Linux 6.0-rc1
[linux-2.6-microblaze.git] / mm / swap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45
46 /* How many pages do we try to swap or page in/out together? */
47 int page_cluster;
48
49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
50 struct lru_rotate {
51         local_lock_t lock;
52         struct pagevec pvec;
53 };
54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55         .lock = INIT_LOCAL_LOCK(lock),
56 };
57
58 /*
59  * The following struct pagevec are grouped together because they are protected
60  * by disabling preemption (and interrupts remain enabled).
61  */
62 struct lru_pvecs {
63         local_lock_t lock;
64         struct pagevec lru_add;
65         struct pagevec lru_deactivate_file;
66         struct pagevec lru_deactivate;
67         struct pagevec lru_lazyfree;
68 #ifdef CONFIG_SMP
69         struct pagevec activate_page;
70 #endif
71 };
72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73         .lock = INIT_LOCAL_LOCK(lock),
74 };
75
76 /*
77  * This path almost never happens for VM activity - pages are normally
78  * freed via pagevecs.  But it gets used by networking.
79  */
80 static void __page_cache_release(struct page *page)
81 {
82         if (PageLRU(page)) {
83                 struct lruvec *lruvec;
84                 unsigned long flags;
85
86                 lruvec = lock_page_lruvec_irqsave(page, &flags);
87                 del_page_from_lru_list(page, lruvec);
88                 __clear_page_lru_flags(page);
89                 unlock_page_lruvec_irqrestore(lruvec, flags);
90         }
91         __ClearPageWaiters(page);
92 }
93
94 static void __put_single_page(struct page *page)
95 {
96         __page_cache_release(page);
97         mem_cgroup_uncharge(page);
98         free_unref_page(page, 0);
99 }
100
101 static void __put_compound_page(struct page *page)
102 {
103         /*
104          * __page_cache_release() is supposed to be called for thp, not for
105          * hugetlb. This is because hugetlb page does never have PageLRU set
106          * (it's never listed to any LRU lists) and no memcg routines should
107          * be called for hugetlb (it has a separate hugetlb_cgroup.)
108          */
109         if (!PageHuge(page))
110                 __page_cache_release(page);
111         destroy_compound_page(page);
112 }
113
114 void __put_page(struct page *page)
115 {
116         if (is_zone_device_page(page)) {
117                 put_dev_pagemap(page->pgmap);
118
119                 /*
120                  * The page belongs to the device that created pgmap. Do
121                  * not return it to page allocator.
122                  */
123                 return;
124         }
125
126         if (unlikely(PageCompound(page)))
127                 __put_compound_page(page);
128         else
129                 __put_single_page(page);
130 }
131 EXPORT_SYMBOL(__put_page);
132
133 /**
134  * put_pages_list() - release a list of pages
135  * @pages: list of pages threaded on page->lru
136  *
137  * Release a list of pages which are strung together on page.lru.  Currently
138  * used by read_cache_pages() and related error recovery code.
139  */
140 void put_pages_list(struct list_head *pages)
141 {
142         while (!list_empty(pages)) {
143                 struct page *victim;
144
145                 victim = lru_to_page(pages);
146                 list_del(&victim->lru);
147                 put_page(victim);
148         }
149 }
150 EXPORT_SYMBOL(put_pages_list);
151
152 /*
153  * get_kernel_pages() - pin kernel pages in memory
154  * @kiov:       An array of struct kvec structures
155  * @nr_segs:    number of segments to pin
156  * @write:      pinning for read/write, currently ignored
157  * @pages:      array that receives pointers to the pages pinned.
158  *              Should be at least nr_segs long.
159  *
160  * Returns number of pages pinned. This may be fewer than the number
161  * requested. If nr_pages is 0 or negative, returns 0. If no pages
162  * were pinned, returns -errno. Each page returned must be released
163  * with a put_page() call when it is finished with.
164  */
165 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
166                 struct page **pages)
167 {
168         int seg;
169
170         for (seg = 0; seg < nr_segs; seg++) {
171                 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
172                         return seg;
173
174                 pages[seg] = kmap_to_page(kiov[seg].iov_base);
175                 get_page(pages[seg]);
176         }
177
178         return seg;
179 }
180 EXPORT_SYMBOL_GPL(get_kernel_pages);
181
182 static void pagevec_lru_move_fn(struct pagevec *pvec,
183         void (*move_fn)(struct page *page, struct lruvec *lruvec))
184 {
185         int i;
186         struct lruvec *lruvec = NULL;
187         unsigned long flags = 0;
188
189         for (i = 0; i < pagevec_count(pvec); i++) {
190                 struct page *page = pvec->pages[i];
191
192                 /* block memcg migration during page moving between lru */
193                 if (!TestClearPageLRU(page))
194                         continue;
195
196                 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
197                 (*move_fn)(page, lruvec);
198
199                 SetPageLRU(page);
200         }
201         if (lruvec)
202                 unlock_page_lruvec_irqrestore(lruvec, flags);
203         release_pages(pvec->pages, pvec->nr);
204         pagevec_reinit(pvec);
205 }
206
207 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
208 {
209         if (!PageUnevictable(page)) {
210                 del_page_from_lru_list(page, lruvec);
211                 ClearPageActive(page);
212                 add_page_to_lru_list_tail(page, lruvec);
213                 __count_vm_events(PGROTATED, thp_nr_pages(page));
214         }
215 }
216
217 /* return true if pagevec needs to drain */
218 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
219 {
220         bool ret = false;
221
222         if (!pagevec_add(pvec, page) || PageCompound(page) ||
223                         lru_cache_disabled())
224                 ret = true;
225
226         return ret;
227 }
228
229 /*
230  * Writeback is about to end against a page which has been marked for immediate
231  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
232  * inactive list.
233  *
234  * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
235  */
236 void rotate_reclaimable_page(struct page *page)
237 {
238         if (!PageLocked(page) && !PageDirty(page) &&
239             !PageUnevictable(page) && PageLRU(page)) {
240                 struct pagevec *pvec;
241                 unsigned long flags;
242
243                 get_page(page);
244                 local_lock_irqsave(&lru_rotate.lock, flags);
245                 pvec = this_cpu_ptr(&lru_rotate.pvec);
246                 if (pagevec_add_and_need_flush(pvec, page))
247                         pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
248                 local_unlock_irqrestore(&lru_rotate.lock, flags);
249         }
250 }
251
252 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
253 {
254         do {
255                 unsigned long lrusize;
256
257                 /*
258                  * Hold lruvec->lru_lock is safe here, since
259                  * 1) The pinned lruvec in reclaim, or
260                  * 2) From a pre-LRU page during refault (which also holds the
261                  *    rcu lock, so would be safe even if the page was on the LRU
262                  *    and could move simultaneously to a new lruvec).
263                  */
264                 spin_lock_irq(&lruvec->lru_lock);
265                 /* Record cost event */
266                 if (file)
267                         lruvec->file_cost += nr_pages;
268                 else
269                         lruvec->anon_cost += nr_pages;
270
271                 /*
272                  * Decay previous events
273                  *
274                  * Because workloads change over time (and to avoid
275                  * overflow) we keep these statistics as a floating
276                  * average, which ends up weighing recent refaults
277                  * more than old ones.
278                  */
279                 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
280                           lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
281                           lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
282                           lruvec_page_state(lruvec, NR_ACTIVE_FILE);
283
284                 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
285                         lruvec->file_cost /= 2;
286                         lruvec->anon_cost /= 2;
287                 }
288                 spin_unlock_irq(&lruvec->lru_lock);
289         } while ((lruvec = parent_lruvec(lruvec)));
290 }
291
292 void lru_note_cost_page(struct page *page)
293 {
294         lru_note_cost(mem_cgroup_page_lruvec(page),
295                       page_is_file_lru(page), thp_nr_pages(page));
296 }
297
298 static void __activate_page(struct page *page, struct lruvec *lruvec)
299 {
300         if (!PageActive(page) && !PageUnevictable(page)) {
301                 int nr_pages = thp_nr_pages(page);
302
303                 del_page_from_lru_list(page, lruvec);
304                 SetPageActive(page);
305                 add_page_to_lru_list(page, lruvec);
306                 trace_mm_lru_activate(page);
307
308                 __count_vm_events(PGACTIVATE, nr_pages);
309                 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
310                                      nr_pages);
311         }
312 }
313
314 #ifdef CONFIG_SMP
315 static void activate_page_drain(int cpu)
316 {
317         struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
318
319         if (pagevec_count(pvec))
320                 pagevec_lru_move_fn(pvec, __activate_page);
321 }
322
323 static bool need_activate_page_drain(int cpu)
324 {
325         return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
326 }
327
328 static void activate_page(struct page *page)
329 {
330         page = compound_head(page);
331         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
332                 struct pagevec *pvec;
333
334                 local_lock(&lru_pvecs.lock);
335                 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
336                 get_page(page);
337                 if (pagevec_add_and_need_flush(pvec, page))
338                         pagevec_lru_move_fn(pvec, __activate_page);
339                 local_unlock(&lru_pvecs.lock);
340         }
341 }
342
343 #else
344 static inline void activate_page_drain(int cpu)
345 {
346 }
347
348 static void activate_page(struct page *page)
349 {
350         struct lruvec *lruvec;
351
352         page = compound_head(page);
353         if (TestClearPageLRU(page)) {
354                 lruvec = lock_page_lruvec_irq(page);
355                 __activate_page(page, lruvec);
356                 unlock_page_lruvec_irq(lruvec);
357                 SetPageLRU(page);
358         }
359 }
360 #endif
361
362 static void __lru_cache_activate_page(struct page *page)
363 {
364         struct pagevec *pvec;
365         int i;
366
367         local_lock(&lru_pvecs.lock);
368         pvec = this_cpu_ptr(&lru_pvecs.lru_add);
369
370         /*
371          * Search backwards on the optimistic assumption that the page being
372          * activated has just been added to this pagevec. Note that only
373          * the local pagevec is examined as a !PageLRU page could be in the
374          * process of being released, reclaimed, migrated or on a remote
375          * pagevec that is currently being drained. Furthermore, marking
376          * a remote pagevec's page PageActive potentially hits a race where
377          * a page is marked PageActive just after it is added to the inactive
378          * list causing accounting errors and BUG_ON checks to trigger.
379          */
380         for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
381                 struct page *pagevec_page = pvec->pages[i];
382
383                 if (pagevec_page == page) {
384                         SetPageActive(page);
385                         break;
386                 }
387         }
388
389         local_unlock(&lru_pvecs.lock);
390 }
391
392 /*
393  * Mark a page as having seen activity.
394  *
395  * inactive,unreferenced        ->      inactive,referenced
396  * inactive,referenced          ->      active,unreferenced
397  * active,unreferenced          ->      active,referenced
398  *
399  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
400  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
401  */
402 void mark_page_accessed(struct page *page)
403 {
404         page = compound_head(page);
405
406         if (!PageReferenced(page)) {
407                 SetPageReferenced(page);
408         } else if (PageUnevictable(page)) {
409                 /*
410                  * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
411                  * this list is never rotated or maintained, so marking an
412                  * evictable page accessed has no effect.
413                  */
414         } else if (!PageActive(page)) {
415                 /*
416                  * If the page is on the LRU, queue it for activation via
417                  * lru_pvecs.activate_page. Otherwise, assume the page is on a
418                  * pagevec, mark it active and it'll be moved to the active
419                  * LRU on the next drain.
420                  */
421                 if (PageLRU(page))
422                         activate_page(page);
423                 else
424                         __lru_cache_activate_page(page);
425                 ClearPageReferenced(page);
426                 workingset_activation(page);
427         }
428         if (page_is_idle(page))
429                 clear_page_idle(page);
430 }
431 EXPORT_SYMBOL(mark_page_accessed);
432
433 /**
434  * lru_cache_add - add a page to a page list
435  * @page: the page to be added to the LRU.
436  *
437  * Queue the page for addition to the LRU via pagevec. The decision on whether
438  * to add the page to the [in]active [file|anon] list is deferred until the
439  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
440  * have the page added to the active list using mark_page_accessed().
441  */
442 void lru_cache_add(struct page *page)
443 {
444         struct pagevec *pvec;
445
446         VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
447         VM_BUG_ON_PAGE(PageLRU(page), page);
448
449         get_page(page);
450         local_lock(&lru_pvecs.lock);
451         pvec = this_cpu_ptr(&lru_pvecs.lru_add);
452         if (pagevec_add_and_need_flush(pvec, page))
453                 __pagevec_lru_add(pvec);
454         local_unlock(&lru_pvecs.lock);
455 }
456 EXPORT_SYMBOL(lru_cache_add);
457
458 /**
459  * lru_cache_add_inactive_or_unevictable
460  * @page:  the page to be added to LRU
461  * @vma:   vma in which page is mapped for determining reclaimability
462  *
463  * Place @page on the inactive or unevictable LRU list, depending on its
464  * evictability.
465  */
466 void lru_cache_add_inactive_or_unevictable(struct page *page,
467                                          struct vm_area_struct *vma)
468 {
469         bool unevictable;
470
471         VM_BUG_ON_PAGE(PageLRU(page), page);
472
473         unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
474         if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
475                 int nr_pages = thp_nr_pages(page);
476                 /*
477                  * We use the irq-unsafe __mod_zone_page_state because this
478                  * counter is not modified from interrupt context, and the pte
479                  * lock is held(spinlock), which implies preemption disabled.
480                  */
481                 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
482                 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
483         }
484         lru_cache_add(page);
485 }
486
487 /*
488  * If the page can not be invalidated, it is moved to the
489  * inactive list to speed up its reclaim.  It is moved to the
490  * head of the list, rather than the tail, to give the flusher
491  * threads some time to write it out, as this is much more
492  * effective than the single-page writeout from reclaim.
493  *
494  * If the page isn't page_mapped and dirty/writeback, the page
495  * could reclaim asap using PG_reclaim.
496  *
497  * 1. active, mapped page -> none
498  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
499  * 3. inactive, mapped page -> none
500  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
501  * 5. inactive, clean -> inactive, tail
502  * 6. Others -> none
503  *
504  * In 4, why it moves inactive's head, the VM expects the page would
505  * be write it out by flusher threads as this is much more effective
506  * than the single-page writeout from reclaim.
507  */
508 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
509 {
510         bool active = PageActive(page);
511         int nr_pages = thp_nr_pages(page);
512
513         if (PageUnevictable(page))
514                 return;
515
516         /* Some processes are using the page */
517         if (page_mapped(page))
518                 return;
519
520         del_page_from_lru_list(page, lruvec);
521         ClearPageActive(page);
522         ClearPageReferenced(page);
523
524         if (PageWriteback(page) || PageDirty(page)) {
525                 /*
526                  * PG_reclaim could be raced with end_page_writeback
527                  * It can make readahead confusing.  But race window
528                  * is _really_ small and  it's non-critical problem.
529                  */
530                 add_page_to_lru_list(page, lruvec);
531                 SetPageReclaim(page);
532         } else {
533                 /*
534                  * The page's writeback ends up during pagevec
535                  * We move that page into tail of inactive.
536                  */
537                 add_page_to_lru_list_tail(page, lruvec);
538                 __count_vm_events(PGROTATED, nr_pages);
539         }
540
541         if (active) {
542                 __count_vm_events(PGDEACTIVATE, nr_pages);
543                 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
544                                      nr_pages);
545         }
546 }
547
548 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
549 {
550         if (PageActive(page) && !PageUnevictable(page)) {
551                 int nr_pages = thp_nr_pages(page);
552
553                 del_page_from_lru_list(page, lruvec);
554                 ClearPageActive(page);
555                 ClearPageReferenced(page);
556                 add_page_to_lru_list(page, lruvec);
557
558                 __count_vm_events(PGDEACTIVATE, nr_pages);
559                 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
560                                      nr_pages);
561         }
562 }
563
564 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
565 {
566         if (PageAnon(page) && PageSwapBacked(page) &&
567             !PageSwapCache(page) && !PageUnevictable(page)) {
568                 int nr_pages = thp_nr_pages(page);
569
570                 del_page_from_lru_list(page, lruvec);
571                 ClearPageActive(page);
572                 ClearPageReferenced(page);
573                 /*
574                  * Lazyfree pages are clean anonymous pages.  They have
575                  * PG_swapbacked flag cleared, to distinguish them from normal
576                  * anonymous pages
577                  */
578                 ClearPageSwapBacked(page);
579                 add_page_to_lru_list(page, lruvec);
580
581                 __count_vm_events(PGLAZYFREE, nr_pages);
582                 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
583                                      nr_pages);
584         }
585 }
586
587 /*
588  * Drain pages out of the cpu's pagevecs.
589  * Either "cpu" is the current CPU, and preemption has already been
590  * disabled; or "cpu" is being hot-unplugged, and is already dead.
591  */
592 void lru_add_drain_cpu(int cpu)
593 {
594         struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
595
596         if (pagevec_count(pvec))
597                 __pagevec_lru_add(pvec);
598
599         pvec = &per_cpu(lru_rotate.pvec, cpu);
600         /* Disabling interrupts below acts as a compiler barrier. */
601         if (data_race(pagevec_count(pvec))) {
602                 unsigned long flags;
603
604                 /* No harm done if a racing interrupt already did this */
605                 local_lock_irqsave(&lru_rotate.lock, flags);
606                 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
607                 local_unlock_irqrestore(&lru_rotate.lock, flags);
608         }
609
610         pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
611         if (pagevec_count(pvec))
612                 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
613
614         pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
615         if (pagevec_count(pvec))
616                 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
617
618         pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
619         if (pagevec_count(pvec))
620                 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
621
622         activate_page_drain(cpu);
623         invalidate_bh_lrus_cpu(cpu);
624 }
625
626 /**
627  * deactivate_file_page - forcefully deactivate a file page
628  * @page: page to deactivate
629  *
630  * This function hints the VM that @page is a good reclaim candidate,
631  * for example if its invalidation fails due to the page being dirty
632  * or under writeback.
633  */
634 void deactivate_file_page(struct page *page)
635 {
636         /*
637          * In a workload with many unevictable page such as mprotect,
638          * unevictable page deactivation for accelerating reclaim is pointless.
639          */
640         if (PageUnevictable(page))
641                 return;
642
643         if (likely(get_page_unless_zero(page))) {
644                 struct pagevec *pvec;
645
646                 local_lock(&lru_pvecs.lock);
647                 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
648
649                 if (pagevec_add_and_need_flush(pvec, page))
650                         pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
651                 local_unlock(&lru_pvecs.lock);
652         }
653 }
654
655 /*
656  * deactivate_page - deactivate a page
657  * @page: page to deactivate
658  *
659  * deactivate_page() moves @page to the inactive list if @page was on the active
660  * list and was not an unevictable page.  This is done to accelerate the reclaim
661  * of @page.
662  */
663 void deactivate_page(struct page *page)
664 {
665         if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
666                 struct pagevec *pvec;
667
668                 local_lock(&lru_pvecs.lock);
669                 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
670                 get_page(page);
671                 if (pagevec_add_and_need_flush(pvec, page))
672                         pagevec_lru_move_fn(pvec, lru_deactivate_fn);
673                 local_unlock(&lru_pvecs.lock);
674         }
675 }
676
677 /**
678  * mark_page_lazyfree - make an anon page lazyfree
679  * @page: page to deactivate
680  *
681  * mark_page_lazyfree() moves @page to the inactive file list.
682  * This is done to accelerate the reclaim of @page.
683  */
684 void mark_page_lazyfree(struct page *page)
685 {
686         if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
687             !PageSwapCache(page) && !PageUnevictable(page)) {
688                 struct pagevec *pvec;
689
690                 local_lock(&lru_pvecs.lock);
691                 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
692                 get_page(page);
693                 if (pagevec_add_and_need_flush(pvec, page))
694                         pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
695                 local_unlock(&lru_pvecs.lock);
696         }
697 }
698
699 void lru_add_drain(void)
700 {
701         local_lock(&lru_pvecs.lock);
702         lru_add_drain_cpu(smp_processor_id());
703         local_unlock(&lru_pvecs.lock);
704 }
705
706 void lru_add_drain_cpu_zone(struct zone *zone)
707 {
708         local_lock(&lru_pvecs.lock);
709         lru_add_drain_cpu(smp_processor_id());
710         drain_local_pages(zone);
711         local_unlock(&lru_pvecs.lock);
712 }
713
714 #ifdef CONFIG_SMP
715
716 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
717
718 static void lru_add_drain_per_cpu(struct work_struct *dummy)
719 {
720         lru_add_drain();
721 }
722
723 /*
724  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
725  * kworkers being shut down before our page_alloc_cpu_dead callback is
726  * executed on the offlined cpu.
727  * Calling this function with cpu hotplug locks held can actually lead
728  * to obscure indirect dependencies via WQ context.
729  */
730 inline void __lru_add_drain_all(bool force_all_cpus)
731 {
732         /*
733          * lru_drain_gen - Global pages generation number
734          *
735          * (A) Definition: global lru_drain_gen = x implies that all generations
736          *     0 < n <= x are already *scheduled* for draining.
737          *
738          * This is an optimization for the highly-contended use case where a
739          * user space workload keeps constantly generating a flow of pages for
740          * each CPU.
741          */
742         static unsigned int lru_drain_gen;
743         static struct cpumask has_work;
744         static DEFINE_MUTEX(lock);
745         unsigned cpu, this_gen;
746
747         /*
748          * Make sure nobody triggers this path before mm_percpu_wq is fully
749          * initialized.
750          */
751         if (WARN_ON(!mm_percpu_wq))
752                 return;
753
754         /*
755          * Guarantee pagevec counter stores visible by this CPU are visible to
756          * other CPUs before loading the current drain generation.
757          */
758         smp_mb();
759
760         /*
761          * (B) Locally cache global LRU draining generation number
762          *
763          * The read barrier ensures that the counter is loaded before the mutex
764          * is taken. It pairs with smp_mb() inside the mutex critical section
765          * at (D).
766          */
767         this_gen = smp_load_acquire(&lru_drain_gen);
768
769         mutex_lock(&lock);
770
771         /*
772          * (C) Exit the draining operation if a newer generation, from another
773          * lru_add_drain_all(), was already scheduled for draining. Check (A).
774          */
775         if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
776                 goto done;
777
778         /*
779          * (D) Increment global generation number
780          *
781          * Pairs with smp_load_acquire() at (B), outside of the critical
782          * section. Use a full memory barrier to guarantee that the new global
783          * drain generation number is stored before loading pagevec counters.
784          *
785          * This pairing must be done here, before the for_each_online_cpu loop
786          * below which drains the page vectors.
787          *
788          * Let x, y, and z represent some system CPU numbers, where x < y < z.
789          * Assume CPU #z is in the middle of the for_each_online_cpu loop
790          * below and has already reached CPU #y's per-cpu data. CPU #x comes
791          * along, adds some pages to its per-cpu vectors, then calls
792          * lru_add_drain_all().
793          *
794          * If the paired barrier is done at any later step, e.g. after the
795          * loop, CPU #x will just exit at (C) and miss flushing out all of its
796          * added pages.
797          */
798         WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
799         smp_mb();
800
801         cpumask_clear(&has_work);
802         for_each_online_cpu(cpu) {
803                 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
804
805                 if (force_all_cpus ||
806                     pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
807                     data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
808                     pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
809                     pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
810                     pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
811                     need_activate_page_drain(cpu) ||
812                     has_bh_in_lru(cpu, NULL)) {
813                         INIT_WORK(work, lru_add_drain_per_cpu);
814                         queue_work_on(cpu, mm_percpu_wq, work);
815                         __cpumask_set_cpu(cpu, &has_work);
816                 }
817         }
818
819         for_each_cpu(cpu, &has_work)
820                 flush_work(&per_cpu(lru_add_drain_work, cpu));
821
822 done:
823         mutex_unlock(&lock);
824 }
825
826 void lru_add_drain_all(void)
827 {
828         __lru_add_drain_all(false);
829 }
830 #else
831 void lru_add_drain_all(void)
832 {
833         lru_add_drain();
834 }
835 #endif /* CONFIG_SMP */
836
837 atomic_t lru_disable_count = ATOMIC_INIT(0);
838
839 /*
840  * lru_cache_disable() needs to be called before we start compiling
841  * a list of pages to be migrated using isolate_lru_page().
842  * It drains pages on LRU cache and then disable on all cpus until
843  * lru_cache_enable is called.
844  *
845  * Must be paired with a call to lru_cache_enable().
846  */
847 void lru_cache_disable(void)
848 {
849         atomic_inc(&lru_disable_count);
850 #ifdef CONFIG_SMP
851         /*
852          * lru_add_drain_all in the force mode will schedule draining on
853          * all online CPUs so any calls of lru_cache_disabled wrapped by
854          * local_lock or preemption disabled would be ordered by that.
855          * The atomic operation doesn't need to have stronger ordering
856          * requirements because that is enforeced by the scheduling
857          * guarantees.
858          */
859         __lru_add_drain_all(true);
860 #else
861         lru_add_drain();
862 #endif
863 }
864
865 /**
866  * release_pages - batched put_page()
867  * @pages: array of pages to release
868  * @nr: number of pages
869  *
870  * Decrement the reference count on all the pages in @pages.  If it
871  * fell to zero, remove the page from the LRU and free it.
872  */
873 void release_pages(struct page **pages, int nr)
874 {
875         int i;
876         LIST_HEAD(pages_to_free);
877         struct lruvec *lruvec = NULL;
878         unsigned long flags;
879         unsigned int lock_batch;
880
881         for (i = 0; i < nr; i++) {
882                 struct page *page = pages[i];
883
884                 /*
885                  * Make sure the IRQ-safe lock-holding time does not get
886                  * excessive with a continuous string of pages from the
887                  * same lruvec. The lock is held only if lruvec != NULL.
888                  */
889                 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
890                         unlock_page_lruvec_irqrestore(lruvec, flags);
891                         lruvec = NULL;
892                 }
893
894                 page = compound_head(page);
895                 if (is_huge_zero_page(page))
896                         continue;
897
898                 if (is_zone_device_page(page)) {
899                         if (lruvec) {
900                                 unlock_page_lruvec_irqrestore(lruvec, flags);
901                                 lruvec = NULL;
902                         }
903                         /*
904                          * ZONE_DEVICE pages that return 'false' from
905                          * page_is_devmap_managed() do not require special
906                          * processing, and instead, expect a call to
907                          * put_page_testzero().
908                          */
909                         if (page_is_devmap_managed(page)) {
910                                 put_devmap_managed_page(page);
911                                 continue;
912                         }
913                         if (put_page_testzero(page))
914                                 put_dev_pagemap(page->pgmap);
915                         continue;
916                 }
917
918                 if (!put_page_testzero(page))
919                         continue;
920
921                 if (PageCompound(page)) {
922                         if (lruvec) {
923                                 unlock_page_lruvec_irqrestore(lruvec, flags);
924                                 lruvec = NULL;
925                         }
926                         __put_compound_page(page);
927                         continue;
928                 }
929
930                 if (PageLRU(page)) {
931                         struct lruvec *prev_lruvec = lruvec;
932
933                         lruvec = relock_page_lruvec_irqsave(page, lruvec,
934                                                                         &flags);
935                         if (prev_lruvec != lruvec)
936                                 lock_batch = 0;
937
938                         del_page_from_lru_list(page, lruvec);
939                         __clear_page_lru_flags(page);
940                 }
941
942                 __ClearPageWaiters(page);
943
944                 list_add(&page->lru, &pages_to_free);
945         }
946         if (lruvec)
947                 unlock_page_lruvec_irqrestore(lruvec, flags);
948
949         mem_cgroup_uncharge_list(&pages_to_free);
950         free_unref_page_list(&pages_to_free);
951 }
952 EXPORT_SYMBOL(release_pages);
953
954 /*
955  * The pages which we're about to release may be in the deferred lru-addition
956  * queues.  That would prevent them from really being freed right now.  That's
957  * OK from a correctness point of view but is inefficient - those pages may be
958  * cache-warm and we want to give them back to the page allocator ASAP.
959  *
960  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
961  * and __pagevec_lru_add_active() call release_pages() directly to avoid
962  * mutual recursion.
963  */
964 void __pagevec_release(struct pagevec *pvec)
965 {
966         if (!pvec->percpu_pvec_drained) {
967                 lru_add_drain();
968                 pvec->percpu_pvec_drained = true;
969         }
970         release_pages(pvec->pages, pagevec_count(pvec));
971         pagevec_reinit(pvec);
972 }
973 EXPORT_SYMBOL(__pagevec_release);
974
975 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
976 {
977         int was_unevictable = TestClearPageUnevictable(page);
978         int nr_pages = thp_nr_pages(page);
979
980         VM_BUG_ON_PAGE(PageLRU(page), page);
981
982         /*
983          * Page becomes evictable in two ways:
984          * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
985          * 2) Before acquiring LRU lock to put the page to correct LRU and then
986          *   a) do PageLRU check with lock [check_move_unevictable_pages]
987          *   b) do PageLRU check before lock [clear_page_mlock]
988          *
989          * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
990          * following strict ordering:
991          *
992          * #0: __pagevec_lru_add_fn             #1: clear_page_mlock
993          *
994          * SetPageLRU()                         TestClearPageMlocked()
995          * smp_mb() // explicit ordering        // above provides strict
996          *                                      // ordering
997          * PageMlocked()                        PageLRU()
998          *
999          *
1000          * if '#1' does not observe setting of PG_lru by '#0' and fails
1001          * isolation, the explicit barrier will make sure that page_evictable
1002          * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1003          * can be reordered after PageMlocked check and can make '#1' to fail
1004          * the isolation of the page whose Mlocked bit is cleared (#0 is also
1005          * looking at the same page) and the evictable page will be stranded
1006          * in an unevictable LRU.
1007          */
1008         SetPageLRU(page);
1009         smp_mb__after_atomic();
1010
1011         if (page_evictable(page)) {
1012                 if (was_unevictable)
1013                         __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1014         } else {
1015                 ClearPageActive(page);
1016                 SetPageUnevictable(page);
1017                 if (!was_unevictable)
1018                         __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1019         }
1020
1021         add_page_to_lru_list(page, lruvec);
1022         trace_mm_lru_insertion(page);
1023 }
1024
1025 /*
1026  * Add the passed pages to the LRU, then drop the caller's refcount
1027  * on them.  Reinitialises the caller's pagevec.
1028  */
1029 void __pagevec_lru_add(struct pagevec *pvec)
1030 {
1031         int i;
1032         struct lruvec *lruvec = NULL;
1033         unsigned long flags = 0;
1034
1035         for (i = 0; i < pagevec_count(pvec); i++) {
1036                 struct page *page = pvec->pages[i];
1037
1038                 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
1039                 __pagevec_lru_add_fn(page, lruvec);
1040         }
1041         if (lruvec)
1042                 unlock_page_lruvec_irqrestore(lruvec, flags);
1043         release_pages(pvec->pages, pvec->nr);
1044         pagevec_reinit(pvec);
1045 }
1046
1047 /**
1048  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1049  * @pvec:       The pagevec to prune
1050  *
1051  * find_get_entries() fills both pages and XArray value entries (aka
1052  * exceptional entries) into the pagevec.  This function prunes all
1053  * exceptionals from @pvec without leaving holes, so that it can be
1054  * passed on to page-only pagevec operations.
1055  */
1056 void pagevec_remove_exceptionals(struct pagevec *pvec)
1057 {
1058         int i, j;
1059
1060         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1061                 struct page *page = pvec->pages[i];
1062                 if (!xa_is_value(page))
1063                         pvec->pages[j++] = page;
1064         }
1065         pvec->nr = j;
1066 }
1067
1068 /**
1069  * pagevec_lookup_range - gang pagecache lookup
1070  * @pvec:       Where the resulting pages are placed
1071  * @mapping:    The address_space to search
1072  * @start:      The starting page index
1073  * @end:        The final page index
1074  *
1075  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1076  * pages in the mapping starting from index @start and upto index @end
1077  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1078  * reference against the pages in @pvec.
1079  *
1080  * The search returns a group of mapping-contiguous pages with ascending
1081  * indexes.  There may be holes in the indices due to not-present pages. We
1082  * also update @start to index the next page for the traversal.
1083  *
1084  * pagevec_lookup_range() returns the number of pages which were found. If this
1085  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1086  * reached.
1087  */
1088 unsigned pagevec_lookup_range(struct pagevec *pvec,
1089                 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1090 {
1091         pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1092                                         pvec->pages);
1093         return pagevec_count(pvec);
1094 }
1095 EXPORT_SYMBOL(pagevec_lookup_range);
1096
1097 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1098                 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1099                 xa_mark_t tag)
1100 {
1101         pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1102                                         PAGEVEC_SIZE, pvec->pages);
1103         return pagevec_count(pvec);
1104 }
1105 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1106
1107 /*
1108  * Perform any setup for the swap system
1109  */
1110 void __init swap_setup(void)
1111 {
1112         unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1113
1114         /* Use a smaller cluster for small-memory machines */
1115         if (megs < 16)
1116                 page_cluster = 2;
1117         else
1118                 page_cluster = 3;
1119         /*
1120          * Right now other parts of the system means that we
1121          * _really_ don't want to cluster much more
1122          */
1123 }
1124
1125 #ifdef CONFIG_DEV_PAGEMAP_OPS
1126 void put_devmap_managed_page(struct page *page)
1127 {
1128         int count;
1129
1130         if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1131                 return;
1132
1133         count = page_ref_dec_return(page);
1134
1135         /*
1136          * devmap page refcounts are 1-based, rather than 0-based: if
1137          * refcount is 1, then the page is free and the refcount is
1138          * stable because nobody holds a reference on the page.
1139          */
1140         if (count == 1)
1141                 free_devmap_managed_page(page);
1142         else if (!count)
1143                 __put_page(page);
1144 }
1145 EXPORT_SYMBOL(put_devmap_managed_page);
1146 #endif