Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / mm / page-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Initial version
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42
43 #include "internal.h"
44
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE               max(HZ/5, 1)
49
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
55
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
60
61 #define RATELIMIT_CALC_SHIFT    10
62
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68
69 /* The following parameters are exported via /proc/sys/vm */
70
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 int dirty_background_ratio = 10;
75
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 unsigned long dirty_background_bytes;
81
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 int vm_highmem_is_dirtyable;
87
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 int vm_dirty_ratio = 20;
92
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 unsigned long vm_dirty_bytes;
98
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111 /*
112  * Flag that makes the machine dump writes/reads and block dirtyings.
113  */
114 int block_dump;
115
116 /*
117  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118  * a full sync is triggered after this time elapses without any disk activity.
119  */
120 int laptop_mode;
121
122 EXPORT_SYMBOL(laptop_mode);
123
124 /* End of sysctl-exported parameters */
125
126 struct wb_domain global_wb_domain;
127
128 /* consolidated parameters for balance_dirty_pages() and its subroutines */
129 struct dirty_throttle_control {
130 #ifdef CONFIG_CGROUP_WRITEBACK
131         struct wb_domain        *dom;
132         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
133 #endif
134         struct bdi_writeback    *wb;
135         struct fprop_local_percpu *wb_completions;
136
137         unsigned long           avail;          /* dirtyable */
138         unsigned long           dirty;          /* file_dirty + write + nfs */
139         unsigned long           thresh;         /* dirty threshold */
140         unsigned long           bg_thresh;      /* dirty background threshold */
141
142         unsigned long           wb_dirty;       /* per-wb counterparts */
143         unsigned long           wb_thresh;
144         unsigned long           wb_bg_thresh;
145
146         unsigned long           pos_ratio;
147 };
148
149 /*
150  * Length of period for aging writeout fractions of bdis. This is an
151  * arbitrarily chosen number. The longer the period, the slower fractions will
152  * reflect changes in current writeout rate.
153  */
154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155
156 #ifdef CONFIG_CGROUP_WRITEBACK
157
158 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
159                                 .dom = &global_wb_domain,               \
160                                 .wb_completions = &(__wb)->completions
161
162 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
163
164 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
165                                 .dom = mem_cgroup_wb_domain(__wb),      \
166                                 .wb_completions = &(__wb)->memcg_completions, \
167                                 .gdtc = __gdtc
168
169 static bool mdtc_valid(struct dirty_throttle_control *dtc)
170 {
171         return dtc->dom;
172 }
173
174 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175 {
176         return dtc->dom;
177 }
178
179 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180 {
181         return mdtc->gdtc;
182 }
183
184 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185 {
186         return &wb->memcg_completions;
187 }
188
189 static void wb_min_max_ratio(struct bdi_writeback *wb,
190                              unsigned long *minp, unsigned long *maxp)
191 {
192         unsigned long this_bw = wb->avg_write_bandwidth;
193         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
194         unsigned long long min = wb->bdi->min_ratio;
195         unsigned long long max = wb->bdi->max_ratio;
196
197         /*
198          * @wb may already be clean by the time control reaches here and
199          * the total may not include its bw.
200          */
201         if (this_bw < tot_bw) {
202                 if (min) {
203                         min *= this_bw;
204                         min = div64_ul(min, tot_bw);
205                 }
206                 if (max < 100) {
207                         max *= this_bw;
208                         max = div64_ul(max, tot_bw);
209                 }
210         }
211
212         *minp = min;
213         *maxp = max;
214 }
215
216 #else   /* CONFIG_CGROUP_WRITEBACK */
217
218 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
219                                 .wb_completions = &(__wb)->completions
220 #define GDTC_INIT_NO_WB
221 #define MDTC_INIT(__wb, __gdtc)
222
223 static bool mdtc_valid(struct dirty_throttle_control *dtc)
224 {
225         return false;
226 }
227
228 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229 {
230         return &global_wb_domain;
231 }
232
233 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234 {
235         return NULL;
236 }
237
238 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239 {
240         return NULL;
241 }
242
243 static void wb_min_max_ratio(struct bdi_writeback *wb,
244                              unsigned long *minp, unsigned long *maxp)
245 {
246         *minp = wb->bdi->min_ratio;
247         *maxp = wb->bdi->max_ratio;
248 }
249
250 #endif  /* CONFIG_CGROUP_WRITEBACK */
251
252 /*
253  * In a memory zone, there is a certain amount of pages we consider
254  * available for the page cache, which is essentially the number of
255  * free and reclaimable pages, minus some zone reserves to protect
256  * lowmem and the ability to uphold the zone's watermarks without
257  * requiring writeback.
258  *
259  * This number of dirtyable pages is the base value of which the
260  * user-configurable dirty ratio is the effective number of pages that
261  * are allowed to be actually dirtied.  Per individual zone, or
262  * globally by using the sum of dirtyable pages over all zones.
263  *
264  * Because the user is allowed to specify the dirty limit globally as
265  * absolute number of bytes, calculating the per-zone dirty limit can
266  * require translating the configured limit into a percentage of
267  * global dirtyable memory first.
268  */
269
270 /**
271  * node_dirtyable_memory - number of dirtyable pages in a node
272  * @pgdat: the node
273  *
274  * Return: the node's number of pages potentially available for dirty
275  * page cache.  This is the base value for the per-node dirty limits.
276  */
277 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
278 {
279         unsigned long nr_pages = 0;
280         int z;
281
282         for (z = 0; z < MAX_NR_ZONES; z++) {
283                 struct zone *zone = pgdat->node_zones + z;
284
285                 if (!populated_zone(zone))
286                         continue;
287
288                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
289         }
290
291         /*
292          * Pages reserved for the kernel should not be considered
293          * dirtyable, to prevent a situation where reclaim has to
294          * clean pages in order to balance the zones.
295          */
296         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
297
298         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
299         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
300
301         return nr_pages;
302 }
303
304 static unsigned long highmem_dirtyable_memory(unsigned long total)
305 {
306 #ifdef CONFIG_HIGHMEM
307         int node;
308         unsigned long x = 0;
309         int i;
310
311         for_each_node_state(node, N_HIGH_MEMORY) {
312                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
313                         struct zone *z;
314                         unsigned long nr_pages;
315
316                         if (!is_highmem_idx(i))
317                                 continue;
318
319                         z = &NODE_DATA(node)->node_zones[i];
320                         if (!populated_zone(z))
321                                 continue;
322
323                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
324                         /* watch for underflows */
325                         nr_pages -= min(nr_pages, high_wmark_pages(z));
326                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
327                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328                         x += nr_pages;
329                 }
330         }
331
332         /*
333          * Unreclaimable memory (kernel memory or anonymous memory
334          * without swap) can bring down the dirtyable pages below
335          * the zone's dirty balance reserve and the above calculation
336          * will underflow.  However we still want to add in nodes
337          * which are below threshold (negative values) to get a more
338          * accurate calculation but make sure that the total never
339          * underflows.
340          */
341         if ((long)x < 0)
342                 x = 0;
343
344         /*
345          * Make sure that the number of highmem pages is never larger
346          * than the number of the total dirtyable memory. This can only
347          * occur in very strange VM situations but we want to make sure
348          * that this does not occur.
349          */
350         return min(x, total);
351 #else
352         return 0;
353 #endif
354 }
355
356 /**
357  * global_dirtyable_memory - number of globally dirtyable pages
358  *
359  * Return: the global number of pages potentially available for dirty
360  * page cache.  This is the base value for the global dirty limits.
361  */
362 static unsigned long global_dirtyable_memory(void)
363 {
364         unsigned long x;
365
366         x = global_zone_page_state(NR_FREE_PAGES);
367         /*
368          * Pages reserved for the kernel should not be considered
369          * dirtyable, to prevent a situation where reclaim has to
370          * clean pages in order to balance the zones.
371          */
372         x -= min(x, totalreserve_pages);
373
374         x += global_node_page_state(NR_INACTIVE_FILE);
375         x += global_node_page_state(NR_ACTIVE_FILE);
376
377         if (!vm_highmem_is_dirtyable)
378                 x -= highmem_dirtyable_memory(x);
379
380         return x + 1;   /* Ensure that we never return 0 */
381 }
382
383 /**
384  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
385  * @dtc: dirty_throttle_control of interest
386  *
387  * Calculate @dtc->thresh and ->bg_thresh considering
388  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
389  * must ensure that @dtc->avail is set before calling this function.  The
390  * dirty limits will be lifted by 1/4 for real-time tasks.
391  */
392 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
393 {
394         const unsigned long available_memory = dtc->avail;
395         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
396         unsigned long bytes = vm_dirty_bytes;
397         unsigned long bg_bytes = dirty_background_bytes;
398         /* convert ratios to per-PAGE_SIZE for higher precision */
399         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
400         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
401         unsigned long thresh;
402         unsigned long bg_thresh;
403         struct task_struct *tsk;
404
405         /* gdtc is !NULL iff @dtc is for memcg domain */
406         if (gdtc) {
407                 unsigned long global_avail = gdtc->avail;
408
409                 /*
410                  * The byte settings can't be applied directly to memcg
411                  * domains.  Convert them to ratios by scaling against
412                  * globally available memory.  As the ratios are in
413                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
414                  * number of pages.
415                  */
416                 if (bytes)
417                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
418                                     PAGE_SIZE);
419                 if (bg_bytes)
420                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
421                                        PAGE_SIZE);
422                 bytes = bg_bytes = 0;
423         }
424
425         if (bytes)
426                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
427         else
428                 thresh = (ratio * available_memory) / PAGE_SIZE;
429
430         if (bg_bytes)
431                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
432         else
433                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
434
435         if (bg_thresh >= thresh)
436                 bg_thresh = thresh / 2;
437         tsk = current;
438         if (rt_task(tsk)) {
439                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
440                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
441         }
442         dtc->thresh = thresh;
443         dtc->bg_thresh = bg_thresh;
444
445         /* we should eventually report the domain in the TP */
446         if (!gdtc)
447                 trace_global_dirty_state(bg_thresh, thresh);
448 }
449
450 /**
451  * global_dirty_limits - background-writeback and dirty-throttling thresholds
452  * @pbackground: out parameter for bg_thresh
453  * @pdirty: out parameter for thresh
454  *
455  * Calculate bg_thresh and thresh for global_wb_domain.  See
456  * domain_dirty_limits() for details.
457  */
458 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
459 {
460         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
461
462         gdtc.avail = global_dirtyable_memory();
463         domain_dirty_limits(&gdtc);
464
465         *pbackground = gdtc.bg_thresh;
466         *pdirty = gdtc.thresh;
467 }
468
469 /**
470  * node_dirty_limit - maximum number of dirty pages allowed in a node
471  * @pgdat: the node
472  *
473  * Return: the maximum number of dirty pages allowed in a node, based
474  * on the node's dirtyable memory.
475  */
476 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
477 {
478         unsigned long node_memory = node_dirtyable_memory(pgdat);
479         struct task_struct *tsk = current;
480         unsigned long dirty;
481
482         if (vm_dirty_bytes)
483                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
484                         node_memory / global_dirtyable_memory();
485         else
486                 dirty = vm_dirty_ratio * node_memory / 100;
487
488         if (rt_task(tsk))
489                 dirty += dirty / 4;
490
491         return dirty;
492 }
493
494 /**
495  * node_dirty_ok - tells whether a node is within its dirty limits
496  * @pgdat: the node to check
497  *
498  * Return: %true when the dirty pages in @pgdat are within the node's
499  * dirty limit, %false if the limit is exceeded.
500  */
501 bool node_dirty_ok(struct pglist_data *pgdat)
502 {
503         unsigned long limit = node_dirty_limit(pgdat);
504         unsigned long nr_pages = 0;
505
506         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
507         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
508
509         return nr_pages <= limit;
510 }
511
512 int dirty_background_ratio_handler(struct ctl_table *table, int write,
513                 void *buffer, size_t *lenp, loff_t *ppos)
514 {
515         int ret;
516
517         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
518         if (ret == 0 && write)
519                 dirty_background_bytes = 0;
520         return ret;
521 }
522
523 int dirty_background_bytes_handler(struct ctl_table *table, int write,
524                 void *buffer, size_t *lenp, loff_t *ppos)
525 {
526         int ret;
527
528         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
529         if (ret == 0 && write)
530                 dirty_background_ratio = 0;
531         return ret;
532 }
533
534 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
535                 size_t *lenp, loff_t *ppos)
536 {
537         int old_ratio = vm_dirty_ratio;
538         int ret;
539
540         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
541         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
542                 writeback_set_ratelimit();
543                 vm_dirty_bytes = 0;
544         }
545         return ret;
546 }
547
548 int dirty_bytes_handler(struct ctl_table *table, int write,
549                 void *buffer, size_t *lenp, loff_t *ppos)
550 {
551         unsigned long old_bytes = vm_dirty_bytes;
552         int ret;
553
554         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
555         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
556                 writeback_set_ratelimit();
557                 vm_dirty_ratio = 0;
558         }
559         return ret;
560 }
561
562 static unsigned long wp_next_time(unsigned long cur_time)
563 {
564         cur_time += VM_COMPLETIONS_PERIOD_LEN;
565         /* 0 has a special meaning... */
566         if (!cur_time)
567                 return 1;
568         return cur_time;
569 }
570
571 static void wb_domain_writeout_inc(struct wb_domain *dom,
572                                    struct fprop_local_percpu *completions,
573                                    unsigned int max_prop_frac)
574 {
575         __fprop_inc_percpu_max(&dom->completions, completions,
576                                max_prop_frac);
577         /* First event after period switching was turned off? */
578         if (unlikely(!dom->period_time)) {
579                 /*
580                  * We can race with other __bdi_writeout_inc calls here but
581                  * it does not cause any harm since the resulting time when
582                  * timer will fire and what is in writeout_period_time will be
583                  * roughly the same.
584                  */
585                 dom->period_time = wp_next_time(jiffies);
586                 mod_timer(&dom->period_timer, dom->period_time);
587         }
588 }
589
590 /*
591  * Increment @wb's writeout completion count and the global writeout
592  * completion count. Called from test_clear_page_writeback().
593  */
594 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
595 {
596         struct wb_domain *cgdom;
597
598         inc_wb_stat(wb, WB_WRITTEN);
599         wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
600                                wb->bdi->max_prop_frac);
601
602         cgdom = mem_cgroup_wb_domain(wb);
603         if (cgdom)
604                 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
605                                        wb->bdi->max_prop_frac);
606 }
607
608 void wb_writeout_inc(struct bdi_writeback *wb)
609 {
610         unsigned long flags;
611
612         local_irq_save(flags);
613         __wb_writeout_inc(wb);
614         local_irq_restore(flags);
615 }
616 EXPORT_SYMBOL_GPL(wb_writeout_inc);
617
618 /*
619  * On idle system, we can be called long after we scheduled because we use
620  * deferred timers so count with missed periods.
621  */
622 static void writeout_period(struct timer_list *t)
623 {
624         struct wb_domain *dom = from_timer(dom, t, period_timer);
625         int miss_periods = (jiffies - dom->period_time) /
626                                                  VM_COMPLETIONS_PERIOD_LEN;
627
628         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
629                 dom->period_time = wp_next_time(dom->period_time +
630                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
631                 mod_timer(&dom->period_timer, dom->period_time);
632         } else {
633                 /*
634                  * Aging has zeroed all fractions. Stop wasting CPU on period
635                  * updates.
636                  */
637                 dom->period_time = 0;
638         }
639 }
640
641 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
642 {
643         memset(dom, 0, sizeof(*dom));
644
645         spin_lock_init(&dom->lock);
646
647         timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
648
649         dom->dirty_limit_tstamp = jiffies;
650
651         return fprop_global_init(&dom->completions, gfp);
652 }
653
654 #ifdef CONFIG_CGROUP_WRITEBACK
655 void wb_domain_exit(struct wb_domain *dom)
656 {
657         del_timer_sync(&dom->period_timer);
658         fprop_global_destroy(&dom->completions);
659 }
660 #endif
661
662 /*
663  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
664  * registered backing devices, which, for obvious reasons, can not
665  * exceed 100%.
666  */
667 static unsigned int bdi_min_ratio;
668
669 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
670 {
671         int ret = 0;
672
673         spin_lock_bh(&bdi_lock);
674         if (min_ratio > bdi->max_ratio) {
675                 ret = -EINVAL;
676         } else {
677                 min_ratio -= bdi->min_ratio;
678                 if (bdi_min_ratio + min_ratio < 100) {
679                         bdi_min_ratio += min_ratio;
680                         bdi->min_ratio += min_ratio;
681                 } else {
682                         ret = -EINVAL;
683                 }
684         }
685         spin_unlock_bh(&bdi_lock);
686
687         return ret;
688 }
689
690 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
691 {
692         int ret = 0;
693
694         if (max_ratio > 100)
695                 return -EINVAL;
696
697         spin_lock_bh(&bdi_lock);
698         if (bdi->min_ratio > max_ratio) {
699                 ret = -EINVAL;
700         } else {
701                 bdi->max_ratio = max_ratio;
702                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
703         }
704         spin_unlock_bh(&bdi_lock);
705
706         return ret;
707 }
708 EXPORT_SYMBOL(bdi_set_max_ratio);
709
710 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
711                                            unsigned long bg_thresh)
712 {
713         return (thresh + bg_thresh) / 2;
714 }
715
716 static unsigned long hard_dirty_limit(struct wb_domain *dom,
717                                       unsigned long thresh)
718 {
719         return max(thresh, dom->dirty_limit);
720 }
721
722 /*
723  * Memory which can be further allocated to a memcg domain is capped by
724  * system-wide clean memory excluding the amount being used in the domain.
725  */
726 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
727                             unsigned long filepages, unsigned long headroom)
728 {
729         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
730         unsigned long clean = filepages - min(filepages, mdtc->dirty);
731         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
732         unsigned long other_clean = global_clean - min(global_clean, clean);
733
734         mdtc->avail = filepages + min(headroom, other_clean);
735 }
736
737 /**
738  * __wb_calc_thresh - @wb's share of dirty throttling threshold
739  * @dtc: dirty_throttle_context of interest
740  *
741  * Note that balance_dirty_pages() will only seriously take it as a hard limit
742  * when sleeping max_pause per page is not enough to keep the dirty pages under
743  * control. For example, when the device is completely stalled due to some error
744  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
745  * In the other normal situations, it acts more gently by throttling the tasks
746  * more (rather than completely block them) when the wb dirty pages go high.
747  *
748  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
749  * - starving fast devices
750  * - piling up dirty pages (that will take long time to sync) on slow devices
751  *
752  * The wb's share of dirty limit will be adapting to its throughput and
753  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
754  *
755  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
756  * dirty balancing includes all PG_dirty and PG_writeback pages.
757  */
758 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
759 {
760         struct wb_domain *dom = dtc_dom(dtc);
761         unsigned long thresh = dtc->thresh;
762         u64 wb_thresh;
763         unsigned long numerator, denominator;
764         unsigned long wb_min_ratio, wb_max_ratio;
765
766         /*
767          * Calculate this BDI's share of the thresh ratio.
768          */
769         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
770                               &numerator, &denominator);
771
772         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
773         wb_thresh *= numerator;
774         wb_thresh = div64_ul(wb_thresh, denominator);
775
776         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
777
778         wb_thresh += (thresh * wb_min_ratio) / 100;
779         if (wb_thresh > (thresh * wb_max_ratio) / 100)
780                 wb_thresh = thresh * wb_max_ratio / 100;
781
782         return wb_thresh;
783 }
784
785 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
786 {
787         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
788                                                .thresh = thresh };
789         return __wb_calc_thresh(&gdtc);
790 }
791
792 /*
793  *                           setpoint - dirty 3
794  *        f(dirty) := 1.0 + (----------------)
795  *                           limit - setpoint
796  *
797  * it's a 3rd order polynomial that subjects to
798  *
799  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
800  * (2) f(setpoint) = 1.0 => the balance point
801  * (3) f(limit)    = 0   => the hard limit
802  * (4) df/dx      <= 0   => negative feedback control
803  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
804  *     => fast response on large errors; small oscillation near setpoint
805  */
806 static long long pos_ratio_polynom(unsigned long setpoint,
807                                           unsigned long dirty,
808                                           unsigned long limit)
809 {
810         long long pos_ratio;
811         long x;
812
813         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
814                       (limit - setpoint) | 1);
815         pos_ratio = x;
816         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
817         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
818         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
819
820         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
821 }
822
823 /*
824  * Dirty position control.
825  *
826  * (o) global/bdi setpoints
827  *
828  * We want the dirty pages be balanced around the global/wb setpoints.
829  * When the number of dirty pages is higher/lower than the setpoint, the
830  * dirty position control ratio (and hence task dirty ratelimit) will be
831  * decreased/increased to bring the dirty pages back to the setpoint.
832  *
833  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
834  *
835  *     if (dirty < setpoint) scale up   pos_ratio
836  *     if (dirty > setpoint) scale down pos_ratio
837  *
838  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
839  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
840  *
841  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
842  *
843  * (o) global control line
844  *
845  *     ^ pos_ratio
846  *     |
847  *     |            |<===== global dirty control scope ======>|
848  * 2.0 .............*
849  *     |            .*
850  *     |            . *
851  *     |            .   *
852  *     |            .     *
853  *     |            .        *
854  *     |            .            *
855  * 1.0 ................................*
856  *     |            .                  .     *
857  *     |            .                  .          *
858  *     |            .                  .              *
859  *     |            .                  .                 *
860  *     |            .                  .                    *
861  *   0 +------------.------------------.----------------------*------------->
862  *           freerun^          setpoint^                 limit^   dirty pages
863  *
864  * (o) wb control line
865  *
866  *     ^ pos_ratio
867  *     |
868  *     |            *
869  *     |              *
870  *     |                *
871  *     |                  *
872  *     |                    * |<=========== span ============>|
873  * 1.0 .......................*
874  *     |                      . *
875  *     |                      .   *
876  *     |                      .     *
877  *     |                      .       *
878  *     |                      .         *
879  *     |                      .           *
880  *     |                      .             *
881  *     |                      .               *
882  *     |                      .                 *
883  *     |                      .                   *
884  *     |                      .                     *
885  * 1/4 ...............................................* * * * * * * * * * * *
886  *     |                      .                         .
887  *     |                      .                           .
888  *     |                      .                             .
889  *   0 +----------------------.-------------------------------.------------->
890  *                wb_setpoint^                    x_intercept^
891  *
892  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
893  * be smoothly throttled down to normal if it starts high in situations like
894  * - start writing to a slow SD card and a fast disk at the same time. The SD
895  *   card's wb_dirty may rush to many times higher than wb_setpoint.
896  * - the wb dirty thresh drops quickly due to change of JBOD workload
897  */
898 static void wb_position_ratio(struct dirty_throttle_control *dtc)
899 {
900         struct bdi_writeback *wb = dtc->wb;
901         unsigned long write_bw = wb->avg_write_bandwidth;
902         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
903         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
904         unsigned long wb_thresh = dtc->wb_thresh;
905         unsigned long x_intercept;
906         unsigned long setpoint;         /* dirty pages' target balance point */
907         unsigned long wb_setpoint;
908         unsigned long span;
909         long long pos_ratio;            /* for scaling up/down the rate limit */
910         long x;
911
912         dtc->pos_ratio = 0;
913
914         if (unlikely(dtc->dirty >= limit))
915                 return;
916
917         /*
918          * global setpoint
919          *
920          * See comment for pos_ratio_polynom().
921          */
922         setpoint = (freerun + limit) / 2;
923         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
924
925         /*
926          * The strictlimit feature is a tool preventing mistrusted filesystems
927          * from growing a large number of dirty pages before throttling. For
928          * such filesystems balance_dirty_pages always checks wb counters
929          * against wb limits. Even if global "nr_dirty" is under "freerun".
930          * This is especially important for fuse which sets bdi->max_ratio to
931          * 1% by default. Without strictlimit feature, fuse writeback may
932          * consume arbitrary amount of RAM because it is accounted in
933          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
934          *
935          * Here, in wb_position_ratio(), we calculate pos_ratio based on
936          * two values: wb_dirty and wb_thresh. Let's consider an example:
937          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
938          * limits are set by default to 10% and 20% (background and throttle).
939          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
940          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
941          * about ~6K pages (as the average of background and throttle wb
942          * limits). The 3rd order polynomial will provide positive feedback if
943          * wb_dirty is under wb_setpoint and vice versa.
944          *
945          * Note, that we cannot use global counters in these calculations
946          * because we want to throttle process writing to a strictlimit wb
947          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
948          * in the example above).
949          */
950         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
951                 long long wb_pos_ratio;
952
953                 if (dtc->wb_dirty < 8) {
954                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
955                                            2 << RATELIMIT_CALC_SHIFT);
956                         return;
957                 }
958
959                 if (dtc->wb_dirty >= wb_thresh)
960                         return;
961
962                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
963                                                     dtc->wb_bg_thresh);
964
965                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
966                         return;
967
968                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
969                                                  wb_thresh);
970
971                 /*
972                  * Typically, for strictlimit case, wb_setpoint << setpoint
973                  * and pos_ratio >> wb_pos_ratio. In the other words global
974                  * state ("dirty") is not limiting factor and we have to
975                  * make decision based on wb counters. But there is an
976                  * important case when global pos_ratio should get precedence:
977                  * global limits are exceeded (e.g. due to activities on other
978                  * wb's) while given strictlimit wb is below limit.
979                  *
980                  * "pos_ratio * wb_pos_ratio" would work for the case above,
981                  * but it would look too non-natural for the case of all
982                  * activity in the system coming from a single strictlimit wb
983                  * with bdi->max_ratio == 100%.
984                  *
985                  * Note that min() below somewhat changes the dynamics of the
986                  * control system. Normally, pos_ratio value can be well over 3
987                  * (when globally we are at freerun and wb is well below wb
988                  * setpoint). Now the maximum pos_ratio in the same situation
989                  * is 2. We might want to tweak this if we observe the control
990                  * system is too slow to adapt.
991                  */
992                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
993                 return;
994         }
995
996         /*
997          * We have computed basic pos_ratio above based on global situation. If
998          * the wb is over/under its share of dirty pages, we want to scale
999          * pos_ratio further down/up. That is done by the following mechanism.
1000          */
1001
1002         /*
1003          * wb setpoint
1004          *
1005          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1006          *
1007          *                        x_intercept - wb_dirty
1008          *                     := --------------------------
1009          *                        x_intercept - wb_setpoint
1010          *
1011          * The main wb control line is a linear function that subjects to
1012          *
1013          * (1) f(wb_setpoint) = 1.0
1014          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1015          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1016          *
1017          * For single wb case, the dirty pages are observed to fluctuate
1018          * regularly within range
1019          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1020          * for various filesystems, where (2) can yield in a reasonable 12.5%
1021          * fluctuation range for pos_ratio.
1022          *
1023          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1024          * own size, so move the slope over accordingly and choose a slope that
1025          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1026          */
1027         if (unlikely(wb_thresh > dtc->thresh))
1028                 wb_thresh = dtc->thresh;
1029         /*
1030          * It's very possible that wb_thresh is close to 0 not because the
1031          * device is slow, but that it has remained inactive for long time.
1032          * Honour such devices a reasonable good (hopefully IO efficient)
1033          * threshold, so that the occasional writes won't be blocked and active
1034          * writes can rampup the threshold quickly.
1035          */
1036         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1037         /*
1038          * scale global setpoint to wb's:
1039          *      wb_setpoint = setpoint * wb_thresh / thresh
1040          */
1041         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1042         wb_setpoint = setpoint * (u64)x >> 16;
1043         /*
1044          * Use span=(8*write_bw) in single wb case as indicated by
1045          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1046          *
1047          *        wb_thresh                    thresh - wb_thresh
1048          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1049          *         thresh                           thresh
1050          */
1051         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1052         x_intercept = wb_setpoint + span;
1053
1054         if (dtc->wb_dirty < x_intercept - span / 4) {
1055                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1056                                       (x_intercept - wb_setpoint) | 1);
1057         } else
1058                 pos_ratio /= 4;
1059
1060         /*
1061          * wb reserve area, safeguard against dirty pool underrun and disk idle
1062          * It may push the desired control point of global dirty pages higher
1063          * than setpoint.
1064          */
1065         x_intercept = wb_thresh / 2;
1066         if (dtc->wb_dirty < x_intercept) {
1067                 if (dtc->wb_dirty > x_intercept / 8)
1068                         pos_ratio = div_u64(pos_ratio * x_intercept,
1069                                             dtc->wb_dirty);
1070                 else
1071                         pos_ratio *= 8;
1072         }
1073
1074         dtc->pos_ratio = pos_ratio;
1075 }
1076
1077 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1078                                       unsigned long elapsed,
1079                                       unsigned long written)
1080 {
1081         const unsigned long period = roundup_pow_of_two(3 * HZ);
1082         unsigned long avg = wb->avg_write_bandwidth;
1083         unsigned long old = wb->write_bandwidth;
1084         u64 bw;
1085
1086         /*
1087          * bw = written * HZ / elapsed
1088          *
1089          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1090          * write_bandwidth = ---------------------------------------------------
1091          *                                          period
1092          *
1093          * @written may have decreased due to account_page_redirty().
1094          * Avoid underflowing @bw calculation.
1095          */
1096         bw = written - min(written, wb->written_stamp);
1097         bw *= HZ;
1098         if (unlikely(elapsed > period)) {
1099                 bw = div64_ul(bw, elapsed);
1100                 avg = bw;
1101                 goto out;
1102         }
1103         bw += (u64)wb->write_bandwidth * (period - elapsed);
1104         bw >>= ilog2(period);
1105
1106         /*
1107          * one more level of smoothing, for filtering out sudden spikes
1108          */
1109         if (avg > old && old >= (unsigned long)bw)
1110                 avg -= (avg - old) >> 3;
1111
1112         if (avg < old && old <= (unsigned long)bw)
1113                 avg += (old - avg) >> 3;
1114
1115 out:
1116         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1117         avg = max(avg, 1LU);
1118         if (wb_has_dirty_io(wb)) {
1119                 long delta = avg - wb->avg_write_bandwidth;
1120                 WARN_ON_ONCE(atomic_long_add_return(delta,
1121                                         &wb->bdi->tot_write_bandwidth) <= 0);
1122         }
1123         wb->write_bandwidth = bw;
1124         wb->avg_write_bandwidth = avg;
1125 }
1126
1127 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1128 {
1129         struct wb_domain *dom = dtc_dom(dtc);
1130         unsigned long thresh = dtc->thresh;
1131         unsigned long limit = dom->dirty_limit;
1132
1133         /*
1134          * Follow up in one step.
1135          */
1136         if (limit < thresh) {
1137                 limit = thresh;
1138                 goto update;
1139         }
1140
1141         /*
1142          * Follow down slowly. Use the higher one as the target, because thresh
1143          * may drop below dirty. This is exactly the reason to introduce
1144          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1145          */
1146         thresh = max(thresh, dtc->dirty);
1147         if (limit > thresh) {
1148                 limit -= (limit - thresh) >> 5;
1149                 goto update;
1150         }
1151         return;
1152 update:
1153         dom->dirty_limit = limit;
1154 }
1155
1156 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1157                                     unsigned long now)
1158 {
1159         struct wb_domain *dom = dtc_dom(dtc);
1160
1161         /*
1162          * check locklessly first to optimize away locking for the most time
1163          */
1164         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1165                 return;
1166
1167         spin_lock(&dom->lock);
1168         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1169                 update_dirty_limit(dtc);
1170                 dom->dirty_limit_tstamp = now;
1171         }
1172         spin_unlock(&dom->lock);
1173 }
1174
1175 /*
1176  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1177  *
1178  * Normal wb tasks will be curbed at or below it in long term.
1179  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1180  */
1181 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1182                                       unsigned long dirtied,
1183                                       unsigned long elapsed)
1184 {
1185         struct bdi_writeback *wb = dtc->wb;
1186         unsigned long dirty = dtc->dirty;
1187         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1188         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1189         unsigned long setpoint = (freerun + limit) / 2;
1190         unsigned long write_bw = wb->avg_write_bandwidth;
1191         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1192         unsigned long dirty_rate;
1193         unsigned long task_ratelimit;
1194         unsigned long balanced_dirty_ratelimit;
1195         unsigned long step;
1196         unsigned long x;
1197         unsigned long shift;
1198
1199         /*
1200          * The dirty rate will match the writeout rate in long term, except
1201          * when dirty pages are truncated by userspace or re-dirtied by FS.
1202          */
1203         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1204
1205         /*
1206          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1207          */
1208         task_ratelimit = (u64)dirty_ratelimit *
1209                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1210         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1211
1212         /*
1213          * A linear estimation of the "balanced" throttle rate. The theory is,
1214          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1215          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1216          * formula will yield the balanced rate limit (write_bw / N).
1217          *
1218          * Note that the expanded form is not a pure rate feedback:
1219          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1220          * but also takes pos_ratio into account:
1221          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1222          *
1223          * (1) is not realistic because pos_ratio also takes part in balancing
1224          * the dirty rate.  Consider the state
1225          *      pos_ratio = 0.5                                              (3)
1226          *      rate = 2 * (write_bw / N)                                    (4)
1227          * If (1) is used, it will stuck in that state! Because each dd will
1228          * be throttled at
1229          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1230          * yielding
1231          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1232          * put (6) into (1) we get
1233          *      rate_(i+1) = rate_(i)                                        (7)
1234          *
1235          * So we end up using (2) to always keep
1236          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1237          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1238          * pos_ratio is able to drive itself to 1.0, which is not only where
1239          * the dirty count meet the setpoint, but also where the slope of
1240          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1241          */
1242         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1243                                            dirty_rate | 1);
1244         /*
1245          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1246          */
1247         if (unlikely(balanced_dirty_ratelimit > write_bw))
1248                 balanced_dirty_ratelimit = write_bw;
1249
1250         /*
1251          * We could safely do this and return immediately:
1252          *
1253          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1254          *
1255          * However to get a more stable dirty_ratelimit, the below elaborated
1256          * code makes use of task_ratelimit to filter out singular points and
1257          * limit the step size.
1258          *
1259          * The below code essentially only uses the relative value of
1260          *
1261          *      task_ratelimit - dirty_ratelimit
1262          *      = (pos_ratio - 1) * dirty_ratelimit
1263          *
1264          * which reflects the direction and size of dirty position error.
1265          */
1266
1267         /*
1268          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1269          * task_ratelimit is on the same side of dirty_ratelimit, too.
1270          * For example, when
1271          * - dirty_ratelimit > balanced_dirty_ratelimit
1272          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1273          * lowering dirty_ratelimit will help meet both the position and rate
1274          * control targets. Otherwise, don't update dirty_ratelimit if it will
1275          * only help meet the rate target. After all, what the users ultimately
1276          * feel and care are stable dirty rate and small position error.
1277          *
1278          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1279          * and filter out the singular points of balanced_dirty_ratelimit. Which
1280          * keeps jumping around randomly and can even leap far away at times
1281          * due to the small 200ms estimation period of dirty_rate (we want to
1282          * keep that period small to reduce time lags).
1283          */
1284         step = 0;
1285
1286         /*
1287          * For strictlimit case, calculations above were based on wb counters
1288          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1289          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1290          * Hence, to calculate "step" properly, we have to use wb_dirty as
1291          * "dirty" and wb_setpoint as "setpoint".
1292          *
1293          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1294          * it's possible that wb_thresh is close to zero due to inactivity
1295          * of backing device.
1296          */
1297         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1298                 dirty = dtc->wb_dirty;
1299                 if (dtc->wb_dirty < 8)
1300                         setpoint = dtc->wb_dirty + 1;
1301                 else
1302                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1303         }
1304
1305         if (dirty < setpoint) {
1306                 x = min3(wb->balanced_dirty_ratelimit,
1307                          balanced_dirty_ratelimit, task_ratelimit);
1308                 if (dirty_ratelimit < x)
1309                         step = x - dirty_ratelimit;
1310         } else {
1311                 x = max3(wb->balanced_dirty_ratelimit,
1312                          balanced_dirty_ratelimit, task_ratelimit);
1313                 if (dirty_ratelimit > x)
1314                         step = dirty_ratelimit - x;
1315         }
1316
1317         /*
1318          * Don't pursue 100% rate matching. It's impossible since the balanced
1319          * rate itself is constantly fluctuating. So decrease the track speed
1320          * when it gets close to the target. Helps eliminate pointless tremors.
1321          */
1322         shift = dirty_ratelimit / (2 * step + 1);
1323         if (shift < BITS_PER_LONG)
1324                 step = DIV_ROUND_UP(step >> shift, 8);
1325         else
1326                 step = 0;
1327
1328         if (dirty_ratelimit < balanced_dirty_ratelimit)
1329                 dirty_ratelimit += step;
1330         else
1331                 dirty_ratelimit -= step;
1332
1333         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1334         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1335
1336         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1337 }
1338
1339 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1340                                   struct dirty_throttle_control *mdtc,
1341                                   unsigned long start_time,
1342                                   bool update_ratelimit)
1343 {
1344         struct bdi_writeback *wb = gdtc->wb;
1345         unsigned long now = jiffies;
1346         unsigned long elapsed = now - wb->bw_time_stamp;
1347         unsigned long dirtied;
1348         unsigned long written;
1349
1350         lockdep_assert_held(&wb->list_lock);
1351
1352         /*
1353          * rate-limit, only update once every 200ms.
1354          */
1355         if (elapsed < BANDWIDTH_INTERVAL)
1356                 return;
1357
1358         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1359         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1360
1361         /*
1362          * Skip quiet periods when disk bandwidth is under-utilized.
1363          * (at least 1s idle time between two flusher runs)
1364          */
1365         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1366                 goto snapshot;
1367
1368         if (update_ratelimit) {
1369                 domain_update_bandwidth(gdtc, now);
1370                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1371
1372                 /*
1373                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1374                  * compiler has no way to figure that out.  Help it.
1375                  */
1376                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1377                         domain_update_bandwidth(mdtc, now);
1378                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1379                 }
1380         }
1381         wb_update_write_bandwidth(wb, elapsed, written);
1382
1383 snapshot:
1384         wb->dirtied_stamp = dirtied;
1385         wb->written_stamp = written;
1386         wb->bw_time_stamp = now;
1387 }
1388
1389 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1390 {
1391         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1392
1393         __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1394 }
1395
1396 /*
1397  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1398  * will look to see if it needs to start dirty throttling.
1399  *
1400  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1401  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1402  * (the number of pages we may dirty without exceeding the dirty limits).
1403  */
1404 static unsigned long dirty_poll_interval(unsigned long dirty,
1405                                          unsigned long thresh)
1406 {
1407         if (thresh > dirty)
1408                 return 1UL << (ilog2(thresh - dirty) >> 1);
1409
1410         return 1;
1411 }
1412
1413 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1414                                   unsigned long wb_dirty)
1415 {
1416         unsigned long bw = wb->avg_write_bandwidth;
1417         unsigned long t;
1418
1419         /*
1420          * Limit pause time for small memory systems. If sleeping for too long
1421          * time, a small pool of dirty/writeback pages may go empty and disk go
1422          * idle.
1423          *
1424          * 8 serves as the safety ratio.
1425          */
1426         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1427         t++;
1428
1429         return min_t(unsigned long, t, MAX_PAUSE);
1430 }
1431
1432 static long wb_min_pause(struct bdi_writeback *wb,
1433                          long max_pause,
1434                          unsigned long task_ratelimit,
1435                          unsigned long dirty_ratelimit,
1436                          int *nr_dirtied_pause)
1437 {
1438         long hi = ilog2(wb->avg_write_bandwidth);
1439         long lo = ilog2(wb->dirty_ratelimit);
1440         long t;         /* target pause */
1441         long pause;     /* estimated next pause */
1442         int pages;      /* target nr_dirtied_pause */
1443
1444         /* target for 10ms pause on 1-dd case */
1445         t = max(1, HZ / 100);
1446
1447         /*
1448          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1449          * overheads.
1450          *
1451          * (N * 10ms) on 2^N concurrent tasks.
1452          */
1453         if (hi > lo)
1454                 t += (hi - lo) * (10 * HZ) / 1024;
1455
1456         /*
1457          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1458          * on the much more stable dirty_ratelimit. However the next pause time
1459          * will be computed based on task_ratelimit and the two rate limits may
1460          * depart considerably at some time. Especially if task_ratelimit goes
1461          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1462          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1463          * result task_ratelimit won't be executed faithfully, which could
1464          * eventually bring down dirty_ratelimit.
1465          *
1466          * We apply two rules to fix it up:
1467          * 1) try to estimate the next pause time and if necessary, use a lower
1468          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1469          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1470          * 2) limit the target pause time to max_pause/2, so that the normal
1471          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1472          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1473          */
1474         t = min(t, 1 + max_pause / 2);
1475         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1476
1477         /*
1478          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1479          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1480          * When the 16 consecutive reads are often interrupted by some dirty
1481          * throttling pause during the async writes, cfq will go into idles
1482          * (deadline is fine). So push nr_dirtied_pause as high as possible
1483          * until reaches DIRTY_POLL_THRESH=32 pages.
1484          */
1485         if (pages < DIRTY_POLL_THRESH) {
1486                 t = max_pause;
1487                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1488                 if (pages > DIRTY_POLL_THRESH) {
1489                         pages = DIRTY_POLL_THRESH;
1490                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1491                 }
1492         }
1493
1494         pause = HZ * pages / (task_ratelimit + 1);
1495         if (pause > max_pause) {
1496                 t = max_pause;
1497                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1498         }
1499
1500         *nr_dirtied_pause = pages;
1501         /*
1502          * The minimal pause time will normally be half the target pause time.
1503          */
1504         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1505 }
1506
1507 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1508 {
1509         struct bdi_writeback *wb = dtc->wb;
1510         unsigned long wb_reclaimable;
1511
1512         /*
1513          * wb_thresh is not treated as some limiting factor as
1514          * dirty_thresh, due to reasons
1515          * - in JBOD setup, wb_thresh can fluctuate a lot
1516          * - in a system with HDD and USB key, the USB key may somehow
1517          *   go into state (wb_dirty >> wb_thresh) either because
1518          *   wb_dirty starts high, or because wb_thresh drops low.
1519          *   In this case we don't want to hard throttle the USB key
1520          *   dirtiers for 100 seconds until wb_dirty drops under
1521          *   wb_thresh. Instead the auxiliary wb control line in
1522          *   wb_position_ratio() will let the dirtier task progress
1523          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1524          */
1525         dtc->wb_thresh = __wb_calc_thresh(dtc);
1526         dtc->wb_bg_thresh = dtc->thresh ?
1527                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1528
1529         /*
1530          * In order to avoid the stacked BDI deadlock we need
1531          * to ensure we accurately count the 'dirty' pages when
1532          * the threshold is low.
1533          *
1534          * Otherwise it would be possible to get thresh+n pages
1535          * reported dirty, even though there are thresh-m pages
1536          * actually dirty; with m+n sitting in the percpu
1537          * deltas.
1538          */
1539         if (dtc->wb_thresh < 2 * wb_stat_error()) {
1540                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1541                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1542         } else {
1543                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1544                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1545         }
1546 }
1547
1548 /*
1549  * balance_dirty_pages() must be called by processes which are generating dirty
1550  * data.  It looks at the number of dirty pages in the machine and will force
1551  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1552  * If we're over `background_thresh' then the writeback threads are woken to
1553  * perform some writeout.
1554  */
1555 static void balance_dirty_pages(struct bdi_writeback *wb,
1556                                 unsigned long pages_dirtied)
1557 {
1558         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1559         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1560         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1561         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1562                                                      &mdtc_stor : NULL;
1563         struct dirty_throttle_control *sdtc;
1564         unsigned long nr_reclaimable;   /* = file_dirty */
1565         long period;
1566         long pause;
1567         long max_pause;
1568         long min_pause;
1569         int nr_dirtied_pause;
1570         bool dirty_exceeded = false;
1571         unsigned long task_ratelimit;
1572         unsigned long dirty_ratelimit;
1573         struct backing_dev_info *bdi = wb->bdi;
1574         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1575         unsigned long start_time = jiffies;
1576
1577         for (;;) {
1578                 unsigned long now = jiffies;
1579                 unsigned long dirty, thresh, bg_thresh;
1580                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1581                 unsigned long m_thresh = 0;
1582                 unsigned long m_bg_thresh = 0;
1583
1584                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1585                 gdtc->avail = global_dirtyable_memory();
1586                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1587
1588                 domain_dirty_limits(gdtc);
1589
1590                 if (unlikely(strictlimit)) {
1591                         wb_dirty_limits(gdtc);
1592
1593                         dirty = gdtc->wb_dirty;
1594                         thresh = gdtc->wb_thresh;
1595                         bg_thresh = gdtc->wb_bg_thresh;
1596                 } else {
1597                         dirty = gdtc->dirty;
1598                         thresh = gdtc->thresh;
1599                         bg_thresh = gdtc->bg_thresh;
1600                 }
1601
1602                 if (mdtc) {
1603                         unsigned long filepages, headroom, writeback;
1604
1605                         /*
1606                          * If @wb belongs to !root memcg, repeat the same
1607                          * basic calculations for the memcg domain.
1608                          */
1609                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1610                                             &mdtc->dirty, &writeback);
1611                         mdtc->dirty += writeback;
1612                         mdtc_calc_avail(mdtc, filepages, headroom);
1613
1614                         domain_dirty_limits(mdtc);
1615
1616                         if (unlikely(strictlimit)) {
1617                                 wb_dirty_limits(mdtc);
1618                                 m_dirty = mdtc->wb_dirty;
1619                                 m_thresh = mdtc->wb_thresh;
1620                                 m_bg_thresh = mdtc->wb_bg_thresh;
1621                         } else {
1622                                 m_dirty = mdtc->dirty;
1623                                 m_thresh = mdtc->thresh;
1624                                 m_bg_thresh = mdtc->bg_thresh;
1625                         }
1626                 }
1627
1628                 /*
1629                  * Throttle it only when the background writeback cannot
1630                  * catch-up. This avoids (excessively) small writeouts
1631                  * when the wb limits are ramping up in case of !strictlimit.
1632                  *
1633                  * In strictlimit case make decision based on the wb counters
1634                  * and limits. Small writeouts when the wb limits are ramping
1635                  * up are the price we consciously pay for strictlimit-ing.
1636                  *
1637                  * If memcg domain is in effect, @dirty should be under
1638                  * both global and memcg freerun ceilings.
1639                  */
1640                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1641                     (!mdtc ||
1642                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1643                         unsigned long intv;
1644                         unsigned long m_intv;
1645
1646 free_running:
1647                         intv = dirty_poll_interval(dirty, thresh);
1648                         m_intv = ULONG_MAX;
1649
1650                         current->dirty_paused_when = now;
1651                         current->nr_dirtied = 0;
1652                         if (mdtc)
1653                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1654                         current->nr_dirtied_pause = min(intv, m_intv);
1655                         break;
1656                 }
1657
1658                 if (unlikely(!writeback_in_progress(wb)))
1659                         wb_start_background_writeback(wb);
1660
1661                 mem_cgroup_flush_foreign(wb);
1662
1663                 /*
1664                  * Calculate global domain's pos_ratio and select the
1665                  * global dtc by default.
1666                  */
1667                 if (!strictlimit) {
1668                         wb_dirty_limits(gdtc);
1669
1670                         if ((current->flags & PF_LOCAL_THROTTLE) &&
1671                             gdtc->wb_dirty <
1672                             dirty_freerun_ceiling(gdtc->wb_thresh,
1673                                                   gdtc->wb_bg_thresh))
1674                                 /*
1675                                  * LOCAL_THROTTLE tasks must not be throttled
1676                                  * when below the per-wb freerun ceiling.
1677                                  */
1678                                 goto free_running;
1679                 }
1680
1681                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1682                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1683
1684                 wb_position_ratio(gdtc);
1685                 sdtc = gdtc;
1686
1687                 if (mdtc) {
1688                         /*
1689                          * If memcg domain is in effect, calculate its
1690                          * pos_ratio.  @wb should satisfy constraints from
1691                          * both global and memcg domains.  Choose the one
1692                          * w/ lower pos_ratio.
1693                          */
1694                         if (!strictlimit) {
1695                                 wb_dirty_limits(mdtc);
1696
1697                                 if ((current->flags & PF_LOCAL_THROTTLE) &&
1698                                     mdtc->wb_dirty <
1699                                     dirty_freerun_ceiling(mdtc->wb_thresh,
1700                                                           mdtc->wb_bg_thresh))
1701                                         /*
1702                                          * LOCAL_THROTTLE tasks must not be
1703                                          * throttled when below the per-wb
1704                                          * freerun ceiling.
1705                                          */
1706                                         goto free_running;
1707                         }
1708                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1709                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1710
1711                         wb_position_ratio(mdtc);
1712                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1713                                 sdtc = mdtc;
1714                 }
1715
1716                 if (dirty_exceeded && !wb->dirty_exceeded)
1717                         wb->dirty_exceeded = 1;
1718
1719                 if (time_is_before_jiffies(wb->bw_time_stamp +
1720                                            BANDWIDTH_INTERVAL)) {
1721                         spin_lock(&wb->list_lock);
1722                         __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1723                         spin_unlock(&wb->list_lock);
1724                 }
1725
1726                 /* throttle according to the chosen dtc */
1727                 dirty_ratelimit = wb->dirty_ratelimit;
1728                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1729                                                         RATELIMIT_CALC_SHIFT;
1730                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1731                 min_pause = wb_min_pause(wb, max_pause,
1732                                          task_ratelimit, dirty_ratelimit,
1733                                          &nr_dirtied_pause);
1734
1735                 if (unlikely(task_ratelimit == 0)) {
1736                         period = max_pause;
1737                         pause = max_pause;
1738                         goto pause;
1739                 }
1740                 period = HZ * pages_dirtied / task_ratelimit;
1741                 pause = period;
1742                 if (current->dirty_paused_when)
1743                         pause -= now - current->dirty_paused_when;
1744                 /*
1745                  * For less than 1s think time (ext3/4 may block the dirtier
1746                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1747                  * however at much less frequency), try to compensate it in
1748                  * future periods by updating the virtual time; otherwise just
1749                  * do a reset, as it may be a light dirtier.
1750                  */
1751                 if (pause < min_pause) {
1752                         trace_balance_dirty_pages(wb,
1753                                                   sdtc->thresh,
1754                                                   sdtc->bg_thresh,
1755                                                   sdtc->dirty,
1756                                                   sdtc->wb_thresh,
1757                                                   sdtc->wb_dirty,
1758                                                   dirty_ratelimit,
1759                                                   task_ratelimit,
1760                                                   pages_dirtied,
1761                                                   period,
1762                                                   min(pause, 0L),
1763                                                   start_time);
1764                         if (pause < -HZ) {
1765                                 current->dirty_paused_when = now;
1766                                 current->nr_dirtied = 0;
1767                         } else if (period) {
1768                                 current->dirty_paused_when += period;
1769                                 current->nr_dirtied = 0;
1770                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1771                                 current->nr_dirtied_pause += pages_dirtied;
1772                         break;
1773                 }
1774                 if (unlikely(pause > max_pause)) {
1775                         /* for occasional dropped task_ratelimit */
1776                         now += min(pause - max_pause, max_pause);
1777                         pause = max_pause;
1778                 }
1779
1780 pause:
1781                 trace_balance_dirty_pages(wb,
1782                                           sdtc->thresh,
1783                                           sdtc->bg_thresh,
1784                                           sdtc->dirty,
1785                                           sdtc->wb_thresh,
1786                                           sdtc->wb_dirty,
1787                                           dirty_ratelimit,
1788                                           task_ratelimit,
1789                                           pages_dirtied,
1790                                           period,
1791                                           pause,
1792                                           start_time);
1793                 __set_current_state(TASK_KILLABLE);
1794                 wb->dirty_sleep = now;
1795                 io_schedule_timeout(pause);
1796
1797                 current->dirty_paused_when = now + pause;
1798                 current->nr_dirtied = 0;
1799                 current->nr_dirtied_pause = nr_dirtied_pause;
1800
1801                 /*
1802                  * This is typically equal to (dirty < thresh) and can also
1803                  * keep "1000+ dd on a slow USB stick" under control.
1804                  */
1805                 if (task_ratelimit)
1806                         break;
1807
1808                 /*
1809                  * In the case of an unresponding NFS server and the NFS dirty
1810                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1811                  * to go through, so that tasks on them still remain responsive.
1812                  *
1813                  * In theory 1 page is enough to keep the consumer-producer
1814                  * pipe going: the flusher cleans 1 page => the task dirties 1
1815                  * more page. However wb_dirty has accounting errors.  So use
1816                  * the larger and more IO friendly wb_stat_error.
1817                  */
1818                 if (sdtc->wb_dirty <= wb_stat_error())
1819                         break;
1820
1821                 if (fatal_signal_pending(current))
1822                         break;
1823         }
1824
1825         if (!dirty_exceeded && wb->dirty_exceeded)
1826                 wb->dirty_exceeded = 0;
1827
1828         if (writeback_in_progress(wb))
1829                 return;
1830
1831         /*
1832          * In laptop mode, we wait until hitting the higher threshold before
1833          * starting background writeout, and then write out all the way down
1834          * to the lower threshold.  So slow writers cause minimal disk activity.
1835          *
1836          * In normal mode, we start background writeout at the lower
1837          * background_thresh, to keep the amount of dirty memory low.
1838          */
1839         if (laptop_mode)
1840                 return;
1841
1842         if (nr_reclaimable > gdtc->bg_thresh)
1843                 wb_start_background_writeback(wb);
1844 }
1845
1846 static DEFINE_PER_CPU(int, bdp_ratelimits);
1847
1848 /*
1849  * Normal tasks are throttled by
1850  *      loop {
1851  *              dirty tsk->nr_dirtied_pause pages;
1852  *              take a snap in balance_dirty_pages();
1853  *      }
1854  * However there is a worst case. If every task exit immediately when dirtied
1855  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1856  * called to throttle the page dirties. The solution is to save the not yet
1857  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1858  * randomly into the running tasks. This works well for the above worst case,
1859  * as the new task will pick up and accumulate the old task's leaked dirty
1860  * count and eventually get throttled.
1861  */
1862 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1863
1864 /**
1865  * balance_dirty_pages_ratelimited - balance dirty memory state
1866  * @mapping: address_space which was dirtied
1867  *
1868  * Processes which are dirtying memory should call in here once for each page
1869  * which was newly dirtied.  The function will periodically check the system's
1870  * dirty state and will initiate writeback if needed.
1871  *
1872  * On really big machines, get_writeback_state is expensive, so try to avoid
1873  * calling it too often (ratelimiting).  But once we're over the dirty memory
1874  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1875  * from overshooting the limit by (ratelimit_pages) each.
1876  */
1877 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1878 {
1879         struct inode *inode = mapping->host;
1880         struct backing_dev_info *bdi = inode_to_bdi(inode);
1881         struct bdi_writeback *wb = NULL;
1882         int ratelimit;
1883         int *p;
1884
1885         if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1886                 return;
1887
1888         if (inode_cgwb_enabled(inode))
1889                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1890         if (!wb)
1891                 wb = &bdi->wb;
1892
1893         ratelimit = current->nr_dirtied_pause;
1894         if (wb->dirty_exceeded)
1895                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1896
1897         preempt_disable();
1898         /*
1899          * This prevents one CPU to accumulate too many dirtied pages without
1900          * calling into balance_dirty_pages(), which can happen when there are
1901          * 1000+ tasks, all of them start dirtying pages at exactly the same
1902          * time, hence all honoured too large initial task->nr_dirtied_pause.
1903          */
1904         p =  this_cpu_ptr(&bdp_ratelimits);
1905         if (unlikely(current->nr_dirtied >= ratelimit))
1906                 *p = 0;
1907         else if (unlikely(*p >= ratelimit_pages)) {
1908                 *p = 0;
1909                 ratelimit = 0;
1910         }
1911         /*
1912          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1913          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1914          * the dirty throttling and livelock other long-run dirtiers.
1915          */
1916         p = this_cpu_ptr(&dirty_throttle_leaks);
1917         if (*p > 0 && current->nr_dirtied < ratelimit) {
1918                 unsigned long nr_pages_dirtied;
1919                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1920                 *p -= nr_pages_dirtied;
1921                 current->nr_dirtied += nr_pages_dirtied;
1922         }
1923         preempt_enable();
1924
1925         if (unlikely(current->nr_dirtied >= ratelimit))
1926                 balance_dirty_pages(wb, current->nr_dirtied);
1927
1928         wb_put(wb);
1929 }
1930 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1931
1932 /**
1933  * wb_over_bg_thresh - does @wb need to be written back?
1934  * @wb: bdi_writeback of interest
1935  *
1936  * Determines whether background writeback should keep writing @wb or it's
1937  * clean enough.
1938  *
1939  * Return: %true if writeback should continue.
1940  */
1941 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1942 {
1943         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1944         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1945         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1946         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1947                                                      &mdtc_stor : NULL;
1948
1949         /*
1950          * Similar to balance_dirty_pages() but ignores pages being written
1951          * as we're trying to decide whether to put more under writeback.
1952          */
1953         gdtc->avail = global_dirtyable_memory();
1954         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1955         domain_dirty_limits(gdtc);
1956
1957         if (gdtc->dirty > gdtc->bg_thresh)
1958                 return true;
1959
1960         if (wb_stat(wb, WB_RECLAIMABLE) >
1961             wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1962                 return true;
1963
1964         if (mdtc) {
1965                 unsigned long filepages, headroom, writeback;
1966
1967                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1968                                     &writeback);
1969                 mdtc_calc_avail(mdtc, filepages, headroom);
1970                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1971
1972                 if (mdtc->dirty > mdtc->bg_thresh)
1973                         return true;
1974
1975                 if (wb_stat(wb, WB_RECLAIMABLE) >
1976                     wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1977                         return true;
1978         }
1979
1980         return false;
1981 }
1982
1983 /*
1984  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1985  */
1986 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1987                 void *buffer, size_t *length, loff_t *ppos)
1988 {
1989         unsigned int old_interval = dirty_writeback_interval;
1990         int ret;
1991
1992         ret = proc_dointvec(table, write, buffer, length, ppos);
1993
1994         /*
1995          * Writing 0 to dirty_writeback_interval will disable periodic writeback
1996          * and a different non-zero value will wakeup the writeback threads.
1997          * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1998          * iterate over all bdis and wbs.
1999          * The reason we do this is to make the change take effect immediately.
2000          */
2001         if (!ret && write && dirty_writeback_interval &&
2002                 dirty_writeback_interval != old_interval)
2003                 wakeup_flusher_threads(WB_REASON_PERIODIC);
2004
2005         return ret;
2006 }
2007
2008 #ifdef CONFIG_BLOCK
2009 void laptop_mode_timer_fn(struct timer_list *t)
2010 {
2011         struct backing_dev_info *backing_dev_info =
2012                 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2013
2014         wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2015 }
2016
2017 /*
2018  * We've spun up the disk and we're in laptop mode: schedule writeback
2019  * of all dirty data a few seconds from now.  If the flush is already scheduled
2020  * then push it back - the user is still using the disk.
2021  */
2022 void laptop_io_completion(struct backing_dev_info *info)
2023 {
2024         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2025 }
2026
2027 /*
2028  * We're in laptop mode and we've just synced. The sync's writes will have
2029  * caused another writeback to be scheduled by laptop_io_completion.
2030  * Nothing needs to be written back anymore, so we unschedule the writeback.
2031  */
2032 void laptop_sync_completion(void)
2033 {
2034         struct backing_dev_info *bdi;
2035
2036         rcu_read_lock();
2037
2038         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2039                 del_timer(&bdi->laptop_mode_wb_timer);
2040
2041         rcu_read_unlock();
2042 }
2043 #endif
2044
2045 /*
2046  * If ratelimit_pages is too high then we can get into dirty-data overload
2047  * if a large number of processes all perform writes at the same time.
2048  * If it is too low then SMP machines will call the (expensive)
2049  * get_writeback_state too often.
2050  *
2051  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2052  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2053  * thresholds.
2054  */
2055
2056 void writeback_set_ratelimit(void)
2057 {
2058         struct wb_domain *dom = &global_wb_domain;
2059         unsigned long background_thresh;
2060         unsigned long dirty_thresh;
2061
2062         global_dirty_limits(&background_thresh, &dirty_thresh);
2063         dom->dirty_limit = dirty_thresh;
2064         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2065         if (ratelimit_pages < 16)
2066                 ratelimit_pages = 16;
2067 }
2068
2069 static int page_writeback_cpu_online(unsigned int cpu)
2070 {
2071         writeback_set_ratelimit();
2072         return 0;
2073 }
2074
2075 /*
2076  * Called early on to tune the page writeback dirty limits.
2077  *
2078  * We used to scale dirty pages according to how total memory
2079  * related to pages that could be allocated for buffers.
2080  *
2081  * However, that was when we used "dirty_ratio" to scale with
2082  * all memory, and we don't do that any more. "dirty_ratio"
2083  * is now applied to total non-HIGHPAGE memory, and as such we can't
2084  * get into the old insane situation any more where we had
2085  * large amounts of dirty pages compared to a small amount of
2086  * non-HIGHMEM memory.
2087  *
2088  * But we might still want to scale the dirty_ratio by how
2089  * much memory the box has..
2090  */
2091 void __init page_writeback_init(void)
2092 {
2093         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2094
2095         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2096                           page_writeback_cpu_online, NULL);
2097         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2098                           page_writeback_cpu_online);
2099 }
2100
2101 /**
2102  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2103  * @mapping: address space structure to write
2104  * @start: starting page index
2105  * @end: ending page index (inclusive)
2106  *
2107  * This function scans the page range from @start to @end (inclusive) and tags
2108  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2109  * that write_cache_pages (or whoever calls this function) will then use
2110  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2111  * used to avoid livelocking of writeback by a process steadily creating new
2112  * dirty pages in the file (thus it is important for this function to be quick
2113  * so that it can tag pages faster than a dirtying process can create them).
2114  */
2115 void tag_pages_for_writeback(struct address_space *mapping,
2116                              pgoff_t start, pgoff_t end)
2117 {
2118         XA_STATE(xas, &mapping->i_pages, start);
2119         unsigned int tagged = 0;
2120         void *page;
2121
2122         xas_lock_irq(&xas);
2123         xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2124                 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2125                 if (++tagged % XA_CHECK_SCHED)
2126                         continue;
2127
2128                 xas_pause(&xas);
2129                 xas_unlock_irq(&xas);
2130                 cond_resched();
2131                 xas_lock_irq(&xas);
2132         }
2133         xas_unlock_irq(&xas);
2134 }
2135 EXPORT_SYMBOL(tag_pages_for_writeback);
2136
2137 /**
2138  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2139  * @mapping: address space structure to write
2140  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2141  * @writepage: function called for each page
2142  * @data: data passed to writepage function
2143  *
2144  * If a page is already under I/O, write_cache_pages() skips it, even
2145  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2146  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2147  * and msync() need to guarantee that all the data which was dirty at the time
2148  * the call was made get new I/O started against them.  If wbc->sync_mode is
2149  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2150  * existing IO to complete.
2151  *
2152  * To avoid livelocks (when other process dirties new pages), we first tag
2153  * pages which should be written back with TOWRITE tag and only then start
2154  * writing them. For data-integrity sync we have to be careful so that we do
2155  * not miss some pages (e.g., because some other process has cleared TOWRITE
2156  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2157  * by the process clearing the DIRTY tag (and submitting the page for IO).
2158  *
2159  * To avoid deadlocks between range_cyclic writeback and callers that hold
2160  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2161  * we do not loop back to the start of the file. Doing so causes a page
2162  * lock/page writeback access order inversion - we should only ever lock
2163  * multiple pages in ascending page->index order, and looping back to the start
2164  * of the file violates that rule and causes deadlocks.
2165  *
2166  * Return: %0 on success, negative error code otherwise
2167  */
2168 int write_cache_pages(struct address_space *mapping,
2169                       struct writeback_control *wbc, writepage_t writepage,
2170                       void *data)
2171 {
2172         int ret = 0;
2173         int done = 0;
2174         int error;
2175         struct pagevec pvec;
2176         int nr_pages;
2177         pgoff_t index;
2178         pgoff_t end;            /* Inclusive */
2179         pgoff_t done_index;
2180         int range_whole = 0;
2181         xa_mark_t tag;
2182
2183         pagevec_init(&pvec);
2184         if (wbc->range_cyclic) {
2185                 index = mapping->writeback_index; /* prev offset */
2186                 end = -1;
2187         } else {
2188                 index = wbc->range_start >> PAGE_SHIFT;
2189                 end = wbc->range_end >> PAGE_SHIFT;
2190                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2191                         range_whole = 1;
2192         }
2193         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2194                 tag_pages_for_writeback(mapping, index, end);
2195                 tag = PAGECACHE_TAG_TOWRITE;
2196         } else {
2197                 tag = PAGECACHE_TAG_DIRTY;
2198         }
2199         done_index = index;
2200         while (!done && (index <= end)) {
2201                 int i;
2202
2203                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2204                                 tag);
2205                 if (nr_pages == 0)
2206                         break;
2207
2208                 for (i = 0; i < nr_pages; i++) {
2209                         struct page *page = pvec.pages[i];
2210
2211                         done_index = page->index;
2212
2213                         lock_page(page);
2214
2215                         /*
2216                          * Page truncated or invalidated. We can freely skip it
2217                          * then, even for data integrity operations: the page
2218                          * has disappeared concurrently, so there could be no
2219                          * real expectation of this data interity operation
2220                          * even if there is now a new, dirty page at the same
2221                          * pagecache address.
2222                          */
2223                         if (unlikely(page->mapping != mapping)) {
2224 continue_unlock:
2225                                 unlock_page(page);
2226                                 continue;
2227                         }
2228
2229                         if (!PageDirty(page)) {
2230                                 /* someone wrote it for us */
2231                                 goto continue_unlock;
2232                         }
2233
2234                         if (PageWriteback(page)) {
2235                                 if (wbc->sync_mode != WB_SYNC_NONE)
2236                                         wait_on_page_writeback(page);
2237                                 else
2238                                         goto continue_unlock;
2239                         }
2240
2241                         BUG_ON(PageWriteback(page));
2242                         if (!clear_page_dirty_for_io(page))
2243                                 goto continue_unlock;
2244
2245                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2246                         error = (*writepage)(page, wbc, data);
2247                         if (unlikely(error)) {
2248                                 /*
2249                                  * Handle errors according to the type of
2250                                  * writeback. There's no need to continue for
2251                                  * background writeback. Just push done_index
2252                                  * past this page so media errors won't choke
2253                                  * writeout for the entire file. For integrity
2254                                  * writeback, we must process the entire dirty
2255                                  * set regardless of errors because the fs may
2256                                  * still have state to clear for each page. In
2257                                  * that case we continue processing and return
2258                                  * the first error.
2259                                  */
2260                                 if (error == AOP_WRITEPAGE_ACTIVATE) {
2261                                         unlock_page(page);
2262                                         error = 0;
2263                                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2264                                         ret = error;
2265                                         done_index = page->index + 1;
2266                                         done = 1;
2267                                         break;
2268                                 }
2269                                 if (!ret)
2270                                         ret = error;
2271                         }
2272
2273                         /*
2274                          * We stop writing back only if we are not doing
2275                          * integrity sync. In case of integrity sync we have to
2276                          * keep going until we have written all the pages
2277                          * we tagged for writeback prior to entering this loop.
2278                          */
2279                         if (--wbc->nr_to_write <= 0 &&
2280                             wbc->sync_mode == WB_SYNC_NONE) {
2281                                 done = 1;
2282                                 break;
2283                         }
2284                 }
2285                 pagevec_release(&pvec);
2286                 cond_resched();
2287         }
2288
2289         /*
2290          * If we hit the last page and there is more work to be done: wrap
2291          * back the index back to the start of the file for the next
2292          * time we are called.
2293          */
2294         if (wbc->range_cyclic && !done)
2295                 done_index = 0;
2296         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2297                 mapping->writeback_index = done_index;
2298
2299         return ret;
2300 }
2301 EXPORT_SYMBOL(write_cache_pages);
2302
2303 /*
2304  * Function used by generic_writepages to call the real writepage
2305  * function and set the mapping flags on error
2306  */
2307 static int __writepage(struct page *page, struct writeback_control *wbc,
2308                        void *data)
2309 {
2310         struct address_space *mapping = data;
2311         int ret = mapping->a_ops->writepage(page, wbc);
2312         mapping_set_error(mapping, ret);
2313         return ret;
2314 }
2315
2316 /**
2317  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2318  * @mapping: address space structure to write
2319  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2320  *
2321  * This is a library function, which implements the writepages()
2322  * address_space_operation.
2323  *
2324  * Return: %0 on success, negative error code otherwise
2325  */
2326 int generic_writepages(struct address_space *mapping,
2327                        struct writeback_control *wbc)
2328 {
2329         struct blk_plug plug;
2330         int ret;
2331
2332         /* deal with chardevs and other special file */
2333         if (!mapping->a_ops->writepage)
2334                 return 0;
2335
2336         blk_start_plug(&plug);
2337         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2338         blk_finish_plug(&plug);
2339         return ret;
2340 }
2341
2342 EXPORT_SYMBOL(generic_writepages);
2343
2344 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2345 {
2346         int ret;
2347
2348         if (wbc->nr_to_write <= 0)
2349                 return 0;
2350         while (1) {
2351                 if (mapping->a_ops->writepages)
2352                         ret = mapping->a_ops->writepages(mapping, wbc);
2353                 else
2354                         ret = generic_writepages(mapping, wbc);
2355                 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2356                         break;
2357                 cond_resched();
2358                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2359         }
2360         return ret;
2361 }
2362
2363 /**
2364  * write_one_page - write out a single page and wait on I/O
2365  * @page: the page to write
2366  *
2367  * The page must be locked by the caller and will be unlocked upon return.
2368  *
2369  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2370  * function returns.
2371  *
2372  * Return: %0 on success, negative error code otherwise
2373  */
2374 int write_one_page(struct page *page)
2375 {
2376         struct address_space *mapping = page->mapping;
2377         int ret = 0;
2378         struct writeback_control wbc = {
2379                 .sync_mode = WB_SYNC_ALL,
2380                 .nr_to_write = 1,
2381         };
2382
2383         BUG_ON(!PageLocked(page));
2384
2385         wait_on_page_writeback(page);
2386
2387         if (clear_page_dirty_for_io(page)) {
2388                 get_page(page);
2389                 ret = mapping->a_ops->writepage(page, &wbc);
2390                 if (ret == 0)
2391                         wait_on_page_writeback(page);
2392                 put_page(page);
2393         } else {
2394                 unlock_page(page);
2395         }
2396
2397         if (!ret)
2398                 ret = filemap_check_errors(mapping);
2399         return ret;
2400 }
2401 EXPORT_SYMBOL(write_one_page);
2402
2403 /*
2404  * For address_spaces which do not use buffers nor write back.
2405  */
2406 int __set_page_dirty_no_writeback(struct page *page)
2407 {
2408         if (!PageDirty(page))
2409                 return !TestSetPageDirty(page);
2410         return 0;
2411 }
2412
2413 /*
2414  * Helper function for set_page_dirty family.
2415  *
2416  * Caller must hold lock_page_memcg().
2417  *
2418  * NOTE: This relies on being atomic wrt interrupts.
2419  */
2420 void account_page_dirtied(struct page *page, struct address_space *mapping)
2421 {
2422         struct inode *inode = mapping->host;
2423
2424         trace_writeback_dirty_page(page, mapping);
2425
2426         if (mapping_can_writeback(mapping)) {
2427                 struct bdi_writeback *wb;
2428
2429                 inode_attach_wb(inode, page);
2430                 wb = inode_to_wb(inode);
2431
2432                 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2433                 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2434                 __inc_node_page_state(page, NR_DIRTIED);
2435                 inc_wb_stat(wb, WB_RECLAIMABLE);
2436                 inc_wb_stat(wb, WB_DIRTIED);
2437                 task_io_account_write(PAGE_SIZE);
2438                 current->nr_dirtied++;
2439                 this_cpu_inc(bdp_ratelimits);
2440
2441                 mem_cgroup_track_foreign_dirty(page, wb);
2442         }
2443 }
2444
2445 /*
2446  * Helper function for deaccounting dirty page without writeback.
2447  *
2448  * Caller must hold lock_page_memcg().
2449  */
2450 void account_page_cleaned(struct page *page, struct address_space *mapping,
2451                           struct bdi_writeback *wb)
2452 {
2453         if (mapping_can_writeback(mapping)) {
2454                 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2455                 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2456                 dec_wb_stat(wb, WB_RECLAIMABLE);
2457                 task_io_account_cancelled_write(PAGE_SIZE);
2458         }
2459 }
2460
2461 /*
2462  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2463  * the xarray.
2464  *
2465  * This is also used when a single buffer is being dirtied: we want to set the
2466  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2467  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2468  *
2469  * The caller must ensure this doesn't race with truncation.  Most will simply
2470  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2471  * the pte lock held, which also locks out truncation.
2472  */
2473 int __set_page_dirty_nobuffers(struct page *page)
2474 {
2475         lock_page_memcg(page);
2476         if (!TestSetPageDirty(page)) {
2477                 struct address_space *mapping = page_mapping(page);
2478                 unsigned long flags;
2479
2480                 if (!mapping) {
2481                         unlock_page_memcg(page);
2482                         return 1;
2483                 }
2484
2485                 xa_lock_irqsave(&mapping->i_pages, flags);
2486                 BUG_ON(page_mapping(page) != mapping);
2487                 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2488                 account_page_dirtied(page, mapping);
2489                 __xa_set_mark(&mapping->i_pages, page_index(page),
2490                                    PAGECACHE_TAG_DIRTY);
2491                 xa_unlock_irqrestore(&mapping->i_pages, flags);
2492                 unlock_page_memcg(page);
2493
2494                 if (mapping->host) {
2495                         /* !PageAnon && !swapper_space */
2496                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2497                 }
2498                 return 1;
2499         }
2500         unlock_page_memcg(page);
2501         return 0;
2502 }
2503 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2504
2505 /*
2506  * Call this whenever redirtying a page, to de-account the dirty counters
2507  * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2508  * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2509  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2510  * control.
2511  */
2512 void account_page_redirty(struct page *page)
2513 {
2514         struct address_space *mapping = page->mapping;
2515
2516         if (mapping && mapping_can_writeback(mapping)) {
2517                 struct inode *inode = mapping->host;
2518                 struct bdi_writeback *wb;
2519                 struct wb_lock_cookie cookie = {};
2520
2521                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2522                 current->nr_dirtied--;
2523                 dec_node_page_state(page, NR_DIRTIED);
2524                 dec_wb_stat(wb, WB_DIRTIED);
2525                 unlocked_inode_to_wb_end(inode, &cookie);
2526         }
2527 }
2528 EXPORT_SYMBOL(account_page_redirty);
2529
2530 /*
2531  * When a writepage implementation decides that it doesn't want to write this
2532  * page for some reason, it should redirty the locked page via
2533  * redirty_page_for_writepage() and it should then unlock the page and return 0
2534  */
2535 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2536 {
2537         int ret;
2538
2539         wbc->pages_skipped++;
2540         ret = __set_page_dirty_nobuffers(page);
2541         account_page_redirty(page);
2542         return ret;
2543 }
2544 EXPORT_SYMBOL(redirty_page_for_writepage);
2545
2546 /*
2547  * Dirty a page.
2548  *
2549  * For pages with a mapping this should be done under the page lock
2550  * for the benefit of asynchronous memory errors who prefer a consistent
2551  * dirty state. This rule can be broken in some special cases,
2552  * but should be better not to.
2553  *
2554  * If the mapping doesn't provide a set_page_dirty a_op, then
2555  * just fall through and assume that it wants buffer_heads.
2556  */
2557 int set_page_dirty(struct page *page)
2558 {
2559         struct address_space *mapping = page_mapping(page);
2560
2561         page = compound_head(page);
2562         if (likely(mapping)) {
2563                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2564                 /*
2565                  * readahead/lru_deactivate_page could remain
2566                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2567                  * About readahead, if the page is written, the flags would be
2568                  * reset. So no problem.
2569                  * About lru_deactivate_page, if the page is redirty, the flag
2570                  * will be reset. So no problem. but if the page is used by readahead
2571                  * it will confuse readahead and make it restart the size rampup
2572                  * process. But it's a trivial problem.
2573                  */
2574                 if (PageReclaim(page))
2575                         ClearPageReclaim(page);
2576 #ifdef CONFIG_BLOCK
2577                 if (!spd)
2578                         spd = __set_page_dirty_buffers;
2579 #endif
2580                 return (*spd)(page);
2581         }
2582         if (!PageDirty(page)) {
2583                 if (!TestSetPageDirty(page))
2584                         return 1;
2585         }
2586         return 0;
2587 }
2588 EXPORT_SYMBOL(set_page_dirty);
2589
2590 /*
2591  * set_page_dirty() is racy if the caller has no reference against
2592  * page->mapping->host, and if the page is unlocked.  This is because another
2593  * CPU could truncate the page off the mapping and then free the mapping.
2594  *
2595  * Usually, the page _is_ locked, or the caller is a user-space process which
2596  * holds a reference on the inode by having an open file.
2597  *
2598  * In other cases, the page should be locked before running set_page_dirty().
2599  */
2600 int set_page_dirty_lock(struct page *page)
2601 {
2602         int ret;
2603
2604         lock_page(page);
2605         ret = set_page_dirty(page);
2606         unlock_page(page);
2607         return ret;
2608 }
2609 EXPORT_SYMBOL(set_page_dirty_lock);
2610
2611 /*
2612  * This cancels just the dirty bit on the kernel page itself, it does NOT
2613  * actually remove dirty bits on any mmap's that may be around. It also
2614  * leaves the page tagged dirty, so any sync activity will still find it on
2615  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2616  * look at the dirty bits in the VM.
2617  *
2618  * Doing this should *normally* only ever be done when a page is truncated,
2619  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2620  * this when it notices that somebody has cleaned out all the buffers on a
2621  * page without actually doing it through the VM. Can you say "ext3 is
2622  * horribly ugly"? Thought you could.
2623  */
2624 void __cancel_dirty_page(struct page *page)
2625 {
2626         struct address_space *mapping = page_mapping(page);
2627
2628         if (mapping_can_writeback(mapping)) {
2629                 struct inode *inode = mapping->host;
2630                 struct bdi_writeback *wb;
2631                 struct wb_lock_cookie cookie = {};
2632
2633                 lock_page_memcg(page);
2634                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2635
2636                 if (TestClearPageDirty(page))
2637                         account_page_cleaned(page, mapping, wb);
2638
2639                 unlocked_inode_to_wb_end(inode, &cookie);
2640                 unlock_page_memcg(page);
2641         } else {
2642                 ClearPageDirty(page);
2643         }
2644 }
2645 EXPORT_SYMBOL(__cancel_dirty_page);
2646
2647 /*
2648  * Clear a page's dirty flag, while caring for dirty memory accounting.
2649  * Returns true if the page was previously dirty.
2650  *
2651  * This is for preparing to put the page under writeout.  We leave the page
2652  * tagged as dirty in the xarray so that a concurrent write-for-sync
2653  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2654  * implementation will run either set_page_writeback() or set_page_dirty(),
2655  * at which stage we bring the page's dirty flag and xarray dirty tag
2656  * back into sync.
2657  *
2658  * This incoherency between the page's dirty flag and xarray tag is
2659  * unfortunate, but it only exists while the page is locked.
2660  */
2661 int clear_page_dirty_for_io(struct page *page)
2662 {
2663         struct address_space *mapping = page_mapping(page);
2664         int ret = 0;
2665
2666         VM_BUG_ON_PAGE(!PageLocked(page), page);
2667
2668         if (mapping && mapping_can_writeback(mapping)) {
2669                 struct inode *inode = mapping->host;
2670                 struct bdi_writeback *wb;
2671                 struct wb_lock_cookie cookie = {};
2672
2673                 /*
2674                  * Yes, Virginia, this is indeed insane.
2675                  *
2676                  * We use this sequence to make sure that
2677                  *  (a) we account for dirty stats properly
2678                  *  (b) we tell the low-level filesystem to
2679                  *      mark the whole page dirty if it was
2680                  *      dirty in a pagetable. Only to then
2681                  *  (c) clean the page again and return 1 to
2682                  *      cause the writeback.
2683                  *
2684                  * This way we avoid all nasty races with the
2685                  * dirty bit in multiple places and clearing
2686                  * them concurrently from different threads.
2687                  *
2688                  * Note! Normally the "set_page_dirty(page)"
2689                  * has no effect on the actual dirty bit - since
2690                  * that will already usually be set. But we
2691                  * need the side effects, and it can help us
2692                  * avoid races.
2693                  *
2694                  * We basically use the page "master dirty bit"
2695                  * as a serialization point for all the different
2696                  * threads doing their things.
2697                  */
2698                 if (page_mkclean(page))
2699                         set_page_dirty(page);
2700                 /*
2701                  * We carefully synchronise fault handlers against
2702                  * installing a dirty pte and marking the page dirty
2703                  * at this point.  We do this by having them hold the
2704                  * page lock while dirtying the page, and pages are
2705                  * always locked coming in here, so we get the desired
2706                  * exclusion.
2707                  */
2708                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2709                 if (TestClearPageDirty(page)) {
2710                         dec_lruvec_page_state(page, NR_FILE_DIRTY);
2711                         dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2712                         dec_wb_stat(wb, WB_RECLAIMABLE);
2713                         ret = 1;
2714                 }
2715                 unlocked_inode_to_wb_end(inode, &cookie);
2716                 return ret;
2717         }
2718         return TestClearPageDirty(page);
2719 }
2720 EXPORT_SYMBOL(clear_page_dirty_for_io);
2721
2722 int test_clear_page_writeback(struct page *page)
2723 {
2724         struct address_space *mapping = page_mapping(page);
2725         struct mem_cgroup *memcg;
2726         struct lruvec *lruvec;
2727         int ret;
2728
2729         memcg = lock_page_memcg(page);
2730         lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2731         if (mapping && mapping_use_writeback_tags(mapping)) {
2732                 struct inode *inode = mapping->host;
2733                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2734                 unsigned long flags;
2735
2736                 xa_lock_irqsave(&mapping->i_pages, flags);
2737                 ret = TestClearPageWriteback(page);
2738                 if (ret) {
2739                         __xa_clear_mark(&mapping->i_pages, page_index(page),
2740                                                 PAGECACHE_TAG_WRITEBACK);
2741                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2742                                 struct bdi_writeback *wb = inode_to_wb(inode);
2743
2744                                 dec_wb_stat(wb, WB_WRITEBACK);
2745                                 __wb_writeout_inc(wb);
2746                         }
2747                 }
2748
2749                 if (mapping->host && !mapping_tagged(mapping,
2750                                                      PAGECACHE_TAG_WRITEBACK))
2751                         sb_clear_inode_writeback(mapping->host);
2752
2753                 xa_unlock_irqrestore(&mapping->i_pages, flags);
2754         } else {
2755                 ret = TestClearPageWriteback(page);
2756         }
2757         if (ret) {
2758                 dec_lruvec_state(lruvec, NR_WRITEBACK);
2759                 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2760                 inc_node_page_state(page, NR_WRITTEN);
2761         }
2762         __unlock_page_memcg(memcg);
2763         return ret;
2764 }
2765
2766 int __test_set_page_writeback(struct page *page, bool keep_write)
2767 {
2768         struct address_space *mapping = page_mapping(page);
2769         int ret, access_ret;
2770
2771         lock_page_memcg(page);
2772         if (mapping && mapping_use_writeback_tags(mapping)) {
2773                 XA_STATE(xas, &mapping->i_pages, page_index(page));
2774                 struct inode *inode = mapping->host;
2775                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2776                 unsigned long flags;
2777
2778                 xas_lock_irqsave(&xas, flags);
2779                 xas_load(&xas);
2780                 ret = TestSetPageWriteback(page);
2781                 if (!ret) {
2782                         bool on_wblist;
2783
2784                         on_wblist = mapping_tagged(mapping,
2785                                                    PAGECACHE_TAG_WRITEBACK);
2786
2787                         xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2788                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT)
2789                                 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2790
2791                         /*
2792                          * We can come through here when swapping anonymous
2793                          * pages, so we don't necessarily have an inode to track
2794                          * for sync.
2795                          */
2796                         if (mapping->host && !on_wblist)
2797                                 sb_mark_inode_writeback(mapping->host);
2798                 }
2799                 if (!PageDirty(page))
2800                         xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2801                 if (!keep_write)
2802                         xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2803                 xas_unlock_irqrestore(&xas, flags);
2804         } else {
2805                 ret = TestSetPageWriteback(page);
2806         }
2807         if (!ret) {
2808                 inc_lruvec_page_state(page, NR_WRITEBACK);
2809                 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2810         }
2811         unlock_page_memcg(page);
2812         access_ret = arch_make_page_accessible(page);
2813         /*
2814          * If writeback has been triggered on a page that cannot be made
2815          * accessible, it is too late to recover here.
2816          */
2817         VM_BUG_ON_PAGE(access_ret != 0, page);
2818
2819         return ret;
2820
2821 }
2822 EXPORT_SYMBOL(__test_set_page_writeback);
2823
2824 /*
2825  * Wait for a page to complete writeback
2826  */
2827 void wait_on_page_writeback(struct page *page)
2828 {
2829         if (PageWriteback(page)) {
2830                 trace_wait_on_page_writeback(page, page_mapping(page));
2831                 wait_on_page_bit(page, PG_writeback);
2832         }
2833 }
2834 EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2835
2836 /**
2837  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2838  * @page:       The page to wait on.
2839  *
2840  * This function determines if the given page is related to a backing device
2841  * that requires page contents to be held stable during writeback.  If so, then
2842  * it will wait for any pending writeback to complete.
2843  */
2844 void wait_for_stable_page(struct page *page)
2845 {
2846         page = thp_head(page);
2847         if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES)
2848                 wait_on_page_writeback(page);
2849 }
2850 EXPORT_SYMBOL_GPL(wait_for_stable_page);