /* reuse swap entry of cache-only swap if not busy. */
867         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
868                 int swap_was_freed;
869                 unlock_cluster(ci);
870                 spin_unlock(&si->lock);
871                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
872                 spin_lock(&si->lock);
873                 /* entry was freed successfully, try to use this again */
874                 if (swap_was_freed)
875                         goto checks;
876                 goto scan; /* check next one */
877         }
878
879         if (si->swap_map[offset]) {
880                 unlock_cluster(ci);
881                 if (!n_ret)
882                         goto scan;
883                 else
884                         goto done;
885         }
886         WRITE_ONCE(si->swap_map[offset], usage);
887         inc_cluster_info_page(si, si->cluster_info, offset);
888         unlock_cluster(ci);
889
890         swap_range_alloc(si, offset, 1);
891         slots[n_ret++] = swp_entry(si->type, offset);
892
893         /* got enough slots or reach max slots? */
894         if ((n_ret == nr) || (offset >= si->highest_bit))
895                 goto done;
896
897         /* search for next available slot */
898
899         /* time to take a break? */
900         if (unlikely(--latency_ration < 0)) {
901                 if (n_ret)
902                         goto done;
903                 spin_unlock(&si->lock);
904                 cond_resched();
905                 spin_lock(&si->lock);
906                 latency_ration = LATENCY_LIMIT;
907         }
908
909         /* try to get more slots in cluster */
910         if (si->cluster_info) {
911                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
912                         goto checks;
913         } else if (si->cluster_nr && !si->swap_map[++offset]) {
914                 /* non-ssd case, still more slots in cluster? */
915                 --si->cluster_nr;
916                 goto checks;
917         }
918
919         /*
920          * Even if there's no free clusters available (fragmented),
921          * try to scan a little more quickly with lock held unless we
922          * have scanned too many slots already.
923          */
924         if (!scanned_many) {
925                 unsigned long scan_limit;
926
927                 if (offset < scan_base)
928                         scan_limit = scan_base;
929                 else
930                         scan_limit = si->highest_bit;
931                 for (; offset <= scan_limit && --latency_ration > 0;
932                      offset++) {
933                         if (!si->swap_map[offset])
934                                 goto checks;
935                 }
936         }
937
938 done:
939         set_cluster_next(si, offset + 1);
940         si->flags -= SWP_SCANNING;
941         return n_ret;
942
943 scan:
944         spin_unlock(&si->lock);
945         while (++offset <= READ_ONCE(si->highest_bit)) {
946                 if (data_race(!si->swap_map[offset])) {
947                         spin_lock(&si->lock);
948                         goto checks;
949                 }
950                 if (vm_swap_full() &&
951                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
952                         spin_lock(&si->lock);
953                         goto checks;
954                 }
955                 if (unlikely(--latency_ration < 0)) {
956                         cond_resched();
957                         latency_ration = LATENCY_LIMIT;
958                         scanned_many = true;
959                 }
960         }
961         offset = si->lowest_bit;
962         while (offset < scan_base) {
963                 if (data_race(!si->swap_map[offset])) {
964                         spin_lock(&si->lock);
965                         goto checks;
966                 }
967                 if (vm_swap_full() &&
968                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
969                         spin_lock(&si->lock);
970                         goto checks;
971                 }
972                 if (unlikely(--latency_ration < 0)) {
973                         cond_resched();
974                         latency_ration = LATENCY_LIMIT;
975                         scanned_many = true;
976                 }
977                 offset++;
978         }
979         spin_lock(&si->lock);
980
981 no_page:
982         si->flags -= SWP_SCANNING;
983         return n_ret;
984 }
985
986 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
987 {
988         unsigned long idx;
989         struct swap_cluster_info *ci;
990         unsigned long offset;
991
992         /*
993          * Should not even be attempting cluster allocations when huge
994          * page swap is disabled.  Warn and fail the allocation.
995          */
996         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
997                 VM_WARN_ON_ONCE(1);
998                 return 0;
999         }
1000
1001         if (cluster_list_empty(&si->free_clusters))
1002                 return 0;
1003
1004         idx = cluster_list_first(&si->free_clusters);
1005         offset = idx * SWAPFILE_CLUSTER;
1006         ci = lock_cluster(si, offset);
1007         alloc_cluster(si, idx);
1008         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1009
1010         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1011         unlock_cluster(ci);
1012         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1013         *slot = swp_entry(si->type, offset);
1014
1015         return 1;
1016 }
1017
1018 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1019 {
1020         unsigned long offset = idx * SWAPFILE_CLUSTER;
1021         struct swap_cluster_info *ci;
1022
1023         ci = lock_cluster(si, offset);
1024         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1025         cluster_set_count_flag(ci, 0, 0);
1026         free_cluster(si, idx);
1027         unlock_cluster(ci);
1028         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1029 }
1030
1031 static unsigned long scan_swap_map(struct swap_info_struct *si,
1032                                    unsigned char usage)
1033 {
1034         swp_entry_t entry;
1035         int n_ret;
1036
1037         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1038
1039         if (n_ret)
1040                 return swp_offset(entry);
1041         else
1042                 return 0;
1043
1044 }
1045
1046 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1047 {
1048         unsigned long size = swap_entry_size(entry_size);
1049         struct swap_info_struct *si, *next;
1050         long avail_pgs;
1051         int n_ret = 0;
1052         int node;
1053
1054         /* Only single cluster request supported */
1055         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1056
1057         spin_lock(&swap_avail_lock);
1058
1059         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1060         if (avail_pgs <= 0) {
1061                 spin_unlock(&swap_avail_lock);
1062                 goto noswap;
1063         }
1064
1065         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1066
1067         atomic_long_sub(n_goal * size, &nr_swap_pages);
1068
1069 start_over:
1070         node = numa_node_id();
1071         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1072                 /* requeue si to after same-priority siblings */
1073                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1074                 spin_unlock(&swap_avail_lock);
1075                 spin_lock(&si->lock);
1076                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1077                         spin_lock(&swap_avail_lock);
1078                         if (plist_node_empty(&si->avail_lists[node])) {
1079                                 spin_unlock(&si->lock);
1080                                 goto nextsi;
1081                         }
1082                         WARN(!si->highest_bit,
1083                              "swap_info %d in list but !highest_bit\n",
1084                              si->type);
1085                         WARN(!(si->flags & SWP_WRITEOK),
1086                              "swap_info %d in list but !SWP_WRITEOK\n",
1087                              si->type);
1088                         __del_from_avail_list(si);
1089                         spin_unlock(&si->lock);
1090                         goto nextsi;
1091                 }
1092                 if (size == SWAPFILE_CLUSTER) {
1093                         if (si->flags & SWP_BLKDEV)
1094                                 n_ret = swap_alloc_cluster(si, swp_entries);
1095                 } else
1096                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1097                                                     n_goal, swp_entries);
1098                 spin_unlock(&si->lock);
1099                 if (n_ret || size == SWAPFILE_CLUSTER)
1100                         goto check_out;
1101                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1102                         si->type);
1103
1104                 spin_lock(&swap_avail_lock);
1105 nextsi:
1106                 /*
1107                  * if we got here, it's likely that si was almost full before,
1108                  * and since scan_swap_map() can drop the si->lock, multiple
1109                  * callers probably all tried to get a page from the same si
1110                  * and it filled up before we could get one; or, the si filled
1111                  * up between us dropping swap_avail_lock and taking si->lock.
1112                  * Since we dropped the swap_avail_lock, the swap_avail_head
1113                  * list may have been modified; so if next is still in the
1114                  * swap_avail_head list then try it, otherwise start over
1115                  * if we have not gotten any slots.
1116                  */
1117                 if (plist_node_empty(&next->avail_lists[node]))
1118                         goto start_over;
1119         }
1120
1121         spin_unlock(&swap_avail_lock);
1122
1123 check_out:
1124         if (n_ret < n_goal)
1125                 atomic_long_add((long)(n_goal - n_ret) * size,
1126                                 &nr_swap_pages);
1127 noswap:
1128         return n_ret;
1129 }
1130
1131 /* The only caller of this function is now suspend routine */
1132 swp_entry_t get_swap_page_of_type(int type)
1133 {
1134         struct swap_info_struct *si = swap_type_to_swap_info(type);
1135         pgoff_t offset;
1136
1137         if (!si)
1138                 goto fail;
1139
1140         spin_lock(&si->lock);
1141         if (si->flags & SWP_WRITEOK) {
1142                 /* This is called for allocating swap entry, not cache */
1143                 offset = scan_swap_map(si, 1);
1144                 if (offset) {
1145                         atomic_long_dec(&nr_swap_pages);
1146                         spin_unlock(&si->lock);
1147                         return swp_entry(type, offset);
1148                 }
1149         }
1150         spin_unlock(&si->lock);
1151 fail:
1152         return (swp_entry_t) {0};
1153 }
1154
1155 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1156 {
1157         struct swap_info_struct *p;
1158         unsigned long offset;
1159
1160         if (!entry.val)
1161                 goto out;
1162         p = swp_swap_info(entry);
1163         if (!p)
1164                 goto bad_nofile;
1165         if (data_race(!(p->flags & SWP_USED)))
1166                 goto bad_device;
1167         offset = swp_offset(entry);
1168         if (offset >= p->max)
1169                 goto bad_offset;
1170         return p;
1171
1172 bad_offset:
1173         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1174         goto out;
1175 bad_device:
1176         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1177         goto out;
1178 bad_nofile:
1179         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1180 out:
1181         return NULL;
1182 }
1183
1184 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1185 {
1186         struct swap_info_struct *p;
1187
1188         p = __swap_info_get(entry);
1189         if (!p)
1190                 goto out;
1191         if (data_race(!p->swap_map[swp_offset(entry)]))
1192                 goto bad_free;
1193         return p;
1194
1195 bad_free:
1196         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1197 out:
1198         return NULL;
1199 }
1200
1201 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1202 {
1203         struct swap_info_struct *p;
1204
1205         p = _swap_info_get(entry);
1206         if (p)
1207                 spin_lock(&p->lock);
1208         return p;
1209 }
1210
1211 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1212                                         struct swap_info_struct *q)
1213 {
1214         struct swap_info_struct *p;
1215
1216         p = _swap_info_get(entry);
1217
1218         if (p != q) {
1219                 if (q != NULL)
1220                         spin_unlock(&q->lock);
1221                 if (p != NULL)
1222                         spin_lock(&p->lock);
1223         }
1224         return p;
1225 }
1226
1227 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1228                                               unsigned long offset,
1229                                               unsigned char usage)
1230 {
1231         unsigned char count;
1232         unsigned char has_cache;
1233
1234         count = p->swap_map[offset];
1235
1236         has_cache = count & SWAP_HAS_CACHE;
1237         count &= ~SWAP_HAS_CACHE;
1238
1239         if (usage == SWAP_HAS_CACHE) {
1240                 VM_BUG_ON(!has_cache);
1241                 has_cache = 0;
1242         } else if (count == SWAP_MAP_SHMEM) {
1243                 /*
1244                  * Or we could insist on shmem.c using a special
1245                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1246                  */
1247                 count = 0;
1248         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1249                 if (count == COUNT_CONTINUED) {
1250                         if (swap_count_continued(p, offset, count))
1251                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1252                         else
1253                                 count = SWAP_MAP_MAX;
1254                 } else
1255                         count--;
1256         }
1257
1258         usage = count | has_cache;
1259         if (usage)
1260                 WRITE_ONCE(p->swap_map[offset], usage);
1261         else
1262                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1263
1264         return usage;
1265 }
1266
1267 /*
1268  * Check whether swap entry is valid in the swap device.  If so,
1269  * return pointer to swap_info_struct, and keep the swap entry valid
1270  * via preventing the swap device from being swapoff, until
1271  * put_swap_device() is called.  Otherwise return NULL.
1272  *
1273  * The entirety of the RCU read critical section must come before the
1274  * return from or after the call to synchronize_rcu() in
1275  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1276  * true, the si->map, si->cluster_info, etc. must be valid in the
1277  * critical section.
1278  *
1279  * Notice that swapoff or swapoff+swapon can still happen before the
1280  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1281  * in put_swap_device() if there isn't any other way to prevent
1282  * swapoff, such as page lock, page table lock, etc.  The caller must
1283  * be prepared for that.  For example, the following situation is
1284  * possible.
1285  *
1286  *   CPU1                               CPU2
1287  *   do_swap_page()
1288  *     ...                              swapoff+swapon
1289  *     __read_swap_cache_async()
1290  *       swapcache_prepare()
1291  *         __swap_duplicate()
1292  *           // check swap_map
1293  *     // verify PTE not changed
1294  *
1295  * In __swap_duplicate(), the swap_map need to be checked before
1296  * changing partly because the specified swap entry may be for another
1297  * swap device which has been swapoff.  And in do_swap_page(), after
1298  * the page is read from the swap device, the PTE is verified not
1299  * changed with the page table locked to check whether the swap device
1300  * has been swapoff or swapoff+swapon.
1301  */
1302 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1303 {
1304         struct swap_info_struct *si;
1305         unsigned long offset;
1306
1307         if (!entry.val)
1308                 goto out;
1309         si = swp_swap_info(entry);
1310         if (!si)
1311                 goto bad_nofile;
1312
1313         rcu_read_lock();
1314         if (data_race(!(si->flags & SWP_VALID)))
1315                 goto unlock_out;
1316         offset = swp_offset(entry);
1317         if (offset >= si->max)
1318                 goto unlock_out;
1319
1320         return si;
1321 bad_nofile:
1322         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1323 out:
1324         return NULL;
1325 unlock_out:
1326         rcu_read_unlock();
1327         return NULL;
1328 }
1329
1330 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1331                                        swp_entry_t entry)
1332 {
1333         struct swap_cluster_info *ci;
1334         unsigned long offset = swp_offset(entry);
1335         unsigned char usage;
1336
1337         ci = lock_cluster_or_swap_info(p, offset);
1338         usage = __swap_entry_free_locked(p, offset, 1);
1339         unlock_cluster_or_swap_info(p, ci);
1340         if (!usage)
1341                 free_swap_slot(entry);
1342
1343         return usage;
1344 }
1345
1346 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1347 {
1348         struct swap_cluster_info *ci;
1349         unsigned long offset = swp_offset(entry);
1350         unsigned char count;
1351
1352         ci = lock_cluster(p, offset);
1353         count = p->swap_map[offset];
1354         VM_BUG_ON(count != SWAP_HAS_CACHE);
1355         p->swap_map[offset] = 0;
1356         dec_cluster_info_page(p, p->cluster_info, offset);
1357         unlock_cluster(ci);
1358
1359         mem_cgroup_uncharge_swap(entry, 1);
1360         swap_range_free(p, offset, 1);
1361 }
1362
1363 /*
1364  * Caller has made sure that the swap device corresponding to entry
1365  * is still around or has not been recycled.
1366  */
1367 void swap_free(swp_entry_t entry)
1368 {
1369         struct swap_info_struct *p;
1370
1371         p = _swap_info_get(entry);
1372         if (p)
1373                 __swap_entry_free(p, entry);
1374 }
1375
1376 /*
1377  * Called after dropping swapcache to decrease refcnt to swap entries.
1378  */
1379 void put_swap_page(struct page *page, swp_entry_t entry)
1380 {
1381         unsigned long offset = swp_offset(entry);
1382         unsigned long idx = offset / SWAPFILE_CLUSTER;
1383         struct swap_cluster_info *ci;
1384         struct swap_info_struct *si;
1385         unsigned char *map;
1386         unsigned int i, free_entries = 0;
1387         unsigned char val;
1388         int size = swap_entry_size(thp_nr_pages(page));
1389
1390         si = _swap_info_get(entry);
1391         if (!si)
1392                 return;
1393
1394         ci = lock_cluster_or_swap_info(si, offset);
1395         if (size == SWAPFILE_CLUSTER) {
1396                 VM_BUG_ON(!cluster_is_huge(ci));
1397                 map = si->swap_map + offset;
1398                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1399                         val = map[i];
1400                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1401                         if (val == SWAP_HAS_CACHE)
1402                                 free_entries++;
1403                 }
1404                 cluster_clear_huge(ci);
1405                 if (free_entries == SWAPFILE_CLUSTER) {
1406                         unlock_cluster_or_swap_info(si, ci);
1407                         spin_lock(&si->lock);
1408                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1409                         swap_free_cluster(si, idx);
1410                         spin_unlock(&si->lock);
1411                         return;
1412                 }
1413         }
1414         for (i = 0; i < size; i++, entry.val++) {
1415                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1416                         unlock_cluster_or_swap_info(si, ci);
1417                         free_swap_slot(entry);
1418                         if (i == size - 1)
1419                                 return;
1420                         lock_cluster_or_swap_info(si, offset);
1421                 }
1422         }
1423         unlock_cluster_or_swap_info(si, ci);
1424 }
1425
1426 #ifdef CONFIG_THP_SWAP
1427 int split_swap_cluster(swp_entry_t entry)
1428 {
1429         struct swap_info_struct *si;
1430         struct swap_cluster_info *ci;
1431         unsigned long offset = swp_offset(entry);
1432
1433         si = _swap_info_get(entry);
1434         if (!si)
1435                 return -EBUSY;
1436         ci = lock_cluster(si, offset);
1437         cluster_clear_huge(ci);
1438         unlock_cluster(ci);
1439         return 0;
1440 }
1441 #endif
1442
1443 static int swp_entry_cmp(const void *ent1, const void *ent2)
1444 {
1445         const swp_entry_t *e1 = ent1, *e2 = ent2;
1446
1447         return (int)swp_type(*e1) - (int)swp_type(*e2);
1448 }
1449
1450 void swapcache_free_entries(swp_entry_t *entries, int n)
1451 {
1452         struct swap_info_struct *p, *prev;
1453         int i;
1454
1455         if (n <= 0)
1456                 return;
1457
1458         prev = NULL;
1459         p = NULL;
1460
1461         /*
1462          * Sort swap entries by swap device, so each lock is only taken once.
1463          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1464          * so low that it isn't necessary to optimize further.
1465          */
1466         if (nr_swapfiles > 1)
1467                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1468         for (i = 0; i < n; ++i) {
1469                 p = swap_info_get_cont(entries[i], prev);
1470                 if (p)
1471                         swap_entry_free(p, entries[i]);
1472                 prev = p;
1473         }
1474         if (p)
1475                 spin_unlock(&p->lock);
1476 }
1477
1478 /*
1479  * How many references to page are currently swapped out?
1480  * This does not give an exact answer when swap count is continued,
1481  * but does include the high COUNT_CONTINUED flag to allow for that.
1482  */
1483 int page_swapcount(struct page *page)
1484 {
1485         int count = 0;
1486         struct swap_info_struct *p;
1487         struct swap_cluster_info *ci;
1488         swp_entry_t entry;
1489         unsigned long offset;
1490
1491         entry.val = page_private(page);
1492         p = _swap_info_get(entry);
1493         if (p) {
1494                 offset = swp_offset(entry);
1495                 ci = lock_cluster_or_swap_info(p, offset);
1496                 count = swap_count(p->swap_map[offset]);
1497                 unlock_cluster_or_swap_info(p, ci);
1498         }
1499         return count;
1500 }
1501
1502 int __swap_count(swp_entry_t entry)
1503 {
1504         struct swap_info_struct *si;
1505         pgoff_t offset = swp_offset(entry);
1506         int count = 0;
1507
1508         si = get_swap_device(entry);
1509         if (si) {
1510                 count = swap_count(si->swap_map[offset]);
1511                 put_swap_device(si);
1512         }
1513         return count;
1514 }
1515
1516 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1517 {
1518         int count = 0;
1519         pgoff_t offset = swp_offset(entry);
1520         struct swap_cluster_info *ci;
1521
1522         ci = lock_cluster_or_swap_info(si, offset);
1523         count = swap_count(si->swap_map[offset]);
1524         unlock_cluster_or_swap_info(si, ci);
1525         return count;
1526 }
1527
1528 /*
1529  * How many references to @entry are currently swapped out?
1530  * This does not give an exact answer when swap count is continued,
1531  * but does include the high COUNT_CONTINUED flag to allow for that.
1532  */
1533 int __swp_swapcount(swp_entry_t entry)
1534 {
1535         int count = 0;
1536         struct swap_info_struct *si;
1537
1538         si = get_swap_device(entry);
1539         if (si) {
1540                 count = swap_swapcount(si, entry);
1541                 put_swap_device(si);
1542         }
1543         return count;
1544 }
1545
1546 /*
1547  * How many references to @entry are currently swapped out?
1548  * This considers COUNT_CONTINUED so it returns exact answer.
1549  */
1550 int swp_swapcount(swp_entry_t entry)
1551 {
1552         int count, tmp_count, n;
1553         struct swap_info_struct *p;
1554         struct swap_cluster_info *ci;
1555         struct page *page;
1556         pgoff_t offset;
1557         unsigned char *map;
1558
1559         p = _swap_info_get(entry);
1560         if (!p)
1561                 return 0;
1562
1563         offset = swp_offset(entry);
1564
1565         ci = lock_cluster_or_swap_info(p, offset);
1566
1567         count = swap_count(p->swap_map[offset]);
1568         if (!(count & COUNT_CONTINUED))
1569                 goto out;
1570
1571         count &= ~COUNT_CONTINUED;
1572         n = SWAP_MAP_MAX + 1;
1573
1574         page = vmalloc_to_page(p->swap_map + offset);
1575         offset &= ~PAGE_MASK;
1576         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1577
1578         do {
1579                 page = list_next_entry(page, lru);
1580                 map = kmap_atomic(page);
1581                 tmp_count = map[offset];
1582                 kunmap_atomic(map);
1583
1584                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1585                 n *= (SWAP_CONT_MAX + 1);
1586         } while (tmp_count & COUNT_CONTINUED);
1587 out:
1588         unlock_cluster_or_swap_info(p, ci);
1589         return count;
1590 }
1591
1592 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1593                                          swp_entry_t entry)
1594 {
1595         struct swap_cluster_info *ci;
1596         unsigned char *map = si->swap_map;
1597         unsigned long roffset = swp_offset(entry);
1598         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1599         int i;
1600         bool ret = false;
1601
1602         ci = lock_cluster_or_swap_info(si, offset);
1603         if (!ci || !cluster_is_huge(ci)) {
1604                 if (swap_count(map[roffset]))
1605                         ret = true;
1606                 goto unlock_out;
1607         }
1608         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1609                 if (swap_count(map[offset + i])) {
1610                         ret = true;
1611                         break;
1612                 }
1613         }
1614 unlock_out:
1615         unlock_cluster_or_swap_info(si, ci);
1616         return ret;
1617 }
1618
1619 static bool page_swapped(struct page *page)
1620 {
1621         swp_entry_t entry;
1622         struct swap_info_struct *si;
1623
1624         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1625                 return page_swapcount(page) != 0;
1626
1627         page = compound_head(page);
1628         entry.val = page_private(page);
1629         si = _swap_info_get(entry);
1630         if (si)
1631                 return swap_page_trans_huge_swapped(si, entry);
1632         return false;
1633 }
1634
1635 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1636                                          int *total_swapcount)
1637 {
1638         int i, map_swapcount, _total_mapcount, _total_swapcount;
1639         unsigned long offset = 0;
1640         struct swap_info_struct *si;
1641         struct swap_cluster_info *ci = NULL;
1642         unsigned char *map = NULL;
1643         int mapcount, swapcount = 0;
1644
1645         /* hugetlbfs shouldn't call it */
1646         VM_BUG_ON_PAGE(PageHuge(page), page);
1647
1648         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1649                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1650                 if (PageSwapCache(page))
1651                         swapcount = page_swapcount(page);
1652                 if (total_swapcount)
1653                         *total_swapcount = swapcount;
1654                 return mapcount + swapcount;
1655         }
1656
1657         page = compound_head(page);
1658
1659         _total_mapcount = _total_swapcount = map_swapcount = 0;
1660         if (PageSwapCache(page)) {
1661                 swp_entry_t entry;
1662
1663                 entry.val = page_private(page);
1664                 si = _swap_info_get(entry);
1665                 if (si) {
1666                         map = si->swap_map;
1667                         offset = swp_offset(entry);
1668                 }
1669         }
1670         if (map)
1671                 ci = lock_cluster(si, offset);
1672         for (i = 0; i < HPAGE_PMD_NR; i++) {
1673                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1674                 _total_mapcount += mapcount;
1675                 if (map) {
1676                         swapcount = swap_count(map[offset + i]);
1677                         _total_swapcount += swapcount;
1678                 }
1679                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1680         }
1681         unlock_cluster(ci);
1682         if (PageDoubleMap(page)) {
1683                 map_swapcount -= 1;
1684                 _total_mapcount -= HPAGE_PMD_NR;
1685         }
1686         mapcount = compound_mapcount(page);
1687         map_swapcount += mapcount;
1688         _total_mapcount += mapcount;
1689         if (total_mapcount)
1690                 *total_mapcount = _total_mapcount;
1691         if (total_swapcount)
1692                 *total_swapcount = _total_swapcount;
1693
1694         return map_swapcount;
1695 }
1696
1697 /*
1698  * We can write to an anon page without COW if there are no other references
1699  * to it.  And as a side-effect, free up its swap: because the old content
1700  * on disk will never be read, and seeking back there to write new content
1701  * later would only waste time away from clustering.
1702  *
1703  * NOTE: total_map_swapcount should not be relied upon by the caller if
1704  * reuse_swap_page() returns false, but it may be always overwritten
1705  * (see the other implementation for CONFIG_SWAP=n).
1706  */
1707 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1708 {
1709         int count, total_mapcount, total_swapcount;
1710
1711         VM_BUG_ON_PAGE(!PageLocked(page), page);
1712         if (unlikely(PageKsm(page)))
1713                 return false;
1714         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1715                                               &total_swapcount);
1716         if (total_map_swapcount)
1717                 *total_map_swapcount = total_mapcount + total_swapcount;
1718         if (count == 1 && PageSwapCache(page) &&
1719             (likely(!PageTransCompound(page)) ||
1720              /* The remaining swap count will be freed soon */
1721              total_swapcount == page_swapcount(page))) {
1722                 if (!PageWriteback(page)) {
1723                         page = compound_head(page);
1724                         delete_from_swap_cache(page);
1725                         SetPageDirty(page);
1726                 } else {
1727                         swp_entry_t entry;
1728                         struct swap_info_struct *p;
1729
1730                         entry.val = page_private(page);
1731                         p = swap_info_get(entry);
1732                         if (p->flags & SWP_STABLE_WRITES) {
1733                                 spin_unlock(&p->lock);
1734                                 return false;
1735                         }
1736                         spin_unlock(&p->lock);
1737                 }
1738         }
1739
1740         return count <= 1;
1741 }
1742
1743 /*
1744  * If swap is getting full, or if there are no more mappings of this page,
1745  * then try_to_free_swap is called to free its swap space.
1746  */
1747 int try_to_free_swap(struct page *page)
1748 {
1749         VM_BUG_ON_PAGE(!PageLocked(page), page);
1750
1751         if (!PageSwapCache(page))
1752                 return 0;
1753         if (PageWriteback(page))
1754                 return 0;
1755         if (page_swapped(page))
1756                 return 0;
1757
1758         /*
1759          * Once hibernation has begun to create its image of memory,
1760          * there's a danger that one of the calls to try_to_free_swap()
1761          * - most probably a call from __try_to_reclaim_swap() while
1762          * hibernation is allocating its own swap pages for the image,
1763          * but conceivably even a call from memory reclaim - will free
1764          * the swap from a page which has already been recorded in the
1765          * image as a clean swapcache page, and then reuse its swap for
1766          * another page of the image.  On waking from hibernation, the
1767          * original page might be freed under memory pressure, then
1768          * later read back in from swap, now with the wrong data.
1769          *
1770          * Hibernation suspends storage while it is writing the image
1771          * to disk so check that here.
1772          */
1773         if (pm_suspended_storage())
1774                 return 0;
1775
1776         page = compound_head(page);
1777         delete_from_swap_cache(page);
1778         SetPageDirty(page);
1779         return 1;
1780 }
1781
1782 /*
1783  * Free the swap entry like above, but also try to
1784  * free the page cache entry if it is the last user.
1785  */
1786 int free_swap_and_cache(swp_entry_t entry)
1787 {
1788         struct swap_info_struct *p;
1789         unsigned char count;
1790
1791         if (non_swap_entry(entry))
1792                 return 1;
1793
1794         p = _swap_info_get(entry);
1795         if (p) {
1796                 count = __swap_entry_free(p, entry);
1797                 if (count == SWAP_HAS_CACHE &&
1798                     !swap_page_trans_huge_swapped(p, entry))
1799                         __try_to_reclaim_swap(p, swp_offset(entry),
1800                                               TTRS_UNMAPPED | TTRS_FULL);
1801         }
1802         return p != NULL;
1803 }
1804
1805 #ifdef CONFIG_HIBERNATION
1806 /*
1807  * Find the swap type that corresponds to given device (if any).
1808  *
1809  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1810  * from 0, in which the swap header is expected to be located.
1811  *
1812  * This is needed for the suspend to disk (aka swsusp).
1813  */
1814 int swap_type_of(dev_t device, sector_t offset)
1815 {
1816         int type;
1817
1818         if (!device)
1819                 return -1;
1820
1821         spin_lock(&swap_lock);
1822         for (type = 0; type < nr_swapfiles; type++) {
1823                 struct swap_info_struct *sis = swap_info[type];
1824
1825                 if (!(sis->flags & SWP_WRITEOK))
1826                         continue;
1827
1828                 if (device == sis->bdev->bd_dev) {
1829                         struct swap_extent *se = first_se(sis);
1830
1831                         if (se->start_block == offset) {
1832                                 spin_unlock(&swap_lock);
1833                                 return type;
1834                         }
1835                 }
1836         }
1837         spin_unlock(&swap_lock);
1838         return -ENODEV;
1839 }
1840
1841 int find_first_swap(dev_t *device)
1842 {
1843         int type;
1844
1845         spin_lock(&swap_lock);
1846         for (type = 0; type < nr_swapfiles; type++) {
1847                 struct swap_info_struct *sis = swap_info[type];
1848
1849                 if (!(sis->flags & SWP_WRITEOK))
1850                         continue;
1851                 *device = sis->bdev->bd_dev;
1852                 spin_unlock(&swap_lock);
1853                 return type;
1854         }
1855         spin_unlock(&swap_lock);
1856         return -ENODEV;
1857 }
1858
1859 /*
1860  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1861  * corresponding to given index in swap_info (swap type).
1862  */
1863 sector_t swapdev_block(int type, pgoff_t offset)
1864 {
1865         struct swap_info_struct *si = swap_type_to_swap_info(type);
1866         struct swap_extent *se;
1867
1868         if (!si || !(si->flags & SWP_WRITEOK))
1869                 return 0;
1870         se = offset_to_swap_extent(si, offset);
1871         return se->start_block + (offset - se->start_page);
1872 }
1873
1874 /*
1875  * Return either the total number of swap pages of given type, or the number
1876  * of free pages of that type (depending on @free)
1877  *
1878  * This is needed for software suspend
1879  */
1880 unsigned int count_swap_pages(int type, int free)
1881 {
1882         unsigned int n = 0;
1883
1884         spin_lock(&swap_lock);
1885         if ((unsigned int)type < nr_swapfiles) {
1886                 struct swap_info_struct *sis = swap_info[type];
1887
1888                 spin_lock(&sis->lock);
1889                 if (sis->flags & SWP_WRITEOK) {
1890                         n = sis->pages;
1891                         if (free)
1892                                 n -= sis->inuse_pages;
1893                 }
1894                 spin_unlock(&sis->lock);
1895         }
1896         spin_unlock(&swap_lock);
1897         return n;
1898 }
1899 #endif /* CONFIG_HIBERNATION */
1900
1901 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1902 {
1903         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1904 }
1905
1906 /*
1907  * No need to decide whether this PTE shares the swap entry with others,
1908  * just let do_wp_page work it out if a write is requested later - to
1909  * force COW, vm_page_prot omits write permission from any private vma.
1910  */
1911 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1912                 unsigned long addr, swp_entry_t entry, struct page *page)
1913 {
1914         struct page *swapcache;
1915         spinlock_t *ptl;
1916         pte_t *pte;
1917         int ret = 1;
1918
1919         swapcache = page;
1920         page = ksm_might_need_to_copy(page, vma, addr);
1921         if (unlikely(!page))
1922                 return -ENOMEM;
1923
1924         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1925         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1926                 ret = 0;
1927                 goto out;
1928         }
1929
1930         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1931         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1932         get_page(page);
1933         set_pte_at(vma->vm_mm, addr, pte,
1934                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1935         if (page == swapcache) {
1936                 page_add_anon_rmap(page, vma, addr, false);
1937         } else { /* ksm created a completely new copy */
1938                 page_add_new_anon_rmap(page, vma, addr, false);
1939                 lru_cache_add_inactive_or_unevictable(page, vma);
1940         }
1941         swap_free(entry);
1942 out:
1943         pte_unmap_unlock(pte, ptl);
1944         if (page != swapcache) {
1945                 unlock_page(page);
1946                 put_page(page);
1947         }
1948         return ret;
1949 }
1950
1951 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1952                         unsigned long addr, unsigned long end,
1953                         unsigned int type, bool frontswap,
1954                         unsigned long *fs_pages_to_unuse)
1955 {
1956         struct page *page;
1957         swp_entry_t entry;
1958         pte_t *pte;
1959         struct swap_info_struct *si;
1960         unsigned long offset;
1961         int ret = 0;
1962         volatile unsigned char *swap_map;
1963
1964         si = swap_info[type];
1965         pte = pte_offset_map(pmd, addr);
1966         do {
1967                 if (!is_swap_pte(*pte))
1968                         continue;
1969
1970                 entry = pte_to_swp_entry(*pte);
1971                 if (swp_type(entry) != type)
1972                         continue;
1973
1974                 offset = swp_offset(entry);
1975                 if (frontswap && !frontswap_test(si, offset))
1976                         continue;
1977
1978                 pte_unmap(pte);
1979                 swap_map = &si->swap_map[offset];
1980                 page = lookup_swap_cache(entry, vma, addr);
1981                 if (!page) {
1982                         struct vm_fault vmf = {
1983                                 .vma = vma,
1984                                 .address = addr,
1985                                 .pmd = pmd,
1986                         };
1987
1988                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1989                                                 &vmf);
1990                 }
1991                 if (!page) {
1992                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1993                                 goto try_next;
1994                         return -ENOMEM;
1995                 }
1996
1997                 lock_page(page);
1998                 wait_on_page_writeback(page);
1999                 ret = unuse_pte(vma, pmd, addr, entry, page);
2000                 if (ret < 0) {
2001                         unlock_page(page);
2002                         put_page(page);
2003                         goto out;
2004                 }
2005
2006                 try_to_free_swap(page);
2007                 unlock_page(page);
2008                 put_page(page);
2009
2010                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2011                         ret = FRONTSWAP_PAGES_UNUSED;
2012                         goto out;
2013                 }
2014 try_next:
2015                 pte = pte_offset_map(pmd, addr);
2016         } while (pte++, addr += PAGE_SIZE, addr != end);
2017         pte_unmap(pte - 1);
2018
2019         ret = 0;
2020 out:
2021         return ret;
2022 }
2023
2024 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2025                                 unsigned long addr, unsigned long end,
2026                                 unsigned int type, bool frontswap,
2027                                 unsigned long *fs_pages_to_unuse)
2028 {
2029         pmd_t *pmd;
2030         unsigned long next;
2031         int ret;
2032
2033         pmd = pmd_offset(pud, addr);
2034         do {
2035                 cond_resched();
2036                 next = pmd_addr_end(addr, end);
2037                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2038                         continue;
2039                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2040                                       frontswap, fs_pages_to_unuse);
2041                 if (ret)
2042                         return ret;
2043         } while (pmd++, addr = next, addr != end);
2044         return 0;
2045 }
2046
2047 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2048                                 unsigned long addr, unsigned long end,
2049                                 unsigned int type, bool frontswap,
2050                                 unsigned long *fs_pages_to_unuse)
2051 {
2052         pud_t *pud;
2053         unsigned long next;
2054         int ret;
2055
2056         pud = pud_offset(p4d, addr);
2057         do {
2058                 next = pud_addr_end(addr, end);
2059                 if (pud_none_or_clear_bad(pud))
2060                         continue;
2061                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2062                                       frontswap, fs_pages_to_unuse);
2063                 if (ret)
2064                         return ret;
2065         } while (pud++, addr = next, addr != end);
2066         return 0;
2067 }
2068
2069 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2070                                 unsigned long addr, unsigned long end,
2071                                 unsigned int type, bool frontswap,
2072                                 unsigned long *fs_pages_to_unuse)
2073 {
2074         p4d_t *p4d;
2075         unsigned long next;
2076         int ret;
2077
2078         p4d = p4d_offset(pgd, addr);
2079         do {
2080                 next = p4d_addr_end(addr, end);
2081                 if (p4d_none_or_clear_bad(p4d))
2082                         continue;
2083                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2084                                       frontswap, fs_pages_to_unuse);
2085                 if (ret)
2086                         return ret;
2087         } while (p4d++, addr = next, addr != end);
2088         return 0;
2089 }
2090
2091 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2092                      bool frontswap, unsigned long *fs_pages_to_unuse)
2093 {
2094         pgd_t *pgd;
2095         unsigned long addr, end, next;
2096         int ret;
2097
2098         addr = vma->vm_start;
2099         end = vma->vm_end;
2100
2101         pgd = pgd_offset(vma->vm_mm, addr);
2102         do {
2103                 next = pgd_addr_end(addr, end);
2104                 if (pgd_none_or_clear_bad(pgd))
2105                         continue;
2106                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2107                                       frontswap, fs_pages_to_unuse);
2108                 if (ret)
2109                         return ret;
2110         } while (pgd++, addr = next, addr != end);
2111         return 0;
2112 }
2113
2114 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2115                     bool frontswap, unsigned long *fs_pages_to_unuse)
2116 {
2117         struct vm_area_struct *vma;
2118         int ret = 0;
2119
2120         mmap_read_lock(mm);
2121         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2122                 if (vma->anon_vma) {
2123                         ret = unuse_vma(vma, type, frontswap,
2124                                         fs_pages_to_unuse);
2125                         if (ret)
2126                                 break;
2127                 }
2128                 cond_resched();
2129         }
2130         mmap_read_unlock(mm);
2131         return ret;
2132 }
2133
2134 /*
2135  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2136  * from current position to next entry still in use. Return 0
2137  * if there are no inuse entries after prev till end of the map.
2138  */
2139 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2140                                         unsigned int prev, bool frontswap)
2141 {
2142         unsigned int i;
2143         unsigned char count;
2144
2145         /*
2146          * No need for swap_lock here: we're just looking
2147          * for whether an entry is in use, not modifying it; false
2148          * hits are okay, and sys_swapoff() has already prevented new
2149          * allocations from this area (while holding swap_lock).
2150          */
2151         for (i = prev + 1; i < si->max; i++) {
2152                 count = READ_ONCE(si->swap_map[i]);
2153                 if (count && swap_count(count) != SWAP_MAP_BAD)
2154                         if (!frontswap || frontswap_test(si, i))
2155                                 break;
2156                 if ((i % LATENCY_LIMIT) == 0)
2157                         cond_resched();
2158         }
2159
2160         if (i == si->max)
2161                 i = 0;
2162
2163         return i;
2164 }
2165
2166 /*
2167  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2168  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2169  */
2170 int try_to_unuse(unsigned int type, bool frontswap,
2171                  unsigned long pages_to_unuse)
2172 {
2173         struct mm_struct *prev_mm;
2174         struct mm_struct *mm;
2175         struct list_head *p;
2176         int retval = 0;
2177         struct swap_info_struct *si = swap_info[type];
2178         struct page *page;
2179         swp_entry_t entry;
2180         unsigned int i;
2181
2182         if (!READ_ONCE(si->inuse_pages))
2183                 return 0;
2184
2185         if (!frontswap)
2186                 pages_to_unuse = 0;
2187
2188 retry:
2189         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2190         if (retval)
2191                 goto out;
2192
2193         prev_mm = &init_mm;
2194         mmget(prev_mm);
2195
2196         spin_lock(&mmlist_lock);
2197         p = &init_mm.mmlist;
2198         while (READ_ONCE(si->inuse_pages) &&
2199                !signal_pending(current) &&
2200                (p = p->next) != &init_mm.mmlist) {
2201
2202                 mm = list_entry(p, struct mm_struct, mmlist);
2203                 if (!mmget_not_zero(mm))
2204                         continue;
2205                 spin_unlock(&mmlist_lock);
2206                 mmput(prev_mm);
2207                 prev_mm = mm;
2208                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2209
2210                 if (retval) {
2211                         mmput(prev_mm);
2212                         goto out;
2213                 }
2214
2215                 /*
2216                  * Make sure that we aren't completely killing
2217                  * interactive performance.
2218                  */
2219                 cond_resched();
2220                 spin_lock(&mmlist_lock);
2221         }
2222         spin_unlock(&mmlist_lock);
2223
2224         mmput(prev_mm);
2225
2226         i = 0;
2227         while (READ_ONCE(si->inuse_pages) &&
2228                !signal_pending(current) &&
2229                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2230
2231                 entry = swp_entry(type, i);
2232                 page = find_get_page(swap_address_space(entry), i);
2233                 if (!page)
2234                         continue;
2235
2236                 /*
2237                  * It is conceivable that a racing task removed this page from
2238                  * swap cache just before we acquired the page lock. The page
2239                  * might even be back in swap cache on another swap area. But
2240                  * that is okay, try_to_free_swap() only removes stale pages.
2241                  */
2242                 lock_page(page);
2243                 wait_on_page_writeback(page);
2244                 try_to_free_swap(page);
2245                 unlock_page(page);
2246                 put_page(page);
2247
2248                 /*
2249                  * For frontswap, we just need to unuse pages_to_unuse, if
2250                  * it was specified. Need not check frontswap again here as
2251                  * we already zeroed out pages_to_unuse if not frontswap.
2252                  */
2253                 if (pages_to_unuse && --pages_to_unuse == 0)
2254                         goto out;
2255         }
2256
2257         /*
2258          * Lets check again to see if there are still swap entries in the map.
2259          * If yes, we would need to do retry the unuse logic again.
2260          * Under global memory pressure, swap entries can be reinserted back
2261          * into process space after the mmlist loop above passes over them.
2262          *
2263          * Limit the number of retries? No: when mmget_not_zero() above fails,
2264          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2265          * at its own independent pace; and even shmem_writepage() could have
2266          * been preempted after get_swap_page(), temporarily hiding that swap.
2267          * It's easy and robust (though cpu-intensive) just to keep retrying.
2268          */
2269         if (READ_ONCE(si->inuse_pages)) {
2270                 if (!signal_pending(current))
2271                         goto retry;
2272                 retval = -EINTR;
2273         }
2274 out:
2275         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2276 }
2277
2278 /*
2279  * After a successful try_to_unuse, if no swap is now in use, we know
2280  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2281  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2282  * added to the mmlist just after page_duplicate - before would be racy.
2283  */
2284 static void drain_mmlist(void)
2285 {
2286         struct list_head *p, *next;
2287         unsigned int type;
2288
2289         for (type = 0; type < nr_swapfiles; type++)
2290                 if (swap_info[type]->inuse_pages)
2291                         return;
2292         spin_lock(&mmlist_lock);
2293         list_for_each_safe(p, next, &init_mm.mmlist)
2294                 list_del_init(p);
2295         spin_unlock(&mmlist_lock);
2296 }
2297
2298 /*
2299  * Free all of a swapdev's extent information
2300  */
2301 static void destroy_swap_extents(struct swap_info_struct *sis)
2302 {
2303         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2304                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2305                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2306
2307                 rb_erase(rb, &sis->swap_extent_root);
2308                 kfree(se);
2309         }
2310
2311         if (sis->flags & SWP_ACTIVATED) {
2312                 struct file *swap_file = sis->swap_file;
2313                 struct address_space *mapping = swap_file->f_mapping;
2314
2315                 sis->flags &= ~SWP_ACTIVATED;
2316                 if (mapping->a_ops->swap_deactivate)
2317                         mapping->a_ops->swap_deactivate(swap_file);
2318         }
2319 }
2320
2321 /*
2322  * Add a block range (and the corresponding page range) into this swapdev's
2323  * extent tree.
2324  *
2325  * This function rather assumes that it is called in ascending page order.
2326  */
2327 int
2328 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2329                 unsigned long nr_pages, sector_t start_block)
2330 {
2331         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2332         struct swap_extent *se;
2333         struct swap_extent *new_se;
2334
2335         /*
2336          * place the new node at the right most since the
2337          * function is called in ascending page order.
2338          */
2339         while (*link) {
2340                 parent = *link;
2341                 link = &parent->rb_right;
2342         }
2343
2344         if (parent) {
2345                 se = rb_entry(parent, struct swap_extent, rb_node);
2346                 BUG_ON(se->start_page + se->nr_pages != start_page);
2347                 if (se->start_block + se->nr_pages == start_block) {
2348                         /* Merge it */
2349                         se->nr_pages += nr_pages;
2350                         return 0;
2351                 }
2352         }
2353
2354         /* No merge, insert a new extent. */
2355         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2356         if (new_se == NULL)
2357                 return -ENOMEM;
2358         new_se->start_page = start_page;
2359         new_se->nr_pages = nr_pages;
2360         new_se->start_block = start_block;
2361
2362         rb_link_node(&new_se->rb_node, parent, link);
2363         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2364         return 1;
2365 }
2366 EXPORT_SYMBOL_GPL(add_swap_extent);
2367
2368 /*
2369  * A `swap extent' is a simple thing which maps a contiguous range of pages
2370  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2371  * is built at swapon time and is then used at swap_writepage/swap_readpage
2372  * time for locating where on disk a page belongs.
2373  *
2374  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2375  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2376  * swap files identically.
2377  *
2378  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2379  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2380  * swapfiles are handled *identically* after swapon time.
2381  *
2382  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2383  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2384  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2385  * requirements, they are simply tossed out - we will never use those blocks
2386  * for swapping.
2387  *
2388  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2389  * prevents users from writing to the swap device, which will corrupt memory.
2390  *
2391  * The amount of disk space which a single swap extent represents varies.
2392  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2393  * extents in the list.  To avoid much list walking, we cache the previous
2394  * search location in `curr_swap_extent', and start new searches from there.
2395  * This is extremely effective.  The average number of iterations in
2396  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2397  */
2398 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2399 {
2400         struct file *swap_file = sis->swap_file;
2401         struct address_space *mapping = swap_file->f_mapping;
2402         struct inode *inode = mapping->host;
2403         int ret;
2404
2405         if (S_ISBLK(inode->i_mode)) {
2406                 ret = add_swap_extent(sis, 0, sis->max, 0);
2407                 *span = sis->pages;
2408                 return ret;
2409         }
2410
2411         if (mapping->a_ops->swap_activate) {
2412                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2413                 if (ret >= 0)
2414                         sis->flags |= SWP_ACTIVATED;
2415                 if (!ret) {
2416                         sis->flags |= SWP_FS_OPS;
2417                         ret = add_swap_extent(sis, 0, sis->max, 0);
2418                         *span = sis->pages;
2419                 }
2420                 return ret;
2421         }
2422
2423         return generic_swapfile_activate(sis, swap_file, span);
2424 }
2425
2426 static int swap_node(struct swap_info_struct *p)
2427 {
2428         struct block_device *bdev;
2429
2430         if (p->bdev)
2431                 bdev = p->bdev;
2432         else
2433                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2434
2435         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2436 }
2437
2438 static void setup_swap_info(struct swap_info_struct *p, int prio,
2439                             unsigned char *swap_map,
2440                             struct swap_cluster_info *cluster_info)
2441 {
2442         int i;
2443
2444         if (prio >= 0)
2445                 p->prio = prio;
2446         else
2447                 p->prio = --least_priority;
2448         /*
2449          * the plist prio is negated because plist ordering is
2450          * low-to-high, while swap ordering is high-to-low
2451          */
2452         p->list.prio = -p->prio;
2453         for_each_node(i) {
2454                 if (p->prio >= 0)
2455                         p->avail_lists[i].prio = -p->prio;
2456                 else {
2457                         if (swap_node(p) == i)
2458                                 p->avail_lists[i].prio = 1;
2459                         else
2460                                 p->avail_lists[i].prio = -p->prio;
2461                 }
2462         }
2463         p->swap_map = swap_map;
2464         p->cluster_info = cluster_info;
2465 }
2466
2467 static void _enable_swap_info(struct swap_info_struct *p)
2468 {
2469         p->flags |= SWP_WRITEOK | SWP_VALID;
2470         atomic_long_add(p->pages, &nr_swap_pages);
2471         total_swap_pages += p->pages;
2472
2473         assert_spin_locked(&swap_lock);
2474         /*
2475          * both lists are plists, and thus priority ordered.
2476          * swap_active_head needs to be priority ordered for swapoff(),
2477          * which on removal of any swap_info_struct with an auto-assigned
2478          * (i.e. negative) priority increments the auto-assigned priority
2479          * of any lower-priority swap_info_structs.
2480          * swap_avail_head needs to be priority ordered for get_swap_page(),
2481          * which allocates swap pages from the highest available priority
2482          * swap_info_struct.
2483          */
2484         plist_add(&p->list, &swap_active_head);
2485         add_to_avail_list(p);
2486 }
2487
2488 static void enable_swap_info(struct swap_info_struct *p, int prio,
2489                                 unsigned char *swap_map,
2490                                 struct swap_cluster_info *cluster_info,
2491                                 unsigned long *frontswap_map)
2492 {
2493         frontswap_init(p->type, frontswap_map);
2494         spin_lock(&swap_lock);
2495         spin_lock(&p->lock);
2496         setup_swap_info(p, prio, swap_map, cluster_info);
2497         spin_unlock(&p->lock);
2498         spin_unlock(&swap_lock);
2499         /*
2500          * Guarantee swap_map, cluster_info, etc. fields are valid
2501          * between get/put_swap_device() if SWP_VALID bit is set
2502          */
2503         synchronize_rcu();
2504         spin_lock(&swap_lock);
2505         spin_lock(&p->lock);
2506         _enable_swap_info(p);
2507         spin_unlock(&p->lock);
2508         spin_unlock(&swap_lock);
2509 }
2510
2511 static void reinsert_swap_info(struct swap_info_struct *p)
2512 {
2513         spin_lock(&swap_lock);
2514         spin_lock(&p->lock);
2515         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2516         _enable_swap_info(p);
2517         spin_unlock(&p->lock);
2518         spin_unlock(&swap_lock);
2519 }
2520
2521 bool has_usable_swap(void)
2522 {
2523         bool ret = true;
2524
2525         spin_lock(&swap_lock);
2526         if (plist_head_empty(&swap_active_head))
2527                 ret = false;
2528         spin_unlock(&swap_lock);
2529         return ret;
2530 }
2531
2532 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2533 {
2534         struct swap_info_struct *p = NULL;
2535         unsigned char *swap_map;
2536         struct swap_cluster_info *cluster_info;
2537         unsigned long *frontswap_map;
2538         struct file *swap_file, *victim;
2539         struct address_space *mapping;
2540         struct inode *inode;
2541         struct filename *pathname;
2542         int err, found = 0;
2543         unsigned int old_block_size;
2544
2545         if (!capable(CAP_SYS_ADMIN))
2546                 return -EPERM;
2547
2548         BUG_ON(!current->mm);
2549
2550         pathname = getname(specialfile);
2551         if (IS_ERR(pathname))
2552                 return PTR_ERR(pathname);
2553
2554         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2555         err = PTR_ERR(victim);
2556         if (IS_ERR(victim))
2557                 goto out;
2558
2559         mapping = victim->f_mapping;
2560         spin_lock(&swap_lock);
2561         plist_for_each_entry(p, &swap_active_head, list) {
2562                 if (p->flags & SWP_WRITEOK) {
2563                         if (p->swap_file->f_mapping == mapping) {
2564                                 found = 1;
2565                                 break;
2566                         }
2567                 }
2568         }
2569         if (!found) {
2570                 err = -EINVAL;
2571                 spin_unlock(&swap_lock);
2572                 goto out_dput;
2573         }
2574         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2575                 vm_unacct_memory(p->pages);
2576         else {
2577                 err = -ENOMEM;
2578                 spin_unlock(&swap_lock);
2579                 goto out_dput;
2580         }
2581         del_from_avail_list(p);
2582         spin_lock(&p->lock);
2583         if (p->prio < 0) {
2584                 struct swap_info_struct *si = p;
2585                 int nid;
2586
2587                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2588                         si->prio++;
2589                         si->list.prio--;
2590                         for_each_node(nid) {
2591                                 if (si->avail_lists[nid].prio != 1)
2592                                         si->avail_lists[nid].prio--;
2593                         }
2594                 }
2595                 least_priority++;
2596         }
2597         plist_del(&p->list, &swap_active_head);
2598         atomic_long_sub(p->pages, &nr_swap_pages);
2599         total_swap_pages -= p->pages;
2600         p->flags &= ~SWP_WRITEOK;
2601         spin_unlock(&p->lock);
2602         spin_unlock(&swap_lock);
2603
2604         disable_swap_slots_cache_lock();
2605
2606         set_current_oom_origin();
2607         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2608         clear_current_oom_origin();
2609
2610         if (err) {
2611                 /* re-insert swap space back into swap_list */
2612                 reinsert_swap_info(p);
2613                 reenable_swap_slots_cache_unlock();
2614                 goto out_dput;
2615         }
2616
2617         reenable_swap_slots_cache_unlock();
2618
2619         spin_lock(&swap_lock);
2620         spin_lock(&p->lock);
2621         p->flags &= ~SWP_VALID;         /* mark swap device as invalid */
2622         spin_unlock(&p->lock);
2623         spin_unlock(&swap_lock);
2624         /*
2625          * wait for swap operations protected by get/put_swap_device()
2626          * to complete
2627          */
2628         synchronize_rcu();
2629
2630         flush_work(&p->discard_work);
2631
2632         destroy_swap_extents(p);
2633         if (p->flags & SWP_CONTINUED)
2634                 free_swap_count_continuations(p);
2635
2636         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2637                 atomic_dec(&nr_rotate_swap);
2638
2639         mutex_lock(&swapon_mutex);
2640         spin_lock(&swap_lock);
2641         spin_lock(&p->lock);
2642         drain_mmlist();
2643
2644         /* wait for anyone still in scan_swap_map */
2645         p->highest_bit = 0;             /* cuts scans short */
2646         while (p->flags >= SWP_SCANNING) {
2647                 spin_unlock(&p->lock);
2648                 spin_unlock(&swap_lock);
2649                 schedule_timeout_uninterruptible(1);
2650                 spin_lock(&swap_lock);
2651                 spin_lock(&p->lock);
2652         }
2653
2654         swap_file = p->swap_file;
2655         old_block_size = p->old_block_size;
2656         p->swap_file = NULL;
2657         p->max = 0;
2658         swap_map = p->swap_map;
2659         p->swap_map = NULL;
2660         cluster_info = p->cluster_info;
2661         p->cluster_info = NULL;
2662         frontswap_map = frontswap_map_get(p);
2663         spin_unlock(&p->lock);
2664         spin_unlock(&swap_lock);
2665         arch_swap_invalidate_area(p->type);
2666         frontswap_invalidate_area(p->type);
2667         frontswap_map_set(p, NULL);
2668         mutex_unlock(&swapon_mutex);
2669         free_percpu(p->percpu_cluster);
2670         p->percpu_cluster = NULL;
2671         free_percpu(p->cluster_next_cpu);
2672         p->cluster_next_cpu = NULL;
2673         vfree(swap_map);
2674         kvfree(cluster_info);
2675         kvfree(frontswap_map);
2676         /* Destroy swap account information */
2677         swap_cgroup_swapoff(p->type);
2678         exit_swap_address_space(p->type);
2679
2680         inode = mapping->host;
2681         if (S_ISBLK(inode->i_mode)) {
2682                 struct block_device *bdev = I_BDEV(inode);
2683
2684                 set_blocksize(bdev, old_block_size);
2685                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2686         }
2687
2688         inode_lock(inode);
2689         inode->i_flags &= ~S_SWAPFILE;
2690         inode_unlock(inode);
2691         filp_close(swap_file, NULL);
2692
2693         /*
2694          * Clear the SWP_USED flag after all resources are freed so that swapon
2695          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2696          * not hold p->lock after we cleared its SWP_WRITEOK.
2697          */
2698         spin_lock(&swap_lock);
2699         p->flags = 0;
2700         spin_unlock(&swap_lock);
2701
2702         err = 0;
2703         atomic_inc(&proc_poll_event);
2704         wake_up_interruptible(&proc_poll_wait);
2705
2706 out_dput:
2707         filp_close(victim, NULL);
2708 out:
2709         putname(pathname);
2710         return err;
2711 }
2712
2713 #ifdef CONFIG_PROC_FS
2714 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2715 {
2716         struct seq_file *seq = file->private_data;
2717
2718         poll_wait(file, &proc_poll_wait, wait);
2719
2720         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2721                 seq->poll_event = atomic_read(&proc_poll_event);
2722                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2723         }
2724
2725         return EPOLLIN | EPOLLRDNORM;
2726 }
2727
2728 /* iterator */
2729 static void *swap_start(struct seq_file *swap, loff_t *pos)
2730 {
2731         struct swap_info_struct *si;
2732         int type;
2733         loff_t l = *pos;
2734
2735         mutex_lock(&swapon_mutex);
2736
2737         if (!l)
2738                 return SEQ_START_TOKEN;
2739
2740         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2741                 if (!(si->flags & SWP_USED) || !si->swap_map)
2742                         continue;
2743                 if (!--l)
2744                         return si;
2745         }
2746
2747         return NULL;
2748 }
2749
2750 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2751 {
2752         struct swap_info_struct *si = v;
2753         int type;
2754
2755         if (v == SEQ_START_TOKEN)
2756                 type = 0;
2757         else
2758                 type = si->type + 1;
2759
2760         ++(*pos);
2761         for (; (si = swap_type_to_swap_info(type)); type++) {
2762                 if (!(si->flags & SWP_USED) || !si->swap_map)
2763                         continue;
2764                 return si;
2765         }
2766
2767         return NULL;
2768 }
2769
2770 static void swap_stop(struct seq_file *swap, void *v)
2771 {
2772         mutex_unlock(&swapon_mutex);
2773 }
2774
2775 static int swap_show(struct seq_file *swap, void *v)
2776 {
2777         struct swap_info_struct *si = v;
2778         struct file *file;
2779         int len;
2780         unsigned int bytes, inuse;
2781
2782         if (si == SEQ_START_TOKEN) {
2783                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2784                 return 0;
2785         }
2786
2787         bytes = si->pages << (PAGE_SHIFT - 10);
2788         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2789
2790         file = si->swap_file;
2791         len = seq_file_path(swap, file, " \t\n\\");
2792         seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2793                         len < 40 ? 40 - len : 1, " ",
2794                         S_ISBLK(file_inode(file)->i_mode) ?
2795                                 "partition" : "file\t",
2796                         bytes, bytes < 10000000 ? "\t" : "",
2797                         inuse, inuse < 10000000 ? "\t" : "",
2798                         si->prio);
2799         return 0;
2800 }
2801
2802 static const struct seq_operations swaps_op = {
2803         .start =        swap_start,
2804         .next =         swap_next,
2805         .stop =         swap_stop,
2806         .show =         swap_show
2807 };
2808
2809 static int swaps_open(struct inode *inode, struct file *file)
2810 {
2811         struct seq_file *seq;
2812         int ret;
2813
2814         ret = seq_open(file, &swaps_op);
2815         if (ret)
2816                 return ret;
2817
2818         seq = file->private_data;
2819         seq->poll_event = atomic_read(&proc_poll_event);
2820         return 0;
2821 }
2822
2823 static const struct proc_ops swaps_proc_ops = {
2824         .proc_flags     = PROC_ENTRY_PERMANENT,
2825         .proc_open      = swaps_open,
2826         .proc_read      = seq_read,
2827         .proc_lseek     = seq_lseek,
2828         .proc_release   = seq_release,
2829         .proc_poll      = swaps_poll,
2830 };
2831
2832 static int __init procswaps_init(void)
2833 {
2834         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2835         return 0;
2836 }
2837 __initcall(procswaps_init);
2838 #endif /* CONFIG_PROC_FS */
2839
2840 #ifdef MAX_SWAPFILES_CHECK
2841 static int __init max_swapfiles_check(void)
2842 {
2843         MAX_SWAPFILES_CHECK();
2844         return 0;
2845 }
2846 late_initcall(max_swapfiles_check);
2847 #endif
2848
2849 static struct swap_info_struct *alloc_swap_info(void)
2850 {
2851         struct swap_info_struct *p;
2852         struct swap_info_struct *defer = NULL;
2853         unsigned int type;
2854         int i;
2855
2856         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2857         if (!p)
2858                 return ERR_PTR(-ENOMEM);
2859
2860         spin_lock(&swap_lock);
2861         for (type = 0; type < nr_swapfiles; type++) {
2862                 if (!(swap_info[type]->flags & SWP_USED))
2863                         break;
2864         }
2865         if (type >= MAX_SWAPFILES) {
2866                 spin_unlock(&swap_lock);
2867                 kvfree(p);
2868                 return ERR_PTR(-EPERM);
2869         }
2870         if (type >= nr_swapfiles) {
2871                 p->type = type;
2872                 WRITE_ONCE(swap_info[type], p);
2873                 /*
2874                  * Write swap_info[type] before nr_swapfiles, in case a
2875                  * racing procfs swap_start() or swap_next() is reading them.
2876                  * (We never shrink nr_swapfiles, we never free this entry.)
2877                  */
2878                 smp_wmb();
2879                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2880         } else {
2881                 defer = p;
2882                 p = swap_info[type];
2883                 /*
2884                  * Do not memset this entry: a racing procfs swap_next()
2885                  * would be relying on p->type to remain valid.
2886                  */
2887         }
2888         p->swap_extent_root = RB_ROOT;
2889         plist_node_init(&p->list, 0);
2890         for_each_node(i)
2891                 plist_node_init(&p->avail_lists[i], 0);
2892         p->flags = SWP_USED;
2893         spin_unlock(&swap_lock);
2894         kvfree(defer);
2895         spin_lock_init(&p->lock);
2896         spin_lock_init(&p->cont_lock);
2897
2898         return p;
2899 }
2900
2901 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2902 {
2903         int error;
2904
2905         if (S_ISBLK(inode->i_mode)) {
2906                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2907                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2908                 if (IS_ERR(p->bdev)) {
2909                         error = PTR_ERR(p->bdev);
2910                         p->bdev = NULL;
2911                         return error;
2912                 }
2913                 p->old_block_size = block_size(p->bdev);
2914                 error = set_blocksize(p->bdev, PAGE_SIZE);
2915                 if (error < 0)
2916                         return error;
2917                 /*
2918                  * Zoned block devices contain zones that have a sequential
2919                  * write only restriction.  Hence zoned block devices are not
2920                  * suitable for swapping.  Disallow them here.
2921                  */
2922                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2923                         return -EINVAL;
2924                 p->flags |= SWP_BLKDEV;
2925         } else if (S_ISREG(inode->i_mode)) {
2926                 p->bdev = inode->i_sb->s_bdev;
2927         }
2928
2929         return 0;
2930 }
2931
2932
2933 /*
2934  * Find out how many pages are allowed for a single swap device. There
2935  * are two limiting factors:
2936  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2937  * 2) the number of bits in the swap pte, as defined by the different
2938  * architectures.
2939  *
2940  * In order to find the largest possible bit mask, a swap entry with
2941  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2942  * decoded to a swp_entry_t again, and finally the swap offset is
2943  * extracted.
2944  *
2945  * This will mask all the bits from the initial ~0UL mask that can't
2946  * be encoded in either the swp_entry_t or the architecture definition
2947  * of a swap pte.
2948  */
2949 unsigned long generic_max_swapfile_size(void)
2950 {
2951         return swp_offset(pte_to_swp_entry(
2952                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2953 }
2954
2955 /* Can be overridden by an architecture for additional checks. */
2956 __weak unsigned long max_swapfile_size(void)
2957 {
2958         return generic_max_swapfile_size();
2959 }
2960
2961 static unsigned long read_swap_header(struct swap_info_struct *p,
2962                                         union swap_header *swap_header,
2963                                         struct inode *inode)
2964 {
2965         int i;
2966         unsigned long maxpages;
2967         unsigned long swapfilepages;
2968         unsigned long last_page;
2969
2970         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2971                 pr_err("Unable to find swap-space signature\n");
2972                 return 0;
2973         }
2974
2975         /* swap partition endianess hack... */
2976         if (swab32(swap_header->info.version) == 1) {
2977                 swab32s(&swap_header->info.version);
2978                 swab32s(&swap_header->info.last_page);
2979                 swab32s(&swap_header->info.nr_badpages);
2980                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2981                         return 0;
2982                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2983                         swab32s(&swap_header->info.badpages[i]);
2984         }
2985         /* Check the swap header's sub-version */
2986         if (swap_header->info.version != 1) {
2987                 pr_warn("Unable to handle swap header version %d\n",
2988                         swap_header->info.version);
2989                 return 0;
2990         }
2991
2992         p->lowest_bit  = 1;
2993         p->cluster_next = 1;
2994         p->cluster_nr = 0;
2995
2996         maxpages = max_swapfile_size();
2997         last_page = swap_header->info.last_page;
2998         if (!last_page) {
2999                 pr_warn("Empty swap-file\n");
3000                 return 0;
3001         }
3002         if (last_page > maxpages) {
3003                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3004                         maxpages << (PAGE_SHIFT - 10),
3005                         last_page << (PAGE_SHIFT - 10));
3006         }
3007         if (maxpages > last_page) {
3008                 maxpages = last_page + 1;
3009                 /* p->max is an unsigned int: don't overflow it */
3010                 if ((unsigned int)maxpages == 0)
3011                         maxpages = UINT_MAX;
3012         }
3013         p->highest_bit = maxpages - 1;
3014
3015         if (!maxpages)
3016                 return 0;
3017         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3018         if (swapfilepages && maxpages > swapfilepages) {
3019                 pr_warn("Swap area shorter than signature indicates\n");
3020                 return 0;
3021         }
3022         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3023                 return 0;
3024         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3025                 return 0;
3026
3027         return maxpages;
3028 }
3029
3030 #define SWAP_CLUSTER_INFO_COLS                                          \
3031         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3032 #define SWAP_CLUSTER_SPACE_COLS                                         \
3033         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3034 #define SWAP_CLUSTER_COLS                                               \
3035         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3036
3037 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3038                                         union swap_header *swap_header,
3039                                         unsigned char *swap_map,
3040                                         struct swap_cluster_info *cluster_info,
3041                                         unsigned long maxpages,
3042                                         sector_t *span)
3043 {
3044         unsigned int j, k;
3045         unsigned int nr_good_pages;
3046         int nr_extents;
3047         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3048         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3049         unsigned long i, idx;
3050
3051         nr_good_pages = maxpages - 1;   /* omit header page */
3052
3053         cluster_list_init(&p->free_clusters);
3054         cluster_list_init(&p->discard_clusters);
3055
3056         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3057                 unsigned int page_nr = swap_header->info.badpages[i];
3058                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3059                         return -EINVAL;
3060                 if (page_nr < maxpages) {
3061                         swap_map[page_nr] = SWAP_MAP_BAD;
3062                         nr_good_pages--;
3063                         /*
3064                          * Haven't marked the cluster free yet, no list
3065                          * operation involved
3066                          */
3067                         inc_cluster_info_page(p, cluster_info, page_nr);
3068                 }
3069         }
3070
3071         /* Haven't marked the cluster free yet, no list operation involved */
3072         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3073                 inc_cluster_info_page(p, cluster_info, i);
3074
3075         if (nr_good_pages) {
3076                 swap_map[0] = SWAP_MAP_BAD;
3077                 /*
3078                  * Not mark the cluster free yet, no list
3079                  * operation involved
3080                  */
3081                 inc_cluster_info_page(p, cluster_info, 0);
3082                 p->max = maxpages;
3083                 p->pages = nr_good_pages;
3084                 nr_extents = setup_swap_extents(p, span);
3085                 if (nr_extents < 0)
3086                         return nr_extents;
3087                 nr_good_pages = p->pages;
3088         }
3089         if (!nr_good_pages) {
3090                 pr_warn("Empty swap-file\n");
3091                 return -EINVAL;
3092         }
3093
3094         if (!cluster_info)
3095                 return nr_extents;
3096
3097
3098         /*
3099          * Reduce false cache line sharing between cluster_info and
3100          * sharing same address space.
3101          */
3102         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3103                 j = (k + col) % SWAP_CLUSTER_COLS;
3104                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3105                         idx = i * SWAP_CLUSTER_COLS + j;
3106                         if (idx >= nr_clusters)
3107                                 continue;
3108                         if (cluster_count(&cluster_info[idx]))
3109                                 continue;
3110                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3111                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3112                                               idx);
3113                 }
3114         }
3115         return nr_extents;
3116 }
3117
3118 /*
3119  * Helper to sys_swapon determining if a given swap
3120  * backing device queue supports DISCARD operations.
3121  */
3122 static bool swap_discardable(struct swap_info_struct *si)
3123 {
3124         struct request_queue *q = bdev_get_queue(si->bdev);
3125
3126         if (!q || !blk_queue_discard(q))
3127                 return false;
3128
3129         return true;
3130 }
3131
3132 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3133 {
3134         struct swap_info_struct *p;
3135         struct filename *name;
3136         struct file *swap_file = NULL;
3137         struct address_space *mapping;
3138         int prio;
3139         int error;
3140         union swap_header *swap_header;
3141         int nr_extents;
3142         sector_t span;
3143         unsigned long maxpages;
3144         unsigned char *swap_map = NULL;
3145         struct swap_cluster_info *cluster_info = NULL;
3146         unsigned long *frontswap_map = NULL;
3147         struct page *page = NULL;
3148         struct inode *inode = NULL;
3149         bool inced_nr_rotate_swap = false;
3150
3151         if (swap_flags & ~SWAP_FLAGS_VALID)
3152                 return -EINVAL;
3153
3154         if (!capable(CAP_SYS_ADMIN))
3155                 return -EPERM;
3156
3157         if (!swap_avail_heads)
3158                 return -ENOMEM;
3159
3160         p = alloc_swap_info();
3161         if (IS_ERR(p))
3162                 return PTR_ERR(p);
3163
3164         INIT_WORK(&p->discard_work, swap_discard_work);
3165
3166         name = getname(specialfile);
3167         if (IS_ERR(name)) {
3168                 error = PTR_ERR(name);
3169                 name = NULL;
3170                 goto bad_swap;
3171         }
3172         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3173         if (IS_ERR(swap_file)) {
3174                 error = PTR_ERR(swap_file);
3175                 swap_file = NULL;
3176                 goto bad_swap;
3177         }
3178
3179         p->swap_file = swap_file;
3180         mapping = swap_file->f_mapping;
3181         inode = mapping->host;
3182
3183         error = claim_swapfile(p, inode);
3184         if (unlikely(error))
3185                 goto bad_swap;
3186
3187         inode_lock(inode);
3188         if (IS_SWAPFILE(inode)) {
3189                 error = -EBUSY;
3190                 goto bad_swap_unlock_inode;
3191         }
3192
3193         /*
3194          * Read the swap header.
3195          */
3196         if (!mapping->a_ops->readpage) {
3197                 error = -EINVAL;
3198                 goto bad_swap_unlock_inode;
3199         }
3200         page = read_mapping_page(mapping, 0, swap_file);
3201         if (IS_ERR(page)) {
3202                 error = PTR_ERR(page);
3203                 goto bad_swap_unlock_inode;
3204         }
3205         swap_header = kmap(page);
3206
3207         maxpages = read_swap_header(p, swap_header, inode);
3208         if (unlikely(!maxpages)) {
3209                 error = -EINVAL;
3210                 goto bad_swap_unlock_inode;
3211         }
3212
3213         /* OK, set up the swap map and apply the bad block list */
3214         swap_map = vzalloc(maxpages);
3215         if (!swap_map) {
3216                 error = -ENOMEM;
3217                 goto bad_swap_unlock_inode;
3218         }
3219
3220         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3221                 p->flags |= SWP_STABLE_WRITES;
3222
3223         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3224                 p->flags |= SWP_SYNCHRONOUS_IO;
3225
3226         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3227                 int cpu;
3228                 unsigned long ci, nr_cluster;
3229
3230                 p->flags |= SWP_SOLIDSTATE;
3231                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3232                 if (!p->cluster_next_cpu) {
3233                         error = -ENOMEM;
3234                         goto bad_swap_unlock_inode;
3235                 }
3236                 /*
3237                  * select a random position to start with to help wear leveling
3238                  * SSD
3239                  */
3240                 for_each_possible_cpu(cpu) {
3241                         per_cpu(*p->cluster_next_cpu, cpu) =
3242                                 1 + prandom_u32_max(p->highest_bit);
3243                 }
3244                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3245
3246                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3247                                         GFP_KERNEL);
3248                 if (!cluster_info) {
3249                         error = -ENOMEM;
3250                         goto bad_swap_unlock_inode;
3251                 }
3252
3253                 for (ci = 0; ci < nr_cluster; ci++)
3254                         spin_lock_init(&((cluster_info + ci)->lock));
3255
3256                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3257                 if (!p->percpu_cluster) {
3258                         error = -ENOMEM;
3259                         goto bad_swap_unlock_inode;
3260                 }
3261                 for_each_possible_cpu(cpu) {
3262                         struct percpu_cluster *cluster;
3263                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3264                         cluster_set_null(&cluster->index);
3265                 }
3266         } else {
3267                 atomic_inc(&nr_rotate_swap);
3268                 inced_nr_rotate_swap = true;
3269         }
3270
3271         error = swap_cgroup_swapon(p->type, maxpages);
3272         if (error)
3273                 goto bad_swap_unlock_inode;
3274
3275         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3276                 cluster_info, maxpages, &span);
3277         if (unlikely(nr_extents < 0)) {
3278                 error = nr_extents;
3279                 goto bad_swap_unlock_inode;
3280         }
3281         /* frontswap enabled? set up bit-per-page map for frontswap */
3282         if (IS_ENABLED(CONFIG_FRONTSWAP))
3283                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3284                                          sizeof(long),
3285                                          GFP_KERNEL);
3286
3287         if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3288                 /*
3289                  * When discard is enabled for swap with no particular
3290                  * policy flagged, we set all swap discard flags here in
3291                  * order to sustain backward compatibility with older
3292                  * swapon(8) releases.
3293                  */
3294                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3295                              SWP_PAGE_DISCARD);
3296
3297                 /*
3298                  * By flagging sys_swapon, a sysadmin can tell us to
3299                  * either do single-time area discards only, or to just
3300                  * perform discards for released swap page-clusters.
3301                  * Now it's time to adjust the p->flags accordingly.
3302                  */
3303                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3304                         p->flags &= ~SWP_PAGE_DISCARD;
3305                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3306                         p->flags &= ~SWP_AREA_DISCARD;
3307
3308                 /* issue a swapon-time discard if it's still required */
3309                 if (p->flags & SWP_AREA_DISCARD) {
3310                         int err = discard_swap(p);
3311                         if (unlikely(err))
3312                                 pr_err("swapon: discard_swap(%p): %d\n",
3313                                         p, err);
3314                 }
3315         }
3316
3317         error = init_swap_address_space(p->type, maxpages);
3318         if (error)
3319                 goto bad_swap_unlock_inode;
3320
3321         /*
3322          * Flush any pending IO and dirty mappings before we start using this
3323          * swap device.
3324          */
3325         inode->i_flags |= S_SWAPFILE;
3326         error = inode_drain_writes(inode);
3327         if (error) {
3328                 inode->i_flags &= ~S_SWAPFILE;
3329                 goto free_swap_address_space;
3330         }
3331
3332         mutex_lock(&swapon_mutex);
3333         prio = -1;
3334         if (swap_flags & SWAP_FLAG_PREFER)
3335                 prio =
3336                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3337         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3338
3339         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3340                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3341                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3342                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3343                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3344                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3345                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3346                 (frontswap_map) ? "FS" : "");
3347
3348         mutex_unlock(&swapon_mutex);
3349         atomic_inc(&proc_poll_event);
3350         wake_up_interruptible(&proc_poll_wait);
3351
3352         error = 0;
3353         goto out;
3354 free_swap_address_space:
3355         exit_swap_address_space(p->type);
3356 bad_swap_unlock_inode:
3357         inode_unlock(inode);
3358 bad_swap:
3359         free_percpu(p->percpu_cluster);
3360         p->percpu_cluster = NULL;
3361         free_percpu(p->cluster_next_cpu);
3362         p->cluster_next_cpu = NULL;
3363         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3364                 set_blocksize(p->bdev, p->old_block_size);
3365                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3366         }
3367         inode = NULL;
3368         destroy_swap_extents(p);
3369         swap_cgroup_swapoff(p->type);
3370         spin_lock(&swap_lock);
3371         p->swap_file = NULL;
3372         p->flags = 0;
3373         spin_unlock(&swap_lock);
3374         vfree(swap_map);
3375         kvfree(cluster_info);
3376         kvfree(frontswap_map);
3377         if (inced_nr_rotate_swap)
3378                 atomic_dec(&nr_rotate_swap);
3379         if (swap_file)
3380                 filp_close(swap_file, NULL);
3381 out:
3382         if (page && !IS_ERR(page)) {
3383                 kunmap(page);
3384                 put_page(page);
3385         }
3386         if (name)
3387                 putname(name);
3388         if (inode)
3389                 inode_unlock(inode);
3390         if (!error)
3391                 enable_swap_slots_cache();
3392         return error;
3393 }
3394
3395 void si_swapinfo(struct sysinfo *val)
3396 {
3397         unsigned int type;
3398         unsigned long nr_to_be_unused = 0;
3399
3400         spin_lock(&swap_lock);
3401         for (type = 0; type < nr_swapfiles; type++) {
3402                 struct swap_info_struct *si = swap_info[type];
3403
3404                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3405                         nr_to_be_unused += si->inuse_pages;
3406         }
3407         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3408         val->totalswap = total_swap_pages + nr_to_be_unused;
3409         spin_unlock(&swap_lock);
3410 }
3411
3412 /*
3413  * Verify that a swap entry is valid and increment its swap map count.
3414  *
3415  * Returns error code in following case.
3416  * - success -> 0
3417  * - swp_entry is invalid -> EINVAL
3418  * - swp_entry is migration entry -> EINVAL
3419  * - swap-cache reference is requested but there is already one. -> EEXIST
3420  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3421  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3422  */
3423 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3424 {
3425         struct swap_info_struct *p;
3426         struct swap_cluster_info *ci;
3427         unsigned long offset;
3428         unsigned char count;
3429         unsigned char has_cache;
3430         int err;
3431
3432         p = get_swap_device(entry);
3433         if (!p)
3434                 return -EINVAL;
3435
3436         offset = swp_offset(entry);
3437         ci = lock_cluster_or_swap_info(p, offset);
3438
3439         count = p->swap_map[offset];
3440
3441         /*
3442          * swapin_readahead() doesn't check if a swap entry is valid, so the
3443          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3444          */
3445         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3446                 err = -ENOENT;
3447                 goto unlock_out;
3448         }
3449
3450         has_cache = count & SWAP_HAS_CACHE;
3451         count &= ~SWAP_HAS_CACHE;
3452         err = 0;
3453
3454         if (usage == SWAP_HAS_CACHE) {
3455
3456                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3457                 if (!has_cache && count)
3458                         has_cache = SWAP_HAS_CACHE;
3459                 else if (has_cache)             /* someone else added cache */
3460                         err = -EEXIST;
3461                 else                            /* no users remaining */
3462                         err = -ENOENT;
3463
3464         } else if (count || has_cache) {
3465
3466                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3467                         count += usage;
3468                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3469                         err = -EINVAL;
3470                 else if (swap_count_continued(p, offset, count))
3471                         count = COUNT_CONTINUED;
3472                 else
3473                         err = -ENOMEM;
3474         } else
3475                 err = -ENOENT;                  /* unused swap entry */
3476
3477         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3478
3479 unlock_out:
3480         unlock_cluster_or_swap_info(p, ci);
3481         if (p)
3482                 put_swap_device(p);
3483         return err;
3484 }
3485
3486 /*
3487  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3488  * (in which case its reference count is never incremented).
3489  */
3490 void swap_shmem_alloc(swp_entry_t entry)
3491 {
3492         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3493 }
3494
3495 /*
3496  * Increase reference count of swap entry by 1.
3497  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3498  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3499  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3500  * might occur if a page table entry has got corrupted.
3501  */
3502 int swap_duplicate(swp_entry_t entry)
3503 {
3504         int err = 0;
3505
3506         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3507                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3508         return err;
3509 }
3510
3511 /*
3512  * @entry: swap entry for which we allocate swap cache.
3513  *
3514  * Called when allocating swap cache for existing swap entry,
3515  * This can return error codes. Returns 0 at success.
3516  * -EEXIST means there is a swap cache.
3517  * Note: return code is different from swap_duplicate().
3518  */
3519 int swapcache_prepare(swp_entry_t entry)
3520 {
3521         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3522 }
3523
3524 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3525 {
3526         return swap_type_to_swap_info(swp_type(entry));
3527 }
3528
3529 struct swap_info_struct *page_swap_info(struct page *page)
3530 {
3531         swp_entry_t entry = { .val = page_private(page) };
3532         return swp_swap_info(entry);
3533 }
3534
3535 /*
3536  * out-of-line __page_file_ methods to avoid include hell.
3537  */
3538 struct address_space *__page_file_mapping(struct page *page)
3539 {
3540         return page_swap_info(page)->swap_file->f_mapping;
3541 }
3542 EXPORT_SYMBOL_GPL(__page_file_mapping);
3543
3544 pgoff_t __page_file_index(struct page *page)
3545 {
3546         swp_entry_t swap = { .val = page_private(page) };
3547         return swp_offset(swap);
3548 }
3549 EXPORT_SYMBOL_GPL(__page_file_index);
3550
3551 /*
3552  * add_swap_count_continuation - called when a swap count is duplicated
3553  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3554  * page of the original vmalloc'ed swap_map, to hold the continuation count
3555  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3556  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3557  *
3558  * These continuation pages are seldom referenced: the common paths all work
3559  * on the original swap_map, only referring to a continuation page when the
3560  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3561  *
3562  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3563  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3564  * can be called after dropping locks.
3565  */
3566 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3567 {
3568         struct swap_info_struct *si;
3569         struct swap_cluster_info *ci;
3570         struct page *head;
3571         struct page *page;
3572         struct page *list_page;
3573         pgoff_t offset;
3574         unsigned char count;
3575         int ret = 0;
3576
3577         /*
3578          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3579          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3580          */
3581         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3582
3583         si = get_swap_device(entry);
3584         if (!si) {
3585                 /*
3586                  * An acceptable race has occurred since the failing
3587                  * __swap_duplicate(): the swap device may be swapoff
3588                  */
3589                 goto outer;
3590         }
3591         spin_lock(&si->lock);
3592
3593         offset = swp_offset(entry);
3594
3595         ci = lock_cluster(si, offset);
3596
3597         count = swap_count(si->swap_map[offset]);
3598
3599         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3600                 /*
3601                  * The higher the swap count, the more likely it is that tasks
3602                  * will race to add swap count continuation: we need to avoid
3603                  * over-provisioning.
3604                  */
3605                 goto out;
3606         }
3607
3608         if (!page) {
3609                 ret = -ENOMEM;
3610                 goto out;
3611         }
3612
3613         /*
3614          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3615          * no architecture is using highmem pages for kernel page tables: so it
3616          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3617          */
3618         head = vmalloc_to_page(si->swap_map + offset);
3619         offset &= ~PAGE_MASK;
3620
3621         spin_lock(&si->cont_lock);
3622         /*
3623          * Page allocation does not initialize the page's lru field,
3624          * but it does always reset its private field.
3625          */
3626         if (!page_private(head)) {
3627                 BUG_ON(count & COUNT_CONTINUED);
3628                 INIT_LIST_HEAD(&head->lru);
3629                 set_page_private(head, SWP_CONTINUED);
3630                 si->flags |= SWP_CONTINUED;
3631         }
3632
3633         list_for_each_entry(list_page, &head->lru, lru) {
3634                 unsigned char *map;
3635
3636                 /*
3637                  * If the previous map said no continuation, but we've found
3638                  * a continuation page, free our allocation and use this one.
3639                  */
3640                 if (!(count & COUNT_CONTINUED))
3641                         goto out_unlock_cont;
3642
3643                 map = kmap_atomic(list_page) + offset;
3644                 count = *map;
3645                 kunmap_atomic(map);
3646
3647                 /*
3648                  * If this continuation count now has some space in it,
3649                  * free our allocation and use this one.
3650                  */
3651                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3652                         goto out_unlock_cont;
3653         }
3654
3655         list_add_tail(&page->lru, &head->lru);
3656         page = NULL;                    /* now it's attached, don't free it */
3657 out_unlock_cont:
3658         spin_unlock(&si->cont_lock);
3659 out:
3660         unlock_cluster(ci);
3661         spin_unlock(&si->lock);
3662         put_swap_device(si);
3663 outer:
3664         if (page)
3665                 __free_page(page);
3666         return ret;
3667 }
3668
3669 /*
3670  * swap_count_continued - when the original swap_map count is incremented
3671  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3672  * into, carry if so, or else fail until a new continuation page is allocated;
3673  * when the original swap_map count is decremented from 0 with continuation,
3674  * borrow from the continuation and report whether it still holds more.
3675  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3676  * lock.
3677  */
3678 static bool swap_count_continued(struct swap_info_struct *si,
3679                                  pgoff_t offset, unsigned char count)
3680 {
3681         struct page *head;
3682         struct page *page;
3683         unsigned char *map;
3684         bool ret;
3685
3686         head = vmalloc_to_page(si->swap_map + offset);
3687         if (page_private(head) != SWP_CONTINUED) {
3688                 BUG_ON(count & COUNT_CONTINUED);
3689                 return false;           /* need to add count continuation */
3690         }
3691
3692         spin_lock(&si->cont_lock);
3693         offset &= ~PAGE_MASK;
3694         page = list_next_entry(head, lru);
3695         map = kmap_atomic(page) + offset;
3696
3697         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3698                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3699
3700         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3701                 /*
3702                  * Think of how you add 1 to 999
3703                  */
3704                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3705                         kunmap_atomic(map);
3706                         page = list_next_entry(page, lru);
3707                         BUG_ON(page == head);
3708                         map = kmap_atomic(page) + offset;
3709                 }
3710                 if (*map == SWAP_CONT_MAX) {
3711                         kunmap_atomic(map);
3712                         page = list_next_entry(page, lru);
3713                         if (page == head) {
3714                                 ret = false;    /* add count continuation */
3715                                 goto out;
3716                         }
3717                         map = kmap_atomic(page) + offset;
3718 init_map:               *map = 0;               /* we didn't zero the page */
3719                 }
3720                 *map += 1;
3721                 kunmap_atomic(map);
3722                 while ((page = list_prev_entry(page, lru)) != head) {
3723                         map = kmap_atomic(page) + offset;
3724                         *map = COUNT_CONTINUED;
3725                         kunmap_atomic(map);
3726                 }
3727                 ret = true;                     /* incremented */
3728
3729         } else {                                /* decrementing */
3730                 /*
3731                  * Think of how you subtract 1 from 1000
3732                  */
3733                 BUG_ON(count != COUNT_CONTINUED);
3734                 while (*map == COUNT_CONTINUED) {
3735                         kunmap_atomic(map);
3736                         page = list_next_entry(page, lru);
3737                         BUG_ON(page == head);
3738                         map = kmap_atomic(page) + offset;
3739                 }
3740                 BUG_ON(*map == 0);
3741                 *map -= 1;
3742                 if (*map == 0)
3743                         count = 0;
3744                 kunmap_atomic(map);
3745                 while ((page = list_prev_entry(page, lru)) != head) {
3746                         map = kmap_atomic(page) + offset;
3747                         *map = SWAP_CONT_MAX | count;
3748                         count = COUNT_CONTINUED;
3749                         kunmap_atomic(map);
3750                 }
3751                 ret = count == COUNT_CONTINUED;
3752         }
3753 out:
3754         spin_unlock(&si->cont_lock);
3755         return ret;
3756 }
3757
3758 /*
3759  * free_swap_count_continuations - swapoff free all the continuation pages
3760  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3761  */
3762 static void free_swap_count_continuations(struct swap_info_struct *si)
3763 {
3764         pgoff_t offset;
3765
3766         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3767                 struct page *head;
3768                 head = vmalloc_to_page(si->swap_map + offset);
3769                 if (page_private(head)) {
3770                         struct page *page, *next;
3771
3772                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3773                                 list_del(&page->lru);
3774                                 __free_page(page);
3775                         }
3776                 }
3777         }
3778 }
3779
3780 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3781 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3782 {
3783         struct swap_info_struct *si, *next;
3784         int nid = page_to_nid(page);
3785
3786         if (!(gfp_mask & __GFP_IO))
3787                 return;
3788
3789         if (!blk_cgroup_congested())
3790                 return;
3791
3792         /*
3793          * We've already scheduled a throttle, avoid taking the global swap
3794          * lock.
3795          */
3796         if (current->throttle_queue)
3797                 return;
3798
3799         spin_lock(&swap_avail_lock);
3800         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3801                                   avail_lists[nid]) {
3802                 if (si->bdev) {
3803                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3804                         break;
3805                 }
3806         }
3807         spin_unlock(&swap_avail_lock);
3808 }
3809 #endif
3810
3811 static int __init swapfile_init(void)
3812 {
3813         int nid;
3814
3815         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3816                                          GFP_KERNEL);
3817         if (!swap_avail_heads) {
3818                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3819                 return -ENOMEM;
3820         }
3821
3822         for_each_node(nid)
3823                 plist_head_init(&swap_avail_heads[nid]);
3824
3825         return 0;
3826 }
3827 subsys_initcall(swapfile_init);