tools headers UAPI: Sync drm/i915_drm.h with the kernel sources
[linux-2.6-microblaze.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75         struct page *page;
76
77         /*
78          * If the object we have should not have ksize performed on it,
79          * return size of 0
80          */
81         if (!objp || !virt_addr_valid(objp))
82                 return 0;
83
84         page = virt_to_head_page(objp);
85
86         /*
87          * If the allocator sets PageSlab, we know the pointer came from
88          * kmalloc().
89          */
90         if (PageSlab(page))
91                 return ksize(objp);
92
93         /*
94          * If it's not a compound page, see if we have a matching VMA
95          * region. This test is intentionally done in reverse order,
96          * so if there's no VMA, we still fall through and hand back
97          * PAGE_SIZE for 0-order pages.
98          */
99         if (!PageCompound(page)) {
100                 struct vm_area_struct *vma;
101
102                 vma = find_vma(current->mm, (unsigned long)objp);
103                 if (vma)
104                         return vma->vm_end - vma->vm_start;
105         }
106
107         /*
108          * The ksize() function is only guaranteed to work for pointers
109          * returned by kmalloc(). So handle arbitrary pointers here.
110          */
111         return page_size(page);
112 }
113
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125         unsigned long *pfn)
126 {
127         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128                 return -EINVAL;
129
130         *pfn = address >> PAGE_SHIFT;
131         return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134
135 LIST_HEAD(vmap_area_list);
136
137 void vfree(const void *addr)
138 {
139         kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
144 {
145         /*
146          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147          * returns only a logical address.
148          */
149         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152
153 void *__vmalloc_node_range(unsigned long size, unsigned long align,
154                 unsigned long start, unsigned long end, gfp_t gfp_mask,
155                 pgprot_t prot, unsigned long vm_flags, int node,
156                 const void *caller)
157 {
158         return __vmalloc(size, gfp_mask);
159 }
160
161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162                 int node, const void *caller)
163 {
164         return __vmalloc(size, gfp_mask);
165 }
166
167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
168 {
169         void *ret;
170
171         ret = __vmalloc(size, flags);
172         if (ret) {
173                 struct vm_area_struct *vma;
174
175                 mmap_write_lock(current->mm);
176                 vma = find_vma(current->mm, (unsigned long)ret);
177                 if (vma)
178                         vma->vm_flags |= VM_USERMAP;
179                 mmap_write_unlock(current->mm);
180         }
181
182         return ret;
183 }
184
185 void *vmalloc_user(unsigned long size)
186 {
187         return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
188 }
189 EXPORT_SYMBOL(vmalloc_user);
190
191 struct page *vmalloc_to_page(const void *addr)
192 {
193         return virt_to_page(addr);
194 }
195 EXPORT_SYMBOL(vmalloc_to_page);
196
197 unsigned long vmalloc_to_pfn(const void *addr)
198 {
199         return page_to_pfn(virt_to_page(addr));
200 }
201 EXPORT_SYMBOL(vmalloc_to_pfn);
202
203 long vread(char *buf, char *addr, unsigned long count)
204 {
205         /* Don't allow overflow */
206         if ((unsigned long) buf + count < count)
207                 count = -(unsigned long) buf;
208
209         memcpy(buf, addr, count);
210         return count;
211 }
212
213 long vwrite(char *buf, char *addr, unsigned long count)
214 {
215         /* Don't allow overflow */
216         if ((unsigned long) addr + count < count)
217                 count = -(unsigned long) addr;
218
219         memcpy(addr, buf, count);
220         return count;
221 }
222
223 /*
224  *      vmalloc  -  allocate virtually contiguous memory
225  *
226  *      @size:          allocation size
227  *
228  *      Allocate enough pages to cover @size from the page level
229  *      allocator and map them into contiguous kernel virtual space.
230  *
231  *      For tight control over page level allocator and protection flags
232  *      use __vmalloc() instead.
233  */
234 void *vmalloc(unsigned long size)
235 {
236        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(vmalloc);
239
240 /*
241  *      vzalloc - allocate virtually contiguous memory with zero fill
242  *
243  *      @size:          allocation size
244  *
245  *      Allocate enough pages to cover @size from the page level
246  *      allocator and map them into contiguous kernel virtual space.
247  *      The memory allocated is set to zero.
248  *
249  *      For tight control over page level allocator and protection flags
250  *      use __vmalloc() instead.
251  */
252 void *vzalloc(unsigned long size)
253 {
254         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
255 }
256 EXPORT_SYMBOL(vzalloc);
257
258 /**
259  * vmalloc_node - allocate memory on a specific node
260  * @size:       allocation size
261  * @node:       numa node
262  *
263  * Allocate enough pages to cover @size from the page level
264  * allocator and map them into contiguous kernel virtual space.
265  *
266  * For tight control over page level allocator and protection flags
267  * use __vmalloc() instead.
268  */
269 void *vmalloc_node(unsigned long size, int node)
270 {
271         return vmalloc(size);
272 }
273 EXPORT_SYMBOL(vmalloc_node);
274
275 /**
276  * vzalloc_node - allocate memory on a specific node with zero fill
277  * @size:       allocation size
278  * @node:       numa node
279  *
280  * Allocate enough pages to cover @size from the page level
281  * allocator and map them into contiguous kernel virtual space.
282  * The memory allocated is set to zero.
283  *
284  * For tight control over page level allocator and protection flags
285  * use __vmalloc() instead.
286  */
287 void *vzalloc_node(unsigned long size, int node)
288 {
289         return vzalloc(size);
290 }
291 EXPORT_SYMBOL(vzalloc_node);
292
293 /**
294  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
295  *      @size:          allocation size
296  *
297  *      Allocate enough 32bit PA addressable pages to cover @size from the
298  *      page level allocator and map them into contiguous kernel virtual space.
299  */
300 void *vmalloc_32(unsigned long size)
301 {
302         return __vmalloc(size, GFP_KERNEL);
303 }
304 EXPORT_SYMBOL(vmalloc_32);
305
306 /**
307  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
308  *      @size:          allocation size
309  *
310  * The resulting memory area is 32bit addressable and zeroed so it can be
311  * mapped to userspace without leaking data.
312  *
313  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
314  * remap_vmalloc_range() are permissible.
315  */
316 void *vmalloc_32_user(unsigned long size)
317 {
318         /*
319          * We'll have to sort out the ZONE_DMA bits for 64-bit,
320          * but for now this can simply use vmalloc_user() directly.
321          */
322         return vmalloc_user(size);
323 }
324 EXPORT_SYMBOL(vmalloc_32_user);
325
326 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
327 {
328         BUG();
329         return NULL;
330 }
331 EXPORT_SYMBOL(vmap);
332
333 void vunmap(const void *addr)
334 {
335         BUG();
336 }
337 EXPORT_SYMBOL(vunmap);
338
339 void *vm_map_ram(struct page **pages, unsigned int count, int node)
340 {
341         BUG();
342         return NULL;
343 }
344 EXPORT_SYMBOL(vm_map_ram);
345
346 void vm_unmap_ram(const void *mem, unsigned int count)
347 {
348         BUG();
349 }
350 EXPORT_SYMBOL(vm_unmap_ram);
351
352 void vm_unmap_aliases(void)
353 {
354 }
355 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
356
357 void free_vm_area(struct vm_struct *area)
358 {
359         BUG();
360 }
361 EXPORT_SYMBOL_GPL(free_vm_area);
362
363 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
364                    struct page *page)
365 {
366         return -EINVAL;
367 }
368 EXPORT_SYMBOL(vm_insert_page);
369
370 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
371                         unsigned long num)
372 {
373         return -EINVAL;
374 }
375 EXPORT_SYMBOL(vm_map_pages);
376
377 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
378                                 unsigned long num)
379 {
380         return -EINVAL;
381 }
382 EXPORT_SYMBOL(vm_map_pages_zero);
383
384 /*
385  *  sys_brk() for the most part doesn't need the global kernel
386  *  lock, except when an application is doing something nasty
387  *  like trying to un-brk an area that has already been mapped
388  *  to a regular file.  in this case, the unmapping will need
389  *  to invoke file system routines that need the global lock.
390  */
391 SYSCALL_DEFINE1(brk, unsigned long, brk)
392 {
393         struct mm_struct *mm = current->mm;
394
395         if (brk < mm->start_brk || brk > mm->context.end_brk)
396                 return mm->brk;
397
398         if (mm->brk == brk)
399                 return mm->brk;
400
401         /*
402          * Always allow shrinking brk
403          */
404         if (brk <= mm->brk) {
405                 mm->brk = brk;
406                 return brk;
407         }
408
409         /*
410          * Ok, looks good - let it rip.
411          */
412         flush_icache_user_range(mm->brk, brk);
413         return mm->brk = brk;
414 }
415
416 /*
417  * initialise the percpu counter for VM and region record slabs
418  */
419 void __init mmap_init(void)
420 {
421         int ret;
422
423         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
424         VM_BUG_ON(ret);
425         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
426 }
427
428 /*
429  * validate the region tree
430  * - the caller must hold the region lock
431  */
432 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
433 static noinline void validate_nommu_regions(void)
434 {
435         struct vm_region *region, *last;
436         struct rb_node *p, *lastp;
437
438         lastp = rb_first(&nommu_region_tree);
439         if (!lastp)
440                 return;
441
442         last = rb_entry(lastp, struct vm_region, vm_rb);
443         BUG_ON(last->vm_end <= last->vm_start);
444         BUG_ON(last->vm_top < last->vm_end);
445
446         while ((p = rb_next(lastp))) {
447                 region = rb_entry(p, struct vm_region, vm_rb);
448                 last = rb_entry(lastp, struct vm_region, vm_rb);
449
450                 BUG_ON(region->vm_end <= region->vm_start);
451                 BUG_ON(region->vm_top < region->vm_end);
452                 BUG_ON(region->vm_start < last->vm_top);
453
454                 lastp = p;
455         }
456 }
457 #else
458 static void validate_nommu_regions(void)
459 {
460 }
461 #endif
462
463 /*
464  * add a region into the global tree
465  */
466 static void add_nommu_region(struct vm_region *region)
467 {
468         struct vm_region *pregion;
469         struct rb_node **p, *parent;
470
471         validate_nommu_regions();
472
473         parent = NULL;
474         p = &nommu_region_tree.rb_node;
475         while (*p) {
476                 parent = *p;
477                 pregion = rb_entry(parent, struct vm_region, vm_rb);
478                 if (region->vm_start < pregion->vm_start)
479                         p = &(*p)->rb_left;
480                 else if (region->vm_start > pregion->vm_start)
481                         p = &(*p)->rb_right;
482                 else if (pregion == region)
483                         return;
484                 else
485                         BUG();
486         }
487
488         rb_link_node(&region->vm_rb, parent, p);
489         rb_insert_color(&region->vm_rb, &nommu_region_tree);
490
491         validate_nommu_regions();
492 }
493
494 /*
495  * delete a region from the global tree
496  */
497 static void delete_nommu_region(struct vm_region *region)
498 {
499         BUG_ON(!nommu_region_tree.rb_node);
500
501         validate_nommu_regions();
502         rb_erase(&region->vm_rb, &nommu_region_tree);
503         validate_nommu_regions();
504 }
505
506 /*
507  * free a contiguous series of pages
508  */
509 static void free_page_series(unsigned long from, unsigned long to)
510 {
511         for (; from < to; from += PAGE_SIZE) {
512                 struct page *page = virt_to_page(from);
513
514                 atomic_long_dec(&mmap_pages_allocated);
515                 put_page(page);
516         }
517 }
518
519 /*
520  * release a reference to a region
521  * - the caller must hold the region semaphore for writing, which this releases
522  * - the region may not have been added to the tree yet, in which case vm_top
523  *   will equal vm_start
524  */
525 static void __put_nommu_region(struct vm_region *region)
526         __releases(nommu_region_sem)
527 {
528         BUG_ON(!nommu_region_tree.rb_node);
529
530         if (--region->vm_usage == 0) {
531                 if (region->vm_top > region->vm_start)
532                         delete_nommu_region(region);
533                 up_write(&nommu_region_sem);
534
535                 if (region->vm_file)
536                         fput(region->vm_file);
537
538                 /* IO memory and memory shared directly out of the pagecache
539                  * from ramfs/tmpfs mustn't be released here */
540                 if (region->vm_flags & VM_MAPPED_COPY)
541                         free_page_series(region->vm_start, region->vm_top);
542                 kmem_cache_free(vm_region_jar, region);
543         } else {
544                 up_write(&nommu_region_sem);
545         }
546 }
547
548 /*
549  * release a reference to a region
550  */
551 static void put_nommu_region(struct vm_region *region)
552 {
553         down_write(&nommu_region_sem);
554         __put_nommu_region(region);
555 }
556
557 /*
558  * add a VMA into a process's mm_struct in the appropriate place in the list
559  * and tree and add to the address space's page tree also if not an anonymous
560  * page
561  * - should be called with mm->mmap_lock held writelocked
562  */
563 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
564 {
565         struct vm_area_struct *pvma, *prev;
566         struct address_space *mapping;
567         struct rb_node **p, *parent, *rb_prev;
568
569         BUG_ON(!vma->vm_region);
570
571         mm->map_count++;
572         vma->vm_mm = mm;
573
574         /* add the VMA to the mapping */
575         if (vma->vm_file) {
576                 mapping = vma->vm_file->f_mapping;
577
578                 i_mmap_lock_write(mapping);
579                 flush_dcache_mmap_lock(mapping);
580                 vma_interval_tree_insert(vma, &mapping->i_mmap);
581                 flush_dcache_mmap_unlock(mapping);
582                 i_mmap_unlock_write(mapping);
583         }
584
585         /* add the VMA to the tree */
586         parent = rb_prev = NULL;
587         p = &mm->mm_rb.rb_node;
588         while (*p) {
589                 parent = *p;
590                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
591
592                 /* sort by: start addr, end addr, VMA struct addr in that order
593                  * (the latter is necessary as we may get identical VMAs) */
594                 if (vma->vm_start < pvma->vm_start)
595                         p = &(*p)->rb_left;
596                 else if (vma->vm_start > pvma->vm_start) {
597                         rb_prev = parent;
598                         p = &(*p)->rb_right;
599                 } else if (vma->vm_end < pvma->vm_end)
600                         p = &(*p)->rb_left;
601                 else if (vma->vm_end > pvma->vm_end) {
602                         rb_prev = parent;
603                         p = &(*p)->rb_right;
604                 } else if (vma < pvma)
605                         p = &(*p)->rb_left;
606                 else if (vma > pvma) {
607                         rb_prev = parent;
608                         p = &(*p)->rb_right;
609                 } else
610                         BUG();
611         }
612
613         rb_link_node(&vma->vm_rb, parent, p);
614         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
615
616         /* add VMA to the VMA list also */
617         prev = NULL;
618         if (rb_prev)
619                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
620
621         __vma_link_list(mm, vma, prev);
622 }
623
624 /*
625  * delete a VMA from its owning mm_struct and address space
626  */
627 static void delete_vma_from_mm(struct vm_area_struct *vma)
628 {
629         int i;
630         struct address_space *mapping;
631         struct mm_struct *mm = vma->vm_mm;
632         struct task_struct *curr = current;
633
634         mm->map_count--;
635         for (i = 0; i < VMACACHE_SIZE; i++) {
636                 /* if the vma is cached, invalidate the entire cache */
637                 if (curr->vmacache.vmas[i] == vma) {
638                         vmacache_invalidate(mm);
639                         break;
640                 }
641         }
642
643         /* remove the VMA from the mapping */
644         if (vma->vm_file) {
645                 mapping = vma->vm_file->f_mapping;
646
647                 i_mmap_lock_write(mapping);
648                 flush_dcache_mmap_lock(mapping);
649                 vma_interval_tree_remove(vma, &mapping->i_mmap);
650                 flush_dcache_mmap_unlock(mapping);
651                 i_mmap_unlock_write(mapping);
652         }
653
654         /* remove from the MM's tree and list */
655         rb_erase(&vma->vm_rb, &mm->mm_rb);
656
657         __vma_unlink_list(mm, vma);
658 }
659
660 /*
661  * destroy a VMA record
662  */
663 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665         if (vma->vm_ops && vma->vm_ops->close)
666                 vma->vm_ops->close(vma);
667         if (vma->vm_file)
668                 fput(vma->vm_file);
669         put_nommu_region(vma->vm_region);
670         vm_area_free(vma);
671 }
672
673 /*
674  * look up the first VMA in which addr resides, NULL if none
675  * - should be called with mm->mmap_lock at least held readlocked
676  */
677 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
678 {
679         struct vm_area_struct *vma;
680
681         /* check the cache first */
682         vma = vmacache_find(mm, addr);
683         if (likely(vma))
684                 return vma;
685
686         /* trawl the list (there may be multiple mappings in which addr
687          * resides) */
688         for (vma = mm->mmap; vma; vma = vma->vm_next) {
689                 if (vma->vm_start > addr)
690                         return NULL;
691                 if (vma->vm_end > addr) {
692                         vmacache_update(addr, vma);
693                         return vma;
694                 }
695         }
696
697         return NULL;
698 }
699 EXPORT_SYMBOL(find_vma);
700
701 /*
702  * find a VMA
703  * - we don't extend stack VMAs under NOMMU conditions
704  */
705 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
706 {
707         return find_vma(mm, addr);
708 }
709
710 /*
711  * expand a stack to a given address
712  * - not supported under NOMMU conditions
713  */
714 int expand_stack(struct vm_area_struct *vma, unsigned long address)
715 {
716         return -ENOMEM;
717 }
718
719 /*
720  * look up the first VMA exactly that exactly matches addr
721  * - should be called with mm->mmap_lock at least held readlocked
722  */
723 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
724                                              unsigned long addr,
725                                              unsigned long len)
726 {
727         struct vm_area_struct *vma;
728         unsigned long end = addr + len;
729
730         /* check the cache first */
731         vma = vmacache_find_exact(mm, addr, end);
732         if (vma)
733                 return vma;
734
735         /* trawl the list (there may be multiple mappings in which addr
736          * resides) */
737         for (vma = mm->mmap; vma; vma = vma->vm_next) {
738                 if (vma->vm_start < addr)
739                         continue;
740                 if (vma->vm_start > addr)
741                         return NULL;
742                 if (vma->vm_end == end) {
743                         vmacache_update(addr, vma);
744                         return vma;
745                 }
746         }
747
748         return NULL;
749 }
750
751 /*
752  * determine whether a mapping should be permitted and, if so, what sort of
753  * mapping we're capable of supporting
754  */
755 static int validate_mmap_request(struct file *file,
756                                  unsigned long addr,
757                                  unsigned long len,
758                                  unsigned long prot,
759                                  unsigned long flags,
760                                  unsigned long pgoff,
761                                  unsigned long *_capabilities)
762 {
763         unsigned long capabilities, rlen;
764         int ret;
765
766         /* do the simple checks first */
767         if (flags & MAP_FIXED)
768                 return -EINVAL;
769
770         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
771             (flags & MAP_TYPE) != MAP_SHARED)
772                 return -EINVAL;
773
774         if (!len)
775                 return -EINVAL;
776
777         /* Careful about overflows.. */
778         rlen = PAGE_ALIGN(len);
779         if (!rlen || rlen > TASK_SIZE)
780                 return -ENOMEM;
781
782         /* offset overflow? */
783         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
784                 return -EOVERFLOW;
785
786         if (file) {
787                 /* files must support mmap */
788                 if (!file->f_op->mmap)
789                         return -ENODEV;
790
791                 /* work out if what we've got could possibly be shared
792                  * - we support chardevs that provide their own "memory"
793                  * - we support files/blockdevs that are memory backed
794                  */
795                 if (file->f_op->mmap_capabilities) {
796                         capabilities = file->f_op->mmap_capabilities(file);
797                 } else {
798                         /* no explicit capabilities set, so assume some
799                          * defaults */
800                         switch (file_inode(file)->i_mode & S_IFMT) {
801                         case S_IFREG:
802                         case S_IFBLK:
803                                 capabilities = NOMMU_MAP_COPY;
804                                 break;
805
806                         case S_IFCHR:
807                                 capabilities =
808                                         NOMMU_MAP_DIRECT |
809                                         NOMMU_MAP_READ |
810                                         NOMMU_MAP_WRITE;
811                                 break;
812
813                         default:
814                                 return -EINVAL;
815                         }
816                 }
817
818                 /* eliminate any capabilities that we can't support on this
819                  * device */
820                 if (!file->f_op->get_unmapped_area)
821                         capabilities &= ~NOMMU_MAP_DIRECT;
822                 if (!(file->f_mode & FMODE_CAN_READ))
823                         capabilities &= ~NOMMU_MAP_COPY;
824
825                 /* The file shall have been opened with read permission. */
826                 if (!(file->f_mode & FMODE_READ))
827                         return -EACCES;
828
829                 if (flags & MAP_SHARED) {
830                         /* do checks for writing, appending and locking */
831                         if ((prot & PROT_WRITE) &&
832                             !(file->f_mode & FMODE_WRITE))
833                                 return -EACCES;
834
835                         if (IS_APPEND(file_inode(file)) &&
836                             (file->f_mode & FMODE_WRITE))
837                                 return -EACCES;
838
839                         if (locks_verify_locked(file))
840                                 return -EAGAIN;
841
842                         if (!(capabilities & NOMMU_MAP_DIRECT))
843                                 return -ENODEV;
844
845                         /* we mustn't privatise shared mappings */
846                         capabilities &= ~NOMMU_MAP_COPY;
847                 } else {
848                         /* we're going to read the file into private memory we
849                          * allocate */
850                         if (!(capabilities & NOMMU_MAP_COPY))
851                                 return -ENODEV;
852
853                         /* we don't permit a private writable mapping to be
854                          * shared with the backing device */
855                         if (prot & PROT_WRITE)
856                                 capabilities &= ~NOMMU_MAP_DIRECT;
857                 }
858
859                 if (capabilities & NOMMU_MAP_DIRECT) {
860                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
861                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
862                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
863                             ) {
864                                 capabilities &= ~NOMMU_MAP_DIRECT;
865                                 if (flags & MAP_SHARED) {
866                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
867                                         return -EINVAL;
868                                 }
869                         }
870                 }
871
872                 /* handle executable mappings and implied executable
873                  * mappings */
874                 if (path_noexec(&file->f_path)) {
875                         if (prot & PROT_EXEC)
876                                 return -EPERM;
877                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
878                         /* handle implication of PROT_EXEC by PROT_READ */
879                         if (current->personality & READ_IMPLIES_EXEC) {
880                                 if (capabilities & NOMMU_MAP_EXEC)
881                                         prot |= PROT_EXEC;
882                         }
883                 } else if ((prot & PROT_READ) &&
884                          (prot & PROT_EXEC) &&
885                          !(capabilities & NOMMU_MAP_EXEC)
886                          ) {
887                         /* backing file is not executable, try to copy */
888                         capabilities &= ~NOMMU_MAP_DIRECT;
889                 }
890         } else {
891                 /* anonymous mappings are always memory backed and can be
892                  * privately mapped
893                  */
894                 capabilities = NOMMU_MAP_COPY;
895
896                 /* handle PROT_EXEC implication by PROT_READ */
897                 if ((prot & PROT_READ) &&
898                     (current->personality & READ_IMPLIES_EXEC))
899                         prot |= PROT_EXEC;
900         }
901
902         /* allow the security API to have its say */
903         ret = security_mmap_addr(addr);
904         if (ret < 0)
905                 return ret;
906
907         /* looks okay */
908         *_capabilities = capabilities;
909         return 0;
910 }
911
912 /*
913  * we've determined that we can make the mapping, now translate what we
914  * now know into VMA flags
915  */
916 static unsigned long determine_vm_flags(struct file *file,
917                                         unsigned long prot,
918                                         unsigned long flags,
919                                         unsigned long capabilities)
920 {
921         unsigned long vm_flags;
922
923         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
924         /* vm_flags |= mm->def_flags; */
925
926         if (!(capabilities & NOMMU_MAP_DIRECT)) {
927                 /* attempt to share read-only copies of mapped file chunks */
928                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
929                 if (file && !(prot & PROT_WRITE))
930                         vm_flags |= VM_MAYSHARE;
931         } else {
932                 /* overlay a shareable mapping on the backing device or inode
933                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
934                  * romfs/cramfs */
935                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
936                 if (flags & MAP_SHARED)
937                         vm_flags |= VM_SHARED;
938         }
939
940         /* refuse to let anyone share private mappings with this process if
941          * it's being traced - otherwise breakpoints set in it may interfere
942          * with another untraced process
943          */
944         if ((flags & MAP_PRIVATE) && current->ptrace)
945                 vm_flags &= ~VM_MAYSHARE;
946
947         return vm_flags;
948 }
949
950 /*
951  * set up a shared mapping on a file (the driver or filesystem provides and
952  * pins the storage)
953  */
954 static int do_mmap_shared_file(struct vm_area_struct *vma)
955 {
956         int ret;
957
958         ret = call_mmap(vma->vm_file, vma);
959         if (ret == 0) {
960                 vma->vm_region->vm_top = vma->vm_region->vm_end;
961                 return 0;
962         }
963         if (ret != -ENOSYS)
964                 return ret;
965
966         /* getting -ENOSYS indicates that direct mmap isn't possible (as
967          * opposed to tried but failed) so we can only give a suitable error as
968          * it's not possible to make a private copy if MAP_SHARED was given */
969         return -ENODEV;
970 }
971
972 /*
973  * set up a private mapping or an anonymous shared mapping
974  */
975 static int do_mmap_private(struct vm_area_struct *vma,
976                            struct vm_region *region,
977                            unsigned long len,
978                            unsigned long capabilities)
979 {
980         unsigned long total, point;
981         void *base;
982         int ret, order;
983
984         /* invoke the file's mapping function so that it can keep track of
985          * shared mappings on devices or memory
986          * - VM_MAYSHARE will be set if it may attempt to share
987          */
988         if (capabilities & NOMMU_MAP_DIRECT) {
989                 ret = call_mmap(vma->vm_file, vma);
990                 if (ret == 0) {
991                         /* shouldn't return success if we're not sharing */
992                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
993                         vma->vm_region->vm_top = vma->vm_region->vm_end;
994                         return 0;
995                 }
996                 if (ret != -ENOSYS)
997                         return ret;
998
999                 /* getting an ENOSYS error indicates that direct mmap isn't
1000                  * possible (as opposed to tried but failed) so we'll try to
1001                  * make a private copy of the data and map that instead */
1002         }
1003
1004
1005         /* allocate some memory to hold the mapping
1006          * - note that this may not return a page-aligned address if the object
1007          *   we're allocating is smaller than a page
1008          */
1009         order = get_order(len);
1010         total = 1 << order;
1011         point = len >> PAGE_SHIFT;
1012
1013         /* we don't want to allocate a power-of-2 sized page set */
1014         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1015                 total = point;
1016
1017         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1018         if (!base)
1019                 goto enomem;
1020
1021         atomic_long_add(total, &mmap_pages_allocated);
1022
1023         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1024         region->vm_start = (unsigned long) base;
1025         region->vm_end   = region->vm_start + len;
1026         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1027
1028         vma->vm_start = region->vm_start;
1029         vma->vm_end   = region->vm_start + len;
1030
1031         if (vma->vm_file) {
1032                 /* read the contents of a file into the copy */
1033                 loff_t fpos;
1034
1035                 fpos = vma->vm_pgoff;
1036                 fpos <<= PAGE_SHIFT;
1037
1038                 ret = kernel_read(vma->vm_file, base, len, &fpos);
1039                 if (ret < 0)
1040                         goto error_free;
1041
1042                 /* clear the last little bit */
1043                 if (ret < len)
1044                         memset(base + ret, 0, len - ret);
1045
1046         } else {
1047                 vma_set_anonymous(vma);
1048         }
1049
1050         return 0;
1051
1052 error_free:
1053         free_page_series(region->vm_start, region->vm_top);
1054         region->vm_start = vma->vm_start = 0;
1055         region->vm_end   = vma->vm_end = 0;
1056         region->vm_top   = 0;
1057         return ret;
1058
1059 enomem:
1060         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1061                len, current->pid, current->comm);
1062         show_free_areas(0, NULL);
1063         return -ENOMEM;
1064 }
1065
1066 /*
1067  * handle mapping creation for uClinux
1068  */
1069 unsigned long do_mmap(struct file *file,
1070                         unsigned long addr,
1071                         unsigned long len,
1072                         unsigned long prot,
1073                         unsigned long flags,
1074                         unsigned long pgoff,
1075                         unsigned long *populate,
1076                         struct list_head *uf)
1077 {
1078         struct vm_area_struct *vma;
1079         struct vm_region *region;
1080         struct rb_node *rb;
1081         vm_flags_t vm_flags;
1082         unsigned long capabilities, result;
1083         int ret;
1084
1085         *populate = 0;
1086
1087         /* decide whether we should attempt the mapping, and if so what sort of
1088          * mapping */
1089         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1090                                     &capabilities);
1091         if (ret < 0)
1092                 return ret;
1093
1094         /* we ignore the address hint */
1095         addr = 0;
1096         len = PAGE_ALIGN(len);
1097
1098         /* we've determined that we can make the mapping, now translate what we
1099          * now know into VMA flags */
1100         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1101
1102         /* we're going to need to record the mapping */
1103         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1104         if (!region)
1105                 goto error_getting_region;
1106
1107         vma = vm_area_alloc(current->mm);
1108         if (!vma)
1109                 goto error_getting_vma;
1110
1111         region->vm_usage = 1;
1112         region->vm_flags = vm_flags;
1113         region->vm_pgoff = pgoff;
1114
1115         vma->vm_flags = vm_flags;
1116         vma->vm_pgoff = pgoff;
1117
1118         if (file) {
1119                 region->vm_file = get_file(file);
1120                 vma->vm_file = get_file(file);
1121         }
1122
1123         down_write(&nommu_region_sem);
1124
1125         /* if we want to share, we need to check for regions created by other
1126          * mmap() calls that overlap with our proposed mapping
1127          * - we can only share with a superset match on most regular files
1128          * - shared mappings on character devices and memory backed files are
1129          *   permitted to overlap inexactly as far as we are concerned for in
1130          *   these cases, sharing is handled in the driver or filesystem rather
1131          *   than here
1132          */
1133         if (vm_flags & VM_MAYSHARE) {
1134                 struct vm_region *pregion;
1135                 unsigned long pglen, rpglen, pgend, rpgend, start;
1136
1137                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1138                 pgend = pgoff + pglen;
1139
1140                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1141                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1142
1143                         if (!(pregion->vm_flags & VM_MAYSHARE))
1144                                 continue;
1145
1146                         /* search for overlapping mappings on the same file */
1147                         if (file_inode(pregion->vm_file) !=
1148                             file_inode(file))
1149                                 continue;
1150
1151                         if (pregion->vm_pgoff >= pgend)
1152                                 continue;
1153
1154                         rpglen = pregion->vm_end - pregion->vm_start;
1155                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1156                         rpgend = pregion->vm_pgoff + rpglen;
1157                         if (pgoff >= rpgend)
1158                                 continue;
1159
1160                         /* handle inexactly overlapping matches between
1161                          * mappings */
1162                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1163                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1164                                 /* new mapping is not a subset of the region */
1165                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1166                                         goto sharing_violation;
1167                                 continue;
1168                         }
1169
1170                         /* we've found a region we can share */
1171                         pregion->vm_usage++;
1172                         vma->vm_region = pregion;
1173                         start = pregion->vm_start;
1174                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1175                         vma->vm_start = start;
1176                         vma->vm_end = start + len;
1177
1178                         if (pregion->vm_flags & VM_MAPPED_COPY)
1179                                 vma->vm_flags |= VM_MAPPED_COPY;
1180                         else {
1181                                 ret = do_mmap_shared_file(vma);
1182                                 if (ret < 0) {
1183                                         vma->vm_region = NULL;
1184                                         vma->vm_start = 0;
1185                                         vma->vm_end = 0;
1186                                         pregion->vm_usage--;
1187                                         pregion = NULL;
1188                                         goto error_just_free;
1189                                 }
1190                         }
1191                         fput(region->vm_file);
1192                         kmem_cache_free(vm_region_jar, region);
1193                         region = pregion;
1194                         result = start;
1195                         goto share;
1196                 }
1197
1198                 /* obtain the address at which to make a shared mapping
1199                  * - this is the hook for quasi-memory character devices to
1200                  *   tell us the location of a shared mapping
1201                  */
1202                 if (capabilities & NOMMU_MAP_DIRECT) {
1203                         addr = file->f_op->get_unmapped_area(file, addr, len,
1204                                                              pgoff, flags);
1205                         if (IS_ERR_VALUE(addr)) {
1206                                 ret = addr;
1207                                 if (ret != -ENOSYS)
1208                                         goto error_just_free;
1209
1210                                 /* the driver refused to tell us where to site
1211                                  * the mapping so we'll have to attempt to copy
1212                                  * it */
1213                                 ret = -ENODEV;
1214                                 if (!(capabilities & NOMMU_MAP_COPY))
1215                                         goto error_just_free;
1216
1217                                 capabilities &= ~NOMMU_MAP_DIRECT;
1218                         } else {
1219                                 vma->vm_start = region->vm_start = addr;
1220                                 vma->vm_end = region->vm_end = addr + len;
1221                         }
1222                 }
1223         }
1224
1225         vma->vm_region = region;
1226
1227         /* set up the mapping
1228          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1229          */
1230         if (file && vma->vm_flags & VM_SHARED)
1231                 ret = do_mmap_shared_file(vma);
1232         else
1233                 ret = do_mmap_private(vma, region, len, capabilities);
1234         if (ret < 0)
1235                 goto error_just_free;
1236         add_nommu_region(region);
1237
1238         /* clear anonymous mappings that don't ask for uninitialized data */
1239         if (!vma->vm_file &&
1240             (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1241              !(flags & MAP_UNINITIALIZED)))
1242                 memset((void *)region->vm_start, 0,
1243                        region->vm_end - region->vm_start);
1244
1245         /* okay... we have a mapping; now we have to register it */
1246         result = vma->vm_start;
1247
1248         current->mm->total_vm += len >> PAGE_SHIFT;
1249
1250 share:
1251         add_vma_to_mm(current->mm, vma);
1252
1253         /* we flush the region from the icache only when the first executable
1254          * mapping of it is made  */
1255         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1256                 flush_icache_user_range(region->vm_start, region->vm_end);
1257                 region->vm_icache_flushed = true;
1258         }
1259
1260         up_write(&nommu_region_sem);
1261
1262         return result;
1263
1264 error_just_free:
1265         up_write(&nommu_region_sem);
1266 error:
1267         if (region->vm_file)
1268                 fput(region->vm_file);
1269         kmem_cache_free(vm_region_jar, region);
1270         if (vma->vm_file)
1271                 fput(vma->vm_file);
1272         vm_area_free(vma);
1273         return ret;
1274
1275 sharing_violation:
1276         up_write(&nommu_region_sem);
1277         pr_warn("Attempt to share mismatched mappings\n");
1278         ret = -EINVAL;
1279         goto error;
1280
1281 error_getting_vma:
1282         kmem_cache_free(vm_region_jar, region);
1283         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1284                         len, current->pid);
1285         show_free_areas(0, NULL);
1286         return -ENOMEM;
1287
1288 error_getting_region:
1289         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1290                         len, current->pid);
1291         show_free_areas(0, NULL);
1292         return -ENOMEM;
1293 }
1294
1295 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1296                               unsigned long prot, unsigned long flags,
1297                               unsigned long fd, unsigned long pgoff)
1298 {
1299         struct file *file = NULL;
1300         unsigned long retval = -EBADF;
1301
1302         audit_mmap_fd(fd, flags);
1303         if (!(flags & MAP_ANONYMOUS)) {
1304                 file = fget(fd);
1305                 if (!file)
1306                         goto out;
1307         }
1308
1309         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1310
1311         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1312
1313         if (file)
1314                 fput(file);
1315 out:
1316         return retval;
1317 }
1318
1319 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1320                 unsigned long, prot, unsigned long, flags,
1321                 unsigned long, fd, unsigned long, pgoff)
1322 {
1323         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1324 }
1325
1326 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1327 struct mmap_arg_struct {
1328         unsigned long addr;
1329         unsigned long len;
1330         unsigned long prot;
1331         unsigned long flags;
1332         unsigned long fd;
1333         unsigned long offset;
1334 };
1335
1336 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1337 {
1338         struct mmap_arg_struct a;
1339
1340         if (copy_from_user(&a, arg, sizeof(a)))
1341                 return -EFAULT;
1342         if (offset_in_page(a.offset))
1343                 return -EINVAL;
1344
1345         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1346                                a.offset >> PAGE_SHIFT);
1347 }
1348 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1349
1350 /*
1351  * split a vma into two pieces at address 'addr', a new vma is allocated either
1352  * for the first part or the tail.
1353  */
1354 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1355               unsigned long addr, int new_below)
1356 {
1357         struct vm_area_struct *new;
1358         struct vm_region *region;
1359         unsigned long npages;
1360
1361         /* we're only permitted to split anonymous regions (these should have
1362          * only a single usage on the region) */
1363         if (vma->vm_file)
1364                 return -ENOMEM;
1365
1366         if (mm->map_count >= sysctl_max_map_count)
1367                 return -ENOMEM;
1368
1369         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1370         if (!region)
1371                 return -ENOMEM;
1372
1373         new = vm_area_dup(vma);
1374         if (!new) {
1375                 kmem_cache_free(vm_region_jar, region);
1376                 return -ENOMEM;
1377         }
1378
1379         /* most fields are the same, copy all, and then fixup */
1380         *region = *vma->vm_region;
1381         new->vm_region = region;
1382
1383         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1384
1385         if (new_below) {
1386                 region->vm_top = region->vm_end = new->vm_end = addr;
1387         } else {
1388                 region->vm_start = new->vm_start = addr;
1389                 region->vm_pgoff = new->vm_pgoff += npages;
1390         }
1391
1392         if (new->vm_ops && new->vm_ops->open)
1393                 new->vm_ops->open(new);
1394
1395         delete_vma_from_mm(vma);
1396         down_write(&nommu_region_sem);
1397         delete_nommu_region(vma->vm_region);
1398         if (new_below) {
1399                 vma->vm_region->vm_start = vma->vm_start = addr;
1400                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1401         } else {
1402                 vma->vm_region->vm_end = vma->vm_end = addr;
1403                 vma->vm_region->vm_top = addr;
1404         }
1405         add_nommu_region(vma->vm_region);
1406         add_nommu_region(new->vm_region);
1407         up_write(&nommu_region_sem);
1408         add_vma_to_mm(mm, vma);
1409         add_vma_to_mm(mm, new);
1410         return 0;
1411 }
1412
1413 /*
1414  * shrink a VMA by removing the specified chunk from either the beginning or
1415  * the end
1416  */
1417 static int shrink_vma(struct mm_struct *mm,
1418                       struct vm_area_struct *vma,
1419                       unsigned long from, unsigned long to)
1420 {
1421         struct vm_region *region;
1422
1423         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1424          * and list */
1425         delete_vma_from_mm(vma);
1426         if (from > vma->vm_start)
1427                 vma->vm_end = from;
1428         else
1429                 vma->vm_start = to;
1430         add_vma_to_mm(mm, vma);
1431
1432         /* cut the backing region down to size */
1433         region = vma->vm_region;
1434         BUG_ON(region->vm_usage != 1);
1435
1436         down_write(&nommu_region_sem);
1437         delete_nommu_region(region);
1438         if (from > region->vm_start) {
1439                 to = region->vm_top;
1440                 region->vm_top = region->vm_end = from;
1441         } else {
1442                 region->vm_start = to;
1443         }
1444         add_nommu_region(region);
1445         up_write(&nommu_region_sem);
1446
1447         free_page_series(from, to);
1448         return 0;
1449 }
1450
1451 /*
1452  * release a mapping
1453  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1454  *   VMA, though it need not cover the whole VMA
1455  */
1456 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1457 {
1458         struct vm_area_struct *vma;
1459         unsigned long end;
1460         int ret;
1461
1462         len = PAGE_ALIGN(len);
1463         if (len == 0)
1464                 return -EINVAL;
1465
1466         end = start + len;
1467
1468         /* find the first potentially overlapping VMA */
1469         vma = find_vma(mm, start);
1470         if (!vma) {
1471                 static int limit;
1472                 if (limit < 5) {
1473                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1474                                         current->pid, current->comm,
1475                                         start, start + len - 1);
1476                         limit++;
1477                 }
1478                 return -EINVAL;
1479         }
1480
1481         /* we're allowed to split an anonymous VMA but not a file-backed one */
1482         if (vma->vm_file) {
1483                 do {
1484                         if (start > vma->vm_start)
1485                                 return -EINVAL;
1486                         if (end == vma->vm_end)
1487                                 goto erase_whole_vma;
1488                         vma = vma->vm_next;
1489                 } while (vma);
1490                 return -EINVAL;
1491         } else {
1492                 /* the chunk must be a subset of the VMA found */
1493                 if (start == vma->vm_start && end == vma->vm_end)
1494                         goto erase_whole_vma;
1495                 if (start < vma->vm_start || end > vma->vm_end)
1496                         return -EINVAL;
1497                 if (offset_in_page(start))
1498                         return -EINVAL;
1499                 if (end != vma->vm_end && offset_in_page(end))
1500                         return -EINVAL;
1501                 if (start != vma->vm_start && end != vma->vm_end) {
1502                         ret = split_vma(mm, vma, start, 1);
1503                         if (ret < 0)
1504                                 return ret;
1505                 }
1506                 return shrink_vma(mm, vma, start, end);
1507         }
1508
1509 erase_whole_vma:
1510         delete_vma_from_mm(vma);
1511         delete_vma(mm, vma);
1512         return 0;
1513 }
1514 EXPORT_SYMBOL(do_munmap);
1515
1516 int vm_munmap(unsigned long addr, size_t len)
1517 {
1518         struct mm_struct *mm = current->mm;
1519         int ret;
1520
1521         mmap_write_lock(mm);
1522         ret = do_munmap(mm, addr, len, NULL);
1523         mmap_write_unlock(mm);
1524         return ret;
1525 }
1526 EXPORT_SYMBOL(vm_munmap);
1527
1528 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1529 {
1530         return vm_munmap(addr, len);
1531 }
1532
1533 /*
1534  * release all the mappings made in a process's VM space
1535  */
1536 void exit_mmap(struct mm_struct *mm)
1537 {
1538         struct vm_area_struct *vma;
1539
1540         if (!mm)
1541                 return;
1542
1543         mm->total_vm = 0;
1544
1545         while ((vma = mm->mmap)) {
1546                 mm->mmap = vma->vm_next;
1547                 delete_vma_from_mm(vma);
1548                 delete_vma(mm, vma);
1549                 cond_resched();
1550         }
1551 }
1552
1553 int vm_brk(unsigned long addr, unsigned long len)
1554 {
1555         return -ENOMEM;
1556 }
1557
1558 /*
1559  * expand (or shrink) an existing mapping, potentially moving it at the same
1560  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1561  *
1562  * under NOMMU conditions, we only permit changing a mapping's size, and only
1563  * as long as it stays within the region allocated by do_mmap_private() and the
1564  * block is not shareable
1565  *
1566  * MREMAP_FIXED is not supported under NOMMU conditions
1567  */
1568 static unsigned long do_mremap(unsigned long addr,
1569                         unsigned long old_len, unsigned long new_len,
1570                         unsigned long flags, unsigned long new_addr)
1571 {
1572         struct vm_area_struct *vma;
1573
1574         /* insanity checks first */
1575         old_len = PAGE_ALIGN(old_len);
1576         new_len = PAGE_ALIGN(new_len);
1577         if (old_len == 0 || new_len == 0)
1578                 return (unsigned long) -EINVAL;
1579
1580         if (offset_in_page(addr))
1581                 return -EINVAL;
1582
1583         if (flags & MREMAP_FIXED && new_addr != addr)
1584                 return (unsigned long) -EINVAL;
1585
1586         vma = find_vma_exact(current->mm, addr, old_len);
1587         if (!vma)
1588                 return (unsigned long) -EINVAL;
1589
1590         if (vma->vm_end != vma->vm_start + old_len)
1591                 return (unsigned long) -EFAULT;
1592
1593         if (vma->vm_flags & VM_MAYSHARE)
1594                 return (unsigned long) -EPERM;
1595
1596         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1597                 return (unsigned long) -ENOMEM;
1598
1599         /* all checks complete - do it */
1600         vma->vm_end = vma->vm_start + new_len;
1601         return vma->vm_start;
1602 }
1603
1604 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1605                 unsigned long, new_len, unsigned long, flags,
1606                 unsigned long, new_addr)
1607 {
1608         unsigned long ret;
1609
1610         mmap_write_lock(current->mm);
1611         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1612         mmap_write_unlock(current->mm);
1613         return ret;
1614 }
1615
1616 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1617                          unsigned int foll_flags)
1618 {
1619         return NULL;
1620 }
1621
1622 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1623                 unsigned long pfn, unsigned long size, pgprot_t prot)
1624 {
1625         if (addr != (pfn << PAGE_SHIFT))
1626                 return -EINVAL;
1627
1628         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1629         return 0;
1630 }
1631 EXPORT_SYMBOL(remap_pfn_range);
1632
1633 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1634 {
1635         unsigned long pfn = start >> PAGE_SHIFT;
1636         unsigned long vm_len = vma->vm_end - vma->vm_start;
1637
1638         pfn += vma->vm_pgoff;
1639         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1640 }
1641 EXPORT_SYMBOL(vm_iomap_memory);
1642
1643 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1644                         unsigned long pgoff)
1645 {
1646         unsigned int size = vma->vm_end - vma->vm_start;
1647
1648         if (!(vma->vm_flags & VM_USERMAP))
1649                 return -EINVAL;
1650
1651         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1652         vma->vm_end = vma->vm_start + size;
1653
1654         return 0;
1655 }
1656 EXPORT_SYMBOL(remap_vmalloc_range);
1657
1658 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1659         unsigned long len, unsigned long pgoff, unsigned long flags)
1660 {
1661         return -ENOMEM;
1662 }
1663
1664 vm_fault_t filemap_fault(struct vm_fault *vmf)
1665 {
1666         BUG();
1667         return 0;
1668 }
1669 EXPORT_SYMBOL(filemap_fault);
1670
1671 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1672                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1673 {
1674         BUG();
1675         return 0;
1676 }
1677 EXPORT_SYMBOL(filemap_map_pages);
1678
1679 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1680                        int len, unsigned int gup_flags)
1681 {
1682         struct vm_area_struct *vma;
1683         int write = gup_flags & FOLL_WRITE;
1684
1685         if (mmap_read_lock_killable(mm))
1686                 return 0;
1687
1688         /* the access must start within one of the target process's mappings */
1689         vma = find_vma(mm, addr);
1690         if (vma) {
1691                 /* don't overrun this mapping */
1692                 if (addr + len >= vma->vm_end)
1693                         len = vma->vm_end - addr;
1694
1695                 /* only read or write mappings where it is permitted */
1696                 if (write && vma->vm_flags & VM_MAYWRITE)
1697                         copy_to_user_page(vma, NULL, addr,
1698                                          (void *) addr, buf, len);
1699                 else if (!write && vma->vm_flags & VM_MAYREAD)
1700                         copy_from_user_page(vma, NULL, addr,
1701                                             buf, (void *) addr, len);
1702                 else
1703                         len = 0;
1704         } else {
1705                 len = 0;
1706         }
1707
1708         mmap_read_unlock(mm);
1709
1710         return len;
1711 }
1712
1713 /**
1714  * access_remote_vm - access another process' address space
1715  * @mm:         the mm_struct of the target address space
1716  * @addr:       start address to access
1717  * @buf:        source or destination buffer
1718  * @len:        number of bytes to transfer
1719  * @gup_flags:  flags modifying lookup behaviour
1720  *
1721  * The caller must hold a reference on @mm.
1722  */
1723 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1724                 void *buf, int len, unsigned int gup_flags)
1725 {
1726         return __access_remote_vm(mm, addr, buf, len, gup_flags);
1727 }
1728
1729 /*
1730  * Access another process' address space.
1731  * - source/target buffer must be kernel space
1732  */
1733 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1734                 unsigned int gup_flags)
1735 {
1736         struct mm_struct *mm;
1737
1738         if (addr + len < addr)
1739                 return 0;
1740
1741         mm = get_task_mm(tsk);
1742         if (!mm)
1743                 return 0;
1744
1745         len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1746
1747         mmput(mm);
1748         return len;
1749 }
1750 EXPORT_SYMBOL_GPL(access_process_vm);
1751
1752 /**
1753  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1754  * @inode: The inode to check
1755  * @size: The current filesize of the inode
1756  * @newsize: The proposed filesize of the inode
1757  *
1758  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1759  * make sure that any outstanding VMAs aren't broken and then shrink the
1760  * vm_regions that extend beyond so that do_mmap() doesn't
1761  * automatically grant mappings that are too large.
1762  */
1763 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1764                                 size_t newsize)
1765 {
1766         struct vm_area_struct *vma;
1767         struct vm_region *region;
1768         pgoff_t low, high;
1769         size_t r_size, r_top;
1770
1771         low = newsize >> PAGE_SHIFT;
1772         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1773
1774         down_write(&nommu_region_sem);
1775         i_mmap_lock_read(inode->i_mapping);
1776
1777         /* search for VMAs that fall within the dead zone */
1778         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1779                 /* found one - only interested if it's shared out of the page
1780                  * cache */
1781                 if (vma->vm_flags & VM_SHARED) {
1782                         i_mmap_unlock_read(inode->i_mapping);
1783                         up_write(&nommu_region_sem);
1784                         return -ETXTBSY; /* not quite true, but near enough */
1785                 }
1786         }
1787
1788         /* reduce any regions that overlap the dead zone - if in existence,
1789          * these will be pointed to by VMAs that don't overlap the dead zone
1790          *
1791          * we don't check for any regions that start beyond the EOF as there
1792          * shouldn't be any
1793          */
1794         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1795                 if (!(vma->vm_flags & VM_SHARED))
1796                         continue;
1797
1798                 region = vma->vm_region;
1799                 r_size = region->vm_top - region->vm_start;
1800                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1801
1802                 if (r_top > newsize) {
1803                         region->vm_top -= r_top - newsize;
1804                         if (region->vm_end > region->vm_top)
1805                                 region->vm_end = region->vm_top;
1806                 }
1807         }
1808
1809         i_mmap_unlock_read(inode->i_mapping);
1810         up_write(&nommu_region_sem);
1811         return 0;
1812 }
1813
1814 /*
1815  * Initialise sysctl_user_reserve_kbytes.
1816  *
1817  * This is intended to prevent a user from starting a single memory hogging
1818  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1819  * mode.
1820  *
1821  * The default value is min(3% of free memory, 128MB)
1822  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1823  */
1824 static int __meminit init_user_reserve(void)
1825 {
1826         unsigned long free_kbytes;
1827
1828         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1829
1830         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1831         return 0;
1832 }
1833 subsys_initcall(init_user_reserve);
1834
1835 /*
1836  * Initialise sysctl_admin_reserve_kbytes.
1837  *
1838  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1839  * to log in and kill a memory hogging process.
1840  *
1841  * Systems with more than 256MB will reserve 8MB, enough to recover
1842  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1843  * only reserve 3% of free pages by default.
1844  */
1845 static int __meminit init_admin_reserve(void)
1846 {
1847         unsigned long free_kbytes;
1848
1849         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1850
1851         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1852         return 0;
1853 }
1854 subsys_initcall(init_admin_reserve);