Merge branch 'akpm' (patches from Andrew)
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82
83 #include <linux/uaccess.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_rwsem making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103         pgoff_t start;          /* start of range currently being fallocated */
104         pgoff_t next;           /* the next page offset to be fallocated */
105         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
106         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
107 };
108
109 struct shmem_options {
110         unsigned long long blocks;
111         unsigned long long inodes;
112         struct mempolicy *mpol;
113         kuid_t uid;
114         kgid_t gid;
115         umode_t mode;
116         bool full_inums;
117         int huge;
118         int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128         return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133         unsigned long nr_pages = totalram_pages();
134
135         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
140                              struct page **pagep, enum sgp_type sgp,
141                              gfp_t gfp, struct vm_area_struct *vma,
142                              vm_fault_t *fault_type);
143 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
144                 struct page **pagep, enum sgp_type sgp,
145                 gfp_t gfp, struct vm_area_struct *vma,
146                 struct vm_fault *vmf, vm_fault_t *fault_type);
147
148 int shmem_getpage(struct inode *inode, pgoff_t index,
149                 struct page **pagep, enum sgp_type sgp)
150 {
151         return shmem_getpage_gfp(inode, index, pagep, sgp,
152                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
153 }
154
155 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
156 {
157         return sb->s_fs_info;
158 }
159
160 /*
161  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
162  * for shared memory and for shared anonymous (/dev/zero) mappings
163  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
164  * consistent with the pre-accounting of private mappings ...
165  */
166 static inline int shmem_acct_size(unsigned long flags, loff_t size)
167 {
168         return (flags & VM_NORESERVE) ?
169                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
170 }
171
172 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
173 {
174         if (!(flags & VM_NORESERVE))
175                 vm_unacct_memory(VM_ACCT(size));
176 }
177
178 static inline int shmem_reacct_size(unsigned long flags,
179                 loff_t oldsize, loff_t newsize)
180 {
181         if (!(flags & VM_NORESERVE)) {
182                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
183                         return security_vm_enough_memory_mm(current->mm,
184                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
185                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
186                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
187         }
188         return 0;
189 }
190
191 /*
192  * ... whereas tmpfs objects are accounted incrementally as
193  * pages are allocated, in order to allow large sparse files.
194  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
195  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
196  */
197 static inline int shmem_acct_block(unsigned long flags, long pages)
198 {
199         if (!(flags & VM_NORESERVE))
200                 return 0;
201
202         return security_vm_enough_memory_mm(current->mm,
203                         pages * VM_ACCT(PAGE_SIZE));
204 }
205
206 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
207 {
208         if (flags & VM_NORESERVE)
209                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
210 }
211
212 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
213 {
214         struct shmem_inode_info *info = SHMEM_I(inode);
215         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
216
217         if (shmem_acct_block(info->flags, pages))
218                 return false;
219
220         if (sbinfo->max_blocks) {
221                 if (percpu_counter_compare(&sbinfo->used_blocks,
222                                            sbinfo->max_blocks - pages) > 0)
223                         goto unacct;
224                 percpu_counter_add(&sbinfo->used_blocks, pages);
225         }
226
227         return true;
228
229 unacct:
230         shmem_unacct_blocks(info->flags, pages);
231         return false;
232 }
233
234 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
235 {
236         struct shmem_inode_info *info = SHMEM_I(inode);
237         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
238
239         if (sbinfo->max_blocks)
240                 percpu_counter_sub(&sbinfo->used_blocks, pages);
241         shmem_unacct_blocks(info->flags, pages);
242 }
243
244 static const struct super_operations shmem_ops;
245 const struct address_space_operations shmem_aops;
246 static const struct file_operations shmem_file_operations;
247 static const struct inode_operations shmem_inode_operations;
248 static const struct inode_operations shmem_dir_inode_operations;
249 static const struct inode_operations shmem_special_inode_operations;
250 static const struct vm_operations_struct shmem_vm_ops;
251 static struct file_system_type shmem_fs_type;
252
253 bool vma_is_shmem(struct vm_area_struct *vma)
254 {
255         return vma->vm_ops == &shmem_vm_ops;
256 }
257
258 static LIST_HEAD(shmem_swaplist);
259 static DEFINE_MUTEX(shmem_swaplist_mutex);
260
261 /*
262  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
263  * produces a novel ino for the newly allocated inode.
264  *
265  * It may also be called when making a hard link to permit the space needed by
266  * each dentry. However, in that case, no new inode number is needed since that
267  * internally draws from another pool of inode numbers (currently global
268  * get_next_ino()). This case is indicated by passing NULL as inop.
269  */
270 #define SHMEM_INO_BATCH 1024
271 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
272 {
273         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
274         ino_t ino;
275
276         if (!(sb->s_flags & SB_KERNMOUNT)) {
277                 raw_spin_lock(&sbinfo->stat_lock);
278                 if (sbinfo->max_inodes) {
279                         if (!sbinfo->free_inodes) {
280                                 raw_spin_unlock(&sbinfo->stat_lock);
281                                 return -ENOSPC;
282                         }
283                         sbinfo->free_inodes--;
284                 }
285                 if (inop) {
286                         ino = sbinfo->next_ino++;
287                         if (unlikely(is_zero_ino(ino)))
288                                 ino = sbinfo->next_ino++;
289                         if (unlikely(!sbinfo->full_inums &&
290                                      ino > UINT_MAX)) {
291                                 /*
292                                  * Emulate get_next_ino uint wraparound for
293                                  * compatibility
294                                  */
295                                 if (IS_ENABLED(CONFIG_64BIT))
296                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
297                                                 __func__, MINOR(sb->s_dev));
298                                 sbinfo->next_ino = 1;
299                                 ino = sbinfo->next_ino++;
300                         }
301                         *inop = ino;
302                 }
303                 raw_spin_unlock(&sbinfo->stat_lock);
304         } else if (inop) {
305                 /*
306                  * __shmem_file_setup, one of our callers, is lock-free: it
307                  * doesn't hold stat_lock in shmem_reserve_inode since
308                  * max_inodes is always 0, and is called from potentially
309                  * unknown contexts. As such, use a per-cpu batched allocator
310                  * which doesn't require the per-sb stat_lock unless we are at
311                  * the batch boundary.
312                  *
313                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
314                  * shmem mounts are not exposed to userspace, so we don't need
315                  * to worry about things like glibc compatibility.
316                  */
317                 ino_t *next_ino;
318
319                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
320                 ino = *next_ino;
321                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
322                         raw_spin_lock(&sbinfo->stat_lock);
323                         ino = sbinfo->next_ino;
324                         sbinfo->next_ino += SHMEM_INO_BATCH;
325                         raw_spin_unlock(&sbinfo->stat_lock);
326                         if (unlikely(is_zero_ino(ino)))
327                                 ino++;
328                 }
329                 *inop = ino;
330                 *next_ino = ++ino;
331                 put_cpu();
332         }
333
334         return 0;
335 }
336
337 static void shmem_free_inode(struct super_block *sb)
338 {
339         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
340         if (sbinfo->max_inodes) {
341                 raw_spin_lock(&sbinfo->stat_lock);
342                 sbinfo->free_inodes++;
343                 raw_spin_unlock(&sbinfo->stat_lock);
344         }
345 }
346
347 /**
348  * shmem_recalc_inode - recalculate the block usage of an inode
349  * @inode: inode to recalc
350  *
351  * We have to calculate the free blocks since the mm can drop
352  * undirtied hole pages behind our back.
353  *
354  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
355  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
356  *
357  * It has to be called with the spinlock held.
358  */
359 static void shmem_recalc_inode(struct inode *inode)
360 {
361         struct shmem_inode_info *info = SHMEM_I(inode);
362         long freed;
363
364         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
365         if (freed > 0) {
366                 info->alloced -= freed;
367                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
368                 shmem_inode_unacct_blocks(inode, freed);
369         }
370 }
371
372 bool shmem_charge(struct inode *inode, long pages)
373 {
374         struct shmem_inode_info *info = SHMEM_I(inode);
375         unsigned long flags;
376
377         if (!shmem_inode_acct_block(inode, pages))
378                 return false;
379
380         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
381         inode->i_mapping->nrpages += pages;
382
383         spin_lock_irqsave(&info->lock, flags);
384         info->alloced += pages;
385         inode->i_blocks += pages * BLOCKS_PER_PAGE;
386         shmem_recalc_inode(inode);
387         spin_unlock_irqrestore(&info->lock, flags);
388
389         return true;
390 }
391
392 void shmem_uncharge(struct inode *inode, long pages)
393 {
394         struct shmem_inode_info *info = SHMEM_I(inode);
395         unsigned long flags;
396
397         /* nrpages adjustment done by __delete_from_page_cache() or caller */
398
399         spin_lock_irqsave(&info->lock, flags);
400         info->alloced -= pages;
401         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
402         shmem_recalc_inode(inode);
403         spin_unlock_irqrestore(&info->lock, flags);
404
405         shmem_inode_unacct_blocks(inode, pages);
406 }
407
408 /*
409  * Replace item expected in xarray by a new item, while holding xa_lock.
410  */
411 static int shmem_replace_entry(struct address_space *mapping,
412                         pgoff_t index, void *expected, void *replacement)
413 {
414         XA_STATE(xas, &mapping->i_pages, index);
415         void *item;
416
417         VM_BUG_ON(!expected);
418         VM_BUG_ON(!replacement);
419         item = xas_load(&xas);
420         if (item != expected)
421                 return -ENOENT;
422         xas_store(&xas, replacement);
423         return 0;
424 }
425
426 /*
427  * Sometimes, before we decide whether to proceed or to fail, we must check
428  * that an entry was not already brought back from swap by a racing thread.
429  *
430  * Checking page is not enough: by the time a SwapCache page is locked, it
431  * might be reused, and again be SwapCache, using the same swap as before.
432  */
433 static bool shmem_confirm_swap(struct address_space *mapping,
434                                pgoff_t index, swp_entry_t swap)
435 {
436         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
437 }
438
439 /*
440  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
441  *
442  * SHMEM_HUGE_NEVER:
443  *      disables huge pages for the mount;
444  * SHMEM_HUGE_ALWAYS:
445  *      enables huge pages for the mount;
446  * SHMEM_HUGE_WITHIN_SIZE:
447  *      only allocate huge pages if the page will be fully within i_size,
448  *      also respect fadvise()/madvise() hints;
449  * SHMEM_HUGE_ADVISE:
450  *      only allocate huge pages if requested with fadvise()/madvise();
451  */
452
453 #define SHMEM_HUGE_NEVER        0
454 #define SHMEM_HUGE_ALWAYS       1
455 #define SHMEM_HUGE_WITHIN_SIZE  2
456 #define SHMEM_HUGE_ADVISE       3
457
458 /*
459  * Special values.
460  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
461  *
462  * SHMEM_HUGE_DENY:
463  *      disables huge on shm_mnt and all mounts, for emergency use;
464  * SHMEM_HUGE_FORCE:
465  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
466  *
467  */
468 #define SHMEM_HUGE_DENY         (-1)
469 #define SHMEM_HUGE_FORCE        (-2)
470
471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
472 /* ifdef here to avoid bloating shmem.o when not necessary */
473
474 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
475
476 bool shmem_is_huge(struct vm_area_struct *vma,
477                    struct inode *inode, pgoff_t index)
478 {
479         loff_t i_size;
480
481         if (shmem_huge == SHMEM_HUGE_DENY)
482                 return false;
483         if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485                 return false;
486         if (shmem_huge == SHMEM_HUGE_FORCE)
487                 return true;
488
489         switch (SHMEM_SB(inode->i_sb)->huge) {
490         case SHMEM_HUGE_ALWAYS:
491                 return true;
492         case SHMEM_HUGE_WITHIN_SIZE:
493                 index = round_up(index, HPAGE_PMD_NR);
494                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
495                 if (i_size >= HPAGE_PMD_SIZE && (i_size >> PAGE_SHIFT) >= index)
496                         return true;
497                 fallthrough;
498         case SHMEM_HUGE_ADVISE:
499                 if (vma && (vma->vm_flags & VM_HUGEPAGE))
500                         return true;
501                 fallthrough;
502         default:
503                 return false;
504         }
505 }
506
507 #if defined(CONFIG_SYSFS)
508 static int shmem_parse_huge(const char *str)
509 {
510         if (!strcmp(str, "never"))
511                 return SHMEM_HUGE_NEVER;
512         if (!strcmp(str, "always"))
513                 return SHMEM_HUGE_ALWAYS;
514         if (!strcmp(str, "within_size"))
515                 return SHMEM_HUGE_WITHIN_SIZE;
516         if (!strcmp(str, "advise"))
517                 return SHMEM_HUGE_ADVISE;
518         if (!strcmp(str, "deny"))
519                 return SHMEM_HUGE_DENY;
520         if (!strcmp(str, "force"))
521                 return SHMEM_HUGE_FORCE;
522         return -EINVAL;
523 }
524 #endif
525
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
527 static const char *shmem_format_huge(int huge)
528 {
529         switch (huge) {
530         case SHMEM_HUGE_NEVER:
531                 return "never";
532         case SHMEM_HUGE_ALWAYS:
533                 return "always";
534         case SHMEM_HUGE_WITHIN_SIZE:
535                 return "within_size";
536         case SHMEM_HUGE_ADVISE:
537                 return "advise";
538         case SHMEM_HUGE_DENY:
539                 return "deny";
540         case SHMEM_HUGE_FORCE:
541                 return "force";
542         default:
543                 VM_BUG_ON(1);
544                 return "bad_val";
545         }
546 }
547 #endif
548
549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550                 struct shrink_control *sc, unsigned long nr_to_split)
551 {
552         LIST_HEAD(list), *pos, *next;
553         LIST_HEAD(to_remove);
554         struct inode *inode;
555         struct shmem_inode_info *info;
556         struct page *page;
557         unsigned long batch = sc ? sc->nr_to_scan : 128;
558         int removed = 0, split = 0;
559
560         if (list_empty(&sbinfo->shrinklist))
561                 return SHRINK_STOP;
562
563         spin_lock(&sbinfo->shrinklist_lock);
564         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566
567                 /* pin the inode */
568                 inode = igrab(&info->vfs_inode);
569
570                 /* inode is about to be evicted */
571                 if (!inode) {
572                         list_del_init(&info->shrinklist);
573                         removed++;
574                         goto next;
575                 }
576
577                 /* Check if there's anything to gain */
578                 if (round_up(inode->i_size, PAGE_SIZE) ==
579                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
580                         list_move(&info->shrinklist, &to_remove);
581                         removed++;
582                         goto next;
583                 }
584
585                 list_move(&info->shrinklist, &list);
586 next:
587                 if (!--batch)
588                         break;
589         }
590         spin_unlock(&sbinfo->shrinklist_lock);
591
592         list_for_each_safe(pos, next, &to_remove) {
593                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
594                 inode = &info->vfs_inode;
595                 list_del_init(&info->shrinklist);
596                 iput(inode);
597         }
598
599         list_for_each_safe(pos, next, &list) {
600                 int ret;
601
602                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
603                 inode = &info->vfs_inode;
604
605                 if (nr_to_split && split >= nr_to_split)
606                         goto leave;
607
608                 page = find_get_page(inode->i_mapping,
609                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
610                 if (!page)
611                         goto drop;
612
613                 /* No huge page at the end of the file: nothing to split */
614                 if (!PageTransHuge(page)) {
615                         put_page(page);
616                         goto drop;
617                 }
618
619                 /*
620                  * Leave the inode on the list if we failed to lock
621                  * the page at this time.
622                  *
623                  * Waiting for the lock may lead to deadlock in the
624                  * reclaim path.
625                  */
626                 if (!trylock_page(page)) {
627                         put_page(page);
628                         goto leave;
629                 }
630
631                 ret = split_huge_page(page);
632                 unlock_page(page);
633                 put_page(page);
634
635                 /* If split failed leave the inode on the list */
636                 if (ret)
637                         goto leave;
638
639                 split++;
640 drop:
641                 list_del_init(&info->shrinklist);
642                 removed++;
643 leave:
644                 iput(inode);
645         }
646
647         spin_lock(&sbinfo->shrinklist_lock);
648         list_splice_tail(&list, &sbinfo->shrinklist);
649         sbinfo->shrinklist_len -= removed;
650         spin_unlock(&sbinfo->shrinklist_lock);
651
652         return split;
653 }
654
655 static long shmem_unused_huge_scan(struct super_block *sb,
656                 struct shrink_control *sc)
657 {
658         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
659
660         if (!READ_ONCE(sbinfo->shrinklist_len))
661                 return SHRINK_STOP;
662
663         return shmem_unused_huge_shrink(sbinfo, sc, 0);
664 }
665
666 static long shmem_unused_huge_count(struct super_block *sb,
667                 struct shrink_control *sc)
668 {
669         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
670         return READ_ONCE(sbinfo->shrinklist_len);
671 }
672 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
673
674 #define shmem_huge SHMEM_HUGE_DENY
675
676 bool shmem_is_huge(struct vm_area_struct *vma,
677                    struct inode *inode, pgoff_t index)
678 {
679         return false;
680 }
681
682 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
683                 struct shrink_control *sc, unsigned long nr_to_split)
684 {
685         return 0;
686 }
687 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
688
689 /*
690  * Like add_to_page_cache_locked, but error if expected item has gone.
691  */
692 static int shmem_add_to_page_cache(struct page *page,
693                                    struct address_space *mapping,
694                                    pgoff_t index, void *expected, gfp_t gfp,
695                                    struct mm_struct *charge_mm)
696 {
697         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
698         unsigned long i = 0;
699         unsigned long nr = compound_nr(page);
700         int error;
701
702         VM_BUG_ON_PAGE(PageTail(page), page);
703         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
704         VM_BUG_ON_PAGE(!PageLocked(page), page);
705         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
706         VM_BUG_ON(expected && PageTransHuge(page));
707
708         page_ref_add(page, nr);
709         page->mapping = mapping;
710         page->index = index;
711
712         if (!PageSwapCache(page)) {
713                 error = mem_cgroup_charge(page, charge_mm, gfp);
714                 if (error) {
715                         if (PageTransHuge(page)) {
716                                 count_vm_event(THP_FILE_FALLBACK);
717                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
718                         }
719                         goto error;
720                 }
721         }
722         cgroup_throttle_swaprate(page, gfp);
723
724         do {
725                 void *entry;
726                 xas_lock_irq(&xas);
727                 entry = xas_find_conflict(&xas);
728                 if (entry != expected)
729                         xas_set_err(&xas, -EEXIST);
730                 xas_create_range(&xas);
731                 if (xas_error(&xas))
732                         goto unlock;
733 next:
734                 xas_store(&xas, page);
735                 if (++i < nr) {
736                         xas_next(&xas);
737                         goto next;
738                 }
739                 if (PageTransHuge(page)) {
740                         count_vm_event(THP_FILE_ALLOC);
741                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
742                 }
743                 mapping->nrpages += nr;
744                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
745                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
746 unlock:
747                 xas_unlock_irq(&xas);
748         } while (xas_nomem(&xas, gfp));
749
750         if (xas_error(&xas)) {
751                 error = xas_error(&xas);
752                 goto error;
753         }
754
755         return 0;
756 error:
757         page->mapping = NULL;
758         page_ref_sub(page, nr);
759         return error;
760 }
761
762 /*
763  * Like delete_from_page_cache, but substitutes swap for page.
764  */
765 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
766 {
767         struct address_space *mapping = page->mapping;
768         int error;
769
770         VM_BUG_ON_PAGE(PageCompound(page), page);
771
772         xa_lock_irq(&mapping->i_pages);
773         error = shmem_replace_entry(mapping, page->index, page, radswap);
774         page->mapping = NULL;
775         mapping->nrpages--;
776         __dec_lruvec_page_state(page, NR_FILE_PAGES);
777         __dec_lruvec_page_state(page, NR_SHMEM);
778         xa_unlock_irq(&mapping->i_pages);
779         put_page(page);
780         BUG_ON(error);
781 }
782
783 /*
784  * Remove swap entry from page cache, free the swap and its page cache.
785  */
786 static int shmem_free_swap(struct address_space *mapping,
787                            pgoff_t index, void *radswap)
788 {
789         void *old;
790
791         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
792         if (old != radswap)
793                 return -ENOENT;
794         free_swap_and_cache(radix_to_swp_entry(radswap));
795         return 0;
796 }
797
798 /*
799  * Determine (in bytes) how many of the shmem object's pages mapped by the
800  * given offsets are swapped out.
801  *
802  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
803  * as long as the inode doesn't go away and racy results are not a problem.
804  */
805 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
806                                                 pgoff_t start, pgoff_t end)
807 {
808         XA_STATE(xas, &mapping->i_pages, start);
809         struct page *page;
810         unsigned long swapped = 0;
811
812         rcu_read_lock();
813         xas_for_each(&xas, page, end - 1) {
814                 if (xas_retry(&xas, page))
815                         continue;
816                 if (xa_is_value(page))
817                         swapped++;
818
819                 if (need_resched()) {
820                         xas_pause(&xas);
821                         cond_resched_rcu();
822                 }
823         }
824
825         rcu_read_unlock();
826
827         return swapped << PAGE_SHIFT;
828 }
829
830 /*
831  * Determine (in bytes) how many of the shmem object's pages mapped by the
832  * given vma is swapped out.
833  *
834  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
835  * as long as the inode doesn't go away and racy results are not a problem.
836  */
837 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
838 {
839         struct inode *inode = file_inode(vma->vm_file);
840         struct shmem_inode_info *info = SHMEM_I(inode);
841         struct address_space *mapping = inode->i_mapping;
842         unsigned long swapped;
843
844         /* Be careful as we don't hold info->lock */
845         swapped = READ_ONCE(info->swapped);
846
847         /*
848          * The easier cases are when the shmem object has nothing in swap, or
849          * the vma maps it whole. Then we can simply use the stats that we
850          * already track.
851          */
852         if (!swapped)
853                 return 0;
854
855         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
856                 return swapped << PAGE_SHIFT;
857
858         /* Here comes the more involved part */
859         return shmem_partial_swap_usage(mapping,
860                         linear_page_index(vma, vma->vm_start),
861                         linear_page_index(vma, vma->vm_end));
862 }
863
864 /*
865  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
866  */
867 void shmem_unlock_mapping(struct address_space *mapping)
868 {
869         struct pagevec pvec;
870         pgoff_t index = 0;
871
872         pagevec_init(&pvec);
873         /*
874          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
875          */
876         while (!mapping_unevictable(mapping)) {
877                 if (!pagevec_lookup(&pvec, mapping, &index))
878                         break;
879                 check_move_unevictable_pages(&pvec);
880                 pagevec_release(&pvec);
881                 cond_resched();
882         }
883 }
884
885 /*
886  * Check whether a hole-punch or truncation needs to split a huge page,
887  * returning true if no split was required, or the split has been successful.
888  *
889  * Eviction (or truncation to 0 size) should never need to split a huge page;
890  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
891  * head, and then succeeded to trylock on tail.
892  *
893  * A split can only succeed when there are no additional references on the
894  * huge page: so the split below relies upon find_get_entries() having stopped
895  * when it found a subpage of the huge page, without getting further references.
896  */
897 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
898 {
899         if (!PageTransCompound(page))
900                 return true;
901
902         /* Just proceed to delete a huge page wholly within the range punched */
903         if (PageHead(page) &&
904             page->index >= start && page->index + HPAGE_PMD_NR <= end)
905                 return true;
906
907         /* Try to split huge page, so we can truly punch the hole or truncate */
908         return split_huge_page(page) >= 0;
909 }
910
911 /*
912  * Remove range of pages and swap entries from page cache, and free them.
913  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
914  */
915 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
916                                                                  bool unfalloc)
917 {
918         struct address_space *mapping = inode->i_mapping;
919         struct shmem_inode_info *info = SHMEM_I(inode);
920         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
921         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
922         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
923         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
924         struct pagevec pvec;
925         pgoff_t indices[PAGEVEC_SIZE];
926         long nr_swaps_freed = 0;
927         pgoff_t index;
928         int i;
929
930         if (lend == -1)
931                 end = -1;       /* unsigned, so actually very big */
932
933         if (info->fallocend > start && info->fallocend <= end && !unfalloc)
934                 info->fallocend = start;
935
936         pagevec_init(&pvec);
937         index = start;
938         while (index < end && find_lock_entries(mapping, index, end - 1,
939                         &pvec, indices)) {
940                 for (i = 0; i < pagevec_count(&pvec); i++) {
941                         struct page *page = pvec.pages[i];
942
943                         index = indices[i];
944
945                         if (xa_is_value(page)) {
946                                 if (unfalloc)
947                                         continue;
948                                 nr_swaps_freed += !shmem_free_swap(mapping,
949                                                                 index, page);
950                                 continue;
951                         }
952                         index += thp_nr_pages(page) - 1;
953
954                         if (!unfalloc || !PageUptodate(page))
955                                 truncate_inode_page(mapping, page);
956                         unlock_page(page);
957                 }
958                 pagevec_remove_exceptionals(&pvec);
959                 pagevec_release(&pvec);
960                 cond_resched();
961                 index++;
962         }
963
964         if (partial_start) {
965                 struct page *page = NULL;
966                 shmem_getpage(inode, start - 1, &page, SGP_READ);
967                 if (page) {
968                         unsigned int top = PAGE_SIZE;
969                         if (start > end) {
970                                 top = partial_end;
971                                 partial_end = 0;
972                         }
973                         zero_user_segment(page, partial_start, top);
974                         set_page_dirty(page);
975                         unlock_page(page);
976                         put_page(page);
977                 }
978         }
979         if (partial_end) {
980                 struct page *page = NULL;
981                 shmem_getpage(inode, end, &page, SGP_READ);
982                 if (page) {
983                         zero_user_segment(page, 0, partial_end);
984                         set_page_dirty(page);
985                         unlock_page(page);
986                         put_page(page);
987                 }
988         }
989         if (start >= end)
990                 return;
991
992         index = start;
993         while (index < end) {
994                 cond_resched();
995
996                 if (!find_get_entries(mapping, index, end - 1, &pvec,
997                                 indices)) {
998                         /* If all gone or hole-punch or unfalloc, we're done */
999                         if (index == start || end != -1)
1000                                 break;
1001                         /* But if truncating, restart to make sure all gone */
1002                         index = start;
1003                         continue;
1004                 }
1005                 for (i = 0; i < pagevec_count(&pvec); i++) {
1006                         struct page *page = pvec.pages[i];
1007
1008                         index = indices[i];
1009                         if (xa_is_value(page)) {
1010                                 if (unfalloc)
1011                                         continue;
1012                                 if (shmem_free_swap(mapping, index, page)) {
1013                                         /* Swap was replaced by page: retry */
1014                                         index--;
1015                                         break;
1016                                 }
1017                                 nr_swaps_freed++;
1018                                 continue;
1019                         }
1020
1021                         lock_page(page);
1022
1023                         if (!unfalloc || !PageUptodate(page)) {
1024                                 if (page_mapping(page) != mapping) {
1025                                         /* Page was replaced by swap: retry */
1026                                         unlock_page(page);
1027                                         index--;
1028                                         break;
1029                                 }
1030                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1031                                 if (shmem_punch_compound(page, start, end))
1032                                         truncate_inode_page(mapping, page);
1033                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1034                                         /* Wipe the page and don't get stuck */
1035                                         clear_highpage(page);
1036                                         flush_dcache_page(page);
1037                                         set_page_dirty(page);
1038                                         if (index <
1039                                             round_up(start, HPAGE_PMD_NR))
1040                                                 start = index + 1;
1041                                 }
1042                         }
1043                         unlock_page(page);
1044                 }
1045                 pagevec_remove_exceptionals(&pvec);
1046                 pagevec_release(&pvec);
1047                 index++;
1048         }
1049
1050         spin_lock_irq(&info->lock);
1051         info->swapped -= nr_swaps_freed;
1052         shmem_recalc_inode(inode);
1053         spin_unlock_irq(&info->lock);
1054 }
1055
1056 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1057 {
1058         shmem_undo_range(inode, lstart, lend, false);
1059         inode->i_ctime = inode->i_mtime = current_time(inode);
1060 }
1061 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1062
1063 static int shmem_getattr(struct user_namespace *mnt_userns,
1064                          const struct path *path, struct kstat *stat,
1065                          u32 request_mask, unsigned int query_flags)
1066 {
1067         struct inode *inode = path->dentry->d_inode;
1068         struct shmem_inode_info *info = SHMEM_I(inode);
1069
1070         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1071                 spin_lock_irq(&info->lock);
1072                 shmem_recalc_inode(inode);
1073                 spin_unlock_irq(&info->lock);
1074         }
1075         generic_fillattr(&init_user_ns, inode, stat);
1076
1077         if (shmem_is_huge(NULL, inode, 0))
1078                 stat->blksize = HPAGE_PMD_SIZE;
1079
1080         return 0;
1081 }
1082
1083 static int shmem_setattr(struct user_namespace *mnt_userns,
1084                          struct dentry *dentry, struct iattr *attr)
1085 {
1086         struct inode *inode = d_inode(dentry);
1087         struct shmem_inode_info *info = SHMEM_I(inode);
1088         int error;
1089
1090         error = setattr_prepare(&init_user_ns, dentry, attr);
1091         if (error)
1092                 return error;
1093
1094         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1095                 loff_t oldsize = inode->i_size;
1096                 loff_t newsize = attr->ia_size;
1097
1098                 /* protected by i_rwsem */
1099                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1100                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1101                         return -EPERM;
1102
1103                 if (newsize != oldsize) {
1104                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1105                                         oldsize, newsize);
1106                         if (error)
1107                                 return error;
1108                         i_size_write(inode, newsize);
1109                         inode->i_ctime = inode->i_mtime = current_time(inode);
1110                 }
1111                 if (newsize <= oldsize) {
1112                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1113                         if (oldsize > holebegin)
1114                                 unmap_mapping_range(inode->i_mapping,
1115                                                         holebegin, 0, 1);
1116                         if (info->alloced)
1117                                 shmem_truncate_range(inode,
1118                                                         newsize, (loff_t)-1);
1119                         /* unmap again to remove racily COWed private pages */
1120                         if (oldsize > holebegin)
1121                                 unmap_mapping_range(inode->i_mapping,
1122                                                         holebegin, 0, 1);
1123                 }
1124         }
1125
1126         setattr_copy(&init_user_ns, inode, attr);
1127         if (attr->ia_valid & ATTR_MODE)
1128                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1129         return error;
1130 }
1131
1132 static void shmem_evict_inode(struct inode *inode)
1133 {
1134         struct shmem_inode_info *info = SHMEM_I(inode);
1135         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1136
1137         if (shmem_mapping(inode->i_mapping)) {
1138                 shmem_unacct_size(info->flags, inode->i_size);
1139                 inode->i_size = 0;
1140                 shmem_truncate_range(inode, 0, (loff_t)-1);
1141                 if (!list_empty(&info->shrinklist)) {
1142                         spin_lock(&sbinfo->shrinklist_lock);
1143                         if (!list_empty(&info->shrinklist)) {
1144                                 list_del_init(&info->shrinklist);
1145                                 sbinfo->shrinklist_len--;
1146                         }
1147                         spin_unlock(&sbinfo->shrinklist_lock);
1148                 }
1149                 while (!list_empty(&info->swaplist)) {
1150                         /* Wait while shmem_unuse() is scanning this inode... */
1151                         wait_var_event(&info->stop_eviction,
1152                                        !atomic_read(&info->stop_eviction));
1153                         mutex_lock(&shmem_swaplist_mutex);
1154                         /* ...but beware of the race if we peeked too early */
1155                         if (!atomic_read(&info->stop_eviction))
1156                                 list_del_init(&info->swaplist);
1157                         mutex_unlock(&shmem_swaplist_mutex);
1158                 }
1159         }
1160
1161         simple_xattrs_free(&info->xattrs);
1162         WARN_ON(inode->i_blocks);
1163         shmem_free_inode(inode->i_sb);
1164         clear_inode(inode);
1165 }
1166
1167 static int shmem_find_swap_entries(struct address_space *mapping,
1168                                    pgoff_t start, unsigned int nr_entries,
1169                                    struct page **entries, pgoff_t *indices,
1170                                    unsigned int type, bool frontswap)
1171 {
1172         XA_STATE(xas, &mapping->i_pages, start);
1173         struct page *page;
1174         swp_entry_t entry;
1175         unsigned int ret = 0;
1176
1177         if (!nr_entries)
1178                 return 0;
1179
1180         rcu_read_lock();
1181         xas_for_each(&xas, page, ULONG_MAX) {
1182                 if (xas_retry(&xas, page))
1183                         continue;
1184
1185                 if (!xa_is_value(page))
1186                         continue;
1187
1188                 entry = radix_to_swp_entry(page);
1189                 if (swp_type(entry) != type)
1190                         continue;
1191                 if (frontswap &&
1192                     !frontswap_test(swap_info[type], swp_offset(entry)))
1193                         continue;
1194
1195                 indices[ret] = xas.xa_index;
1196                 entries[ret] = page;
1197
1198                 if (need_resched()) {
1199                         xas_pause(&xas);
1200                         cond_resched_rcu();
1201                 }
1202                 if (++ret == nr_entries)
1203                         break;
1204         }
1205         rcu_read_unlock();
1206
1207         return ret;
1208 }
1209
1210 /*
1211  * Move the swapped pages for an inode to page cache. Returns the count
1212  * of pages swapped in, or the error in case of failure.
1213  */
1214 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1215                                     pgoff_t *indices)
1216 {
1217         int i = 0;
1218         int ret = 0;
1219         int error = 0;
1220         struct address_space *mapping = inode->i_mapping;
1221
1222         for (i = 0; i < pvec.nr; i++) {
1223                 struct page *page = pvec.pages[i];
1224
1225                 if (!xa_is_value(page))
1226                         continue;
1227                 error = shmem_swapin_page(inode, indices[i],
1228                                           &page, SGP_CACHE,
1229                                           mapping_gfp_mask(mapping),
1230                                           NULL, NULL);
1231                 if (error == 0) {
1232                         unlock_page(page);
1233                         put_page(page);
1234                         ret++;
1235                 }
1236                 if (error == -ENOMEM)
1237                         break;
1238                 error = 0;
1239         }
1240         return error ? error : ret;
1241 }
1242
1243 /*
1244  * If swap found in inode, free it and move page from swapcache to filecache.
1245  */
1246 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1247                              bool frontswap, unsigned long *fs_pages_to_unuse)
1248 {
1249         struct address_space *mapping = inode->i_mapping;
1250         pgoff_t start = 0;
1251         struct pagevec pvec;
1252         pgoff_t indices[PAGEVEC_SIZE];
1253         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1254         int ret = 0;
1255
1256         pagevec_init(&pvec);
1257         do {
1258                 unsigned int nr_entries = PAGEVEC_SIZE;
1259
1260                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1261                         nr_entries = *fs_pages_to_unuse;
1262
1263                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1264                                                   pvec.pages, indices,
1265                                                   type, frontswap);
1266                 if (pvec.nr == 0) {
1267                         ret = 0;
1268                         break;
1269                 }
1270
1271                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1272                 if (ret < 0)
1273                         break;
1274
1275                 if (frontswap_partial) {
1276                         *fs_pages_to_unuse -= ret;
1277                         if (*fs_pages_to_unuse == 0) {
1278                                 ret = FRONTSWAP_PAGES_UNUSED;
1279                                 break;
1280                         }
1281                 }
1282
1283                 start = indices[pvec.nr - 1];
1284         } while (true);
1285
1286         return ret;
1287 }
1288
1289 /*
1290  * Read all the shared memory data that resides in the swap
1291  * device 'type' back into memory, so the swap device can be
1292  * unused.
1293  */
1294 int shmem_unuse(unsigned int type, bool frontswap,
1295                 unsigned long *fs_pages_to_unuse)
1296 {
1297         struct shmem_inode_info *info, *next;
1298         int error = 0;
1299
1300         if (list_empty(&shmem_swaplist))
1301                 return 0;
1302
1303         mutex_lock(&shmem_swaplist_mutex);
1304         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1305                 if (!info->swapped) {
1306                         list_del_init(&info->swaplist);
1307                         continue;
1308                 }
1309                 /*
1310                  * Drop the swaplist mutex while searching the inode for swap;
1311                  * but before doing so, make sure shmem_evict_inode() will not
1312                  * remove placeholder inode from swaplist, nor let it be freed
1313                  * (igrab() would protect from unlink, but not from unmount).
1314                  */
1315                 atomic_inc(&info->stop_eviction);
1316                 mutex_unlock(&shmem_swaplist_mutex);
1317
1318                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1319                                           fs_pages_to_unuse);
1320                 cond_resched();
1321
1322                 mutex_lock(&shmem_swaplist_mutex);
1323                 next = list_next_entry(info, swaplist);
1324                 if (!info->swapped)
1325                         list_del_init(&info->swaplist);
1326                 if (atomic_dec_and_test(&info->stop_eviction))
1327                         wake_up_var(&info->stop_eviction);
1328                 if (error)
1329                         break;
1330         }
1331         mutex_unlock(&shmem_swaplist_mutex);
1332
1333         return error;
1334 }
1335
1336 /*
1337  * Move the page from the page cache to the swap cache.
1338  */
1339 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1340 {
1341         struct shmem_inode_info *info;
1342         struct address_space *mapping;
1343         struct inode *inode;
1344         swp_entry_t swap;
1345         pgoff_t index;
1346
1347         /*
1348          * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1349          * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1350          * and its shmem_writeback() needs them to be split when swapping.
1351          */
1352         if (PageTransCompound(page)) {
1353                 /* Ensure the subpages are still dirty */
1354                 SetPageDirty(page);
1355                 if (split_huge_page(page) < 0)
1356                         goto redirty;
1357                 ClearPageDirty(page);
1358         }
1359
1360         BUG_ON(!PageLocked(page));
1361         mapping = page->mapping;
1362         index = page->index;
1363         inode = mapping->host;
1364         info = SHMEM_I(inode);
1365         if (info->flags & VM_LOCKED)
1366                 goto redirty;
1367         if (!total_swap_pages)
1368                 goto redirty;
1369
1370         /*
1371          * Our capabilities prevent regular writeback or sync from ever calling
1372          * shmem_writepage; but a stacking filesystem might use ->writepage of
1373          * its underlying filesystem, in which case tmpfs should write out to
1374          * swap only in response to memory pressure, and not for the writeback
1375          * threads or sync.
1376          */
1377         if (!wbc->for_reclaim) {
1378                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1379                 goto redirty;
1380         }
1381
1382         /*
1383          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1384          * value into swapfile.c, the only way we can correctly account for a
1385          * fallocated page arriving here is now to initialize it and write it.
1386          *
1387          * That's okay for a page already fallocated earlier, but if we have
1388          * not yet completed the fallocation, then (a) we want to keep track
1389          * of this page in case we have to undo it, and (b) it may not be a
1390          * good idea to continue anyway, once we're pushing into swap.  So
1391          * reactivate the page, and let shmem_fallocate() quit when too many.
1392          */
1393         if (!PageUptodate(page)) {
1394                 if (inode->i_private) {
1395                         struct shmem_falloc *shmem_falloc;
1396                         spin_lock(&inode->i_lock);
1397                         shmem_falloc = inode->i_private;
1398                         if (shmem_falloc &&
1399                             !shmem_falloc->waitq &&
1400                             index >= shmem_falloc->start &&
1401                             index < shmem_falloc->next)
1402                                 shmem_falloc->nr_unswapped++;
1403                         else
1404                                 shmem_falloc = NULL;
1405                         spin_unlock(&inode->i_lock);
1406                         if (shmem_falloc)
1407                                 goto redirty;
1408                 }
1409                 clear_highpage(page);
1410                 flush_dcache_page(page);
1411                 SetPageUptodate(page);
1412         }
1413
1414         swap = get_swap_page(page);
1415         if (!swap.val)
1416                 goto redirty;
1417
1418         /*
1419          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1420          * if it's not already there.  Do it now before the page is
1421          * moved to swap cache, when its pagelock no longer protects
1422          * the inode from eviction.  But don't unlock the mutex until
1423          * we've incremented swapped, because shmem_unuse_inode() will
1424          * prune a !swapped inode from the swaplist under this mutex.
1425          */
1426         mutex_lock(&shmem_swaplist_mutex);
1427         if (list_empty(&info->swaplist))
1428                 list_add(&info->swaplist, &shmem_swaplist);
1429
1430         if (add_to_swap_cache(page, swap,
1431                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1432                         NULL) == 0) {
1433                 spin_lock_irq(&info->lock);
1434                 shmem_recalc_inode(inode);
1435                 info->swapped++;
1436                 spin_unlock_irq(&info->lock);
1437
1438                 swap_shmem_alloc(swap);
1439                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1440
1441                 mutex_unlock(&shmem_swaplist_mutex);
1442                 BUG_ON(page_mapped(page));
1443                 swap_writepage(page, wbc);
1444                 return 0;
1445         }
1446
1447         mutex_unlock(&shmem_swaplist_mutex);
1448         put_swap_page(page, swap);
1449 redirty:
1450         set_page_dirty(page);
1451         if (wbc->for_reclaim)
1452                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1453         unlock_page(page);
1454         return 0;
1455 }
1456
1457 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1458 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1459 {
1460         char buffer[64];
1461
1462         if (!mpol || mpol->mode == MPOL_DEFAULT)
1463                 return;         /* show nothing */
1464
1465         mpol_to_str(buffer, sizeof(buffer), mpol);
1466
1467         seq_printf(seq, ",mpol=%s", buffer);
1468 }
1469
1470 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1471 {
1472         struct mempolicy *mpol = NULL;
1473         if (sbinfo->mpol) {
1474                 raw_spin_lock(&sbinfo->stat_lock);      /* prevent replace/use races */
1475                 mpol = sbinfo->mpol;
1476                 mpol_get(mpol);
1477                 raw_spin_unlock(&sbinfo->stat_lock);
1478         }
1479         return mpol;
1480 }
1481 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1482 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1483 {
1484 }
1485 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1486 {
1487         return NULL;
1488 }
1489 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1490 #ifndef CONFIG_NUMA
1491 #define vm_policy vm_private_data
1492 #endif
1493
1494 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1495                 struct shmem_inode_info *info, pgoff_t index)
1496 {
1497         /* Create a pseudo vma that just contains the policy */
1498         vma_init(vma, NULL);
1499         /* Bias interleave by inode number to distribute better across nodes */
1500         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1501         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1502 }
1503
1504 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1505 {
1506         /* Drop reference taken by mpol_shared_policy_lookup() */
1507         mpol_cond_put(vma->vm_policy);
1508 }
1509
1510 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1511                         struct shmem_inode_info *info, pgoff_t index)
1512 {
1513         struct vm_area_struct pvma;
1514         struct page *page;
1515         struct vm_fault vmf = {
1516                 .vma = &pvma,
1517         };
1518
1519         shmem_pseudo_vma_init(&pvma, info, index);
1520         page = swap_cluster_readahead(swap, gfp, &vmf);
1521         shmem_pseudo_vma_destroy(&pvma);
1522
1523         return page;
1524 }
1525
1526 /*
1527  * Make sure huge_gfp is always more limited than limit_gfp.
1528  * Some of the flags set permissions, while others set limitations.
1529  */
1530 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1531 {
1532         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1533         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1534         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1535         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1536
1537         /* Allow allocations only from the originally specified zones. */
1538         result |= zoneflags;
1539
1540         /*
1541          * Minimize the result gfp by taking the union with the deny flags,
1542          * and the intersection of the allow flags.
1543          */
1544         result |= (limit_gfp & denyflags);
1545         result |= (huge_gfp & limit_gfp) & allowflags;
1546
1547         return result;
1548 }
1549
1550 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1551                 struct shmem_inode_info *info, pgoff_t index)
1552 {
1553         struct vm_area_struct pvma;
1554         struct address_space *mapping = info->vfs_inode.i_mapping;
1555         pgoff_t hindex;
1556         struct page *page;
1557
1558         hindex = round_down(index, HPAGE_PMD_NR);
1559         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1560                                                                 XA_PRESENT))
1561                 return NULL;
1562
1563         shmem_pseudo_vma_init(&pvma, info, hindex);
1564         page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1565                                true);
1566         shmem_pseudo_vma_destroy(&pvma);
1567         if (page)
1568                 prep_transhuge_page(page);
1569         else
1570                 count_vm_event(THP_FILE_FALLBACK);
1571         return page;
1572 }
1573
1574 static struct page *shmem_alloc_page(gfp_t gfp,
1575                         struct shmem_inode_info *info, pgoff_t index)
1576 {
1577         struct vm_area_struct pvma;
1578         struct page *page;
1579
1580         shmem_pseudo_vma_init(&pvma, info, index);
1581         page = alloc_page_vma(gfp, &pvma, 0);
1582         shmem_pseudo_vma_destroy(&pvma);
1583
1584         return page;
1585 }
1586
1587 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1588                 struct inode *inode,
1589                 pgoff_t index, bool huge)
1590 {
1591         struct shmem_inode_info *info = SHMEM_I(inode);
1592         struct page *page;
1593         int nr;
1594         int err = -ENOSPC;
1595
1596         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1597                 huge = false;
1598         nr = huge ? HPAGE_PMD_NR : 1;
1599
1600         if (!shmem_inode_acct_block(inode, nr))
1601                 goto failed;
1602
1603         if (huge)
1604                 page = shmem_alloc_hugepage(gfp, info, index);
1605         else
1606                 page = shmem_alloc_page(gfp, info, index);
1607         if (page) {
1608                 __SetPageLocked(page);
1609                 __SetPageSwapBacked(page);
1610                 return page;
1611         }
1612
1613         err = -ENOMEM;
1614         shmem_inode_unacct_blocks(inode, nr);
1615 failed:
1616         return ERR_PTR(err);
1617 }
1618
1619 /*
1620  * When a page is moved from swapcache to shmem filecache (either by the
1621  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1622  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1623  * ignorance of the mapping it belongs to.  If that mapping has special
1624  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1625  * we may need to copy to a suitable page before moving to filecache.
1626  *
1627  * In a future release, this may well be extended to respect cpuset and
1628  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1629  * but for now it is a simple matter of zone.
1630  */
1631 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1632 {
1633         return page_zonenum(page) > gfp_zone(gfp);
1634 }
1635
1636 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1637                                 struct shmem_inode_info *info, pgoff_t index)
1638 {
1639         struct page *oldpage, *newpage;
1640         struct address_space *swap_mapping;
1641         swp_entry_t entry;
1642         pgoff_t swap_index;
1643         int error;
1644
1645         oldpage = *pagep;
1646         entry.val = page_private(oldpage);
1647         swap_index = swp_offset(entry);
1648         swap_mapping = page_mapping(oldpage);
1649
1650         /*
1651          * We have arrived here because our zones are constrained, so don't
1652          * limit chance of success by further cpuset and node constraints.
1653          */
1654         gfp &= ~GFP_CONSTRAINT_MASK;
1655         newpage = shmem_alloc_page(gfp, info, index);
1656         if (!newpage)
1657                 return -ENOMEM;
1658
1659         get_page(newpage);
1660         copy_highpage(newpage, oldpage);
1661         flush_dcache_page(newpage);
1662
1663         __SetPageLocked(newpage);
1664         __SetPageSwapBacked(newpage);
1665         SetPageUptodate(newpage);
1666         set_page_private(newpage, entry.val);
1667         SetPageSwapCache(newpage);
1668
1669         /*
1670          * Our caller will very soon move newpage out of swapcache, but it's
1671          * a nice clean interface for us to replace oldpage by newpage there.
1672          */
1673         xa_lock_irq(&swap_mapping->i_pages);
1674         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1675         if (!error) {
1676                 mem_cgroup_migrate(oldpage, newpage);
1677                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1678                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1679         }
1680         xa_unlock_irq(&swap_mapping->i_pages);
1681
1682         if (unlikely(error)) {
1683                 /*
1684                  * Is this possible?  I think not, now that our callers check
1685                  * both PageSwapCache and page_private after getting page lock;
1686                  * but be defensive.  Reverse old to newpage for clear and free.
1687                  */
1688                 oldpage = newpage;
1689         } else {
1690                 lru_cache_add(newpage);
1691                 *pagep = newpage;
1692         }
1693
1694         ClearPageSwapCache(oldpage);
1695         set_page_private(oldpage, 0);
1696
1697         unlock_page(oldpage);
1698         put_page(oldpage);
1699         put_page(oldpage);
1700         return error;
1701 }
1702
1703 /*
1704  * Swap in the page pointed to by *pagep.
1705  * Caller has to make sure that *pagep contains a valid swapped page.
1706  * Returns 0 and the page in pagep if success. On failure, returns the
1707  * error code and NULL in *pagep.
1708  */
1709 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1710                              struct page **pagep, enum sgp_type sgp,
1711                              gfp_t gfp, struct vm_area_struct *vma,
1712                              vm_fault_t *fault_type)
1713 {
1714         struct address_space *mapping = inode->i_mapping;
1715         struct shmem_inode_info *info = SHMEM_I(inode);
1716         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1717         struct page *page;
1718         swp_entry_t swap;
1719         int error;
1720
1721         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1722         swap = radix_to_swp_entry(*pagep);
1723         *pagep = NULL;
1724
1725         /* Look it up and read it in.. */
1726         page = lookup_swap_cache(swap, NULL, 0);
1727         if (!page) {
1728                 /* Or update major stats only when swapin succeeds?? */
1729                 if (fault_type) {
1730                         *fault_type |= VM_FAULT_MAJOR;
1731                         count_vm_event(PGMAJFAULT);
1732                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1733                 }
1734                 /* Here we actually start the io */
1735                 page = shmem_swapin(swap, gfp, info, index);
1736                 if (!page) {
1737                         error = -ENOMEM;
1738                         goto failed;
1739                 }
1740         }
1741
1742         /* We have to do this with page locked to prevent races */
1743         lock_page(page);
1744         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1745             !shmem_confirm_swap(mapping, index, swap)) {
1746                 error = -EEXIST;
1747                 goto unlock;
1748         }
1749         if (!PageUptodate(page)) {
1750                 error = -EIO;
1751                 goto failed;
1752         }
1753         wait_on_page_writeback(page);
1754
1755         /*
1756          * Some architectures may have to restore extra metadata to the
1757          * physical page after reading from swap.
1758          */
1759         arch_swap_restore(swap, page);
1760
1761         if (shmem_should_replace_page(page, gfp)) {
1762                 error = shmem_replace_page(&page, gfp, info, index);
1763                 if (error)
1764                         goto failed;
1765         }
1766
1767         error = shmem_add_to_page_cache(page, mapping, index,
1768                                         swp_to_radix_entry(swap), gfp,
1769                                         charge_mm);
1770         if (error)
1771                 goto failed;
1772
1773         spin_lock_irq(&info->lock);
1774         info->swapped--;
1775         shmem_recalc_inode(inode);
1776         spin_unlock_irq(&info->lock);
1777
1778         if (sgp == SGP_WRITE)
1779                 mark_page_accessed(page);
1780
1781         delete_from_swap_cache(page);
1782         set_page_dirty(page);
1783         swap_free(swap);
1784
1785         *pagep = page;
1786         return 0;
1787 failed:
1788         if (!shmem_confirm_swap(mapping, index, swap))
1789                 error = -EEXIST;
1790 unlock:
1791         if (page) {
1792                 unlock_page(page);
1793                 put_page(page);
1794         }
1795
1796         return error;
1797 }
1798
1799 /*
1800  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1801  *
1802  * If we allocate a new one we do not mark it dirty. That's up to the
1803  * vm. If we swap it in we mark it dirty since we also free the swap
1804  * entry since a page cannot live in both the swap and page cache.
1805  *
1806  * vma, vmf, and fault_type are only supplied by shmem_fault:
1807  * otherwise they are NULL.
1808  */
1809 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1810         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1811         struct vm_area_struct *vma, struct vm_fault *vmf,
1812                         vm_fault_t *fault_type)
1813 {
1814         struct address_space *mapping = inode->i_mapping;
1815         struct shmem_inode_info *info = SHMEM_I(inode);
1816         struct shmem_sb_info *sbinfo;
1817         struct mm_struct *charge_mm;
1818         struct page *page;
1819         pgoff_t hindex = index;
1820         gfp_t huge_gfp;
1821         int error;
1822         int once = 0;
1823         int alloced = 0;
1824
1825         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1826                 return -EFBIG;
1827 repeat:
1828         if (sgp <= SGP_CACHE &&
1829             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1830                 return -EINVAL;
1831         }
1832
1833         sbinfo = SHMEM_SB(inode->i_sb);
1834         charge_mm = vma ? vma->vm_mm : NULL;
1835
1836         page = pagecache_get_page(mapping, index,
1837                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1838
1839         if (page && vma && userfaultfd_minor(vma)) {
1840                 if (!xa_is_value(page)) {
1841                         unlock_page(page);
1842                         put_page(page);
1843                 }
1844                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1845                 return 0;
1846         }
1847
1848         if (xa_is_value(page)) {
1849                 error = shmem_swapin_page(inode, index, &page,
1850                                           sgp, gfp, vma, fault_type);
1851                 if (error == -EEXIST)
1852                         goto repeat;
1853
1854                 *pagep = page;
1855                 return error;
1856         }
1857
1858         if (page) {
1859                 hindex = page->index;
1860                 if (sgp == SGP_WRITE)
1861                         mark_page_accessed(page);
1862                 if (PageUptodate(page))
1863                         goto out;
1864                 /* fallocated page */
1865                 if (sgp != SGP_READ)
1866                         goto clear;
1867                 unlock_page(page);
1868                 put_page(page);
1869         }
1870
1871         /*
1872          * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1873          * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1874          */
1875         *pagep = NULL;
1876         if (sgp == SGP_READ)
1877                 return 0;
1878         if (sgp == SGP_NOALLOC)
1879                 return -ENOENT;
1880
1881         /*
1882          * Fast cache lookup and swap lookup did not find it: allocate.
1883          */
1884
1885         if (vma && userfaultfd_missing(vma)) {
1886                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1887                 return 0;
1888         }
1889
1890         /* Never use a huge page for shmem_symlink() */
1891         if (S_ISLNK(inode->i_mode))
1892                 goto alloc_nohuge;
1893         if (!shmem_is_huge(vma, inode, index))
1894                 goto alloc_nohuge;
1895
1896         huge_gfp = vma_thp_gfp_mask(vma);
1897         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1898         page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1899         if (IS_ERR(page)) {
1900 alloc_nohuge:
1901                 page = shmem_alloc_and_acct_page(gfp, inode,
1902                                                  index, false);
1903         }
1904         if (IS_ERR(page)) {
1905                 int retry = 5;
1906
1907                 error = PTR_ERR(page);
1908                 page = NULL;
1909                 if (error != -ENOSPC)
1910                         goto unlock;
1911                 /*
1912                  * Try to reclaim some space by splitting a huge page
1913                  * beyond i_size on the filesystem.
1914                  */
1915                 while (retry--) {
1916                         int ret;
1917
1918                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1919                         if (ret == SHRINK_STOP)
1920                                 break;
1921                         if (ret)
1922                                 goto alloc_nohuge;
1923                 }
1924                 goto unlock;
1925         }
1926
1927         if (PageTransHuge(page))
1928                 hindex = round_down(index, HPAGE_PMD_NR);
1929         else
1930                 hindex = index;
1931
1932         if (sgp == SGP_WRITE)
1933                 __SetPageReferenced(page);
1934
1935         error = shmem_add_to_page_cache(page, mapping, hindex,
1936                                         NULL, gfp & GFP_RECLAIM_MASK,
1937                                         charge_mm);
1938         if (error)
1939                 goto unacct;
1940         lru_cache_add(page);
1941
1942         spin_lock_irq(&info->lock);
1943         info->alloced += compound_nr(page);
1944         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1945         shmem_recalc_inode(inode);
1946         spin_unlock_irq(&info->lock);
1947         alloced = true;
1948
1949         if (PageTransHuge(page) &&
1950             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1951                         hindex + HPAGE_PMD_NR - 1) {
1952                 /*
1953                  * Part of the huge page is beyond i_size: subject
1954                  * to shrink under memory pressure.
1955                  */
1956                 spin_lock(&sbinfo->shrinklist_lock);
1957                 /*
1958                  * _careful to defend against unlocked access to
1959                  * ->shrink_list in shmem_unused_huge_shrink()
1960                  */
1961                 if (list_empty_careful(&info->shrinklist)) {
1962                         list_add_tail(&info->shrinklist,
1963                                       &sbinfo->shrinklist);
1964                         sbinfo->shrinklist_len++;
1965                 }
1966                 spin_unlock(&sbinfo->shrinklist_lock);
1967         }
1968
1969         /*
1970          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1971          */
1972         if (sgp == SGP_FALLOC)
1973                 sgp = SGP_WRITE;
1974 clear:
1975         /*
1976          * Let SGP_WRITE caller clear ends if write does not fill page;
1977          * but SGP_FALLOC on a page fallocated earlier must initialize
1978          * it now, lest undo on failure cancel our earlier guarantee.
1979          */
1980         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1981                 int i;
1982
1983                 for (i = 0; i < compound_nr(page); i++) {
1984                         clear_highpage(page + i);
1985                         flush_dcache_page(page + i);
1986                 }
1987                 SetPageUptodate(page);
1988         }
1989
1990         /* Perhaps the file has been truncated since we checked */
1991         if (sgp <= SGP_CACHE &&
1992             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1993                 if (alloced) {
1994                         ClearPageDirty(page);
1995                         delete_from_page_cache(page);
1996                         spin_lock_irq(&info->lock);
1997                         shmem_recalc_inode(inode);
1998                         spin_unlock_irq(&info->lock);
1999                 }
2000                 error = -EINVAL;
2001                 goto unlock;
2002         }
2003 out:
2004         *pagep = page + index - hindex;
2005         return 0;
2006
2007         /*
2008          * Error recovery.
2009          */
2010 unacct:
2011         shmem_inode_unacct_blocks(inode, compound_nr(page));
2012
2013         if (PageTransHuge(page)) {
2014                 unlock_page(page);
2015                 put_page(page);
2016                 goto alloc_nohuge;
2017         }
2018 unlock:
2019         if (page) {
2020                 unlock_page(page);
2021                 put_page(page);
2022         }
2023         if (error == -ENOSPC && !once++) {
2024                 spin_lock_irq(&info->lock);
2025                 shmem_recalc_inode(inode);
2026                 spin_unlock_irq(&info->lock);
2027                 goto repeat;
2028         }
2029         if (error == -EEXIST)
2030                 goto repeat;
2031         return error;
2032 }
2033
2034 /*
2035  * This is like autoremove_wake_function, but it removes the wait queue
2036  * entry unconditionally - even if something else had already woken the
2037  * target.
2038  */
2039 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2040 {
2041         int ret = default_wake_function(wait, mode, sync, key);
2042         list_del_init(&wait->entry);
2043         return ret;
2044 }
2045
2046 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2047 {
2048         struct vm_area_struct *vma = vmf->vma;
2049         struct inode *inode = file_inode(vma->vm_file);
2050         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2051         int err;
2052         vm_fault_t ret = VM_FAULT_LOCKED;
2053
2054         /*
2055          * Trinity finds that probing a hole which tmpfs is punching can
2056          * prevent the hole-punch from ever completing: which in turn
2057          * locks writers out with its hold on i_rwsem.  So refrain from
2058          * faulting pages into the hole while it's being punched.  Although
2059          * shmem_undo_range() does remove the additions, it may be unable to
2060          * keep up, as each new page needs its own unmap_mapping_range() call,
2061          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2062          *
2063          * It does not matter if we sometimes reach this check just before the
2064          * hole-punch begins, so that one fault then races with the punch:
2065          * we just need to make racing faults a rare case.
2066          *
2067          * The implementation below would be much simpler if we just used a
2068          * standard mutex or completion: but we cannot take i_rwsem in fault,
2069          * and bloating every shmem inode for this unlikely case would be sad.
2070          */
2071         if (unlikely(inode->i_private)) {
2072                 struct shmem_falloc *shmem_falloc;
2073
2074                 spin_lock(&inode->i_lock);
2075                 shmem_falloc = inode->i_private;
2076                 if (shmem_falloc &&
2077                     shmem_falloc->waitq &&
2078                     vmf->pgoff >= shmem_falloc->start &&
2079                     vmf->pgoff < shmem_falloc->next) {
2080                         struct file *fpin;
2081                         wait_queue_head_t *shmem_falloc_waitq;
2082                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2083
2084                         ret = VM_FAULT_NOPAGE;
2085                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2086                         if (fpin)
2087                                 ret = VM_FAULT_RETRY;
2088
2089                         shmem_falloc_waitq = shmem_falloc->waitq;
2090                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2091                                         TASK_UNINTERRUPTIBLE);
2092                         spin_unlock(&inode->i_lock);
2093                         schedule();
2094
2095                         /*
2096                          * shmem_falloc_waitq points into the shmem_fallocate()
2097                          * stack of the hole-punching task: shmem_falloc_waitq
2098                          * is usually invalid by the time we reach here, but
2099                          * finish_wait() does not dereference it in that case;
2100                          * though i_lock needed lest racing with wake_up_all().
2101                          */
2102                         spin_lock(&inode->i_lock);
2103                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2104                         spin_unlock(&inode->i_lock);
2105
2106                         if (fpin)
2107                                 fput(fpin);
2108                         return ret;
2109                 }
2110                 spin_unlock(&inode->i_lock);
2111         }
2112
2113         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2114                                   gfp, vma, vmf, &ret);
2115         if (err)
2116                 return vmf_error(err);
2117         return ret;
2118 }
2119
2120 unsigned long shmem_get_unmapped_area(struct file *file,
2121                                       unsigned long uaddr, unsigned long len,
2122                                       unsigned long pgoff, unsigned long flags)
2123 {
2124         unsigned long (*get_area)(struct file *,
2125                 unsigned long, unsigned long, unsigned long, unsigned long);
2126         unsigned long addr;
2127         unsigned long offset;
2128         unsigned long inflated_len;
2129         unsigned long inflated_addr;
2130         unsigned long inflated_offset;
2131
2132         if (len > TASK_SIZE)
2133                 return -ENOMEM;
2134
2135         get_area = current->mm->get_unmapped_area;
2136         addr = get_area(file, uaddr, len, pgoff, flags);
2137
2138         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2139                 return addr;
2140         if (IS_ERR_VALUE(addr))
2141                 return addr;
2142         if (addr & ~PAGE_MASK)
2143                 return addr;
2144         if (addr > TASK_SIZE - len)
2145                 return addr;
2146
2147         if (shmem_huge == SHMEM_HUGE_DENY)
2148                 return addr;
2149         if (len < HPAGE_PMD_SIZE)
2150                 return addr;
2151         if (flags & MAP_FIXED)
2152                 return addr;
2153         /*
2154          * Our priority is to support MAP_SHARED mapped hugely;
2155          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2156          * But if caller specified an address hint and we allocated area there
2157          * successfully, respect that as before.
2158          */
2159         if (uaddr == addr)
2160                 return addr;
2161
2162         if (shmem_huge != SHMEM_HUGE_FORCE) {
2163                 struct super_block *sb;
2164
2165                 if (file) {
2166                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2167                         sb = file_inode(file)->i_sb;
2168                 } else {
2169                         /*
2170                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2171                          * for "/dev/zero", to create a shared anonymous object.
2172                          */
2173                         if (IS_ERR(shm_mnt))
2174                                 return addr;
2175                         sb = shm_mnt->mnt_sb;
2176                 }
2177                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2178                         return addr;
2179         }
2180
2181         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2182         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2183                 return addr;
2184         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2185                 return addr;
2186
2187         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2188         if (inflated_len > TASK_SIZE)
2189                 return addr;
2190         if (inflated_len < len)
2191                 return addr;
2192
2193         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2194         if (IS_ERR_VALUE(inflated_addr))
2195                 return addr;
2196         if (inflated_addr & ~PAGE_MASK)
2197                 return addr;
2198
2199         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2200         inflated_addr += offset - inflated_offset;
2201         if (inflated_offset > offset)
2202                 inflated_addr += HPAGE_PMD_SIZE;
2203
2204         if (inflated_addr > TASK_SIZE - len)
2205                 return addr;
2206         return inflated_addr;
2207 }
2208
2209 #ifdef CONFIG_NUMA
2210 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2211 {
2212         struct inode *inode = file_inode(vma->vm_file);
2213         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2214 }
2215
2216 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2217                                           unsigned long addr)
2218 {
2219         struct inode *inode = file_inode(vma->vm_file);
2220         pgoff_t index;
2221
2222         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2223         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2224 }
2225 #endif
2226
2227 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2228 {
2229         struct inode *inode = file_inode(file);
2230         struct shmem_inode_info *info = SHMEM_I(inode);
2231         int retval = -ENOMEM;
2232
2233         /*
2234          * What serializes the accesses to info->flags?
2235          * ipc_lock_object() when called from shmctl_do_lock(),
2236          * no serialization needed when called from shm_destroy().
2237          */
2238         if (lock && !(info->flags & VM_LOCKED)) {
2239                 if (!user_shm_lock(inode->i_size, ucounts))
2240                         goto out_nomem;
2241                 info->flags |= VM_LOCKED;
2242                 mapping_set_unevictable(file->f_mapping);
2243         }
2244         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2245                 user_shm_unlock(inode->i_size, ucounts);
2246                 info->flags &= ~VM_LOCKED;
2247                 mapping_clear_unevictable(file->f_mapping);
2248         }
2249         retval = 0;
2250
2251 out_nomem:
2252         return retval;
2253 }
2254
2255 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2256 {
2257         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2258         int ret;
2259
2260         ret = seal_check_future_write(info->seals, vma);
2261         if (ret)
2262                 return ret;
2263
2264         /* arm64 - allow memory tagging on RAM-based files */
2265         vma->vm_flags |= VM_MTE_ALLOWED;
2266
2267         file_accessed(file);
2268         vma->vm_ops = &shmem_vm_ops;
2269         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2270                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2271                         (vma->vm_end & HPAGE_PMD_MASK)) {
2272                 khugepaged_enter(vma, vma->vm_flags);
2273         }
2274         return 0;
2275 }
2276
2277 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2278                                      umode_t mode, dev_t dev, unsigned long flags)
2279 {
2280         struct inode *inode;
2281         struct shmem_inode_info *info;
2282         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2283         ino_t ino;
2284
2285         if (shmem_reserve_inode(sb, &ino))
2286                 return NULL;
2287
2288         inode = new_inode(sb);
2289         if (inode) {
2290                 inode->i_ino = ino;
2291                 inode_init_owner(&init_user_ns, inode, dir, mode);
2292                 inode->i_blocks = 0;
2293                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2294                 inode->i_generation = prandom_u32();
2295                 info = SHMEM_I(inode);
2296                 memset(info, 0, (char *)inode - (char *)info);
2297                 spin_lock_init(&info->lock);
2298                 atomic_set(&info->stop_eviction, 0);
2299                 info->seals = F_SEAL_SEAL;
2300                 info->flags = flags & VM_NORESERVE;
2301                 INIT_LIST_HEAD(&info->shrinklist);
2302                 INIT_LIST_HEAD(&info->swaplist);
2303                 simple_xattrs_init(&info->xattrs);
2304                 cache_no_acl(inode);
2305
2306                 switch (mode & S_IFMT) {
2307                 default:
2308                         inode->i_op = &shmem_special_inode_operations;
2309                         init_special_inode(inode, mode, dev);
2310                         break;
2311                 case S_IFREG:
2312                         inode->i_mapping->a_ops = &shmem_aops;
2313                         inode->i_op = &shmem_inode_operations;
2314                         inode->i_fop = &shmem_file_operations;
2315                         mpol_shared_policy_init(&info->policy,
2316                                                  shmem_get_sbmpol(sbinfo));
2317                         break;
2318                 case S_IFDIR:
2319                         inc_nlink(inode);
2320                         /* Some things misbehave if size == 0 on a directory */
2321                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2322                         inode->i_op = &shmem_dir_inode_operations;
2323                         inode->i_fop = &simple_dir_operations;
2324                         break;
2325                 case S_IFLNK:
2326                         /*
2327                          * Must not load anything in the rbtree,
2328                          * mpol_free_shared_policy will not be called.
2329                          */
2330                         mpol_shared_policy_init(&info->policy, NULL);
2331                         break;
2332                 }
2333
2334                 lockdep_annotate_inode_mutex_key(inode);
2335         } else
2336                 shmem_free_inode(sb);
2337         return inode;
2338 }
2339
2340 #ifdef CONFIG_USERFAULTFD
2341 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2342                            pmd_t *dst_pmd,
2343                            struct vm_area_struct *dst_vma,
2344                            unsigned long dst_addr,
2345                            unsigned long src_addr,
2346                            bool zeropage,
2347                            struct page **pagep)
2348 {
2349         struct inode *inode = file_inode(dst_vma->vm_file);
2350         struct shmem_inode_info *info = SHMEM_I(inode);
2351         struct address_space *mapping = inode->i_mapping;
2352         gfp_t gfp = mapping_gfp_mask(mapping);
2353         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2354         void *page_kaddr;
2355         struct page *page;
2356         int ret;
2357         pgoff_t max_off;
2358
2359         if (!shmem_inode_acct_block(inode, 1)) {
2360                 /*
2361                  * We may have got a page, returned -ENOENT triggering a retry,
2362                  * and now we find ourselves with -ENOMEM. Release the page, to
2363                  * avoid a BUG_ON in our caller.
2364                  */
2365                 if (unlikely(*pagep)) {
2366                         put_page(*pagep);
2367                         *pagep = NULL;
2368                 }
2369                 return -ENOMEM;
2370         }
2371
2372         if (!*pagep) {
2373                 ret = -ENOMEM;
2374                 page = shmem_alloc_page(gfp, info, pgoff);
2375                 if (!page)
2376                         goto out_unacct_blocks;
2377
2378                 if (!zeropage) {        /* COPY */
2379                         page_kaddr = kmap_atomic(page);
2380                         ret = copy_from_user(page_kaddr,
2381                                              (const void __user *)src_addr,
2382                                              PAGE_SIZE);
2383                         kunmap_atomic(page_kaddr);
2384
2385                         /* fallback to copy_from_user outside mmap_lock */
2386                         if (unlikely(ret)) {
2387                                 *pagep = page;
2388                                 ret = -ENOENT;
2389                                 /* don't free the page */
2390                                 goto out_unacct_blocks;
2391                         }
2392                 } else {                /* ZEROPAGE */
2393                         clear_highpage(page);
2394                 }
2395         } else {
2396                 page = *pagep;
2397                 *pagep = NULL;
2398         }
2399
2400         VM_BUG_ON(PageLocked(page));
2401         VM_BUG_ON(PageSwapBacked(page));
2402         __SetPageLocked(page);
2403         __SetPageSwapBacked(page);
2404         __SetPageUptodate(page);
2405
2406         ret = -EFAULT;
2407         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2408         if (unlikely(pgoff >= max_off))
2409                 goto out_release;
2410
2411         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2412                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2413         if (ret)
2414                 goto out_release;
2415
2416         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2417                                        page, true, false);
2418         if (ret)
2419                 goto out_delete_from_cache;
2420
2421         spin_lock_irq(&info->lock);
2422         info->alloced++;
2423         inode->i_blocks += BLOCKS_PER_PAGE;
2424         shmem_recalc_inode(inode);
2425         spin_unlock_irq(&info->lock);
2426
2427         SetPageDirty(page);
2428         unlock_page(page);
2429         return 0;
2430 out_delete_from_cache:
2431         delete_from_page_cache(page);
2432 out_release:
2433         unlock_page(page);
2434         put_page(page);
2435 out_unacct_blocks:
2436         shmem_inode_unacct_blocks(inode, 1);
2437         return ret;
2438 }
2439 #endif /* CONFIG_USERFAULTFD */
2440
2441 #ifdef CONFIG_TMPFS
2442 static const struct inode_operations shmem_symlink_inode_operations;
2443 static const struct inode_operations shmem_short_symlink_operations;
2444
2445 #ifdef CONFIG_TMPFS_XATTR
2446 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2447 #else
2448 #define shmem_initxattrs NULL
2449 #endif
2450
2451 static int
2452 shmem_write_begin(struct file *file, struct address_space *mapping,
2453                         loff_t pos, unsigned len, unsigned flags,
2454                         struct page **pagep, void **fsdata)
2455 {
2456         struct inode *inode = mapping->host;
2457         struct shmem_inode_info *info = SHMEM_I(inode);
2458         pgoff_t index = pos >> PAGE_SHIFT;
2459
2460         /* i_rwsem is held by caller */
2461         if (unlikely(info->seals & (F_SEAL_GROW |
2462                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2463                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2464                         return -EPERM;
2465                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2466                         return -EPERM;
2467         }
2468
2469         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2470 }
2471
2472 static int
2473 shmem_write_end(struct file *file, struct address_space *mapping,
2474                         loff_t pos, unsigned len, unsigned copied,
2475                         struct page *page, void *fsdata)
2476 {
2477         struct inode *inode = mapping->host;
2478
2479         if (pos + copied > inode->i_size)
2480                 i_size_write(inode, pos + copied);
2481
2482         if (!PageUptodate(page)) {
2483                 struct page *head = compound_head(page);
2484                 if (PageTransCompound(page)) {
2485                         int i;
2486
2487                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2488                                 if (head + i == page)
2489                                         continue;
2490                                 clear_highpage(head + i);
2491                                 flush_dcache_page(head + i);
2492                         }
2493                 }
2494                 if (copied < PAGE_SIZE) {
2495                         unsigned from = pos & (PAGE_SIZE - 1);
2496                         zero_user_segments(page, 0, from,
2497                                         from + copied, PAGE_SIZE);
2498                 }
2499                 SetPageUptodate(head);
2500         }
2501         set_page_dirty(page);
2502         unlock_page(page);
2503         put_page(page);
2504
2505         return copied;
2506 }
2507
2508 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2509 {
2510         struct file *file = iocb->ki_filp;
2511         struct inode *inode = file_inode(file);
2512         struct address_space *mapping = inode->i_mapping;
2513         pgoff_t index;
2514         unsigned long offset;
2515         enum sgp_type sgp = SGP_READ;
2516         int error = 0;
2517         ssize_t retval = 0;
2518         loff_t *ppos = &iocb->ki_pos;
2519
2520         /*
2521          * Might this read be for a stacking filesystem?  Then when reading
2522          * holes of a sparse file, we actually need to allocate those pages,
2523          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2524          */
2525         if (!iter_is_iovec(to))
2526                 sgp = SGP_CACHE;
2527
2528         index = *ppos >> PAGE_SHIFT;
2529         offset = *ppos & ~PAGE_MASK;
2530
2531         for (;;) {
2532                 struct page *page = NULL;
2533                 pgoff_t end_index;
2534                 unsigned long nr, ret;
2535                 loff_t i_size = i_size_read(inode);
2536
2537                 end_index = i_size >> PAGE_SHIFT;
2538                 if (index > end_index)
2539                         break;
2540                 if (index == end_index) {
2541                         nr = i_size & ~PAGE_MASK;
2542                         if (nr <= offset)
2543                                 break;
2544                 }
2545
2546                 error = shmem_getpage(inode, index, &page, sgp);
2547                 if (error) {
2548                         if (error == -EINVAL)
2549                                 error = 0;
2550                         break;
2551                 }
2552                 if (page) {
2553                         if (sgp == SGP_CACHE)
2554                                 set_page_dirty(page);
2555                         unlock_page(page);
2556                 }
2557
2558                 /*
2559                  * We must evaluate after, since reads (unlike writes)
2560                  * are called without i_rwsem protection against truncate
2561                  */
2562                 nr = PAGE_SIZE;
2563                 i_size = i_size_read(inode);
2564                 end_index = i_size >> PAGE_SHIFT;
2565                 if (index == end_index) {
2566                         nr = i_size & ~PAGE_MASK;
2567                         if (nr <= offset) {
2568                                 if (page)
2569                                         put_page(page);
2570                                 break;
2571                         }
2572                 }
2573                 nr -= offset;
2574
2575                 if (page) {
2576                         /*
2577                          * If users can be writing to this page using arbitrary
2578                          * virtual addresses, take care about potential aliasing
2579                          * before reading the page on the kernel side.
2580                          */
2581                         if (mapping_writably_mapped(mapping))
2582                                 flush_dcache_page(page);
2583                         /*
2584                          * Mark the page accessed if we read the beginning.
2585                          */
2586                         if (!offset)
2587                                 mark_page_accessed(page);
2588                 } else {
2589                         page = ZERO_PAGE(0);
2590                         get_page(page);
2591                 }
2592
2593                 /*
2594                  * Ok, we have the page, and it's up-to-date, so
2595                  * now we can copy it to user space...
2596                  */
2597                 ret = copy_page_to_iter(page, offset, nr, to);
2598                 retval += ret;
2599                 offset += ret;
2600                 index += offset >> PAGE_SHIFT;
2601                 offset &= ~PAGE_MASK;
2602
2603                 put_page(page);
2604                 if (!iov_iter_count(to))
2605                         break;
2606                 if (ret < nr) {
2607                         error = -EFAULT;
2608                         break;
2609                 }
2610                 cond_resched();
2611         }
2612
2613         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2614         file_accessed(file);
2615         return retval ? retval : error;
2616 }
2617
2618 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2619 {
2620         struct address_space *mapping = file->f_mapping;
2621         struct inode *inode = mapping->host;
2622
2623         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2624                 return generic_file_llseek_size(file, offset, whence,
2625                                         MAX_LFS_FILESIZE, i_size_read(inode));
2626         if (offset < 0)
2627                 return -ENXIO;
2628
2629         inode_lock(inode);
2630         /* We're holding i_rwsem so we can access i_size directly */
2631         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2632         if (offset >= 0)
2633                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2634         inode_unlock(inode);
2635         return offset;
2636 }
2637
2638 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2639                                                          loff_t len)
2640 {
2641         struct inode *inode = file_inode(file);
2642         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2643         struct shmem_inode_info *info = SHMEM_I(inode);
2644         struct shmem_falloc shmem_falloc;
2645         pgoff_t start, index, end, undo_fallocend;
2646         int error;
2647
2648         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2649                 return -EOPNOTSUPP;
2650
2651         inode_lock(inode);
2652
2653         if (mode & FALLOC_FL_PUNCH_HOLE) {
2654                 struct address_space *mapping = file->f_mapping;
2655                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2656                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2657                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2658
2659                 /* protected by i_rwsem */
2660                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2661                         error = -EPERM;
2662                         goto out;
2663                 }
2664
2665                 shmem_falloc.waitq = &shmem_falloc_waitq;
2666                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2667                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2668                 spin_lock(&inode->i_lock);
2669                 inode->i_private = &shmem_falloc;
2670                 spin_unlock(&inode->i_lock);
2671
2672                 if ((u64)unmap_end > (u64)unmap_start)
2673                         unmap_mapping_range(mapping, unmap_start,
2674                                             1 + unmap_end - unmap_start, 0);
2675                 shmem_truncate_range(inode, offset, offset + len - 1);
2676                 /* No need to unmap again: hole-punching leaves COWed pages */
2677
2678                 spin_lock(&inode->i_lock);
2679                 inode->i_private = NULL;
2680                 wake_up_all(&shmem_falloc_waitq);
2681                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2682                 spin_unlock(&inode->i_lock);
2683                 error = 0;
2684                 goto out;
2685         }
2686
2687         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2688         error = inode_newsize_ok(inode, offset + len);
2689         if (error)
2690                 goto out;
2691
2692         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2693                 error = -EPERM;
2694                 goto out;
2695         }
2696
2697         start = offset >> PAGE_SHIFT;
2698         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2699         /* Try to avoid a swapstorm if len is impossible to satisfy */
2700         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2701                 error = -ENOSPC;
2702                 goto out;
2703         }
2704
2705         shmem_falloc.waitq = NULL;
2706         shmem_falloc.start = start;
2707         shmem_falloc.next  = start;
2708         shmem_falloc.nr_falloced = 0;
2709         shmem_falloc.nr_unswapped = 0;
2710         spin_lock(&inode->i_lock);
2711         inode->i_private = &shmem_falloc;
2712         spin_unlock(&inode->i_lock);
2713
2714         /*
2715          * info->fallocend is only relevant when huge pages might be
2716          * involved: to prevent split_huge_page() freeing fallocated
2717          * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2718          */
2719         undo_fallocend = info->fallocend;
2720         if (info->fallocend < end)
2721                 info->fallocend = end;
2722
2723         for (index = start; index < end; ) {
2724                 struct page *page;
2725
2726                 /*
2727                  * Good, the fallocate(2) manpage permits EINTR: we may have
2728                  * been interrupted because we are using up too much memory.
2729                  */
2730                 if (signal_pending(current))
2731                         error = -EINTR;
2732                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2733                         error = -ENOMEM;
2734                 else
2735                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2736                 if (error) {
2737                         info->fallocend = undo_fallocend;
2738                         /* Remove the !PageUptodate pages we added */
2739                         if (index > start) {
2740                                 shmem_undo_range(inode,
2741                                     (loff_t)start << PAGE_SHIFT,
2742                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2743                         }
2744                         goto undone;
2745                 }
2746
2747                 index++;
2748                 /*
2749                  * Here is a more important optimization than it appears:
2750                  * a second SGP_FALLOC on the same huge page will clear it,
2751                  * making it PageUptodate and un-undoable if we fail later.
2752                  */
2753                 if (PageTransCompound(page)) {
2754                         index = round_up(index, HPAGE_PMD_NR);
2755                         /* Beware 32-bit wraparound */
2756                         if (!index)
2757                                 index--;
2758                 }
2759
2760                 /*
2761                  * Inform shmem_writepage() how far we have reached.
2762                  * No need for lock or barrier: we have the page lock.
2763                  */
2764                 if (!PageUptodate(page))
2765                         shmem_falloc.nr_falloced += index - shmem_falloc.next;
2766                 shmem_falloc.next = index;
2767
2768                 /*
2769                  * If !PageUptodate, leave it that way so that freeable pages
2770                  * can be recognized if we need to rollback on error later.
2771                  * But set_page_dirty so that memory pressure will swap rather
2772                  * than free the pages we are allocating (and SGP_CACHE pages
2773                  * might still be clean: we now need to mark those dirty too).
2774                  */
2775                 set_page_dirty(page);
2776                 unlock_page(page);
2777                 put_page(page);
2778                 cond_resched();
2779         }
2780
2781         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2782                 i_size_write(inode, offset + len);
2783         inode->i_ctime = current_time(inode);
2784 undone:
2785         spin_lock(&inode->i_lock);
2786         inode->i_private = NULL;
2787         spin_unlock(&inode->i_lock);
2788 out:
2789         inode_unlock(inode);
2790         return error;
2791 }
2792
2793 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2794 {
2795         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2796
2797         buf->f_type = TMPFS_MAGIC;
2798         buf->f_bsize = PAGE_SIZE;
2799         buf->f_namelen = NAME_MAX;
2800         if (sbinfo->max_blocks) {
2801                 buf->f_blocks = sbinfo->max_blocks;
2802                 buf->f_bavail =
2803                 buf->f_bfree  = sbinfo->max_blocks -
2804                                 percpu_counter_sum(&sbinfo->used_blocks);
2805         }
2806         if (sbinfo->max_inodes) {
2807                 buf->f_files = sbinfo->max_inodes;
2808                 buf->f_ffree = sbinfo->free_inodes;
2809         }
2810         /* else leave those fields 0 like simple_statfs */
2811
2812         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2813
2814         return 0;
2815 }
2816
2817 /*
2818  * File creation. Allocate an inode, and we're done..
2819  */
2820 static int
2821 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2822             struct dentry *dentry, umode_t mode, dev_t dev)
2823 {
2824         struct inode *inode;
2825         int error = -ENOSPC;
2826
2827         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2828         if (inode) {
2829                 error = simple_acl_create(dir, inode);
2830                 if (error)
2831                         goto out_iput;
2832                 error = security_inode_init_security(inode, dir,
2833                                                      &dentry->d_name,
2834                                                      shmem_initxattrs, NULL);
2835                 if (error && error != -EOPNOTSUPP)
2836                         goto out_iput;
2837
2838                 error = 0;
2839                 dir->i_size += BOGO_DIRENT_SIZE;
2840                 dir->i_ctime = dir->i_mtime = current_time(dir);
2841                 d_instantiate(dentry, inode);
2842                 dget(dentry); /* Extra count - pin the dentry in core */
2843         }
2844         return error;
2845 out_iput:
2846         iput(inode);
2847         return error;
2848 }
2849
2850 static int
2851 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2852               struct dentry *dentry, umode_t mode)
2853 {
2854         struct inode *inode;
2855         int error = -ENOSPC;
2856
2857         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2858         if (inode) {
2859                 error = security_inode_init_security(inode, dir,
2860                                                      NULL,
2861                                                      shmem_initxattrs, NULL);
2862                 if (error && error != -EOPNOTSUPP)
2863                         goto out_iput;
2864                 error = simple_acl_create(dir, inode);
2865                 if (error)
2866                         goto out_iput;
2867                 d_tmpfile(dentry, inode);
2868         }
2869         return error;
2870 out_iput:
2871         iput(inode);
2872         return error;
2873 }
2874
2875 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2876                        struct dentry *dentry, umode_t mode)
2877 {
2878         int error;
2879
2880         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2881                                  mode | S_IFDIR, 0)))
2882                 return error;
2883         inc_nlink(dir);
2884         return 0;
2885 }
2886
2887 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2888                         struct dentry *dentry, umode_t mode, bool excl)
2889 {
2890         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2891 }
2892
2893 /*
2894  * Link a file..
2895  */
2896 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2897 {
2898         struct inode *inode = d_inode(old_dentry);
2899         int ret = 0;
2900
2901         /*
2902          * No ordinary (disk based) filesystem counts links as inodes;
2903          * but each new link needs a new dentry, pinning lowmem, and
2904          * tmpfs dentries cannot be pruned until they are unlinked.
2905          * But if an O_TMPFILE file is linked into the tmpfs, the
2906          * first link must skip that, to get the accounting right.
2907          */
2908         if (inode->i_nlink) {
2909                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2910                 if (ret)
2911                         goto out;
2912         }
2913
2914         dir->i_size += BOGO_DIRENT_SIZE;
2915         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2916         inc_nlink(inode);
2917         ihold(inode);   /* New dentry reference */
2918         dget(dentry);           /* Extra pinning count for the created dentry */
2919         d_instantiate(dentry, inode);
2920 out:
2921         return ret;
2922 }
2923
2924 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2925 {
2926         struct inode *inode = d_inode(dentry);
2927
2928         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2929                 shmem_free_inode(inode->i_sb);
2930
2931         dir->i_size -= BOGO_DIRENT_SIZE;
2932         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2933         drop_nlink(inode);
2934         dput(dentry);   /* Undo the count from "create" - this does all the work */
2935         return 0;
2936 }
2937
2938 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2939 {
2940         if (!simple_empty(dentry))
2941                 return -ENOTEMPTY;
2942
2943         drop_nlink(d_inode(dentry));
2944         drop_nlink(dir);
2945         return shmem_unlink(dir, dentry);
2946 }
2947
2948 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2949 {
2950         bool old_is_dir = d_is_dir(old_dentry);
2951         bool new_is_dir = d_is_dir(new_dentry);
2952
2953         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2954                 if (old_is_dir) {
2955                         drop_nlink(old_dir);
2956                         inc_nlink(new_dir);
2957                 } else {
2958                         drop_nlink(new_dir);
2959                         inc_nlink(old_dir);
2960                 }
2961         }
2962         old_dir->i_ctime = old_dir->i_mtime =
2963         new_dir->i_ctime = new_dir->i_mtime =
2964         d_inode(old_dentry)->i_ctime =
2965         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2966
2967         return 0;
2968 }
2969
2970 static int shmem_whiteout(struct user_namespace *mnt_userns,
2971                           struct inode *old_dir, struct dentry *old_dentry)
2972 {
2973         struct dentry *whiteout;
2974         int error;
2975
2976         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2977         if (!whiteout)
2978                 return -ENOMEM;
2979
2980         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2981                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2982         dput(whiteout);
2983         if (error)
2984                 return error;
2985
2986         /*
2987          * Cheat and hash the whiteout while the old dentry is still in
2988          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2989          *
2990          * d_lookup() will consistently find one of them at this point,
2991          * not sure which one, but that isn't even important.
2992          */
2993         d_rehash(whiteout);
2994         return 0;
2995 }
2996
2997 /*
2998  * The VFS layer already does all the dentry stuff for rename,
2999  * we just have to decrement the usage count for the target if
3000  * it exists so that the VFS layer correctly free's it when it
3001  * gets overwritten.
3002  */
3003 static int shmem_rename2(struct user_namespace *mnt_userns,
3004                          struct inode *old_dir, struct dentry *old_dentry,
3005                          struct inode *new_dir, struct dentry *new_dentry,
3006                          unsigned int flags)
3007 {
3008         struct inode *inode = d_inode(old_dentry);
3009         int they_are_dirs = S_ISDIR(inode->i_mode);
3010
3011         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3012                 return -EINVAL;
3013
3014         if (flags & RENAME_EXCHANGE)
3015                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3016
3017         if (!simple_empty(new_dentry))
3018                 return -ENOTEMPTY;
3019
3020         if (flags & RENAME_WHITEOUT) {
3021                 int error;
3022
3023                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3024                 if (error)
3025                         return error;
3026         }
3027
3028         if (d_really_is_positive(new_dentry)) {
3029                 (void) shmem_unlink(new_dir, new_dentry);
3030                 if (they_are_dirs) {
3031                         drop_nlink(d_inode(new_dentry));
3032                         drop_nlink(old_dir);
3033                 }
3034         } else if (they_are_dirs) {
3035                 drop_nlink(old_dir);
3036                 inc_nlink(new_dir);
3037         }
3038
3039         old_dir->i_size -= BOGO_DIRENT_SIZE;
3040         new_dir->i_size += BOGO_DIRENT_SIZE;
3041         old_dir->i_ctime = old_dir->i_mtime =
3042         new_dir->i_ctime = new_dir->i_mtime =
3043         inode->i_ctime = current_time(old_dir);
3044         return 0;
3045 }
3046
3047 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3048                          struct dentry *dentry, const char *symname)
3049 {
3050         int error;
3051         int len;
3052         struct inode *inode;
3053         struct page *page;
3054
3055         len = strlen(symname) + 1;
3056         if (len > PAGE_SIZE)
3057                 return -ENAMETOOLONG;
3058
3059         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3060                                 VM_NORESERVE);
3061         if (!inode)
3062                 return -ENOSPC;
3063
3064         error = security_inode_init_security(inode, dir, &dentry->d_name,
3065                                              shmem_initxattrs, NULL);
3066         if (error && error != -EOPNOTSUPP) {
3067                 iput(inode);
3068                 return error;
3069         }
3070
3071         inode->i_size = len-1;
3072         if (len <= SHORT_SYMLINK_LEN) {
3073                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3074                 if (!inode->i_link) {
3075                         iput(inode);
3076                         return -ENOMEM;
3077                 }
3078                 inode->i_op = &shmem_short_symlink_operations;
3079         } else {
3080                 inode_nohighmem(inode);
3081                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3082                 if (error) {
3083                         iput(inode);
3084                         return error;
3085                 }
3086                 inode->i_mapping->a_ops = &shmem_aops;
3087                 inode->i_op = &shmem_symlink_inode_operations;
3088                 memcpy(page_address(page), symname, len);
3089                 SetPageUptodate(page);
3090                 set_page_dirty(page);
3091                 unlock_page(page);
3092                 put_page(page);
3093         }
3094         dir->i_size += BOGO_DIRENT_SIZE;
3095         dir->i_ctime = dir->i_mtime = current_time(dir);
3096         d_instantiate(dentry, inode);
3097         dget(dentry);
3098         return 0;
3099 }
3100
3101 static void shmem_put_link(void *arg)
3102 {
3103         mark_page_accessed(arg);
3104         put_page(arg);
3105 }
3106
3107 static const char *shmem_get_link(struct dentry *dentry,
3108                                   struct inode *inode,
3109                                   struct delayed_call *done)
3110 {
3111         struct page *page = NULL;
3112         int error;
3113         if (!dentry) {
3114                 page = find_get_page(inode->i_mapping, 0);
3115                 if (!page)
3116                         return ERR_PTR(-ECHILD);
3117                 if (!PageUptodate(page)) {
3118                         put_page(page);
3119                         return ERR_PTR(-ECHILD);
3120                 }
3121         } else {
3122                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3123                 if (error)
3124                         return ERR_PTR(error);
3125                 unlock_page(page);
3126         }
3127         set_delayed_call(done, shmem_put_link, page);
3128         return page_address(page);
3129 }
3130
3131 #ifdef CONFIG_TMPFS_XATTR
3132 /*
3133  * Superblocks without xattr inode operations may get some security.* xattr
3134  * support from the LSM "for free". As soon as we have any other xattrs
3135  * like ACLs, we also need to implement the security.* handlers at
3136  * filesystem level, though.
3137  */
3138
3139 /*
3140  * Callback for security_inode_init_security() for acquiring xattrs.
3141  */
3142 static int shmem_initxattrs(struct inode *inode,
3143                             const struct xattr *xattr_array,
3144                             void *fs_info)
3145 {
3146         struct shmem_inode_info *info = SHMEM_I(inode);
3147         const struct xattr *xattr;
3148         struct simple_xattr *new_xattr;
3149         size_t len;
3150
3151         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3152                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3153                 if (!new_xattr)
3154                         return -ENOMEM;
3155
3156                 len = strlen(xattr->name) + 1;
3157                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3158                                           GFP_KERNEL);
3159                 if (!new_xattr->name) {
3160                         kvfree(new_xattr);
3161                         return -ENOMEM;
3162                 }
3163
3164                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3165                        XATTR_SECURITY_PREFIX_LEN);
3166                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3167                        xattr->name, len);
3168
3169                 simple_xattr_list_add(&info->xattrs, new_xattr);
3170         }
3171
3172         return 0;
3173 }
3174
3175 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3176                                    struct dentry *unused, struct inode *inode,
3177                                    const char *name, void *buffer, size_t size)
3178 {
3179         struct shmem_inode_info *info = SHMEM_I(inode);
3180
3181         name = xattr_full_name(handler, name);
3182         return simple_xattr_get(&info->xattrs, name, buffer, size);
3183 }
3184
3185 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3186                                    struct user_namespace *mnt_userns,
3187                                    struct dentry *unused, struct inode *inode,
3188                                    const char *name, const void *value,
3189                                    size_t size, int flags)
3190 {
3191         struct shmem_inode_info *info = SHMEM_I(inode);
3192
3193         name = xattr_full_name(handler, name);
3194         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3195 }
3196
3197 static const struct xattr_handler shmem_security_xattr_handler = {
3198         .prefix = XATTR_SECURITY_PREFIX,
3199         .get = shmem_xattr_handler_get,
3200         .set = shmem_xattr_handler_set,
3201 };
3202
3203 static const struct xattr_handler shmem_trusted_xattr_handler = {
3204         .prefix = XATTR_TRUSTED_PREFIX,
3205         .get = shmem_xattr_handler_get,
3206         .set = shmem_xattr_handler_set,
3207 };
3208
3209 static const struct xattr_handler *shmem_xattr_handlers[] = {
3210 #ifdef CONFIG_TMPFS_POSIX_ACL
3211         &posix_acl_access_xattr_handler,
3212         &posix_acl_default_xattr_handler,
3213 #endif
3214         &shmem_security_xattr_handler,
3215         &shmem_trusted_xattr_handler,
3216         NULL
3217 };
3218
3219 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3220 {
3221         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3222         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3223 }
3224 #endif /* CONFIG_TMPFS_XATTR */
3225
3226 static const struct inode_operations shmem_short_symlink_operations = {
3227         .get_link       = simple_get_link,
3228 #ifdef CONFIG_TMPFS_XATTR
3229         .listxattr      = shmem_listxattr,
3230 #endif
3231 };
3232
3233 static const struct inode_operations shmem_symlink_inode_operations = {
3234         .get_link       = shmem_get_link,
3235 #ifdef CONFIG_TMPFS_XATTR
3236         .listxattr      = shmem_listxattr,
3237 #endif
3238 };
3239
3240 static struct dentry *shmem_get_parent(struct dentry *child)
3241 {
3242         return ERR_PTR(-ESTALE);
3243 }
3244
3245 static int shmem_match(struct inode *ino, void *vfh)
3246 {
3247         __u32 *fh = vfh;
3248         __u64 inum = fh[2];
3249         inum = (inum << 32) | fh[1];
3250         return ino->i_ino == inum && fh[0] == ino->i_generation;
3251 }
3252
3253 /* Find any alias of inode, but prefer a hashed alias */
3254 static struct dentry *shmem_find_alias(struct inode *inode)
3255 {
3256         struct dentry *alias = d_find_alias(inode);
3257
3258         return alias ?: d_find_any_alias(inode);
3259 }
3260
3261
3262 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3263                 struct fid *fid, int fh_len, int fh_type)
3264 {
3265         struct inode *inode;
3266         struct dentry *dentry = NULL;
3267         u64 inum;
3268
3269         if (fh_len < 3)
3270                 return NULL;
3271
3272         inum = fid->raw[2];
3273         inum = (inum << 32) | fid->raw[1];
3274
3275         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3276                         shmem_match, fid->raw);
3277         if (inode) {
3278                 dentry = shmem_find_alias(inode);
3279                 iput(inode);
3280         }
3281
3282         return dentry;
3283 }
3284
3285 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3286                                 struct inode *parent)
3287 {
3288         if (*len < 3) {
3289                 *len = 3;
3290                 return FILEID_INVALID;
3291         }
3292
3293         if (inode_unhashed(inode)) {
3294                 /* Unfortunately insert_inode_hash is not idempotent,
3295                  * so as we hash inodes here rather than at creation
3296                  * time, we need a lock to ensure we only try
3297                  * to do it once
3298                  */
3299                 static DEFINE_SPINLOCK(lock);
3300                 spin_lock(&lock);
3301                 if (inode_unhashed(inode))
3302                         __insert_inode_hash(inode,
3303                                             inode->i_ino + inode->i_generation);
3304                 spin_unlock(&lock);
3305         }
3306
3307         fh[0] = inode->i_generation;
3308         fh[1] = inode->i_ino;
3309         fh[2] = ((__u64)inode->i_ino) >> 32;
3310
3311         *len = 3;
3312         return 1;
3313 }
3314
3315 static const struct export_operations shmem_export_ops = {
3316         .get_parent     = shmem_get_parent,
3317         .encode_fh      = shmem_encode_fh,
3318         .fh_to_dentry   = shmem_fh_to_dentry,
3319 };
3320
3321 enum shmem_param {
3322         Opt_gid,
3323         Opt_huge,
3324         Opt_mode,
3325         Opt_mpol,
3326         Opt_nr_blocks,
3327         Opt_nr_inodes,
3328         Opt_size,
3329         Opt_uid,
3330         Opt_inode32,
3331         Opt_inode64,
3332 };
3333
3334 static const struct constant_table shmem_param_enums_huge[] = {
3335         {"never",       SHMEM_HUGE_NEVER },
3336         {"always",      SHMEM_HUGE_ALWAYS },
3337         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3338         {"advise",      SHMEM_HUGE_ADVISE },
3339         {}
3340 };
3341
3342 const struct fs_parameter_spec shmem_fs_parameters[] = {
3343         fsparam_u32   ("gid",           Opt_gid),
3344         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3345         fsparam_u32oct("mode",          Opt_mode),
3346         fsparam_string("mpol",          Opt_mpol),
3347         fsparam_string("nr_blocks",     Opt_nr_blocks),
3348         fsparam_string("nr_inodes",     Opt_nr_inodes),
3349         fsparam_string("size",          Opt_size),
3350         fsparam_u32   ("uid",           Opt_uid),
3351         fsparam_flag  ("inode32",       Opt_inode32),
3352         fsparam_flag  ("inode64",       Opt_inode64),
3353         {}
3354 };
3355
3356 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3357 {
3358         struct shmem_options *ctx = fc->fs_private;
3359         struct fs_parse_result result;
3360         unsigned long long size;
3361         char *rest;
3362         int opt;
3363
3364         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3365         if (opt < 0)
3366                 return opt;
3367
3368         switch (opt) {
3369         case Opt_size:
3370                 size = memparse(param->string, &rest);
3371                 if (*rest == '%') {
3372                         size <<= PAGE_SHIFT;
3373                         size *= totalram_pages();
3374                         do_div(size, 100);
3375                         rest++;
3376                 }
3377                 if (*rest)
3378                         goto bad_value;
3379                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3380                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3381                 break;
3382         case Opt_nr_blocks:
3383                 ctx->blocks = memparse(param->string, &rest);
3384                 if (*rest)
3385                         goto bad_value;
3386                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3387                 break;
3388         case Opt_nr_inodes:
3389                 ctx->inodes = memparse(param->string, &rest);
3390                 if (*rest)
3391                         goto bad_value;
3392                 ctx->seen |= SHMEM_SEEN_INODES;
3393                 break;
3394         case Opt_mode:
3395                 ctx->mode = result.uint_32 & 07777;
3396                 break;
3397         case Opt_uid:
3398                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3399                 if (!uid_valid(ctx->uid))
3400                         goto bad_value;
3401                 break;
3402         case Opt_gid:
3403                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3404                 if (!gid_valid(ctx->gid))
3405                         goto bad_value;
3406                 break;
3407         case Opt_huge:
3408                 ctx->huge = result.uint_32;
3409                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3410                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3411                       has_transparent_hugepage()))
3412                         goto unsupported_parameter;
3413                 ctx->seen |= SHMEM_SEEN_HUGE;
3414                 break;
3415         case Opt_mpol:
3416                 if (IS_ENABLED(CONFIG_NUMA)) {
3417                         mpol_put(ctx->mpol);
3418                         ctx->mpol = NULL;
3419                         if (mpol_parse_str(param->string, &ctx->mpol))
3420                                 goto bad_value;
3421                         break;
3422                 }
3423                 goto unsupported_parameter;
3424         case Opt_inode32:
3425                 ctx->full_inums = false;
3426                 ctx->seen |= SHMEM_SEEN_INUMS;
3427                 break;
3428         case Opt_inode64:
3429                 if (sizeof(ino_t) < 8) {
3430                         return invalfc(fc,
3431                                        "Cannot use inode64 with <64bit inums in kernel\n");
3432                 }
3433                 ctx->full_inums = true;
3434                 ctx->seen |= SHMEM_SEEN_INUMS;
3435                 break;
3436         }
3437         return 0;
3438
3439 unsupported_parameter:
3440         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3441 bad_value:
3442         return invalfc(fc, "Bad value for '%s'", param->key);
3443 }
3444
3445 static int shmem_parse_options(struct fs_context *fc, void *data)
3446 {
3447         char *options = data;
3448
3449         if (options) {
3450                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3451                 if (err)
3452                         return err;
3453         }
3454
3455         while (options != NULL) {
3456                 char *this_char = options;
3457                 for (;;) {
3458                         /*
3459                          * NUL-terminate this option: unfortunately,
3460                          * mount options form a comma-separated list,
3461                          * but mpol's nodelist may also contain commas.
3462                          */
3463                         options = strchr(options, ',');
3464                         if (options == NULL)
3465                                 break;
3466                         options++;
3467                         if (!isdigit(*options)) {
3468                                 options[-1] = '\0';
3469                                 break;
3470                         }
3471                 }
3472                 if (*this_char) {
3473                         char *value = strchr(this_char, '=');
3474                         size_t len = 0;
3475                         int err;
3476
3477                         if (value) {
3478                                 *value++ = '\0';
3479                                 len = strlen(value);
3480                         }
3481                         err = vfs_parse_fs_string(fc, this_char, value, len);
3482                         if (err < 0)
3483                                 return err;
3484                 }
3485         }
3486         return 0;
3487 }
3488
3489 /*
3490  * Reconfigure a shmem filesystem.
3491  *
3492  * Note that we disallow change from limited->unlimited blocks/inodes while any
3493  * are in use; but we must separately disallow unlimited->limited, because in
3494  * that case we have no record of how much is already in use.
3495  */
3496 static int shmem_reconfigure(struct fs_context *fc)
3497 {
3498         struct shmem_options *ctx = fc->fs_private;
3499         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3500         unsigned long inodes;
3501         struct mempolicy *mpol = NULL;
3502         const char *err;
3503
3504         raw_spin_lock(&sbinfo->stat_lock);
3505         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3506         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3507                 if (!sbinfo->max_blocks) {
3508                         err = "Cannot retroactively limit size";
3509                         goto out;
3510                 }
3511                 if (percpu_counter_compare(&sbinfo->used_blocks,
3512                                            ctx->blocks) > 0) {
3513                         err = "Too small a size for current use";
3514                         goto out;
3515                 }
3516         }
3517         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3518                 if (!sbinfo->max_inodes) {
3519                         err = "Cannot retroactively limit inodes";
3520                         goto out;
3521                 }
3522                 if (ctx->inodes < inodes) {
3523                         err = "Too few inodes for current use";
3524                         goto out;
3525                 }
3526         }
3527
3528         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3529             sbinfo->next_ino > UINT_MAX) {
3530                 err = "Current inum too high to switch to 32-bit inums";
3531                 goto out;
3532         }
3533
3534         if (ctx->seen & SHMEM_SEEN_HUGE)
3535                 sbinfo->huge = ctx->huge;
3536         if (ctx->seen & SHMEM_SEEN_INUMS)
3537                 sbinfo->full_inums = ctx->full_inums;
3538         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3539                 sbinfo->max_blocks  = ctx->blocks;
3540         if (ctx->seen & SHMEM_SEEN_INODES) {
3541                 sbinfo->max_inodes  = ctx->inodes;
3542                 sbinfo->free_inodes = ctx->inodes - inodes;
3543         }
3544
3545         /*
3546          * Preserve previous mempolicy unless mpol remount option was specified.
3547          */
3548         if (ctx->mpol) {
3549                 mpol = sbinfo->mpol;
3550                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3551                 ctx->mpol = NULL;
3552         }
3553         raw_spin_unlock(&sbinfo->stat_lock);
3554         mpol_put(mpol);
3555         return 0;
3556 out:
3557         raw_spin_unlock(&sbinfo->stat_lock);
3558         return invalfc(fc, "%s", err);
3559 }
3560
3561 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3562 {
3563         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3564
3565         if (sbinfo->max_blocks != shmem_default_max_blocks())
3566                 seq_printf(seq, ",size=%luk",
3567                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3568         if (sbinfo->max_inodes != shmem_default_max_inodes())
3569                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3570         if (sbinfo->mode != (0777 | S_ISVTX))
3571                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3572         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3573                 seq_printf(seq, ",uid=%u",
3574                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3575         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3576                 seq_printf(seq, ",gid=%u",
3577                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3578
3579         /*
3580          * Showing inode{64,32} might be useful even if it's the system default,
3581          * since then people don't have to resort to checking both here and
3582          * /proc/config.gz to confirm 64-bit inums were successfully applied
3583          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3584          *
3585          * We hide it when inode64 isn't the default and we are using 32-bit
3586          * inodes, since that probably just means the feature isn't even under
3587          * consideration.
3588          *
3589          * As such:
3590          *
3591          *                     +-----------------+-----------------+
3592          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3593          *  +------------------+-----------------+-----------------+
3594          *  | full_inums=true  | show            | show            |
3595          *  | full_inums=false | show            | hide            |
3596          *  +------------------+-----------------+-----------------+
3597          *
3598          */
3599         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3600                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3602         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3603         if (sbinfo->huge)
3604                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3605 #endif
3606         shmem_show_mpol(seq, sbinfo->mpol);
3607         return 0;
3608 }
3609
3610 #endif /* CONFIG_TMPFS */
3611
3612 static void shmem_put_super(struct super_block *sb)
3613 {
3614         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3615
3616         free_percpu(sbinfo->ino_batch);
3617         percpu_counter_destroy(&sbinfo->used_blocks);
3618         mpol_put(sbinfo->mpol);
3619         kfree(sbinfo);
3620         sb->s_fs_info = NULL;
3621 }
3622
3623 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3624 {
3625         struct shmem_options *ctx = fc->fs_private;
3626         struct inode *inode;
3627         struct shmem_sb_info *sbinfo;
3628
3629         /* Round up to L1_CACHE_BYTES to resist false sharing */
3630         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3631                                 L1_CACHE_BYTES), GFP_KERNEL);
3632         if (!sbinfo)
3633                 return -ENOMEM;
3634
3635         sb->s_fs_info = sbinfo;
3636
3637 #ifdef CONFIG_TMPFS
3638         /*
3639          * Per default we only allow half of the physical ram per
3640          * tmpfs instance, limiting inodes to one per page of lowmem;
3641          * but the internal instance is left unlimited.
3642          */
3643         if (!(sb->s_flags & SB_KERNMOUNT)) {
3644                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3645                         ctx->blocks = shmem_default_max_blocks();
3646                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3647                         ctx->inodes = shmem_default_max_inodes();
3648                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3649                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3650         } else {
3651                 sb->s_flags |= SB_NOUSER;
3652         }
3653         sb->s_export_op = &shmem_export_ops;
3654         sb->s_flags |= SB_NOSEC;
3655 #else
3656         sb->s_flags |= SB_NOUSER;
3657 #endif
3658         sbinfo->max_blocks = ctx->blocks;
3659         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3660         if (sb->s_flags & SB_KERNMOUNT) {
3661                 sbinfo->ino_batch = alloc_percpu(ino_t);
3662                 if (!sbinfo->ino_batch)
3663                         goto failed;
3664         }
3665         sbinfo->uid = ctx->uid;
3666         sbinfo->gid = ctx->gid;
3667         sbinfo->full_inums = ctx->full_inums;
3668         sbinfo->mode = ctx->mode;
3669         sbinfo->huge = ctx->huge;
3670         sbinfo->mpol = ctx->mpol;
3671         ctx->mpol = NULL;
3672
3673         raw_spin_lock_init(&sbinfo->stat_lock);
3674         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3675                 goto failed;
3676         spin_lock_init(&sbinfo->shrinklist_lock);
3677         INIT_LIST_HEAD(&sbinfo->shrinklist);
3678
3679         sb->s_maxbytes = MAX_LFS_FILESIZE;
3680         sb->s_blocksize = PAGE_SIZE;
3681         sb->s_blocksize_bits = PAGE_SHIFT;
3682         sb->s_magic = TMPFS_MAGIC;
3683         sb->s_op = &shmem_ops;
3684         sb->s_time_gran = 1;
3685 #ifdef CONFIG_TMPFS_XATTR
3686         sb->s_xattr = shmem_xattr_handlers;
3687 #endif
3688 #ifdef CONFIG_TMPFS_POSIX_ACL
3689         sb->s_flags |= SB_POSIXACL;
3690 #endif
3691         uuid_gen(&sb->s_uuid);
3692
3693         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3694         if (!inode)
3695                 goto failed;
3696         inode->i_uid = sbinfo->uid;
3697         inode->i_gid = sbinfo->gid;
3698         sb->s_root = d_make_root(inode);
3699         if (!sb->s_root)
3700                 goto failed;
3701         return 0;
3702
3703 failed:
3704         shmem_put_super(sb);
3705         return -ENOMEM;
3706 }
3707
3708 static int shmem_get_tree(struct fs_context *fc)
3709 {
3710         return get_tree_nodev(fc, shmem_fill_super);
3711 }
3712
3713 static void shmem_free_fc(struct fs_context *fc)
3714 {
3715         struct shmem_options *ctx = fc->fs_private;
3716
3717         if (ctx) {
3718                 mpol_put(ctx->mpol);
3719                 kfree(ctx);
3720         }
3721 }
3722
3723 static const struct fs_context_operations shmem_fs_context_ops = {
3724         .free                   = shmem_free_fc,
3725         .get_tree               = shmem_get_tree,
3726 #ifdef CONFIG_TMPFS
3727         .parse_monolithic       = shmem_parse_options,
3728         .parse_param            = shmem_parse_one,
3729         .reconfigure            = shmem_reconfigure,
3730 #endif
3731 };
3732
3733 static struct kmem_cache *shmem_inode_cachep;
3734
3735 static struct inode *shmem_alloc_inode(struct super_block *sb)
3736 {
3737         struct shmem_inode_info *info;
3738         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3739         if (!info)
3740                 return NULL;
3741         return &info->vfs_inode;
3742 }
3743
3744 static void shmem_free_in_core_inode(struct inode *inode)
3745 {
3746         if (S_ISLNK(inode->i_mode))
3747                 kfree(inode->i_link);
3748         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3749 }
3750
3751 static void shmem_destroy_inode(struct inode *inode)
3752 {
3753         if (S_ISREG(inode->i_mode))
3754                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3755 }
3756
3757 static void shmem_init_inode(void *foo)
3758 {
3759         struct shmem_inode_info *info = foo;
3760         inode_init_once(&info->vfs_inode);
3761 }
3762
3763 static void shmem_init_inodecache(void)
3764 {
3765         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3766                                 sizeof(struct shmem_inode_info),
3767                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3768 }
3769
3770 static void shmem_destroy_inodecache(void)
3771 {
3772         kmem_cache_destroy(shmem_inode_cachep);
3773 }
3774
3775 const struct address_space_operations shmem_aops = {
3776         .writepage      = shmem_writepage,
3777         .set_page_dirty = __set_page_dirty_no_writeback,
3778 #ifdef CONFIG_TMPFS
3779         .write_begin    = shmem_write_begin,
3780         .write_end      = shmem_write_end,
3781 #endif
3782 #ifdef CONFIG_MIGRATION
3783         .migratepage    = migrate_page,
3784 #endif
3785         .error_remove_page = generic_error_remove_page,
3786 };
3787 EXPORT_SYMBOL(shmem_aops);
3788
3789 static const struct file_operations shmem_file_operations = {
3790         .mmap           = shmem_mmap,
3791         .get_unmapped_area = shmem_get_unmapped_area,
3792 #ifdef CONFIG_TMPFS
3793         .llseek         = shmem_file_llseek,
3794         .read_iter      = shmem_file_read_iter,
3795         .write_iter     = generic_file_write_iter,
3796         .fsync          = noop_fsync,
3797         .splice_read    = generic_file_splice_read,
3798         .splice_write   = iter_file_splice_write,
3799         .fallocate      = shmem_fallocate,
3800 #endif
3801 };
3802
3803 static const struct inode_operations shmem_inode_operations = {
3804         .getattr        = shmem_getattr,
3805         .setattr        = shmem_setattr,
3806 #ifdef CONFIG_TMPFS_XATTR
3807         .listxattr      = shmem_listxattr,
3808         .set_acl        = simple_set_acl,
3809 #endif
3810 };
3811
3812 static const struct inode_operations shmem_dir_inode_operations = {
3813 #ifdef CONFIG_TMPFS
3814         .create         = shmem_create,
3815         .lookup         = simple_lookup,
3816         .link           = shmem_link,
3817         .unlink         = shmem_unlink,
3818         .symlink        = shmem_symlink,
3819         .mkdir          = shmem_mkdir,
3820         .rmdir          = shmem_rmdir,
3821         .mknod          = shmem_mknod,
3822         .rename         = shmem_rename2,
3823         .tmpfile        = shmem_tmpfile,
3824 #endif
3825 #ifdef CONFIG_TMPFS_XATTR
3826         .listxattr      = shmem_listxattr,
3827 #endif
3828 #ifdef CONFIG_TMPFS_POSIX_ACL
3829         .setattr        = shmem_setattr,
3830         .set_acl        = simple_set_acl,
3831 #endif
3832 };
3833
3834 static const struct inode_operations shmem_special_inode_operations = {
3835 #ifdef CONFIG_TMPFS_XATTR
3836         .listxattr      = shmem_listxattr,
3837 #endif
3838 #ifdef CONFIG_TMPFS_POSIX_ACL
3839         .setattr        = shmem_setattr,
3840         .set_acl        = simple_set_acl,
3841 #endif
3842 };
3843
3844 static const struct super_operations shmem_ops = {
3845         .alloc_inode    = shmem_alloc_inode,
3846         .free_inode     = shmem_free_in_core_inode,
3847         .destroy_inode  = shmem_destroy_inode,
3848 #ifdef CONFIG_TMPFS
3849         .statfs         = shmem_statfs,
3850         .show_options   = shmem_show_options,
3851 #endif
3852         .evict_inode    = shmem_evict_inode,
3853         .drop_inode     = generic_delete_inode,
3854         .put_super      = shmem_put_super,
3855 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3856         .nr_cached_objects      = shmem_unused_huge_count,
3857         .free_cached_objects    = shmem_unused_huge_scan,
3858 #endif
3859 };
3860
3861 static const struct vm_operations_struct shmem_vm_ops = {
3862         .fault          = shmem_fault,
3863         .map_pages      = filemap_map_pages,
3864 #ifdef CONFIG_NUMA
3865         .set_policy     = shmem_set_policy,
3866         .get_policy     = shmem_get_policy,
3867 #endif
3868 };
3869
3870 int shmem_init_fs_context(struct fs_context *fc)
3871 {
3872         struct shmem_options *ctx;
3873
3874         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3875         if (!ctx)
3876                 return -ENOMEM;
3877
3878         ctx->mode = 0777 | S_ISVTX;
3879         ctx->uid = current_fsuid();
3880         ctx->gid = current_fsgid();
3881
3882         fc->fs_private = ctx;
3883         fc->ops = &shmem_fs_context_ops;
3884         return 0;
3885 }
3886
3887 static struct file_system_type shmem_fs_type = {
3888         .owner          = THIS_MODULE,
3889         .name           = "tmpfs",
3890         .init_fs_context = shmem_init_fs_context,
3891 #ifdef CONFIG_TMPFS
3892         .parameters     = shmem_fs_parameters,
3893 #endif
3894         .kill_sb        = kill_litter_super,
3895         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3896 };
3897
3898 int __init shmem_init(void)
3899 {
3900         int error;
3901
3902         shmem_init_inodecache();
3903
3904         error = register_filesystem(&shmem_fs_type);
3905         if (error) {
3906                 pr_err("Could not register tmpfs\n");
3907                 goto out2;
3908         }
3909
3910         shm_mnt = kern_mount(&shmem_fs_type);
3911         if (IS_ERR(shm_mnt)) {
3912                 error = PTR_ERR(shm_mnt);
3913                 pr_err("Could not kern_mount tmpfs\n");
3914                 goto out1;
3915         }
3916
3917 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3918         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3919                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3920         else
3921                 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3922 #endif
3923         return 0;
3924
3925 out1:
3926         unregister_filesystem(&shmem_fs_type);
3927 out2:
3928         shmem_destroy_inodecache();
3929         shm_mnt = ERR_PTR(error);
3930         return error;
3931 }
3932
3933 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3934 static ssize_t shmem_enabled_show(struct kobject *kobj,
3935                                   struct kobj_attribute *attr, char *buf)
3936 {
3937         static const int values[] = {
3938                 SHMEM_HUGE_ALWAYS,
3939                 SHMEM_HUGE_WITHIN_SIZE,
3940                 SHMEM_HUGE_ADVISE,
3941                 SHMEM_HUGE_NEVER,
3942                 SHMEM_HUGE_DENY,
3943                 SHMEM_HUGE_FORCE,
3944         };
3945         int len = 0;
3946         int i;
3947
3948         for (i = 0; i < ARRAY_SIZE(values); i++) {
3949                 len += sysfs_emit_at(buf, len,
3950                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3951                                      i ? " " : "",
3952                                      shmem_format_huge(values[i]));
3953         }
3954
3955         len += sysfs_emit_at(buf, len, "\n");
3956
3957         return len;
3958 }
3959
3960 static ssize_t shmem_enabled_store(struct kobject *kobj,
3961                 struct kobj_attribute *attr, const char *buf, size_t count)
3962 {
3963         char tmp[16];
3964         int huge;
3965
3966         if (count + 1 > sizeof(tmp))
3967                 return -EINVAL;
3968         memcpy(tmp, buf, count);
3969         tmp[count] = '\0';
3970         if (count && tmp[count - 1] == '\n')
3971                 tmp[count - 1] = '\0';
3972
3973         huge = shmem_parse_huge(tmp);
3974         if (huge == -EINVAL)
3975                 return -EINVAL;
3976         if (!has_transparent_hugepage() &&
3977                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3978                 return -EINVAL;
3979
3980         shmem_huge = huge;
3981         if (shmem_huge > SHMEM_HUGE_DENY)
3982                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3983         return count;
3984 }
3985
3986 struct kobj_attribute shmem_enabled_attr =
3987         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3988 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3989
3990 #else /* !CONFIG_SHMEM */
3991
3992 /*
3993  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3994  *
3995  * This is intended for small system where the benefits of the full
3996  * shmem code (swap-backed and resource-limited) are outweighed by
3997  * their complexity. On systems without swap this code should be
3998  * effectively equivalent, but much lighter weight.
3999  */
4000
4001 static struct file_system_type shmem_fs_type = {
4002         .name           = "tmpfs",
4003         .init_fs_context = ramfs_init_fs_context,
4004         .parameters     = ramfs_fs_parameters,
4005         .kill_sb        = kill_litter_super,
4006         .fs_flags       = FS_USERNS_MOUNT,
4007 };
4008
4009 int __init shmem_init(void)
4010 {
4011         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4012
4013         shm_mnt = kern_mount(&shmem_fs_type);
4014         BUG_ON(IS_ERR(shm_mnt));
4015
4016         return 0;
4017 }
4018
4019 int shmem_unuse(unsigned int type, bool frontswap,
4020                 unsigned long *fs_pages_to_unuse)
4021 {
4022         return 0;
4023 }
4024
4025 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4026 {
4027         return 0;
4028 }
4029
4030 void shmem_unlock_mapping(struct address_space *mapping)
4031 {
4032 }
4033
4034 #ifdef CONFIG_MMU
4035 unsigned long shmem_get_unmapped_area(struct file *file,
4036                                       unsigned long addr, unsigned long len,
4037                                       unsigned long pgoff, unsigned long flags)
4038 {
4039         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4040 }
4041 #endif
4042
4043 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4044 {
4045         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4046 }
4047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4048
4049 #define shmem_vm_ops                            generic_file_vm_ops
4050 #define shmem_file_operations                   ramfs_file_operations
4051 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4052 #define shmem_acct_size(flags, size)            0
4053 #define shmem_unacct_size(flags, size)          do {} while (0)
4054
4055 #endif /* CONFIG_SHMEM */
4056
4057 /* common code */
4058
4059 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4060                                        unsigned long flags, unsigned int i_flags)
4061 {
4062         struct inode *inode;
4063         struct file *res;
4064
4065         if (IS_ERR(mnt))
4066                 return ERR_CAST(mnt);
4067
4068         if (size < 0 || size > MAX_LFS_FILESIZE)
4069                 return ERR_PTR(-EINVAL);
4070
4071         if (shmem_acct_size(flags, size))
4072                 return ERR_PTR(-ENOMEM);
4073
4074         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4075                                 flags);
4076         if (unlikely(!inode)) {
4077                 shmem_unacct_size(flags, size);
4078                 return ERR_PTR(-ENOSPC);
4079         }
4080         inode->i_flags |= i_flags;
4081         inode->i_size = size;
4082         clear_nlink(inode);     /* It is unlinked */
4083         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4084         if (!IS_ERR(res))
4085                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4086                                 &shmem_file_operations);
4087         if (IS_ERR(res))
4088                 iput(inode);
4089         return res;
4090 }
4091
4092 /**
4093  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4094  *      kernel internal.  There will be NO LSM permission checks against the
4095  *      underlying inode.  So users of this interface must do LSM checks at a
4096  *      higher layer.  The users are the big_key and shm implementations.  LSM
4097  *      checks are provided at the key or shm level rather than the inode.
4098  * @name: name for dentry (to be seen in /proc/<pid>/maps
4099  * @size: size to be set for the file
4100  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4101  */
4102 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4103 {
4104         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4105 }
4106
4107 /**
4108  * shmem_file_setup - get an unlinked file living in tmpfs
4109  * @name: name for dentry (to be seen in /proc/<pid>/maps
4110  * @size: size to be set for the file
4111  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4112  */
4113 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4114 {
4115         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4116 }
4117 EXPORT_SYMBOL_GPL(shmem_file_setup);
4118
4119 /**
4120  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4121  * @mnt: the tmpfs mount where the file will be created
4122  * @name: name for dentry (to be seen in /proc/<pid>/maps
4123  * @size: size to be set for the file
4124  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4125  */
4126 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4127                                        loff_t size, unsigned long flags)
4128 {
4129         return __shmem_file_setup(mnt, name, size, flags, 0);
4130 }
4131 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4132
4133 /**
4134  * shmem_zero_setup - setup a shared anonymous mapping
4135  * @vma: the vma to be mmapped is prepared by do_mmap
4136  */
4137 int shmem_zero_setup(struct vm_area_struct *vma)
4138 {
4139         struct file *file;
4140         loff_t size = vma->vm_end - vma->vm_start;
4141
4142         /*
4143          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4144          * between XFS directory reading and selinux: since this file is only
4145          * accessible to the user through its mapping, use S_PRIVATE flag to
4146          * bypass file security, in the same way as shmem_kernel_file_setup().
4147          */
4148         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4149         if (IS_ERR(file))
4150                 return PTR_ERR(file);
4151
4152         if (vma->vm_file)
4153                 fput(vma->vm_file);
4154         vma->vm_file = file;
4155         vma->vm_ops = &shmem_vm_ops;
4156
4157         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4158                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4159                         (vma->vm_end & HPAGE_PMD_MASK)) {
4160                 khugepaged_enter(vma, vma->vm_flags);
4161         }
4162
4163         return 0;
4164 }
4165
4166 /**
4167  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4168  * @mapping:    the page's address_space
4169  * @index:      the page index
4170  * @gfp:        the page allocator flags to use if allocating
4171  *
4172  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4173  * with any new page allocations done using the specified allocation flags.
4174  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4175  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4176  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4177  *
4178  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4179  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4180  */
4181 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4182                                          pgoff_t index, gfp_t gfp)
4183 {
4184 #ifdef CONFIG_SHMEM
4185         struct inode *inode = mapping->host;
4186         struct page *page;
4187         int error;
4188
4189         BUG_ON(!shmem_mapping(mapping));
4190         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4191                                   gfp, NULL, NULL, NULL);
4192         if (error)
4193                 page = ERR_PTR(error);
4194         else
4195                 unlock_page(page);
4196         return page;
4197 #else
4198         /*
4199          * The tiny !SHMEM case uses ramfs without swap
4200          */
4201         return read_cache_page_gfp(mapping, index, gfp);
4202 #endif
4203 }
4204 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);