Merge branch 'akpm' (patches from Andrew)
[linux-2.6-microblaze.git] / mm / page-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Initial version
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/pagevec.h>
36 #include <linux/timer.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/signal.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112  * a full sync is triggered after this time elapses without any disk activity.
113  */
114 int laptop_mode;
115
116 EXPORT_SYMBOL(laptop_mode);
117
118 /* End of sysctl-exported parameters */
119
120 struct wb_domain global_wb_domain;
121
122 /* consolidated parameters for balance_dirty_pages() and its subroutines */
123 struct dirty_throttle_control {
124 #ifdef CONFIG_CGROUP_WRITEBACK
125         struct wb_domain        *dom;
126         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
127 #endif
128         struct bdi_writeback    *wb;
129         struct fprop_local_percpu *wb_completions;
130
131         unsigned long           avail;          /* dirtyable */
132         unsigned long           dirty;          /* file_dirty + write + nfs */
133         unsigned long           thresh;         /* dirty threshold */
134         unsigned long           bg_thresh;      /* dirty background threshold */
135
136         unsigned long           wb_dirty;       /* per-wb counterparts */
137         unsigned long           wb_thresh;
138         unsigned long           wb_bg_thresh;
139
140         unsigned long           pos_ratio;
141 };
142
143 /*
144  * Length of period for aging writeout fractions of bdis. This is an
145  * arbitrarily chosen number. The longer the period, the slower fractions will
146  * reflect changes in current writeout rate.
147  */
148 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
149
150 #ifdef CONFIG_CGROUP_WRITEBACK
151
152 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
153                                 .dom = &global_wb_domain,               \
154                                 .wb_completions = &(__wb)->completions
155
156 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
157
158 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
159                                 .dom = mem_cgroup_wb_domain(__wb),      \
160                                 .wb_completions = &(__wb)->memcg_completions, \
161                                 .gdtc = __gdtc
162
163 static bool mdtc_valid(struct dirty_throttle_control *dtc)
164 {
165         return dtc->dom;
166 }
167
168 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
169 {
170         return dtc->dom;
171 }
172
173 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
174 {
175         return mdtc->gdtc;
176 }
177
178 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
179 {
180         return &wb->memcg_completions;
181 }
182
183 static void wb_min_max_ratio(struct bdi_writeback *wb,
184                              unsigned long *minp, unsigned long *maxp)
185 {
186         unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
187         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
188         unsigned long long min = wb->bdi->min_ratio;
189         unsigned long long max = wb->bdi->max_ratio;
190
191         /*
192          * @wb may already be clean by the time control reaches here and
193          * the total may not include its bw.
194          */
195         if (this_bw < tot_bw) {
196                 if (min) {
197                         min *= this_bw;
198                         min = div64_ul(min, tot_bw);
199                 }
200                 if (max < 100) {
201                         max *= this_bw;
202                         max = div64_ul(max, tot_bw);
203                 }
204         }
205
206         *minp = min;
207         *maxp = max;
208 }
209
210 #else   /* CONFIG_CGROUP_WRITEBACK */
211
212 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
213                                 .wb_completions = &(__wb)->completions
214 #define GDTC_INIT_NO_WB
215 #define MDTC_INIT(__wb, __gdtc)
216
217 static bool mdtc_valid(struct dirty_throttle_control *dtc)
218 {
219         return false;
220 }
221
222 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
223 {
224         return &global_wb_domain;
225 }
226
227 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
228 {
229         return NULL;
230 }
231
232 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
233 {
234         return NULL;
235 }
236
237 static void wb_min_max_ratio(struct bdi_writeback *wb,
238                              unsigned long *minp, unsigned long *maxp)
239 {
240         *minp = wb->bdi->min_ratio;
241         *maxp = wb->bdi->max_ratio;
242 }
243
244 #endif  /* CONFIG_CGROUP_WRITEBACK */
245
246 /*
247  * In a memory zone, there is a certain amount of pages we consider
248  * available for the page cache, which is essentially the number of
249  * free and reclaimable pages, minus some zone reserves to protect
250  * lowmem and the ability to uphold the zone's watermarks without
251  * requiring writeback.
252  *
253  * This number of dirtyable pages is the base value of which the
254  * user-configurable dirty ratio is the effective number of pages that
255  * are allowed to be actually dirtied.  Per individual zone, or
256  * globally by using the sum of dirtyable pages over all zones.
257  *
258  * Because the user is allowed to specify the dirty limit globally as
259  * absolute number of bytes, calculating the per-zone dirty limit can
260  * require translating the configured limit into a percentage of
261  * global dirtyable memory first.
262  */
263
264 /**
265  * node_dirtyable_memory - number of dirtyable pages in a node
266  * @pgdat: the node
267  *
268  * Return: the node's number of pages potentially available for dirty
269  * page cache.  This is the base value for the per-node dirty limits.
270  */
271 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
272 {
273         unsigned long nr_pages = 0;
274         int z;
275
276         for (z = 0; z < MAX_NR_ZONES; z++) {
277                 struct zone *zone = pgdat->node_zones + z;
278
279                 if (!populated_zone(zone))
280                         continue;
281
282                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
283         }
284
285         /*
286          * Pages reserved for the kernel should not be considered
287          * dirtyable, to prevent a situation where reclaim has to
288          * clean pages in order to balance the zones.
289          */
290         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
291
292         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
293         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
294
295         return nr_pages;
296 }
297
298 static unsigned long highmem_dirtyable_memory(unsigned long total)
299 {
300 #ifdef CONFIG_HIGHMEM
301         int node;
302         unsigned long x = 0;
303         int i;
304
305         for_each_node_state(node, N_HIGH_MEMORY) {
306                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
307                         struct zone *z;
308                         unsigned long nr_pages;
309
310                         if (!is_highmem_idx(i))
311                                 continue;
312
313                         z = &NODE_DATA(node)->node_zones[i];
314                         if (!populated_zone(z))
315                                 continue;
316
317                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
318                         /* watch for underflows */
319                         nr_pages -= min(nr_pages, high_wmark_pages(z));
320                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
321                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
322                         x += nr_pages;
323                 }
324         }
325
326         /*
327          * Unreclaimable memory (kernel memory or anonymous memory
328          * without swap) can bring down the dirtyable pages below
329          * the zone's dirty balance reserve and the above calculation
330          * will underflow.  However we still want to add in nodes
331          * which are below threshold (negative values) to get a more
332          * accurate calculation but make sure that the total never
333          * underflows.
334          */
335         if ((long)x < 0)
336                 x = 0;
337
338         /*
339          * Make sure that the number of highmem pages is never larger
340          * than the number of the total dirtyable memory. This can only
341          * occur in very strange VM situations but we want to make sure
342          * that this does not occur.
343          */
344         return min(x, total);
345 #else
346         return 0;
347 #endif
348 }
349
350 /**
351  * global_dirtyable_memory - number of globally dirtyable pages
352  *
353  * Return: the global number of pages potentially available for dirty
354  * page cache.  This is the base value for the global dirty limits.
355  */
356 static unsigned long global_dirtyable_memory(void)
357 {
358         unsigned long x;
359
360         x = global_zone_page_state(NR_FREE_PAGES);
361         /*
362          * Pages reserved for the kernel should not be considered
363          * dirtyable, to prevent a situation where reclaim has to
364          * clean pages in order to balance the zones.
365          */
366         x -= min(x, totalreserve_pages);
367
368         x += global_node_page_state(NR_INACTIVE_FILE);
369         x += global_node_page_state(NR_ACTIVE_FILE);
370
371         if (!vm_highmem_is_dirtyable)
372                 x -= highmem_dirtyable_memory(x);
373
374         return x + 1;   /* Ensure that we never return 0 */
375 }
376
377 /**
378  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
379  * @dtc: dirty_throttle_control of interest
380  *
381  * Calculate @dtc->thresh and ->bg_thresh considering
382  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
383  * must ensure that @dtc->avail is set before calling this function.  The
384  * dirty limits will be lifted by 1/4 for real-time tasks.
385  */
386 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
387 {
388         const unsigned long available_memory = dtc->avail;
389         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
390         unsigned long bytes = vm_dirty_bytes;
391         unsigned long bg_bytes = dirty_background_bytes;
392         /* convert ratios to per-PAGE_SIZE for higher precision */
393         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
394         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
395         unsigned long thresh;
396         unsigned long bg_thresh;
397         struct task_struct *tsk;
398
399         /* gdtc is !NULL iff @dtc is for memcg domain */
400         if (gdtc) {
401                 unsigned long global_avail = gdtc->avail;
402
403                 /*
404                  * The byte settings can't be applied directly to memcg
405                  * domains.  Convert them to ratios by scaling against
406                  * globally available memory.  As the ratios are in
407                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
408                  * number of pages.
409                  */
410                 if (bytes)
411                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
412                                     PAGE_SIZE);
413                 if (bg_bytes)
414                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
415                                        PAGE_SIZE);
416                 bytes = bg_bytes = 0;
417         }
418
419         if (bytes)
420                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
421         else
422                 thresh = (ratio * available_memory) / PAGE_SIZE;
423
424         if (bg_bytes)
425                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
426         else
427                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
428
429         if (bg_thresh >= thresh)
430                 bg_thresh = thresh / 2;
431         tsk = current;
432         if (rt_task(tsk)) {
433                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
434                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
435         }
436         dtc->thresh = thresh;
437         dtc->bg_thresh = bg_thresh;
438
439         /* we should eventually report the domain in the TP */
440         if (!gdtc)
441                 trace_global_dirty_state(bg_thresh, thresh);
442 }
443
444 /**
445  * global_dirty_limits - background-writeback and dirty-throttling thresholds
446  * @pbackground: out parameter for bg_thresh
447  * @pdirty: out parameter for thresh
448  *
449  * Calculate bg_thresh and thresh for global_wb_domain.  See
450  * domain_dirty_limits() for details.
451  */
452 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
453 {
454         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
455
456         gdtc.avail = global_dirtyable_memory();
457         domain_dirty_limits(&gdtc);
458
459         *pbackground = gdtc.bg_thresh;
460         *pdirty = gdtc.thresh;
461 }
462
463 /**
464  * node_dirty_limit - maximum number of dirty pages allowed in a node
465  * @pgdat: the node
466  *
467  * Return: the maximum number of dirty pages allowed in a node, based
468  * on the node's dirtyable memory.
469  */
470 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
471 {
472         unsigned long node_memory = node_dirtyable_memory(pgdat);
473         struct task_struct *tsk = current;
474         unsigned long dirty;
475
476         if (vm_dirty_bytes)
477                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
478                         node_memory / global_dirtyable_memory();
479         else
480                 dirty = vm_dirty_ratio * node_memory / 100;
481
482         if (rt_task(tsk))
483                 dirty += dirty / 4;
484
485         return dirty;
486 }
487
488 /**
489  * node_dirty_ok - tells whether a node is within its dirty limits
490  * @pgdat: the node to check
491  *
492  * Return: %true when the dirty pages in @pgdat are within the node's
493  * dirty limit, %false if the limit is exceeded.
494  */
495 bool node_dirty_ok(struct pglist_data *pgdat)
496 {
497         unsigned long limit = node_dirty_limit(pgdat);
498         unsigned long nr_pages = 0;
499
500         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
501         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
502
503         return nr_pages <= limit;
504 }
505
506 int dirty_background_ratio_handler(struct ctl_table *table, int write,
507                 void *buffer, size_t *lenp, loff_t *ppos)
508 {
509         int ret;
510
511         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
512         if (ret == 0 && write)
513                 dirty_background_bytes = 0;
514         return ret;
515 }
516
517 int dirty_background_bytes_handler(struct ctl_table *table, int write,
518                 void *buffer, size_t *lenp, loff_t *ppos)
519 {
520         int ret;
521
522         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
523         if (ret == 0 && write)
524                 dirty_background_ratio = 0;
525         return ret;
526 }
527
528 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
529                 size_t *lenp, loff_t *ppos)
530 {
531         int old_ratio = vm_dirty_ratio;
532         int ret;
533
534         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
535         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
536                 writeback_set_ratelimit();
537                 vm_dirty_bytes = 0;
538         }
539         return ret;
540 }
541
542 int dirty_bytes_handler(struct ctl_table *table, int write,
543                 void *buffer, size_t *lenp, loff_t *ppos)
544 {
545         unsigned long old_bytes = vm_dirty_bytes;
546         int ret;
547
548         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
549         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
550                 writeback_set_ratelimit();
551                 vm_dirty_ratio = 0;
552         }
553         return ret;
554 }
555
556 static unsigned long wp_next_time(unsigned long cur_time)
557 {
558         cur_time += VM_COMPLETIONS_PERIOD_LEN;
559         /* 0 has a special meaning... */
560         if (!cur_time)
561                 return 1;
562         return cur_time;
563 }
564
565 static void wb_domain_writeout_inc(struct wb_domain *dom,
566                                    struct fprop_local_percpu *completions,
567                                    unsigned int max_prop_frac)
568 {
569         __fprop_inc_percpu_max(&dom->completions, completions,
570                                max_prop_frac);
571         /* First event after period switching was turned off? */
572         if (unlikely(!dom->period_time)) {
573                 /*
574                  * We can race with other __bdi_writeout_inc calls here but
575                  * it does not cause any harm since the resulting time when
576                  * timer will fire and what is in writeout_period_time will be
577                  * roughly the same.
578                  */
579                 dom->period_time = wp_next_time(jiffies);
580                 mod_timer(&dom->period_timer, dom->period_time);
581         }
582 }
583
584 /*
585  * Increment @wb's writeout completion count and the global writeout
586  * completion count. Called from test_clear_page_writeback().
587  */
588 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
589 {
590         struct wb_domain *cgdom;
591
592         inc_wb_stat(wb, WB_WRITTEN);
593         wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
594                                wb->bdi->max_prop_frac);
595
596         cgdom = mem_cgroup_wb_domain(wb);
597         if (cgdom)
598                 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
599                                        wb->bdi->max_prop_frac);
600 }
601
602 void wb_writeout_inc(struct bdi_writeback *wb)
603 {
604         unsigned long flags;
605
606         local_irq_save(flags);
607         __wb_writeout_inc(wb);
608         local_irq_restore(flags);
609 }
610 EXPORT_SYMBOL_GPL(wb_writeout_inc);
611
612 /*
613  * On idle system, we can be called long after we scheduled because we use
614  * deferred timers so count with missed periods.
615  */
616 static void writeout_period(struct timer_list *t)
617 {
618         struct wb_domain *dom = from_timer(dom, t, period_timer);
619         int miss_periods = (jiffies - dom->period_time) /
620                                                  VM_COMPLETIONS_PERIOD_LEN;
621
622         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
623                 dom->period_time = wp_next_time(dom->period_time +
624                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
625                 mod_timer(&dom->period_timer, dom->period_time);
626         } else {
627                 /*
628                  * Aging has zeroed all fractions. Stop wasting CPU on period
629                  * updates.
630                  */
631                 dom->period_time = 0;
632         }
633 }
634
635 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
636 {
637         memset(dom, 0, sizeof(*dom));
638
639         spin_lock_init(&dom->lock);
640
641         timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
642
643         dom->dirty_limit_tstamp = jiffies;
644
645         return fprop_global_init(&dom->completions, gfp);
646 }
647
648 #ifdef CONFIG_CGROUP_WRITEBACK
649 void wb_domain_exit(struct wb_domain *dom)
650 {
651         del_timer_sync(&dom->period_timer);
652         fprop_global_destroy(&dom->completions);
653 }
654 #endif
655
656 /*
657  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
658  * registered backing devices, which, for obvious reasons, can not
659  * exceed 100%.
660  */
661 static unsigned int bdi_min_ratio;
662
663 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
664 {
665         int ret = 0;
666
667         spin_lock_bh(&bdi_lock);
668         if (min_ratio > bdi->max_ratio) {
669                 ret = -EINVAL;
670         } else {
671                 min_ratio -= bdi->min_ratio;
672                 if (bdi_min_ratio + min_ratio < 100) {
673                         bdi_min_ratio += min_ratio;
674                         bdi->min_ratio += min_ratio;
675                 } else {
676                         ret = -EINVAL;
677                 }
678         }
679         spin_unlock_bh(&bdi_lock);
680
681         return ret;
682 }
683
684 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
685 {
686         int ret = 0;
687
688         if (max_ratio > 100)
689                 return -EINVAL;
690
691         spin_lock_bh(&bdi_lock);
692         if (bdi->min_ratio > max_ratio) {
693                 ret = -EINVAL;
694         } else {
695                 bdi->max_ratio = max_ratio;
696                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
697         }
698         spin_unlock_bh(&bdi_lock);
699
700         return ret;
701 }
702 EXPORT_SYMBOL(bdi_set_max_ratio);
703
704 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
705                                            unsigned long bg_thresh)
706 {
707         return (thresh + bg_thresh) / 2;
708 }
709
710 static unsigned long hard_dirty_limit(struct wb_domain *dom,
711                                       unsigned long thresh)
712 {
713         return max(thresh, dom->dirty_limit);
714 }
715
716 /*
717  * Memory which can be further allocated to a memcg domain is capped by
718  * system-wide clean memory excluding the amount being used in the domain.
719  */
720 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
721                             unsigned long filepages, unsigned long headroom)
722 {
723         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
724         unsigned long clean = filepages - min(filepages, mdtc->dirty);
725         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
726         unsigned long other_clean = global_clean - min(global_clean, clean);
727
728         mdtc->avail = filepages + min(headroom, other_clean);
729 }
730
731 /**
732  * __wb_calc_thresh - @wb's share of dirty throttling threshold
733  * @dtc: dirty_throttle_context of interest
734  *
735  * Note that balance_dirty_pages() will only seriously take it as a hard limit
736  * when sleeping max_pause per page is not enough to keep the dirty pages under
737  * control. For example, when the device is completely stalled due to some error
738  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
739  * In the other normal situations, it acts more gently by throttling the tasks
740  * more (rather than completely block them) when the wb dirty pages go high.
741  *
742  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
743  * - starving fast devices
744  * - piling up dirty pages (that will take long time to sync) on slow devices
745  *
746  * The wb's share of dirty limit will be adapting to its throughput and
747  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
748  *
749  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
750  * dirty balancing includes all PG_dirty and PG_writeback pages.
751  */
752 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
753 {
754         struct wb_domain *dom = dtc_dom(dtc);
755         unsigned long thresh = dtc->thresh;
756         u64 wb_thresh;
757         unsigned long numerator, denominator;
758         unsigned long wb_min_ratio, wb_max_ratio;
759
760         /*
761          * Calculate this BDI's share of the thresh ratio.
762          */
763         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
764                               &numerator, &denominator);
765
766         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
767         wb_thresh *= numerator;
768         wb_thresh = div64_ul(wb_thresh, denominator);
769
770         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
771
772         wb_thresh += (thresh * wb_min_ratio) / 100;
773         if (wb_thresh > (thresh * wb_max_ratio) / 100)
774                 wb_thresh = thresh * wb_max_ratio / 100;
775
776         return wb_thresh;
777 }
778
779 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
780 {
781         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
782                                                .thresh = thresh };
783         return __wb_calc_thresh(&gdtc);
784 }
785
786 /*
787  *                           setpoint - dirty 3
788  *        f(dirty) := 1.0 + (----------------)
789  *                           limit - setpoint
790  *
791  * it's a 3rd order polynomial that subjects to
792  *
793  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
794  * (2) f(setpoint) = 1.0 => the balance point
795  * (3) f(limit)    = 0   => the hard limit
796  * (4) df/dx      <= 0   => negative feedback control
797  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
798  *     => fast response on large errors; small oscillation near setpoint
799  */
800 static long long pos_ratio_polynom(unsigned long setpoint,
801                                           unsigned long dirty,
802                                           unsigned long limit)
803 {
804         long long pos_ratio;
805         long x;
806
807         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
808                       (limit - setpoint) | 1);
809         pos_ratio = x;
810         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
811         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
812         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
813
814         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
815 }
816
817 /*
818  * Dirty position control.
819  *
820  * (o) global/bdi setpoints
821  *
822  * We want the dirty pages be balanced around the global/wb setpoints.
823  * When the number of dirty pages is higher/lower than the setpoint, the
824  * dirty position control ratio (and hence task dirty ratelimit) will be
825  * decreased/increased to bring the dirty pages back to the setpoint.
826  *
827  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
828  *
829  *     if (dirty < setpoint) scale up   pos_ratio
830  *     if (dirty > setpoint) scale down pos_ratio
831  *
832  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
833  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
834  *
835  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
836  *
837  * (o) global control line
838  *
839  *     ^ pos_ratio
840  *     |
841  *     |            |<===== global dirty control scope ======>|
842  * 2.0  * * * * * * *
843  *     |            .*
844  *     |            . *
845  *     |            .   *
846  *     |            .     *
847  *     |            .        *
848  *     |            .            *
849  * 1.0 ................................*
850  *     |            .                  .     *
851  *     |            .                  .          *
852  *     |            .                  .              *
853  *     |            .                  .                 *
854  *     |            .                  .                    *
855  *   0 +------------.------------------.----------------------*------------->
856  *           freerun^          setpoint^                 limit^   dirty pages
857  *
858  * (o) wb control line
859  *
860  *     ^ pos_ratio
861  *     |
862  *     |            *
863  *     |              *
864  *     |                *
865  *     |                  *
866  *     |                    * |<=========== span ============>|
867  * 1.0 .......................*
868  *     |                      . *
869  *     |                      .   *
870  *     |                      .     *
871  *     |                      .       *
872  *     |                      .         *
873  *     |                      .           *
874  *     |                      .             *
875  *     |                      .               *
876  *     |                      .                 *
877  *     |                      .                   *
878  *     |                      .                     *
879  * 1/4 ...............................................* * * * * * * * * * * *
880  *     |                      .                         .
881  *     |                      .                           .
882  *     |                      .                             .
883  *   0 +----------------------.-------------------------------.------------->
884  *                wb_setpoint^                    x_intercept^
885  *
886  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
887  * be smoothly throttled down to normal if it starts high in situations like
888  * - start writing to a slow SD card and a fast disk at the same time. The SD
889  *   card's wb_dirty may rush to many times higher than wb_setpoint.
890  * - the wb dirty thresh drops quickly due to change of JBOD workload
891  */
892 static void wb_position_ratio(struct dirty_throttle_control *dtc)
893 {
894         struct bdi_writeback *wb = dtc->wb;
895         unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
896         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
897         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
898         unsigned long wb_thresh = dtc->wb_thresh;
899         unsigned long x_intercept;
900         unsigned long setpoint;         /* dirty pages' target balance point */
901         unsigned long wb_setpoint;
902         unsigned long span;
903         long long pos_ratio;            /* for scaling up/down the rate limit */
904         long x;
905
906         dtc->pos_ratio = 0;
907
908         if (unlikely(dtc->dirty >= limit))
909                 return;
910
911         /*
912          * global setpoint
913          *
914          * See comment for pos_ratio_polynom().
915          */
916         setpoint = (freerun + limit) / 2;
917         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
918
919         /*
920          * The strictlimit feature is a tool preventing mistrusted filesystems
921          * from growing a large number of dirty pages before throttling. For
922          * such filesystems balance_dirty_pages always checks wb counters
923          * against wb limits. Even if global "nr_dirty" is under "freerun".
924          * This is especially important for fuse which sets bdi->max_ratio to
925          * 1% by default. Without strictlimit feature, fuse writeback may
926          * consume arbitrary amount of RAM because it is accounted in
927          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
928          *
929          * Here, in wb_position_ratio(), we calculate pos_ratio based on
930          * two values: wb_dirty and wb_thresh. Let's consider an example:
931          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
932          * limits are set by default to 10% and 20% (background and throttle).
933          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
934          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
935          * about ~6K pages (as the average of background and throttle wb
936          * limits). The 3rd order polynomial will provide positive feedback if
937          * wb_dirty is under wb_setpoint and vice versa.
938          *
939          * Note, that we cannot use global counters in these calculations
940          * because we want to throttle process writing to a strictlimit wb
941          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
942          * in the example above).
943          */
944         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
945                 long long wb_pos_ratio;
946
947                 if (dtc->wb_dirty < 8) {
948                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
949                                            2 << RATELIMIT_CALC_SHIFT);
950                         return;
951                 }
952
953                 if (dtc->wb_dirty >= wb_thresh)
954                         return;
955
956                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
957                                                     dtc->wb_bg_thresh);
958
959                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
960                         return;
961
962                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
963                                                  wb_thresh);
964
965                 /*
966                  * Typically, for strictlimit case, wb_setpoint << setpoint
967                  * and pos_ratio >> wb_pos_ratio. In the other words global
968                  * state ("dirty") is not limiting factor and we have to
969                  * make decision based on wb counters. But there is an
970                  * important case when global pos_ratio should get precedence:
971                  * global limits are exceeded (e.g. due to activities on other
972                  * wb's) while given strictlimit wb is below limit.
973                  *
974                  * "pos_ratio * wb_pos_ratio" would work for the case above,
975                  * but it would look too non-natural for the case of all
976                  * activity in the system coming from a single strictlimit wb
977                  * with bdi->max_ratio == 100%.
978                  *
979                  * Note that min() below somewhat changes the dynamics of the
980                  * control system. Normally, pos_ratio value can be well over 3
981                  * (when globally we are at freerun and wb is well below wb
982                  * setpoint). Now the maximum pos_ratio in the same situation
983                  * is 2. We might want to tweak this if we observe the control
984                  * system is too slow to adapt.
985                  */
986                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
987                 return;
988         }
989
990         /*
991          * We have computed basic pos_ratio above based on global situation. If
992          * the wb is over/under its share of dirty pages, we want to scale
993          * pos_ratio further down/up. That is done by the following mechanism.
994          */
995
996         /*
997          * wb setpoint
998          *
999          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1000          *
1001          *                        x_intercept - wb_dirty
1002          *                     := --------------------------
1003          *                        x_intercept - wb_setpoint
1004          *
1005          * The main wb control line is a linear function that subjects to
1006          *
1007          * (1) f(wb_setpoint) = 1.0
1008          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1009          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1010          *
1011          * For single wb case, the dirty pages are observed to fluctuate
1012          * regularly within range
1013          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1014          * for various filesystems, where (2) can yield in a reasonable 12.5%
1015          * fluctuation range for pos_ratio.
1016          *
1017          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1018          * own size, so move the slope over accordingly and choose a slope that
1019          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1020          */
1021         if (unlikely(wb_thresh > dtc->thresh))
1022                 wb_thresh = dtc->thresh;
1023         /*
1024          * It's very possible that wb_thresh is close to 0 not because the
1025          * device is slow, but that it has remained inactive for long time.
1026          * Honour such devices a reasonable good (hopefully IO efficient)
1027          * threshold, so that the occasional writes won't be blocked and active
1028          * writes can rampup the threshold quickly.
1029          */
1030         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1031         /*
1032          * scale global setpoint to wb's:
1033          *      wb_setpoint = setpoint * wb_thresh / thresh
1034          */
1035         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1036         wb_setpoint = setpoint * (u64)x >> 16;
1037         /*
1038          * Use span=(8*write_bw) in single wb case as indicated by
1039          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1040          *
1041          *        wb_thresh                    thresh - wb_thresh
1042          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1043          *         thresh                           thresh
1044          */
1045         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1046         x_intercept = wb_setpoint + span;
1047
1048         if (dtc->wb_dirty < x_intercept - span / 4) {
1049                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1050                                       (x_intercept - wb_setpoint) | 1);
1051         } else
1052                 pos_ratio /= 4;
1053
1054         /*
1055          * wb reserve area, safeguard against dirty pool underrun and disk idle
1056          * It may push the desired control point of global dirty pages higher
1057          * than setpoint.
1058          */
1059         x_intercept = wb_thresh / 2;
1060         if (dtc->wb_dirty < x_intercept) {
1061                 if (dtc->wb_dirty > x_intercept / 8)
1062                         pos_ratio = div_u64(pos_ratio * x_intercept,
1063                                             dtc->wb_dirty);
1064                 else
1065                         pos_ratio *= 8;
1066         }
1067
1068         dtc->pos_ratio = pos_ratio;
1069 }
1070
1071 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1072                                       unsigned long elapsed,
1073                                       unsigned long written)
1074 {
1075         const unsigned long period = roundup_pow_of_two(3 * HZ);
1076         unsigned long avg = wb->avg_write_bandwidth;
1077         unsigned long old = wb->write_bandwidth;
1078         u64 bw;
1079
1080         /*
1081          * bw = written * HZ / elapsed
1082          *
1083          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1084          * write_bandwidth = ---------------------------------------------------
1085          *                                          period
1086          *
1087          * @written may have decreased due to account_page_redirty().
1088          * Avoid underflowing @bw calculation.
1089          */
1090         bw = written - min(written, wb->written_stamp);
1091         bw *= HZ;
1092         if (unlikely(elapsed > period)) {
1093                 bw = div64_ul(bw, elapsed);
1094                 avg = bw;
1095                 goto out;
1096         }
1097         bw += (u64)wb->write_bandwidth * (period - elapsed);
1098         bw >>= ilog2(period);
1099
1100         /*
1101          * one more level of smoothing, for filtering out sudden spikes
1102          */
1103         if (avg > old && old >= (unsigned long)bw)
1104                 avg -= (avg - old) >> 3;
1105
1106         if (avg < old && old <= (unsigned long)bw)
1107                 avg += (old - avg) >> 3;
1108
1109 out:
1110         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1111         avg = max(avg, 1LU);
1112         if (wb_has_dirty_io(wb)) {
1113                 long delta = avg - wb->avg_write_bandwidth;
1114                 WARN_ON_ONCE(atomic_long_add_return(delta,
1115                                         &wb->bdi->tot_write_bandwidth) <= 0);
1116         }
1117         wb->write_bandwidth = bw;
1118         WRITE_ONCE(wb->avg_write_bandwidth, avg);
1119 }
1120
1121 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1122 {
1123         struct wb_domain *dom = dtc_dom(dtc);
1124         unsigned long thresh = dtc->thresh;
1125         unsigned long limit = dom->dirty_limit;
1126
1127         /*
1128          * Follow up in one step.
1129          */
1130         if (limit < thresh) {
1131                 limit = thresh;
1132                 goto update;
1133         }
1134
1135         /*
1136          * Follow down slowly. Use the higher one as the target, because thresh
1137          * may drop below dirty. This is exactly the reason to introduce
1138          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1139          */
1140         thresh = max(thresh, dtc->dirty);
1141         if (limit > thresh) {
1142                 limit -= (limit - thresh) >> 5;
1143                 goto update;
1144         }
1145         return;
1146 update:
1147         dom->dirty_limit = limit;
1148 }
1149
1150 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1151                                       unsigned long now)
1152 {
1153         struct wb_domain *dom = dtc_dom(dtc);
1154
1155         /*
1156          * check locklessly first to optimize away locking for the most time
1157          */
1158         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1159                 return;
1160
1161         spin_lock(&dom->lock);
1162         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1163                 update_dirty_limit(dtc);
1164                 dom->dirty_limit_tstamp = now;
1165         }
1166         spin_unlock(&dom->lock);
1167 }
1168
1169 /*
1170  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1171  *
1172  * Normal wb tasks will be curbed at or below it in long term.
1173  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1174  */
1175 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1176                                       unsigned long dirtied,
1177                                       unsigned long elapsed)
1178 {
1179         struct bdi_writeback *wb = dtc->wb;
1180         unsigned long dirty = dtc->dirty;
1181         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1182         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1183         unsigned long setpoint = (freerun + limit) / 2;
1184         unsigned long write_bw = wb->avg_write_bandwidth;
1185         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1186         unsigned long dirty_rate;
1187         unsigned long task_ratelimit;
1188         unsigned long balanced_dirty_ratelimit;
1189         unsigned long step;
1190         unsigned long x;
1191         unsigned long shift;
1192
1193         /*
1194          * The dirty rate will match the writeout rate in long term, except
1195          * when dirty pages are truncated by userspace or re-dirtied by FS.
1196          */
1197         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1198
1199         /*
1200          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1201          */
1202         task_ratelimit = (u64)dirty_ratelimit *
1203                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1204         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1205
1206         /*
1207          * A linear estimation of the "balanced" throttle rate. The theory is,
1208          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1209          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1210          * formula will yield the balanced rate limit (write_bw / N).
1211          *
1212          * Note that the expanded form is not a pure rate feedback:
1213          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1214          * but also takes pos_ratio into account:
1215          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1216          *
1217          * (1) is not realistic because pos_ratio also takes part in balancing
1218          * the dirty rate.  Consider the state
1219          *      pos_ratio = 0.5                                              (3)
1220          *      rate = 2 * (write_bw / N)                                    (4)
1221          * If (1) is used, it will stuck in that state! Because each dd will
1222          * be throttled at
1223          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1224          * yielding
1225          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1226          * put (6) into (1) we get
1227          *      rate_(i+1) = rate_(i)                                        (7)
1228          *
1229          * So we end up using (2) to always keep
1230          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1231          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1232          * pos_ratio is able to drive itself to 1.0, which is not only where
1233          * the dirty count meet the setpoint, but also where the slope of
1234          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1235          */
1236         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1237                                            dirty_rate | 1);
1238         /*
1239          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1240          */
1241         if (unlikely(balanced_dirty_ratelimit > write_bw))
1242                 balanced_dirty_ratelimit = write_bw;
1243
1244         /*
1245          * We could safely do this and return immediately:
1246          *
1247          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1248          *
1249          * However to get a more stable dirty_ratelimit, the below elaborated
1250          * code makes use of task_ratelimit to filter out singular points and
1251          * limit the step size.
1252          *
1253          * The below code essentially only uses the relative value of
1254          *
1255          *      task_ratelimit - dirty_ratelimit
1256          *      = (pos_ratio - 1) * dirty_ratelimit
1257          *
1258          * which reflects the direction and size of dirty position error.
1259          */
1260
1261         /*
1262          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1263          * task_ratelimit is on the same side of dirty_ratelimit, too.
1264          * For example, when
1265          * - dirty_ratelimit > balanced_dirty_ratelimit
1266          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1267          * lowering dirty_ratelimit will help meet both the position and rate
1268          * control targets. Otherwise, don't update dirty_ratelimit if it will
1269          * only help meet the rate target. After all, what the users ultimately
1270          * feel and care are stable dirty rate and small position error.
1271          *
1272          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1273          * and filter out the singular points of balanced_dirty_ratelimit. Which
1274          * keeps jumping around randomly and can even leap far away at times
1275          * due to the small 200ms estimation period of dirty_rate (we want to
1276          * keep that period small to reduce time lags).
1277          */
1278         step = 0;
1279
1280         /*
1281          * For strictlimit case, calculations above were based on wb counters
1282          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1283          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1284          * Hence, to calculate "step" properly, we have to use wb_dirty as
1285          * "dirty" and wb_setpoint as "setpoint".
1286          *
1287          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1288          * it's possible that wb_thresh is close to zero due to inactivity
1289          * of backing device.
1290          */
1291         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1292                 dirty = dtc->wb_dirty;
1293                 if (dtc->wb_dirty < 8)
1294                         setpoint = dtc->wb_dirty + 1;
1295                 else
1296                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1297         }
1298
1299         if (dirty < setpoint) {
1300                 x = min3(wb->balanced_dirty_ratelimit,
1301                          balanced_dirty_ratelimit, task_ratelimit);
1302                 if (dirty_ratelimit < x)
1303                         step = x - dirty_ratelimit;
1304         } else {
1305                 x = max3(wb->balanced_dirty_ratelimit,
1306                          balanced_dirty_ratelimit, task_ratelimit);
1307                 if (dirty_ratelimit > x)
1308                         step = dirty_ratelimit - x;
1309         }
1310
1311         /*
1312          * Don't pursue 100% rate matching. It's impossible since the balanced
1313          * rate itself is constantly fluctuating. So decrease the track speed
1314          * when it gets close to the target. Helps eliminate pointless tremors.
1315          */
1316         shift = dirty_ratelimit / (2 * step + 1);
1317         if (shift < BITS_PER_LONG)
1318                 step = DIV_ROUND_UP(step >> shift, 8);
1319         else
1320                 step = 0;
1321
1322         if (dirty_ratelimit < balanced_dirty_ratelimit)
1323                 dirty_ratelimit += step;
1324         else
1325                 dirty_ratelimit -= step;
1326
1327         WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1328         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1329
1330         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1331 }
1332
1333 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1334                                   struct dirty_throttle_control *mdtc,
1335                                   bool update_ratelimit)
1336 {
1337         struct bdi_writeback *wb = gdtc->wb;
1338         unsigned long now = jiffies;
1339         unsigned long elapsed;
1340         unsigned long dirtied;
1341         unsigned long written;
1342
1343         spin_lock(&wb->list_lock);
1344
1345         /*
1346          * Lockless checks for elapsed time are racy and delayed update after
1347          * IO completion doesn't do it at all (to make sure written pages are
1348          * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1349          * division errors.
1350          */
1351         elapsed = max(now - wb->bw_time_stamp, 1UL);
1352         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1353         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1354
1355         if (update_ratelimit) {
1356                 domain_update_dirty_limit(gdtc, now);
1357                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1358
1359                 /*
1360                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1361                  * compiler has no way to figure that out.  Help it.
1362                  */
1363                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1364                         domain_update_dirty_limit(mdtc, now);
1365                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1366                 }
1367         }
1368         wb_update_write_bandwidth(wb, elapsed, written);
1369
1370         wb->dirtied_stamp = dirtied;
1371         wb->written_stamp = written;
1372         WRITE_ONCE(wb->bw_time_stamp, now);
1373         spin_unlock(&wb->list_lock);
1374 }
1375
1376 void wb_update_bandwidth(struct bdi_writeback *wb)
1377 {
1378         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1379
1380         __wb_update_bandwidth(&gdtc, NULL, false);
1381 }
1382
1383 /* Interval after which we consider wb idle and don't estimate bandwidth */
1384 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1385
1386 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1387 {
1388         unsigned long now = jiffies;
1389         unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1390
1391         if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1392             !atomic_read(&wb->writeback_inodes)) {
1393                 spin_lock(&wb->list_lock);
1394                 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1395                 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1396                 WRITE_ONCE(wb->bw_time_stamp, now);
1397                 spin_unlock(&wb->list_lock);
1398         }
1399 }
1400
1401 /*
1402  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1403  * will look to see if it needs to start dirty throttling.
1404  *
1405  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1406  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1407  * (the number of pages we may dirty without exceeding the dirty limits).
1408  */
1409 static unsigned long dirty_poll_interval(unsigned long dirty,
1410                                          unsigned long thresh)
1411 {
1412         if (thresh > dirty)
1413                 return 1UL << (ilog2(thresh - dirty) >> 1);
1414
1415         return 1;
1416 }
1417
1418 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1419                                   unsigned long wb_dirty)
1420 {
1421         unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1422         unsigned long t;
1423
1424         /*
1425          * Limit pause time for small memory systems. If sleeping for too long
1426          * time, a small pool of dirty/writeback pages may go empty and disk go
1427          * idle.
1428          *
1429          * 8 serves as the safety ratio.
1430          */
1431         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1432         t++;
1433
1434         return min_t(unsigned long, t, MAX_PAUSE);
1435 }
1436
1437 static long wb_min_pause(struct bdi_writeback *wb,
1438                          long max_pause,
1439                          unsigned long task_ratelimit,
1440                          unsigned long dirty_ratelimit,
1441                          int *nr_dirtied_pause)
1442 {
1443         long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1444         long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1445         long t;         /* target pause */
1446         long pause;     /* estimated next pause */
1447         int pages;      /* target nr_dirtied_pause */
1448
1449         /* target for 10ms pause on 1-dd case */
1450         t = max(1, HZ / 100);
1451
1452         /*
1453          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1454          * overheads.
1455          *
1456          * (N * 10ms) on 2^N concurrent tasks.
1457          */
1458         if (hi > lo)
1459                 t += (hi - lo) * (10 * HZ) / 1024;
1460
1461         /*
1462          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1463          * on the much more stable dirty_ratelimit. However the next pause time
1464          * will be computed based on task_ratelimit and the two rate limits may
1465          * depart considerably at some time. Especially if task_ratelimit goes
1466          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1467          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1468          * result task_ratelimit won't be executed faithfully, which could
1469          * eventually bring down dirty_ratelimit.
1470          *
1471          * We apply two rules to fix it up:
1472          * 1) try to estimate the next pause time and if necessary, use a lower
1473          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1474          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1475          * 2) limit the target pause time to max_pause/2, so that the normal
1476          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1477          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1478          */
1479         t = min(t, 1 + max_pause / 2);
1480         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1481
1482         /*
1483          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1484          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1485          * When the 16 consecutive reads are often interrupted by some dirty
1486          * throttling pause during the async writes, cfq will go into idles
1487          * (deadline is fine). So push nr_dirtied_pause as high as possible
1488          * until reaches DIRTY_POLL_THRESH=32 pages.
1489          */
1490         if (pages < DIRTY_POLL_THRESH) {
1491                 t = max_pause;
1492                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1493                 if (pages > DIRTY_POLL_THRESH) {
1494                         pages = DIRTY_POLL_THRESH;
1495                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1496                 }
1497         }
1498
1499         pause = HZ * pages / (task_ratelimit + 1);
1500         if (pause > max_pause) {
1501                 t = max_pause;
1502                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1503         }
1504
1505         *nr_dirtied_pause = pages;
1506         /*
1507          * The minimal pause time will normally be half the target pause time.
1508          */
1509         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1510 }
1511
1512 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1513 {
1514         struct bdi_writeback *wb = dtc->wb;
1515         unsigned long wb_reclaimable;
1516
1517         /*
1518          * wb_thresh is not treated as some limiting factor as
1519          * dirty_thresh, due to reasons
1520          * - in JBOD setup, wb_thresh can fluctuate a lot
1521          * - in a system with HDD and USB key, the USB key may somehow
1522          *   go into state (wb_dirty >> wb_thresh) either because
1523          *   wb_dirty starts high, or because wb_thresh drops low.
1524          *   In this case we don't want to hard throttle the USB key
1525          *   dirtiers for 100 seconds until wb_dirty drops under
1526          *   wb_thresh. Instead the auxiliary wb control line in
1527          *   wb_position_ratio() will let the dirtier task progress
1528          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1529          */
1530         dtc->wb_thresh = __wb_calc_thresh(dtc);
1531         dtc->wb_bg_thresh = dtc->thresh ?
1532                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1533
1534         /*
1535          * In order to avoid the stacked BDI deadlock we need
1536          * to ensure we accurately count the 'dirty' pages when
1537          * the threshold is low.
1538          *
1539          * Otherwise it would be possible to get thresh+n pages
1540          * reported dirty, even though there are thresh-m pages
1541          * actually dirty; with m+n sitting in the percpu
1542          * deltas.
1543          */
1544         if (dtc->wb_thresh < 2 * wb_stat_error()) {
1545                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1546                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1547         } else {
1548                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1549                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1550         }
1551 }
1552
1553 /*
1554  * balance_dirty_pages() must be called by processes which are generating dirty
1555  * data.  It looks at the number of dirty pages in the machine and will force
1556  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1557  * If we're over `background_thresh' then the writeback threads are woken to
1558  * perform some writeout.
1559  */
1560 static void balance_dirty_pages(struct bdi_writeback *wb,
1561                                 unsigned long pages_dirtied)
1562 {
1563         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1564         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1565         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1566         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1567                                                      &mdtc_stor : NULL;
1568         struct dirty_throttle_control *sdtc;
1569         unsigned long nr_reclaimable;   /* = file_dirty */
1570         long period;
1571         long pause;
1572         long max_pause;
1573         long min_pause;
1574         int nr_dirtied_pause;
1575         bool dirty_exceeded = false;
1576         unsigned long task_ratelimit;
1577         unsigned long dirty_ratelimit;
1578         struct backing_dev_info *bdi = wb->bdi;
1579         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1580         unsigned long start_time = jiffies;
1581
1582         for (;;) {
1583                 unsigned long now = jiffies;
1584                 unsigned long dirty, thresh, bg_thresh;
1585                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1586                 unsigned long m_thresh = 0;
1587                 unsigned long m_bg_thresh = 0;
1588
1589                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1590                 gdtc->avail = global_dirtyable_memory();
1591                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1592
1593                 domain_dirty_limits(gdtc);
1594
1595                 if (unlikely(strictlimit)) {
1596                         wb_dirty_limits(gdtc);
1597
1598                         dirty = gdtc->wb_dirty;
1599                         thresh = gdtc->wb_thresh;
1600                         bg_thresh = gdtc->wb_bg_thresh;
1601                 } else {
1602                         dirty = gdtc->dirty;
1603                         thresh = gdtc->thresh;
1604                         bg_thresh = gdtc->bg_thresh;
1605                 }
1606
1607                 if (mdtc) {
1608                         unsigned long filepages, headroom, writeback;
1609
1610                         /*
1611                          * If @wb belongs to !root memcg, repeat the same
1612                          * basic calculations for the memcg domain.
1613                          */
1614                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1615                                             &mdtc->dirty, &writeback);
1616                         mdtc->dirty += writeback;
1617                         mdtc_calc_avail(mdtc, filepages, headroom);
1618
1619                         domain_dirty_limits(mdtc);
1620
1621                         if (unlikely(strictlimit)) {
1622                                 wb_dirty_limits(mdtc);
1623                                 m_dirty = mdtc->wb_dirty;
1624                                 m_thresh = mdtc->wb_thresh;
1625                                 m_bg_thresh = mdtc->wb_bg_thresh;
1626                         } else {
1627                                 m_dirty = mdtc->dirty;
1628                                 m_thresh = mdtc->thresh;
1629                                 m_bg_thresh = mdtc->bg_thresh;
1630                         }
1631                 }
1632
1633                 /*
1634                  * Throttle it only when the background writeback cannot
1635                  * catch-up. This avoids (excessively) small writeouts
1636                  * when the wb limits are ramping up in case of !strictlimit.
1637                  *
1638                  * In strictlimit case make decision based on the wb counters
1639                  * and limits. Small writeouts when the wb limits are ramping
1640                  * up are the price we consciously pay for strictlimit-ing.
1641                  *
1642                  * If memcg domain is in effect, @dirty should be under
1643                  * both global and memcg freerun ceilings.
1644                  */
1645                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1646                     (!mdtc ||
1647                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1648                         unsigned long intv;
1649                         unsigned long m_intv;
1650
1651 free_running:
1652                         intv = dirty_poll_interval(dirty, thresh);
1653                         m_intv = ULONG_MAX;
1654
1655                         current->dirty_paused_when = now;
1656                         current->nr_dirtied = 0;
1657                         if (mdtc)
1658                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1659                         current->nr_dirtied_pause = min(intv, m_intv);
1660                         break;
1661                 }
1662
1663                 if (unlikely(!writeback_in_progress(wb)))
1664                         wb_start_background_writeback(wb);
1665
1666                 mem_cgroup_flush_foreign(wb);
1667
1668                 /*
1669                  * Calculate global domain's pos_ratio and select the
1670                  * global dtc by default.
1671                  */
1672                 if (!strictlimit) {
1673                         wb_dirty_limits(gdtc);
1674
1675                         if ((current->flags & PF_LOCAL_THROTTLE) &&
1676                             gdtc->wb_dirty <
1677                             dirty_freerun_ceiling(gdtc->wb_thresh,
1678                                                   gdtc->wb_bg_thresh))
1679                                 /*
1680                                  * LOCAL_THROTTLE tasks must not be throttled
1681                                  * when below the per-wb freerun ceiling.
1682                                  */
1683                                 goto free_running;
1684                 }
1685
1686                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1687                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1688
1689                 wb_position_ratio(gdtc);
1690                 sdtc = gdtc;
1691
1692                 if (mdtc) {
1693                         /*
1694                          * If memcg domain is in effect, calculate its
1695                          * pos_ratio.  @wb should satisfy constraints from
1696                          * both global and memcg domains.  Choose the one
1697                          * w/ lower pos_ratio.
1698                          */
1699                         if (!strictlimit) {
1700                                 wb_dirty_limits(mdtc);
1701
1702                                 if ((current->flags & PF_LOCAL_THROTTLE) &&
1703                                     mdtc->wb_dirty <
1704                                     dirty_freerun_ceiling(mdtc->wb_thresh,
1705                                                           mdtc->wb_bg_thresh))
1706                                         /*
1707                                          * LOCAL_THROTTLE tasks must not be
1708                                          * throttled when below the per-wb
1709                                          * freerun ceiling.
1710                                          */
1711                                         goto free_running;
1712                         }
1713                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1714                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1715
1716                         wb_position_ratio(mdtc);
1717                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1718                                 sdtc = mdtc;
1719                 }
1720
1721                 if (dirty_exceeded && !wb->dirty_exceeded)
1722                         wb->dirty_exceeded = 1;
1723
1724                 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1725                                            BANDWIDTH_INTERVAL))
1726                         __wb_update_bandwidth(gdtc, mdtc, true);
1727
1728                 /* throttle according to the chosen dtc */
1729                 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1730                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1731                                                         RATELIMIT_CALC_SHIFT;
1732                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1733                 min_pause = wb_min_pause(wb, max_pause,
1734                                          task_ratelimit, dirty_ratelimit,
1735                                          &nr_dirtied_pause);
1736
1737                 if (unlikely(task_ratelimit == 0)) {
1738                         period = max_pause;
1739                         pause = max_pause;
1740                         goto pause;
1741                 }
1742                 period = HZ * pages_dirtied / task_ratelimit;
1743                 pause = period;
1744                 if (current->dirty_paused_when)
1745                         pause -= now - current->dirty_paused_when;
1746                 /*
1747                  * For less than 1s think time (ext3/4 may block the dirtier
1748                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1749                  * however at much less frequency), try to compensate it in
1750                  * future periods by updating the virtual time; otherwise just
1751                  * do a reset, as it may be a light dirtier.
1752                  */
1753                 if (pause < min_pause) {
1754                         trace_balance_dirty_pages(wb,
1755                                                   sdtc->thresh,
1756                                                   sdtc->bg_thresh,
1757                                                   sdtc->dirty,
1758                                                   sdtc->wb_thresh,
1759                                                   sdtc->wb_dirty,
1760                                                   dirty_ratelimit,
1761                                                   task_ratelimit,
1762                                                   pages_dirtied,
1763                                                   period,
1764                                                   min(pause, 0L),
1765                                                   start_time);
1766                         if (pause < -HZ) {
1767                                 current->dirty_paused_when = now;
1768                                 current->nr_dirtied = 0;
1769                         } else if (period) {
1770                                 current->dirty_paused_when += period;
1771                                 current->nr_dirtied = 0;
1772                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1773                                 current->nr_dirtied_pause += pages_dirtied;
1774                         break;
1775                 }
1776                 if (unlikely(pause > max_pause)) {
1777                         /* for occasional dropped task_ratelimit */
1778                         now += min(pause - max_pause, max_pause);
1779                         pause = max_pause;
1780                 }
1781
1782 pause:
1783                 trace_balance_dirty_pages(wb,
1784                                           sdtc->thresh,
1785                                           sdtc->bg_thresh,
1786                                           sdtc->dirty,
1787                                           sdtc->wb_thresh,
1788                                           sdtc->wb_dirty,
1789                                           dirty_ratelimit,
1790                                           task_ratelimit,
1791                                           pages_dirtied,
1792                                           period,
1793                                           pause,
1794                                           start_time);
1795                 __set_current_state(TASK_KILLABLE);
1796                 wb->dirty_sleep = now;
1797                 io_schedule_timeout(pause);
1798
1799                 current->dirty_paused_when = now + pause;
1800                 current->nr_dirtied = 0;
1801                 current->nr_dirtied_pause = nr_dirtied_pause;
1802
1803                 /*
1804                  * This is typically equal to (dirty < thresh) and can also
1805                  * keep "1000+ dd on a slow USB stick" under control.
1806                  */
1807                 if (task_ratelimit)
1808                         break;
1809
1810                 /*
1811                  * In the case of an unresponsive NFS server and the NFS dirty
1812                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1813                  * to go through, so that tasks on them still remain responsive.
1814                  *
1815                  * In theory 1 page is enough to keep the consumer-producer
1816                  * pipe going: the flusher cleans 1 page => the task dirties 1
1817                  * more page. However wb_dirty has accounting errors.  So use
1818                  * the larger and more IO friendly wb_stat_error.
1819                  */
1820                 if (sdtc->wb_dirty <= wb_stat_error())
1821                         break;
1822
1823                 if (fatal_signal_pending(current))
1824                         break;
1825         }
1826
1827         if (!dirty_exceeded && wb->dirty_exceeded)
1828                 wb->dirty_exceeded = 0;
1829
1830         if (writeback_in_progress(wb))
1831                 return;
1832
1833         /*
1834          * In laptop mode, we wait until hitting the higher threshold before
1835          * starting background writeout, and then write out all the way down
1836          * to the lower threshold.  So slow writers cause minimal disk activity.
1837          *
1838          * In normal mode, we start background writeout at the lower
1839          * background_thresh, to keep the amount of dirty memory low.
1840          */
1841         if (laptop_mode)
1842                 return;
1843
1844         if (nr_reclaimable > gdtc->bg_thresh)
1845                 wb_start_background_writeback(wb);
1846 }
1847
1848 static DEFINE_PER_CPU(int, bdp_ratelimits);
1849
1850 /*
1851  * Normal tasks are throttled by
1852  *      loop {
1853  *              dirty tsk->nr_dirtied_pause pages;
1854  *              take a snap in balance_dirty_pages();
1855  *      }
1856  * However there is a worst case. If every task exit immediately when dirtied
1857  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1858  * called to throttle the page dirties. The solution is to save the not yet
1859  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1860  * randomly into the running tasks. This works well for the above worst case,
1861  * as the new task will pick up and accumulate the old task's leaked dirty
1862  * count and eventually get throttled.
1863  */
1864 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1865
1866 /**
1867  * balance_dirty_pages_ratelimited - balance dirty memory state
1868  * @mapping: address_space which was dirtied
1869  *
1870  * Processes which are dirtying memory should call in here once for each page
1871  * which was newly dirtied.  The function will periodically check the system's
1872  * dirty state and will initiate writeback if needed.
1873  *
1874  * Once we're over the dirty memory limit we decrease the ratelimiting
1875  * by a lot, to prevent individual processes from overshooting the limit
1876  * by (ratelimit_pages) each.
1877  */
1878 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1879 {
1880         struct inode *inode = mapping->host;
1881         struct backing_dev_info *bdi = inode_to_bdi(inode);
1882         struct bdi_writeback *wb = NULL;
1883         int ratelimit;
1884         int *p;
1885
1886         if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1887                 return;
1888
1889         if (inode_cgwb_enabled(inode))
1890                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1891         if (!wb)
1892                 wb = &bdi->wb;
1893
1894         ratelimit = current->nr_dirtied_pause;
1895         if (wb->dirty_exceeded)
1896                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1897
1898         preempt_disable();
1899         /*
1900          * This prevents one CPU to accumulate too many dirtied pages without
1901          * calling into balance_dirty_pages(), which can happen when there are
1902          * 1000+ tasks, all of them start dirtying pages at exactly the same
1903          * time, hence all honoured too large initial task->nr_dirtied_pause.
1904          */
1905         p =  this_cpu_ptr(&bdp_ratelimits);
1906         if (unlikely(current->nr_dirtied >= ratelimit))
1907                 *p = 0;
1908         else if (unlikely(*p >= ratelimit_pages)) {
1909                 *p = 0;
1910                 ratelimit = 0;
1911         }
1912         /*
1913          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1914          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1915          * the dirty throttling and livelock other long-run dirtiers.
1916          */
1917         p = this_cpu_ptr(&dirty_throttle_leaks);
1918         if (*p > 0 && current->nr_dirtied < ratelimit) {
1919                 unsigned long nr_pages_dirtied;
1920                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1921                 *p -= nr_pages_dirtied;
1922                 current->nr_dirtied += nr_pages_dirtied;
1923         }
1924         preempt_enable();
1925
1926         if (unlikely(current->nr_dirtied >= ratelimit))
1927                 balance_dirty_pages(wb, current->nr_dirtied);
1928
1929         wb_put(wb);
1930 }
1931 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1932
1933 /**
1934  * wb_over_bg_thresh - does @wb need to be written back?
1935  * @wb: bdi_writeback of interest
1936  *
1937  * Determines whether background writeback should keep writing @wb or it's
1938  * clean enough.
1939  *
1940  * Return: %true if writeback should continue.
1941  */
1942 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1943 {
1944         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1945         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1946         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1947         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1948                                                      &mdtc_stor : NULL;
1949         unsigned long reclaimable;
1950         unsigned long thresh;
1951
1952         /*
1953          * Similar to balance_dirty_pages() but ignores pages being written
1954          * as we're trying to decide whether to put more under writeback.
1955          */
1956         gdtc->avail = global_dirtyable_memory();
1957         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1958         domain_dirty_limits(gdtc);
1959
1960         if (gdtc->dirty > gdtc->bg_thresh)
1961                 return true;
1962
1963         thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
1964         if (thresh < 2 * wb_stat_error())
1965                 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1966         else
1967                 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1968
1969         if (reclaimable > thresh)
1970                 return true;
1971
1972         if (mdtc) {
1973                 unsigned long filepages, headroom, writeback;
1974
1975                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1976                                     &writeback);
1977                 mdtc_calc_avail(mdtc, filepages, headroom);
1978                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1979
1980                 if (mdtc->dirty > mdtc->bg_thresh)
1981                         return true;
1982
1983                 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
1984                 if (thresh < 2 * wb_stat_error())
1985                         reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1986                 else
1987                         reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1988
1989                 if (reclaimable > thresh)
1990                         return true;
1991         }
1992
1993         return false;
1994 }
1995
1996 /*
1997  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1998  */
1999 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2000                 void *buffer, size_t *length, loff_t *ppos)
2001 {
2002         unsigned int old_interval = dirty_writeback_interval;
2003         int ret;
2004
2005         ret = proc_dointvec(table, write, buffer, length, ppos);
2006
2007         /*
2008          * Writing 0 to dirty_writeback_interval will disable periodic writeback
2009          * and a different non-zero value will wakeup the writeback threads.
2010          * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2011          * iterate over all bdis and wbs.
2012          * The reason we do this is to make the change take effect immediately.
2013          */
2014         if (!ret && write && dirty_writeback_interval &&
2015                 dirty_writeback_interval != old_interval)
2016                 wakeup_flusher_threads(WB_REASON_PERIODIC);
2017
2018         return ret;
2019 }
2020
2021 void laptop_mode_timer_fn(struct timer_list *t)
2022 {
2023         struct backing_dev_info *backing_dev_info =
2024                 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2025
2026         wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2027 }
2028
2029 /*
2030  * We've spun up the disk and we're in laptop mode: schedule writeback
2031  * of all dirty data a few seconds from now.  If the flush is already scheduled
2032  * then push it back - the user is still using the disk.
2033  */
2034 void laptop_io_completion(struct backing_dev_info *info)
2035 {
2036         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2037 }
2038
2039 /*
2040  * We're in laptop mode and we've just synced. The sync's writes will have
2041  * caused another writeback to be scheduled by laptop_io_completion.
2042  * Nothing needs to be written back anymore, so we unschedule the writeback.
2043  */
2044 void laptop_sync_completion(void)
2045 {
2046         struct backing_dev_info *bdi;
2047
2048         rcu_read_lock();
2049
2050         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2051                 del_timer(&bdi->laptop_mode_wb_timer);
2052
2053         rcu_read_unlock();
2054 }
2055
2056 /*
2057  * If ratelimit_pages is too high then we can get into dirty-data overload
2058  * if a large number of processes all perform writes at the same time.
2059  *
2060  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2061  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2062  * thresholds.
2063  */
2064
2065 void writeback_set_ratelimit(void)
2066 {
2067         struct wb_domain *dom = &global_wb_domain;
2068         unsigned long background_thresh;
2069         unsigned long dirty_thresh;
2070
2071         global_dirty_limits(&background_thresh, &dirty_thresh);
2072         dom->dirty_limit = dirty_thresh;
2073         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2074         if (ratelimit_pages < 16)
2075                 ratelimit_pages = 16;
2076 }
2077
2078 static int page_writeback_cpu_online(unsigned int cpu)
2079 {
2080         writeback_set_ratelimit();
2081         return 0;
2082 }
2083
2084 /*
2085  * Called early on to tune the page writeback dirty limits.
2086  *
2087  * We used to scale dirty pages according to how total memory
2088  * related to pages that could be allocated for buffers.
2089  *
2090  * However, that was when we used "dirty_ratio" to scale with
2091  * all memory, and we don't do that any more. "dirty_ratio"
2092  * is now applied to total non-HIGHPAGE memory, and as such we can't
2093  * get into the old insane situation any more where we had
2094  * large amounts of dirty pages compared to a small amount of
2095  * non-HIGHMEM memory.
2096  *
2097  * But we might still want to scale the dirty_ratio by how
2098  * much memory the box has..
2099  */
2100 void __init page_writeback_init(void)
2101 {
2102         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2103
2104         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2105                           page_writeback_cpu_online, NULL);
2106         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2107                           page_writeback_cpu_online);
2108 }
2109
2110 /**
2111  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2112  * @mapping: address space structure to write
2113  * @start: starting page index
2114  * @end: ending page index (inclusive)
2115  *
2116  * This function scans the page range from @start to @end (inclusive) and tags
2117  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2118  * that write_cache_pages (or whoever calls this function) will then use
2119  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2120  * used to avoid livelocking of writeback by a process steadily creating new
2121  * dirty pages in the file (thus it is important for this function to be quick
2122  * so that it can tag pages faster than a dirtying process can create them).
2123  */
2124 void tag_pages_for_writeback(struct address_space *mapping,
2125                              pgoff_t start, pgoff_t end)
2126 {
2127         XA_STATE(xas, &mapping->i_pages, start);
2128         unsigned int tagged = 0;
2129         void *page;
2130
2131         xas_lock_irq(&xas);
2132         xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2133                 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2134                 if (++tagged % XA_CHECK_SCHED)
2135                         continue;
2136
2137                 xas_pause(&xas);
2138                 xas_unlock_irq(&xas);
2139                 cond_resched();
2140                 xas_lock_irq(&xas);
2141         }
2142         xas_unlock_irq(&xas);
2143 }
2144 EXPORT_SYMBOL(tag_pages_for_writeback);
2145
2146 /**
2147  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2148  * @mapping: address space structure to write
2149  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2150  * @writepage: function called for each page
2151  * @data: data passed to writepage function
2152  *
2153  * If a page is already under I/O, write_cache_pages() skips it, even
2154  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2155  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2156  * and msync() need to guarantee that all the data which was dirty at the time
2157  * the call was made get new I/O started against them.  If wbc->sync_mode is
2158  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2159  * existing IO to complete.
2160  *
2161  * To avoid livelocks (when other process dirties new pages), we first tag
2162  * pages which should be written back with TOWRITE tag and only then start
2163  * writing them. For data-integrity sync we have to be careful so that we do
2164  * not miss some pages (e.g., because some other process has cleared TOWRITE
2165  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2166  * by the process clearing the DIRTY tag (and submitting the page for IO).
2167  *
2168  * To avoid deadlocks between range_cyclic writeback and callers that hold
2169  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2170  * we do not loop back to the start of the file. Doing so causes a page
2171  * lock/page writeback access order inversion - we should only ever lock
2172  * multiple pages in ascending page->index order, and looping back to the start
2173  * of the file violates that rule and causes deadlocks.
2174  *
2175  * Return: %0 on success, negative error code otherwise
2176  */
2177 int write_cache_pages(struct address_space *mapping,
2178                       struct writeback_control *wbc, writepage_t writepage,
2179                       void *data)
2180 {
2181         int ret = 0;
2182         int done = 0;
2183         int error;
2184         struct pagevec pvec;
2185         int nr_pages;
2186         pgoff_t index;
2187         pgoff_t end;            /* Inclusive */
2188         pgoff_t done_index;
2189         int range_whole = 0;
2190         xa_mark_t tag;
2191
2192         pagevec_init(&pvec);
2193         if (wbc->range_cyclic) {
2194                 index = mapping->writeback_index; /* prev offset */
2195                 end = -1;
2196         } else {
2197                 index = wbc->range_start >> PAGE_SHIFT;
2198                 end = wbc->range_end >> PAGE_SHIFT;
2199                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2200                         range_whole = 1;
2201         }
2202         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2203                 tag_pages_for_writeback(mapping, index, end);
2204                 tag = PAGECACHE_TAG_TOWRITE;
2205         } else {
2206                 tag = PAGECACHE_TAG_DIRTY;
2207         }
2208         done_index = index;
2209         while (!done && (index <= end)) {
2210                 int i;
2211
2212                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2213                                 tag);
2214                 if (nr_pages == 0)
2215                         break;
2216
2217                 for (i = 0; i < nr_pages; i++) {
2218                         struct page *page = pvec.pages[i];
2219
2220                         done_index = page->index;
2221
2222                         lock_page(page);
2223
2224                         /*
2225                          * Page truncated or invalidated. We can freely skip it
2226                          * then, even for data integrity operations: the page
2227                          * has disappeared concurrently, so there could be no
2228                          * real expectation of this data integrity operation
2229                          * even if there is now a new, dirty page at the same
2230                          * pagecache address.
2231                          */
2232                         if (unlikely(page->mapping != mapping)) {
2233 continue_unlock:
2234                                 unlock_page(page);
2235                                 continue;
2236                         }
2237
2238                         if (!PageDirty(page)) {
2239                                 /* someone wrote it for us */
2240                                 goto continue_unlock;
2241                         }
2242
2243                         if (PageWriteback(page)) {
2244                                 if (wbc->sync_mode != WB_SYNC_NONE)
2245                                         wait_on_page_writeback(page);
2246                                 else
2247                                         goto continue_unlock;
2248                         }
2249
2250                         BUG_ON(PageWriteback(page));
2251                         if (!clear_page_dirty_for_io(page))
2252                                 goto continue_unlock;
2253
2254                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2255                         error = (*writepage)(page, wbc, data);
2256                         if (unlikely(error)) {
2257                                 /*
2258                                  * Handle errors according to the type of
2259                                  * writeback. There's no need to continue for
2260                                  * background writeback. Just push done_index
2261                                  * past this page so media errors won't choke
2262                                  * writeout for the entire file. For integrity
2263                                  * writeback, we must process the entire dirty
2264                                  * set regardless of errors because the fs may
2265                                  * still have state to clear for each page. In
2266                                  * that case we continue processing and return
2267                                  * the first error.
2268                                  */
2269                                 if (error == AOP_WRITEPAGE_ACTIVATE) {
2270                                         unlock_page(page);
2271                                         error = 0;
2272                                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2273                                         ret = error;
2274                                         done_index = page->index + 1;
2275                                         done = 1;
2276                                         break;
2277                                 }
2278                                 if (!ret)
2279                                         ret = error;
2280                         }
2281
2282                         /*
2283                          * We stop writing back only if we are not doing
2284                          * integrity sync. In case of integrity sync we have to
2285                          * keep going until we have written all the pages
2286                          * we tagged for writeback prior to entering this loop.
2287                          */
2288                         if (--wbc->nr_to_write <= 0 &&
2289                             wbc->sync_mode == WB_SYNC_NONE) {
2290                                 done = 1;
2291                                 break;
2292                         }
2293                 }
2294                 pagevec_release(&pvec);
2295                 cond_resched();
2296         }
2297
2298         /*
2299          * If we hit the last page and there is more work to be done: wrap
2300          * back the index back to the start of the file for the next
2301          * time we are called.
2302          */
2303         if (wbc->range_cyclic && !done)
2304                 done_index = 0;
2305         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2306                 mapping->writeback_index = done_index;
2307
2308         return ret;
2309 }
2310 EXPORT_SYMBOL(write_cache_pages);
2311
2312 /*
2313  * Function used by generic_writepages to call the real writepage
2314  * function and set the mapping flags on error
2315  */
2316 static int __writepage(struct page *page, struct writeback_control *wbc,
2317                        void *data)
2318 {
2319         struct address_space *mapping = data;
2320         int ret = mapping->a_ops->writepage(page, wbc);
2321         mapping_set_error(mapping, ret);
2322         return ret;
2323 }
2324
2325 /**
2326  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2327  * @mapping: address space structure to write
2328  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2329  *
2330  * This is a library function, which implements the writepages()
2331  * address_space_operation.
2332  *
2333  * Return: %0 on success, negative error code otherwise
2334  */
2335 int generic_writepages(struct address_space *mapping,
2336                        struct writeback_control *wbc)
2337 {
2338         struct blk_plug plug;
2339         int ret;
2340
2341         /* deal with chardevs and other special file */
2342         if (!mapping->a_ops->writepage)
2343                 return 0;
2344
2345         blk_start_plug(&plug);
2346         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2347         blk_finish_plug(&plug);
2348         return ret;
2349 }
2350
2351 EXPORT_SYMBOL(generic_writepages);
2352
2353 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2354 {
2355         int ret;
2356         struct bdi_writeback *wb;
2357
2358         if (wbc->nr_to_write <= 0)
2359                 return 0;
2360         wb = inode_to_wb_wbc(mapping->host, wbc);
2361         wb_bandwidth_estimate_start(wb);
2362         while (1) {
2363                 if (mapping->a_ops->writepages)
2364                         ret = mapping->a_ops->writepages(mapping, wbc);
2365                 else
2366                         ret = generic_writepages(mapping, wbc);
2367                 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2368                         break;
2369                 cond_resched();
2370                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2371         }
2372         /*
2373          * Usually few pages are written by now from those we've just submitted
2374          * but if there's constant writeback being submitted, this makes sure
2375          * writeback bandwidth is updated once in a while.
2376          */
2377         if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2378                                    BANDWIDTH_INTERVAL))
2379                 wb_update_bandwidth(wb);
2380         return ret;
2381 }
2382
2383 /**
2384  * write_one_page - write out a single page and wait on I/O
2385  * @page: the page to write
2386  *
2387  * The page must be locked by the caller and will be unlocked upon return.
2388  *
2389  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2390  * function returns.
2391  *
2392  * Return: %0 on success, negative error code otherwise
2393  */
2394 int write_one_page(struct page *page)
2395 {
2396         struct address_space *mapping = page->mapping;
2397         int ret = 0;
2398         struct writeback_control wbc = {
2399                 .sync_mode = WB_SYNC_ALL,
2400                 .nr_to_write = 1,
2401         };
2402
2403         BUG_ON(!PageLocked(page));
2404
2405         wait_on_page_writeback(page);
2406
2407         if (clear_page_dirty_for_io(page)) {
2408                 get_page(page);
2409                 ret = mapping->a_ops->writepage(page, &wbc);
2410                 if (ret == 0)
2411                         wait_on_page_writeback(page);
2412                 put_page(page);
2413         } else {
2414                 unlock_page(page);
2415         }
2416
2417         if (!ret)
2418                 ret = filemap_check_errors(mapping);
2419         return ret;
2420 }
2421 EXPORT_SYMBOL(write_one_page);
2422
2423 /*
2424  * For address_spaces which do not use buffers nor write back.
2425  */
2426 int __set_page_dirty_no_writeback(struct page *page)
2427 {
2428         if (!PageDirty(page))
2429                 return !TestSetPageDirty(page);
2430         return 0;
2431 }
2432 EXPORT_SYMBOL(__set_page_dirty_no_writeback);
2433
2434 /*
2435  * Helper function for set_page_dirty family.
2436  *
2437  * Caller must hold lock_page_memcg().
2438  *
2439  * NOTE: This relies on being atomic wrt interrupts.
2440  */
2441 static void account_page_dirtied(struct page *page,
2442                 struct address_space *mapping)
2443 {
2444         struct inode *inode = mapping->host;
2445
2446         trace_writeback_dirty_page(page, mapping);
2447
2448         if (mapping_can_writeback(mapping)) {
2449                 struct bdi_writeback *wb;
2450
2451                 inode_attach_wb(inode, page);
2452                 wb = inode_to_wb(inode);
2453
2454                 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2455                 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2456                 __inc_node_page_state(page, NR_DIRTIED);
2457                 inc_wb_stat(wb, WB_RECLAIMABLE);
2458                 inc_wb_stat(wb, WB_DIRTIED);
2459                 task_io_account_write(PAGE_SIZE);
2460                 current->nr_dirtied++;
2461                 __this_cpu_inc(bdp_ratelimits);
2462
2463                 mem_cgroup_track_foreign_dirty(page, wb);
2464         }
2465 }
2466
2467 /*
2468  * Helper function for deaccounting dirty page without writeback.
2469  *
2470  * Caller must hold lock_page_memcg().
2471  */
2472 void account_page_cleaned(struct page *page, struct address_space *mapping,
2473                           struct bdi_writeback *wb)
2474 {
2475         if (mapping_can_writeback(mapping)) {
2476                 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2477                 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2478                 dec_wb_stat(wb, WB_RECLAIMABLE);
2479                 task_io_account_cancelled_write(PAGE_SIZE);
2480         }
2481 }
2482
2483 /*
2484  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
2485  * dirty.
2486  *
2487  * If warn is true, then emit a warning if the page is not uptodate and has
2488  * not been truncated.
2489  *
2490  * The caller must hold lock_page_memcg().
2491  */
2492 void __set_page_dirty(struct page *page, struct address_space *mapping,
2493                              int warn)
2494 {
2495         unsigned long flags;
2496
2497         xa_lock_irqsave(&mapping->i_pages, flags);
2498         if (page->mapping) {    /* Race with truncate? */
2499                 WARN_ON_ONCE(warn && !PageUptodate(page));
2500                 account_page_dirtied(page, mapping);
2501                 __xa_set_mark(&mapping->i_pages, page_index(page),
2502                                 PAGECACHE_TAG_DIRTY);
2503         }
2504         xa_unlock_irqrestore(&mapping->i_pages, flags);
2505 }
2506
2507 /*
2508  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2509  * the xarray.
2510  *
2511  * This is also used when a single buffer is being dirtied: we want to set the
2512  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2513  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2514  *
2515  * The caller must ensure this doesn't race with truncation.  Most will simply
2516  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2517  * the pte lock held, which also locks out truncation.
2518  */
2519 int __set_page_dirty_nobuffers(struct page *page)
2520 {
2521         lock_page_memcg(page);
2522         if (!TestSetPageDirty(page)) {
2523                 struct address_space *mapping = page_mapping(page);
2524
2525                 if (!mapping) {
2526                         unlock_page_memcg(page);
2527                         return 1;
2528                 }
2529                 __set_page_dirty(page, mapping, !PagePrivate(page));
2530                 unlock_page_memcg(page);
2531
2532                 if (mapping->host) {
2533                         /* !PageAnon && !swapper_space */
2534                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2535                 }
2536                 return 1;
2537         }
2538         unlock_page_memcg(page);
2539         return 0;
2540 }
2541 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2542
2543 /*
2544  * Call this whenever redirtying a page, to de-account the dirty counters
2545  * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2546  * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2547  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2548  * control.
2549  */
2550 void account_page_redirty(struct page *page)
2551 {
2552         struct address_space *mapping = page->mapping;
2553
2554         if (mapping && mapping_can_writeback(mapping)) {
2555                 struct inode *inode = mapping->host;
2556                 struct bdi_writeback *wb;
2557                 struct wb_lock_cookie cookie = {};
2558
2559                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2560                 current->nr_dirtied--;
2561                 dec_node_page_state(page, NR_DIRTIED);
2562                 dec_wb_stat(wb, WB_DIRTIED);
2563                 unlocked_inode_to_wb_end(inode, &cookie);
2564         }
2565 }
2566 EXPORT_SYMBOL(account_page_redirty);
2567
2568 /*
2569  * When a writepage implementation decides that it doesn't want to write this
2570  * page for some reason, it should redirty the locked page via
2571  * redirty_page_for_writepage() and it should then unlock the page and return 0
2572  */
2573 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2574 {
2575         int ret;
2576
2577         wbc->pages_skipped++;
2578         ret = __set_page_dirty_nobuffers(page);
2579         account_page_redirty(page);
2580         return ret;
2581 }
2582 EXPORT_SYMBOL(redirty_page_for_writepage);
2583
2584 /*
2585  * Dirty a page.
2586  *
2587  * For pages with a mapping this should be done under the page lock for the
2588  * benefit of asynchronous memory errors who prefer a consistent dirty state.
2589  * This rule can be broken in some special cases, but should be better not to.
2590  */
2591 int set_page_dirty(struct page *page)
2592 {
2593         struct address_space *mapping = page_mapping(page);
2594
2595         page = compound_head(page);
2596         if (likely(mapping)) {
2597                 /*
2598                  * readahead/lru_deactivate_page could remain
2599                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2600                  * About readahead, if the page is written, the flags would be
2601                  * reset. So no problem.
2602                  * About lru_deactivate_page, if the page is redirty, the flag
2603                  * will be reset. So no problem. but if the page is used by readahead
2604                  * it will confuse readahead and make it restart the size rampup
2605                  * process. But it's a trivial problem.
2606                  */
2607                 if (PageReclaim(page))
2608                         ClearPageReclaim(page);
2609                 return mapping->a_ops->set_page_dirty(page);
2610         }
2611         if (!PageDirty(page)) {
2612                 if (!TestSetPageDirty(page))
2613                         return 1;
2614         }
2615         return 0;
2616 }
2617 EXPORT_SYMBOL(set_page_dirty);
2618
2619 /*
2620  * set_page_dirty() is racy if the caller has no reference against
2621  * page->mapping->host, and if the page is unlocked.  This is because another
2622  * CPU could truncate the page off the mapping and then free the mapping.
2623  *
2624  * Usually, the page _is_ locked, or the caller is a user-space process which
2625  * holds a reference on the inode by having an open file.
2626  *
2627  * In other cases, the page should be locked before running set_page_dirty().
2628  */
2629 int set_page_dirty_lock(struct page *page)
2630 {
2631         int ret;
2632
2633         lock_page(page);
2634         ret = set_page_dirty(page);
2635         unlock_page(page);
2636         return ret;
2637 }
2638 EXPORT_SYMBOL(set_page_dirty_lock);
2639
2640 /*
2641  * This cancels just the dirty bit on the kernel page itself, it does NOT
2642  * actually remove dirty bits on any mmap's that may be around. It also
2643  * leaves the page tagged dirty, so any sync activity will still find it on
2644  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2645  * look at the dirty bits in the VM.
2646  *
2647  * Doing this should *normally* only ever be done when a page is truncated,
2648  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2649  * this when it notices that somebody has cleaned out all the buffers on a
2650  * page without actually doing it through the VM. Can you say "ext3 is
2651  * horribly ugly"? Thought you could.
2652  */
2653 void __cancel_dirty_page(struct page *page)
2654 {
2655         struct address_space *mapping = page_mapping(page);
2656
2657         if (mapping_can_writeback(mapping)) {
2658                 struct inode *inode = mapping->host;
2659                 struct bdi_writeback *wb;
2660                 struct wb_lock_cookie cookie = {};
2661
2662                 lock_page_memcg(page);
2663                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2664
2665                 if (TestClearPageDirty(page))
2666                         account_page_cleaned(page, mapping, wb);
2667
2668                 unlocked_inode_to_wb_end(inode, &cookie);
2669                 unlock_page_memcg(page);
2670         } else {
2671                 ClearPageDirty(page);
2672         }
2673 }
2674 EXPORT_SYMBOL(__cancel_dirty_page);
2675
2676 /*
2677  * Clear a page's dirty flag, while caring for dirty memory accounting.
2678  * Returns true if the page was previously dirty.
2679  *
2680  * This is for preparing to put the page under writeout.  We leave the page
2681  * tagged as dirty in the xarray so that a concurrent write-for-sync
2682  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2683  * implementation will run either set_page_writeback() or set_page_dirty(),
2684  * at which stage we bring the page's dirty flag and xarray dirty tag
2685  * back into sync.
2686  *
2687  * This incoherency between the page's dirty flag and xarray tag is
2688  * unfortunate, but it only exists while the page is locked.
2689  */
2690 int clear_page_dirty_for_io(struct page *page)
2691 {
2692         struct address_space *mapping = page_mapping(page);
2693         int ret = 0;
2694
2695         VM_BUG_ON_PAGE(!PageLocked(page), page);
2696
2697         if (mapping && mapping_can_writeback(mapping)) {
2698                 struct inode *inode = mapping->host;
2699                 struct bdi_writeback *wb;
2700                 struct wb_lock_cookie cookie = {};
2701
2702                 /*
2703                  * Yes, Virginia, this is indeed insane.
2704                  *
2705                  * We use this sequence to make sure that
2706                  *  (a) we account for dirty stats properly
2707                  *  (b) we tell the low-level filesystem to
2708                  *      mark the whole page dirty if it was
2709                  *      dirty in a pagetable. Only to then
2710                  *  (c) clean the page again and return 1 to
2711                  *      cause the writeback.
2712                  *
2713                  * This way we avoid all nasty races with the
2714                  * dirty bit in multiple places and clearing
2715                  * them concurrently from different threads.
2716                  *
2717                  * Note! Normally the "set_page_dirty(page)"
2718                  * has no effect on the actual dirty bit - since
2719                  * that will already usually be set. But we
2720                  * need the side effects, and it can help us
2721                  * avoid races.
2722                  *
2723                  * We basically use the page "master dirty bit"
2724                  * as a serialization point for all the different
2725                  * threads doing their things.
2726                  */
2727                 if (page_mkclean(page))
2728                         set_page_dirty(page);
2729                 /*
2730                  * We carefully synchronise fault handlers against
2731                  * installing a dirty pte and marking the page dirty
2732                  * at this point.  We do this by having them hold the
2733                  * page lock while dirtying the page, and pages are
2734                  * always locked coming in here, so we get the desired
2735                  * exclusion.
2736                  */
2737                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2738                 if (TestClearPageDirty(page)) {
2739                         dec_lruvec_page_state(page, NR_FILE_DIRTY);
2740                         dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2741                         dec_wb_stat(wb, WB_RECLAIMABLE);
2742                         ret = 1;
2743                 }
2744                 unlocked_inode_to_wb_end(inode, &cookie);
2745                 return ret;
2746         }
2747         return TestClearPageDirty(page);
2748 }
2749 EXPORT_SYMBOL(clear_page_dirty_for_io);
2750
2751 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2752 {
2753         atomic_inc(&wb->writeback_inodes);
2754 }
2755
2756 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2757 {
2758         atomic_dec(&wb->writeback_inodes);
2759         /*
2760          * Make sure estimate of writeback throughput gets updated after
2761          * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2762          * (which is the interval other bandwidth updates use for batching) so
2763          * that if multiple inodes end writeback at a similar time, they get
2764          * batched into one bandwidth update.
2765          */
2766         queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2767 }
2768
2769 int test_clear_page_writeback(struct page *page)
2770 {
2771         struct address_space *mapping = page_mapping(page);
2772         int ret;
2773
2774         lock_page_memcg(page);
2775         if (mapping && mapping_use_writeback_tags(mapping)) {
2776                 struct inode *inode = mapping->host;
2777                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2778                 unsigned long flags;
2779
2780                 xa_lock_irqsave(&mapping->i_pages, flags);
2781                 ret = TestClearPageWriteback(page);
2782                 if (ret) {
2783                         __xa_clear_mark(&mapping->i_pages, page_index(page),
2784                                                 PAGECACHE_TAG_WRITEBACK);
2785                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2786                                 struct bdi_writeback *wb = inode_to_wb(inode);
2787
2788                                 dec_wb_stat(wb, WB_WRITEBACK);
2789                                 __wb_writeout_inc(wb);
2790                                 if (!mapping_tagged(mapping,
2791                                                     PAGECACHE_TAG_WRITEBACK))
2792                                         wb_inode_writeback_end(wb);
2793                         }
2794                 }
2795
2796                 if (mapping->host && !mapping_tagged(mapping,
2797                                                      PAGECACHE_TAG_WRITEBACK))
2798                         sb_clear_inode_writeback(mapping->host);
2799
2800                 xa_unlock_irqrestore(&mapping->i_pages, flags);
2801         } else {
2802                 ret = TestClearPageWriteback(page);
2803         }
2804         if (ret) {
2805                 dec_lruvec_page_state(page, NR_WRITEBACK);
2806                 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2807                 inc_node_page_state(page, NR_WRITTEN);
2808         }
2809         unlock_page_memcg(page);
2810         return ret;
2811 }
2812
2813 int __test_set_page_writeback(struct page *page, bool keep_write)
2814 {
2815         struct address_space *mapping = page_mapping(page);
2816         int ret, access_ret;
2817
2818         lock_page_memcg(page);
2819         if (mapping && mapping_use_writeback_tags(mapping)) {
2820                 XA_STATE(xas, &mapping->i_pages, page_index(page));
2821                 struct inode *inode = mapping->host;
2822                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2823                 unsigned long flags;
2824
2825                 xas_lock_irqsave(&xas, flags);
2826                 xas_load(&xas);
2827                 ret = TestSetPageWriteback(page);
2828                 if (!ret) {
2829                         bool on_wblist;
2830
2831                         on_wblist = mapping_tagged(mapping,
2832                                                    PAGECACHE_TAG_WRITEBACK);
2833
2834                         xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2835                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2836                                 struct bdi_writeback *wb = inode_to_wb(inode);
2837
2838                                 inc_wb_stat(wb, WB_WRITEBACK);
2839                                 if (!on_wblist)
2840                                         wb_inode_writeback_start(wb);
2841                         }
2842
2843                         /*
2844                          * We can come through here when swapping anonymous
2845                          * pages, so we don't necessarily have an inode to track
2846                          * for sync.
2847                          */
2848                         if (mapping->host && !on_wblist)
2849                                 sb_mark_inode_writeback(mapping->host);
2850                 }
2851                 if (!PageDirty(page))
2852                         xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2853                 if (!keep_write)
2854                         xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2855                 xas_unlock_irqrestore(&xas, flags);
2856         } else {
2857                 ret = TestSetPageWriteback(page);
2858         }
2859         if (!ret) {
2860                 inc_lruvec_page_state(page, NR_WRITEBACK);
2861                 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2862         }
2863         unlock_page_memcg(page);
2864         access_ret = arch_make_page_accessible(page);
2865         /*
2866          * If writeback has been triggered on a page that cannot be made
2867          * accessible, it is too late to recover here.
2868          */
2869         VM_BUG_ON_PAGE(access_ret != 0, page);
2870
2871         return ret;
2872
2873 }
2874 EXPORT_SYMBOL(__test_set_page_writeback);
2875
2876 /*
2877  * Wait for a page to complete writeback
2878  */
2879 void wait_on_page_writeback(struct page *page)
2880 {
2881         while (PageWriteback(page)) {
2882                 trace_wait_on_page_writeback(page, page_mapping(page));
2883                 wait_on_page_bit(page, PG_writeback);
2884         }
2885 }
2886 EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2887
2888 /*
2889  * Wait for a page to complete writeback.  Returns -EINTR if we get a
2890  * fatal signal while waiting.
2891  */
2892 int wait_on_page_writeback_killable(struct page *page)
2893 {
2894         while (PageWriteback(page)) {
2895                 trace_wait_on_page_writeback(page, page_mapping(page));
2896                 if (wait_on_page_bit_killable(page, PG_writeback))
2897                         return -EINTR;
2898         }
2899
2900         return 0;
2901 }
2902 EXPORT_SYMBOL_GPL(wait_on_page_writeback_killable);
2903
2904 /**
2905  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2906  * @page:       The page to wait on.
2907  *
2908  * This function determines if the given page is related to a backing device
2909  * that requires page contents to be held stable during writeback.  If so, then
2910  * it will wait for any pending writeback to complete.
2911  */
2912 void wait_for_stable_page(struct page *page)
2913 {
2914         page = thp_head(page);
2915         if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES)
2916                 wait_on_page_writeback(page);
2917 }
2918 EXPORT_SYMBOL_GPL(wait_for_stable_page);