tools headers UAPI: Sync drm/i915_drm.h with the kernel sources
[linux-2.6-microblaze.git] / mm / pagewalk.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/highmem.h>
4 #include <linux/sched.h>
5 #include <linux/hugetlb.h>
6
7 /*
8  * We want to know the real level where a entry is located ignoring any
9  * folding of levels which may be happening. For example if p4d is folded then
10  * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
11  */
12 static int real_depth(int depth)
13 {
14         if (depth == 3 && PTRS_PER_PMD == 1)
15                 depth = 2;
16         if (depth == 2 && PTRS_PER_PUD == 1)
17                 depth = 1;
18         if (depth == 1 && PTRS_PER_P4D == 1)
19                 depth = 0;
20         return depth;
21 }
22
23 static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
24                                 unsigned long end, struct mm_walk *walk)
25 {
26         const struct mm_walk_ops *ops = walk->ops;
27         int err = 0;
28
29         for (;;) {
30                 err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
31                 if (err)
32                        break;
33                 if (addr >= end - PAGE_SIZE)
34                         break;
35                 addr += PAGE_SIZE;
36                 pte++;
37         }
38         return err;
39 }
40
41 static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
42                           struct mm_walk *walk)
43 {
44         pte_t *pte;
45         int err = 0;
46         spinlock_t *ptl;
47
48         if (walk->no_vma) {
49                 pte = pte_offset_map(pmd, addr);
50                 err = walk_pte_range_inner(pte, addr, end, walk);
51                 pte_unmap(pte);
52         } else {
53                 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
54                 err = walk_pte_range_inner(pte, addr, end, walk);
55                 pte_unmap_unlock(pte, ptl);
56         }
57
58         return err;
59 }
60
61 static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
62                           struct mm_walk *walk)
63 {
64         pmd_t *pmd;
65         unsigned long next;
66         const struct mm_walk_ops *ops = walk->ops;
67         int err = 0;
68         int depth = real_depth(3);
69
70         pmd = pmd_offset(pud, addr);
71         do {
72 again:
73                 next = pmd_addr_end(addr, end);
74                 if (pmd_none(*pmd) || (!walk->vma && !walk->no_vma)) {
75                         if (ops->pte_hole)
76                                 err = ops->pte_hole(addr, next, depth, walk);
77                         if (err)
78                                 break;
79                         continue;
80                 }
81
82                 walk->action = ACTION_SUBTREE;
83
84                 /*
85                  * This implies that each ->pmd_entry() handler
86                  * needs to know about pmd_trans_huge() pmds
87                  */
88                 if (ops->pmd_entry)
89                         err = ops->pmd_entry(pmd, addr, next, walk);
90                 if (err)
91                         break;
92
93                 if (walk->action == ACTION_AGAIN)
94                         goto again;
95
96                 /*
97                  * Check this here so we only break down trans_huge
98                  * pages when we _need_ to
99                  */
100                 if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
101                     walk->action == ACTION_CONTINUE ||
102                     !(ops->pte_entry))
103                         continue;
104
105                 if (walk->vma) {
106                         split_huge_pmd(walk->vma, pmd, addr);
107                         if (pmd_trans_unstable(pmd))
108                                 goto again;
109                 }
110
111                 err = walk_pte_range(pmd, addr, next, walk);
112                 if (err)
113                         break;
114         } while (pmd++, addr = next, addr != end);
115
116         return err;
117 }
118
119 static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
120                           struct mm_walk *walk)
121 {
122         pud_t *pud;
123         unsigned long next;
124         const struct mm_walk_ops *ops = walk->ops;
125         int err = 0;
126         int depth = real_depth(2);
127
128         pud = pud_offset(p4d, addr);
129         do {
130  again:
131                 next = pud_addr_end(addr, end);
132                 if (pud_none(*pud) || (!walk->vma && !walk->no_vma)) {
133                         if (ops->pte_hole)
134                                 err = ops->pte_hole(addr, next, depth, walk);
135                         if (err)
136                                 break;
137                         continue;
138                 }
139
140                 walk->action = ACTION_SUBTREE;
141
142                 if (ops->pud_entry)
143                         err = ops->pud_entry(pud, addr, next, walk);
144                 if (err)
145                         break;
146
147                 if (walk->action == ACTION_AGAIN)
148                         goto again;
149
150                 if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
151                     walk->action == ACTION_CONTINUE ||
152                     !(ops->pmd_entry || ops->pte_entry))
153                         continue;
154
155                 if (walk->vma)
156                         split_huge_pud(walk->vma, pud, addr);
157                 if (pud_none(*pud))
158                         goto again;
159
160                 err = walk_pmd_range(pud, addr, next, walk);
161                 if (err)
162                         break;
163         } while (pud++, addr = next, addr != end);
164
165         return err;
166 }
167
168 static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
169                           struct mm_walk *walk)
170 {
171         p4d_t *p4d;
172         unsigned long next;
173         const struct mm_walk_ops *ops = walk->ops;
174         int err = 0;
175         int depth = real_depth(1);
176
177         p4d = p4d_offset(pgd, addr);
178         do {
179                 next = p4d_addr_end(addr, end);
180                 if (p4d_none_or_clear_bad(p4d)) {
181                         if (ops->pte_hole)
182                                 err = ops->pte_hole(addr, next, depth, walk);
183                         if (err)
184                                 break;
185                         continue;
186                 }
187                 if (ops->p4d_entry) {
188                         err = ops->p4d_entry(p4d, addr, next, walk);
189                         if (err)
190                                 break;
191                 }
192                 if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
193                         err = walk_pud_range(p4d, addr, next, walk);
194                 if (err)
195                         break;
196         } while (p4d++, addr = next, addr != end);
197
198         return err;
199 }
200
201 static int walk_pgd_range(unsigned long addr, unsigned long end,
202                           struct mm_walk *walk)
203 {
204         pgd_t *pgd;
205         unsigned long next;
206         const struct mm_walk_ops *ops = walk->ops;
207         int err = 0;
208
209         if (walk->pgd)
210                 pgd = walk->pgd + pgd_index(addr);
211         else
212                 pgd = pgd_offset(walk->mm, addr);
213         do {
214                 next = pgd_addr_end(addr, end);
215                 if (pgd_none_or_clear_bad(pgd)) {
216                         if (ops->pte_hole)
217                                 err = ops->pte_hole(addr, next, 0, walk);
218                         if (err)
219                                 break;
220                         continue;
221                 }
222                 if (ops->pgd_entry) {
223                         err = ops->pgd_entry(pgd, addr, next, walk);
224                         if (err)
225                                 break;
226                 }
227                 if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry ||
228                     ops->pte_entry)
229                         err = walk_p4d_range(pgd, addr, next, walk);
230                 if (err)
231                         break;
232         } while (pgd++, addr = next, addr != end);
233
234         return err;
235 }
236
237 #ifdef CONFIG_HUGETLB_PAGE
238 static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
239                                        unsigned long end)
240 {
241         unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
242         return boundary < end ? boundary : end;
243 }
244
245 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
246                               struct mm_walk *walk)
247 {
248         struct vm_area_struct *vma = walk->vma;
249         struct hstate *h = hstate_vma(vma);
250         unsigned long next;
251         unsigned long hmask = huge_page_mask(h);
252         unsigned long sz = huge_page_size(h);
253         pte_t *pte;
254         const struct mm_walk_ops *ops = walk->ops;
255         int err = 0;
256
257         do {
258                 next = hugetlb_entry_end(h, addr, end);
259                 pte = huge_pte_offset(walk->mm, addr & hmask, sz);
260
261                 if (pte)
262                         err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
263                 else if (ops->pte_hole)
264                         err = ops->pte_hole(addr, next, -1, walk);
265
266                 if (err)
267                         break;
268         } while (addr = next, addr != end);
269
270         return err;
271 }
272
273 #else /* CONFIG_HUGETLB_PAGE */
274 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
275                               struct mm_walk *walk)
276 {
277         return 0;
278 }
279
280 #endif /* CONFIG_HUGETLB_PAGE */
281
282 /*
283  * Decide whether we really walk over the current vma on [@start, @end)
284  * or skip it via the returned value. Return 0 if we do walk over the
285  * current vma, and return 1 if we skip the vma. Negative values means
286  * error, where we abort the current walk.
287  */
288 static int walk_page_test(unsigned long start, unsigned long end,
289                         struct mm_walk *walk)
290 {
291         struct vm_area_struct *vma = walk->vma;
292         const struct mm_walk_ops *ops = walk->ops;
293
294         if (ops->test_walk)
295                 return ops->test_walk(start, end, walk);
296
297         /*
298          * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
299          * range, so we don't walk over it as we do for normal vmas. However,
300          * Some callers are interested in handling hole range and they don't
301          * want to just ignore any single address range. Such users certainly
302          * define their ->pte_hole() callbacks, so let's delegate them to handle
303          * vma(VM_PFNMAP).
304          */
305         if (vma->vm_flags & VM_PFNMAP) {
306                 int err = 1;
307                 if (ops->pte_hole)
308                         err = ops->pte_hole(start, end, -1, walk);
309                 return err ? err : 1;
310         }
311         return 0;
312 }
313
314 static int __walk_page_range(unsigned long start, unsigned long end,
315                         struct mm_walk *walk)
316 {
317         int err = 0;
318         struct vm_area_struct *vma = walk->vma;
319         const struct mm_walk_ops *ops = walk->ops;
320
321         if (vma && ops->pre_vma) {
322                 err = ops->pre_vma(start, end, walk);
323                 if (err)
324                         return err;
325         }
326
327         if (vma && is_vm_hugetlb_page(vma)) {
328                 if (ops->hugetlb_entry)
329                         err = walk_hugetlb_range(start, end, walk);
330         } else
331                 err = walk_pgd_range(start, end, walk);
332
333         if (vma && ops->post_vma)
334                 ops->post_vma(walk);
335
336         return err;
337 }
338
339 /**
340  * walk_page_range - walk page table with caller specific callbacks
341  * @mm:         mm_struct representing the target process of page table walk
342  * @start:      start address of the virtual address range
343  * @end:        end address of the virtual address range
344  * @ops:        operation to call during the walk
345  * @private:    private data for callbacks' usage
346  *
347  * Recursively walk the page table tree of the process represented by @mm
348  * within the virtual address range [@start, @end). During walking, we can do
349  * some caller-specific works for each entry, by setting up pmd_entry(),
350  * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
351  * callbacks, the associated entries/pages are just ignored.
352  * The return values of these callbacks are commonly defined like below:
353  *
354  *  - 0  : succeeded to handle the current entry, and if you don't reach the
355  *         end address yet, continue to walk.
356  *  - >0 : succeeded to handle the current entry, and return to the caller
357  *         with caller specific value.
358  *  - <0 : failed to handle the current entry, and return to the caller
359  *         with error code.
360  *
361  * Before starting to walk page table, some callers want to check whether
362  * they really want to walk over the current vma, typically by checking
363  * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
364  * purpose.
365  *
366  * If operations need to be staged before and committed after a vma is walked,
367  * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
368  * since it is intended to handle commit-type operations, can't return any
369  * errors.
370  *
371  * struct mm_walk keeps current values of some common data like vma and pmd,
372  * which are useful for the access from callbacks. If you want to pass some
373  * caller-specific data to callbacks, @private should be helpful.
374  *
375  * Locking:
376  *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
377  *   because these function traverse vma list and/or access to vma's data.
378  */
379 int walk_page_range(struct mm_struct *mm, unsigned long start,
380                 unsigned long end, const struct mm_walk_ops *ops,
381                 void *private)
382 {
383         int err = 0;
384         unsigned long next;
385         struct vm_area_struct *vma;
386         struct mm_walk walk = {
387                 .ops            = ops,
388                 .mm             = mm,
389                 .private        = private,
390         };
391
392         if (start >= end)
393                 return -EINVAL;
394
395         if (!walk.mm)
396                 return -EINVAL;
397
398         mmap_assert_locked(walk.mm);
399
400         vma = find_vma(walk.mm, start);
401         do {
402                 if (!vma) { /* after the last vma */
403                         walk.vma = NULL;
404                         next = end;
405                 } else if (start < vma->vm_start) { /* outside vma */
406                         walk.vma = NULL;
407                         next = min(end, vma->vm_start);
408                 } else { /* inside vma */
409                         walk.vma = vma;
410                         next = min(end, vma->vm_end);
411                         vma = vma->vm_next;
412
413                         err = walk_page_test(start, next, &walk);
414                         if (err > 0) {
415                                 /*
416                                  * positive return values are purely for
417                                  * controlling the pagewalk, so should never
418                                  * be passed to the callers.
419                                  */
420                                 err = 0;
421                                 continue;
422                         }
423                         if (err < 0)
424                                 break;
425                 }
426                 if (walk.vma || walk.ops->pte_hole)
427                         err = __walk_page_range(start, next, &walk);
428                 if (err)
429                         break;
430         } while (start = next, start < end);
431         return err;
432 }
433
434 /*
435  * Similar to walk_page_range() but can walk any page tables even if they are
436  * not backed by VMAs. Because 'unusual' entries may be walked this function
437  * will also not lock the PTEs for the pte_entry() callback. This is useful for
438  * walking the kernel pages tables or page tables for firmware.
439  */
440 int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
441                           unsigned long end, const struct mm_walk_ops *ops,
442                           pgd_t *pgd,
443                           void *private)
444 {
445         struct mm_walk walk = {
446                 .ops            = ops,
447                 .mm             = mm,
448                 .pgd            = pgd,
449                 .private        = private,
450                 .no_vma         = true
451         };
452
453         if (start >= end || !walk.mm)
454                 return -EINVAL;
455
456         mmap_assert_locked(walk.mm);
457
458         return __walk_page_range(start, end, &walk);
459 }
460
461 int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
462                 void *private)
463 {
464         struct mm_walk walk = {
465                 .ops            = ops,
466                 .mm             = vma->vm_mm,
467                 .vma            = vma,
468                 .private        = private,
469         };
470         int err;
471
472         if (!walk.mm)
473                 return -EINVAL;
474
475         mmap_assert_locked(walk.mm);
476
477         err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
478         if (err > 0)
479                 return 0;
480         if (err < 0)
481                 return err;
482         return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
483 }
484
485 /**
486  * walk_page_mapping - walk all memory areas mapped into a struct address_space.
487  * @mapping: Pointer to the struct address_space
488  * @first_index: First page offset in the address_space
489  * @nr: Number of incremental page offsets to cover
490  * @ops:        operation to call during the walk
491  * @private:    private data for callbacks' usage
492  *
493  * This function walks all memory areas mapped into a struct address_space.
494  * The walk is limited to only the given page-size index range, but if
495  * the index boundaries cross a huge page-table entry, that entry will be
496  * included.
497  *
498  * Also see walk_page_range() for additional information.
499  *
500  * Locking:
501  *   This function can't require that the struct mm_struct::mmap_lock is held,
502  *   since @mapping may be mapped by multiple processes. Instead
503  *   @mapping->i_mmap_rwsem must be held. This might have implications in the
504  *   callbacks, and it's up tho the caller to ensure that the
505  *   struct mm_struct::mmap_lock is not needed.
506  *
507  *   Also this means that a caller can't rely on the struct
508  *   vm_area_struct::vm_flags to be constant across a call,
509  *   except for immutable flags. Callers requiring this shouldn't use
510  *   this function.
511  *
512  * Return: 0 on success, negative error code on failure, positive number on
513  * caller defined premature termination.
514  */
515 int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
516                       pgoff_t nr, const struct mm_walk_ops *ops,
517                       void *private)
518 {
519         struct mm_walk walk = {
520                 .ops            = ops,
521                 .private        = private,
522         };
523         struct vm_area_struct *vma;
524         pgoff_t vba, vea, cba, cea;
525         unsigned long start_addr, end_addr;
526         int err = 0;
527
528         lockdep_assert_held(&mapping->i_mmap_rwsem);
529         vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
530                                   first_index + nr - 1) {
531                 /* Clip to the vma */
532                 vba = vma->vm_pgoff;
533                 vea = vba + vma_pages(vma);
534                 cba = first_index;
535                 cba = max(cba, vba);
536                 cea = first_index + nr;
537                 cea = min(cea, vea);
538
539                 start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
540                 end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
541                 if (start_addr >= end_addr)
542                         continue;
543
544                 walk.vma = vma;
545                 walk.mm = vma->vm_mm;
546
547                 err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
548                 if (err > 0) {
549                         err = 0;
550                         break;
551                 } else if (err < 0)
552                         break;
553
554                 err = __walk_page_range(start_addr, end_addr, &walk);
555                 if (err)
556                         break;
557         }
558
559         return err;
560 }