Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 void migrate_prep(void)
66 {
67         /*
68          * Clear the LRU lists so pages can be isolated.
69          * Note that pages may be moved off the LRU after we have
70          * drained them. Those pages will fail to migrate like other
71          * pages that may be busy.
72          */
73         lru_add_drain_all();
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 void migrate_prep_local(void)
78 {
79         lru_add_drain();
80 }
81
82 int isolate_movable_page(struct page *page, isolate_mode_t mode)
83 {
84         struct address_space *mapping;
85
86         /*
87          * Avoid burning cycles with pages that are yet under __free_pages(),
88          * or just got freed under us.
89          *
90          * In case we 'win' a race for a movable page being freed under us and
91          * raise its refcount preventing __free_pages() from doing its job
92          * the put_page() at the end of this block will take care of
93          * release this page, thus avoiding a nasty leakage.
94          */
95         if (unlikely(!get_page_unless_zero(page)))
96                 goto out;
97
98         /*
99          * Check PageMovable before holding a PG_lock because page's owner
100          * assumes anybody doesn't touch PG_lock of newly allocated page
101          * so unconditionally grabbing the lock ruins page's owner side.
102          */
103         if (unlikely(!__PageMovable(page)))
104                 goto out_putpage;
105         /*
106          * As movable pages are not isolated from LRU lists, concurrent
107          * compaction threads can race against page migration functions
108          * as well as race against the releasing a page.
109          *
110          * In order to avoid having an already isolated movable page
111          * being (wrongly) re-isolated while it is under migration,
112          * or to avoid attempting to isolate pages being released,
113          * lets be sure we have the page lock
114          * before proceeding with the movable page isolation steps.
115          */
116         if (unlikely(!trylock_page(page)))
117                 goto out_putpage;
118
119         if (!PageMovable(page) || PageIsolated(page))
120                 goto out_no_isolated;
121
122         mapping = page_mapping(page);
123         VM_BUG_ON_PAGE(!mapping, page);
124
125         if (!mapping->a_ops->isolate_page(page, mode))
126                 goto out_no_isolated;
127
128         /* Driver shouldn't use PG_isolated bit of page->flags */
129         WARN_ON_ONCE(PageIsolated(page));
130         __SetPageIsolated(page);
131         unlock_page(page);
132
133         return 0;
134
135 out_no_isolated:
136         unlock_page(page);
137 out_putpage:
138         put_page(page);
139 out:
140         return -EBUSY;
141 }
142
143 /* It should be called on page which is PG_movable */
144 void putback_movable_page(struct page *page)
145 {
146         struct address_space *mapping;
147
148         VM_BUG_ON_PAGE(!PageLocked(page), page);
149         VM_BUG_ON_PAGE(!PageMovable(page), page);
150         VM_BUG_ON_PAGE(!PageIsolated(page), page);
151
152         mapping = page_mapping(page);
153         mapping->a_ops->putback_page(page);
154         __ClearPageIsolated(page);
155 }
156
157 /*
158  * Put previously isolated pages back onto the appropriate lists
159  * from where they were once taken off for compaction/migration.
160  *
161  * This function shall be used whenever the isolated pageset has been
162  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
163  * and isolate_huge_page().
164  */
165 void putback_movable_pages(struct list_head *l)
166 {
167         struct page *page;
168         struct page *page2;
169
170         list_for_each_entry_safe(page, page2, l, lru) {
171                 if (unlikely(PageHuge(page))) {
172                         putback_active_hugepage(page);
173                         continue;
174                 }
175                 list_del(&page->lru);
176                 /*
177                  * We isolated non-lru movable page so here we can use
178                  * __PageMovable because LRU page's mapping cannot have
179                  * PAGE_MAPPING_MOVABLE.
180                  */
181                 if (unlikely(__PageMovable(page))) {
182                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
183                         lock_page(page);
184                         if (PageMovable(page))
185                                 putback_movable_page(page);
186                         else
187                                 __ClearPageIsolated(page);
188                         unlock_page(page);
189                         put_page(page);
190                 } else {
191                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
192                                         page_is_file_lru(page), -thp_nr_pages(page));
193                         putback_lru_page(page);
194                 }
195         }
196 }
197
198 /*
199  * Restore a potential migration pte to a working pte entry
200  */
201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
202                                  unsigned long addr, void *old)
203 {
204         struct page_vma_mapped_walk pvmw = {
205                 .page = old,
206                 .vma = vma,
207                 .address = addr,
208                 .flags = PVMW_SYNC | PVMW_MIGRATION,
209         };
210         struct page *new;
211         pte_t pte;
212         swp_entry_t entry;
213
214         VM_BUG_ON_PAGE(PageTail(page), page);
215         while (page_vma_mapped_walk(&pvmw)) {
216                 if (PageKsm(page))
217                         new = page;
218                 else
219                         new = page - pvmw.page->index +
220                                 linear_page_index(vma, pvmw.address);
221
222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
223                 /* PMD-mapped THP migration entry */
224                 if (!pvmw.pte) {
225                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
226                         remove_migration_pmd(&pvmw, new);
227                         continue;
228                 }
229 #endif
230
231                 get_page(new);
232                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
233                 if (pte_swp_soft_dirty(*pvmw.pte))
234                         pte = pte_mksoft_dirty(pte);
235
236                 /*
237                  * Recheck VMA as permissions can change since migration started
238                  */
239                 entry = pte_to_swp_entry(*pvmw.pte);
240                 if (is_write_migration_entry(entry))
241                         pte = maybe_mkwrite(pte, vma);
242                 else if (pte_swp_uffd_wp(*pvmw.pte))
243                         pte = pte_mkuffd_wp(pte);
244
245                 if (unlikely(is_device_private_page(new))) {
246                         entry = make_device_private_entry(new, pte_write(pte));
247                         pte = swp_entry_to_pte(entry);
248                         if (pte_swp_soft_dirty(*pvmw.pte))
249                                 pte = pte_swp_mksoft_dirty(pte);
250                         if (pte_swp_uffd_wp(*pvmw.pte))
251                                 pte = pte_swp_mkuffd_wp(pte);
252                 }
253
254 #ifdef CONFIG_HUGETLB_PAGE
255                 if (PageHuge(new)) {
256                         pte = pte_mkhuge(pte);
257                         pte = arch_make_huge_pte(pte, vma, new, 0);
258                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259                         if (PageAnon(new))
260                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
261                         else
262                                 page_dup_rmap(new, true);
263                 } else
264 #endif
265                 {
266                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267
268                         if (PageAnon(new))
269                                 page_add_anon_rmap(new, vma, pvmw.address, false);
270                         else
271                                 page_add_file_rmap(new, false);
272                 }
273                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274                         mlock_vma_page(new);
275
276                 if (PageTransHuge(page) && PageMlocked(page))
277                         clear_page_mlock(page);
278
279                 /* No need to invalidate - it was non-present before */
280                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
281         }
282
283         return true;
284 }
285
286 /*
287  * Get rid of all migration entries and replace them by
288  * references to the indicated page.
289  */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292         struct rmap_walk_control rwc = {
293                 .rmap_one = remove_migration_pte,
294                 .arg = old,
295         };
296
297         if (locked)
298                 rmap_walk_locked(new, &rwc);
299         else
300                 rmap_walk(new, &rwc);
301 }
302
303 /*
304  * Something used the pte of a page under migration. We need to
305  * get to the page and wait until migration is finished.
306  * When we return from this function the fault will be retried.
307  */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309                                 spinlock_t *ptl)
310 {
311         pte_t pte;
312         swp_entry_t entry;
313         struct page *page;
314
315         spin_lock(ptl);
316         pte = *ptep;
317         if (!is_swap_pte(pte))
318                 goto out;
319
320         entry = pte_to_swp_entry(pte);
321         if (!is_migration_entry(entry))
322                 goto out;
323
324         page = migration_entry_to_page(entry);
325
326         /*
327          * Once page cache replacement of page migration started, page_count
328          * is zero; but we must not call put_and_wait_on_page_locked() without
329          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330          */
331         if (!get_page_unless_zero(page))
332                 goto out;
333         pte_unmap_unlock(ptep, ptl);
334         put_and_wait_on_page_locked(page);
335         return;
336 out:
337         pte_unmap_unlock(ptep, ptl);
338 }
339
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341                                 unsigned long address)
342 {
343         spinlock_t *ptl = pte_lockptr(mm, pmd);
344         pte_t *ptep = pte_offset_map(pmd, address);
345         __migration_entry_wait(mm, ptep, ptl);
346 }
347
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349                 struct mm_struct *mm, pte_t *pte)
350 {
351         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352         __migration_entry_wait(mm, pte, ptl);
353 }
354
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358         spinlock_t *ptl;
359         struct page *page;
360
361         ptl = pmd_lock(mm, pmd);
362         if (!is_pmd_migration_entry(*pmd))
363                 goto unlock;
364         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365         if (!get_page_unless_zero(page))
366                 goto unlock;
367         spin_unlock(ptl);
368         put_and_wait_on_page_locked(page);
369         return;
370 unlock:
371         spin_unlock(ptl);
372 }
373 #endif
374
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377         int expected_count = 1;
378
379         /*
380          * Device private pages have an extra refcount as they are
381          * ZONE_DEVICE pages.
382          */
383         expected_count += is_device_private_page(page);
384         if (mapping)
385                 expected_count += thp_nr_pages(page) + page_has_private(page);
386
387         return expected_count;
388 }
389
390 /*
391  * Replace the page in the mapping.
392  *
393  * The number of remaining references must be:
394  * 1 for anonymous pages without a mapping
395  * 2 for pages with a mapping
396  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397  */
398 int migrate_page_move_mapping(struct address_space *mapping,
399                 struct page *newpage, struct page *page, int extra_count)
400 {
401         XA_STATE(xas, &mapping->i_pages, page_index(page));
402         struct zone *oldzone, *newzone;
403         int dirty;
404         int expected_count = expected_page_refs(mapping, page) + extra_count;
405
406         if (!mapping) {
407                 /* Anonymous page without mapping */
408                 if (page_count(page) != expected_count)
409                         return -EAGAIN;
410
411                 /* No turning back from here */
412                 newpage->index = page->index;
413                 newpage->mapping = page->mapping;
414                 if (PageSwapBacked(page))
415                         __SetPageSwapBacked(newpage);
416
417                 return MIGRATEPAGE_SUCCESS;
418         }
419
420         oldzone = page_zone(page);
421         newzone = page_zone(newpage);
422
423         xas_lock_irq(&xas);
424         if (page_count(page) != expected_count || xas_load(&xas) != page) {
425                 xas_unlock_irq(&xas);
426                 return -EAGAIN;
427         }
428
429         if (!page_ref_freeze(page, expected_count)) {
430                 xas_unlock_irq(&xas);
431                 return -EAGAIN;
432         }
433
434         /*
435          * Now we know that no one else is looking at the page:
436          * no turning back from here.
437          */
438         newpage->index = page->index;
439         newpage->mapping = page->mapping;
440         page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */
441         if (PageSwapBacked(page)) {
442                 __SetPageSwapBacked(newpage);
443                 if (PageSwapCache(page)) {
444                         SetPageSwapCache(newpage);
445                         set_page_private(newpage, page_private(page));
446                 }
447         } else {
448                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
449         }
450
451         /* Move dirty while page refs frozen and newpage not yet exposed */
452         dirty = PageDirty(page);
453         if (dirty) {
454                 ClearPageDirty(page);
455                 SetPageDirty(newpage);
456         }
457
458         xas_store(&xas, newpage);
459         if (PageTransHuge(page)) {
460                 int i;
461
462                 for (i = 1; i < HPAGE_PMD_NR; i++) {
463                         xas_next(&xas);
464                         xas_store(&xas, newpage);
465                 }
466         }
467
468         /*
469          * Drop cache reference from old page by unfreezing
470          * to one less reference.
471          * We know this isn't the last reference.
472          */
473         page_ref_unfreeze(page, expected_count - thp_nr_pages(page));
474
475         xas_unlock(&xas);
476         /* Leave irq disabled to prevent preemption while updating stats */
477
478         /*
479          * If moved to a different zone then also account
480          * the page for that zone. Other VM counters will be
481          * taken care of when we establish references to the
482          * new page and drop references to the old page.
483          *
484          * Note that anonymous pages are accounted for
485          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
486          * are mapped to swap space.
487          */
488         if (newzone != oldzone) {
489                 struct lruvec *old_lruvec, *new_lruvec;
490                 struct mem_cgroup *memcg;
491
492                 memcg = page_memcg(page);
493                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
494                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
495
496                 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
497                 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
498                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
499                         __dec_lruvec_state(old_lruvec, NR_SHMEM);
500                         __inc_lruvec_state(new_lruvec, NR_SHMEM);
501                 }
502                 if (dirty && mapping_can_writeback(mapping)) {
503                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
504                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
505                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
506                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
507                 }
508         }
509         local_irq_enable();
510
511         return MIGRATEPAGE_SUCCESS;
512 }
513 EXPORT_SYMBOL(migrate_page_move_mapping);
514
515 /*
516  * The expected number of remaining references is the same as that
517  * of migrate_page_move_mapping().
518  */
519 int migrate_huge_page_move_mapping(struct address_space *mapping,
520                                    struct page *newpage, struct page *page)
521 {
522         XA_STATE(xas, &mapping->i_pages, page_index(page));
523         int expected_count;
524
525         xas_lock_irq(&xas);
526         expected_count = 2 + page_has_private(page);
527         if (page_count(page) != expected_count || xas_load(&xas) != page) {
528                 xas_unlock_irq(&xas);
529                 return -EAGAIN;
530         }
531
532         if (!page_ref_freeze(page, expected_count)) {
533                 xas_unlock_irq(&xas);
534                 return -EAGAIN;
535         }
536
537         newpage->index = page->index;
538         newpage->mapping = page->mapping;
539
540         get_page(newpage);
541
542         xas_store(&xas, newpage);
543
544         page_ref_unfreeze(page, expected_count - 1);
545
546         xas_unlock_irq(&xas);
547
548         return MIGRATEPAGE_SUCCESS;
549 }
550
551 /*
552  * Gigantic pages are so large that we do not guarantee that page++ pointer
553  * arithmetic will work across the entire page.  We need something more
554  * specialized.
555  */
556 static void __copy_gigantic_page(struct page *dst, struct page *src,
557                                 int nr_pages)
558 {
559         int i;
560         struct page *dst_base = dst;
561         struct page *src_base = src;
562
563         for (i = 0; i < nr_pages; ) {
564                 cond_resched();
565                 copy_highpage(dst, src);
566
567                 i++;
568                 dst = mem_map_next(dst, dst_base, i);
569                 src = mem_map_next(src, src_base, i);
570         }
571 }
572
573 static void copy_huge_page(struct page *dst, struct page *src)
574 {
575         int i;
576         int nr_pages;
577
578         if (PageHuge(src)) {
579                 /* hugetlbfs page */
580                 struct hstate *h = page_hstate(src);
581                 nr_pages = pages_per_huge_page(h);
582
583                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
584                         __copy_gigantic_page(dst, src, nr_pages);
585                         return;
586                 }
587         } else {
588                 /* thp page */
589                 BUG_ON(!PageTransHuge(src));
590                 nr_pages = thp_nr_pages(src);
591         }
592
593         for (i = 0; i < nr_pages; i++) {
594                 cond_resched();
595                 copy_highpage(dst + i, src + i);
596         }
597 }
598
599 /*
600  * Copy the page to its new location
601  */
602 void migrate_page_states(struct page *newpage, struct page *page)
603 {
604         int cpupid;
605
606         if (PageError(page))
607                 SetPageError(newpage);
608         if (PageReferenced(page))
609                 SetPageReferenced(newpage);
610         if (PageUptodate(page))
611                 SetPageUptodate(newpage);
612         if (TestClearPageActive(page)) {
613                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
614                 SetPageActive(newpage);
615         } else if (TestClearPageUnevictable(page))
616                 SetPageUnevictable(newpage);
617         if (PageWorkingset(page))
618                 SetPageWorkingset(newpage);
619         if (PageChecked(page))
620                 SetPageChecked(newpage);
621         if (PageMappedToDisk(page))
622                 SetPageMappedToDisk(newpage);
623
624         /* Move dirty on pages not done by migrate_page_move_mapping() */
625         if (PageDirty(page))
626                 SetPageDirty(newpage);
627
628         if (page_is_young(page))
629                 set_page_young(newpage);
630         if (page_is_idle(page))
631                 set_page_idle(newpage);
632
633         /*
634          * Copy NUMA information to the new page, to prevent over-eager
635          * future migrations of this same page.
636          */
637         cpupid = page_cpupid_xchg_last(page, -1);
638         page_cpupid_xchg_last(newpage, cpupid);
639
640         ksm_migrate_page(newpage, page);
641         /*
642          * Please do not reorder this without considering how mm/ksm.c's
643          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
644          */
645         if (PageSwapCache(page))
646                 ClearPageSwapCache(page);
647         ClearPagePrivate(page);
648         set_page_private(page, 0);
649
650         /*
651          * If any waiters have accumulated on the new page then
652          * wake them up.
653          */
654         if (PageWriteback(newpage))
655                 end_page_writeback(newpage);
656
657         /*
658          * PG_readahead shares the same bit with PG_reclaim.  The above
659          * end_page_writeback() may clear PG_readahead mistakenly, so set the
660          * bit after that.
661          */
662         if (PageReadahead(page))
663                 SetPageReadahead(newpage);
664
665         copy_page_owner(page, newpage);
666
667         if (!PageHuge(page))
668                 mem_cgroup_migrate(page, newpage);
669 }
670 EXPORT_SYMBOL(migrate_page_states);
671
672 void migrate_page_copy(struct page *newpage, struct page *page)
673 {
674         if (PageHuge(page) || PageTransHuge(page))
675                 copy_huge_page(newpage, page);
676         else
677                 copy_highpage(newpage, page);
678
679         migrate_page_states(newpage, page);
680 }
681 EXPORT_SYMBOL(migrate_page_copy);
682
683 /************************************************************
684  *                    Migration functions
685  ***********************************************************/
686
687 /*
688  * Common logic to directly migrate a single LRU page suitable for
689  * pages that do not use PagePrivate/PagePrivate2.
690  *
691  * Pages are locked upon entry and exit.
692  */
693 int migrate_page(struct address_space *mapping,
694                 struct page *newpage, struct page *page,
695                 enum migrate_mode mode)
696 {
697         int rc;
698
699         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
700
701         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
702
703         if (rc != MIGRATEPAGE_SUCCESS)
704                 return rc;
705
706         if (mode != MIGRATE_SYNC_NO_COPY)
707                 migrate_page_copy(newpage, page);
708         else
709                 migrate_page_states(newpage, page);
710         return MIGRATEPAGE_SUCCESS;
711 }
712 EXPORT_SYMBOL(migrate_page);
713
714 #ifdef CONFIG_BLOCK
715 /* Returns true if all buffers are successfully locked */
716 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
717                                                         enum migrate_mode mode)
718 {
719         struct buffer_head *bh = head;
720
721         /* Simple case, sync compaction */
722         if (mode != MIGRATE_ASYNC) {
723                 do {
724                         lock_buffer(bh);
725                         bh = bh->b_this_page;
726
727                 } while (bh != head);
728
729                 return true;
730         }
731
732         /* async case, we cannot block on lock_buffer so use trylock_buffer */
733         do {
734                 if (!trylock_buffer(bh)) {
735                         /*
736                          * We failed to lock the buffer and cannot stall in
737                          * async migration. Release the taken locks
738                          */
739                         struct buffer_head *failed_bh = bh;
740                         bh = head;
741                         while (bh != failed_bh) {
742                                 unlock_buffer(bh);
743                                 bh = bh->b_this_page;
744                         }
745                         return false;
746                 }
747
748                 bh = bh->b_this_page;
749         } while (bh != head);
750         return true;
751 }
752
753 static int __buffer_migrate_page(struct address_space *mapping,
754                 struct page *newpage, struct page *page, enum migrate_mode mode,
755                 bool check_refs)
756 {
757         struct buffer_head *bh, *head;
758         int rc;
759         int expected_count;
760
761         if (!page_has_buffers(page))
762                 return migrate_page(mapping, newpage, page, mode);
763
764         /* Check whether page does not have extra refs before we do more work */
765         expected_count = expected_page_refs(mapping, page);
766         if (page_count(page) != expected_count)
767                 return -EAGAIN;
768
769         head = page_buffers(page);
770         if (!buffer_migrate_lock_buffers(head, mode))
771                 return -EAGAIN;
772
773         if (check_refs) {
774                 bool busy;
775                 bool invalidated = false;
776
777 recheck_buffers:
778                 busy = false;
779                 spin_lock(&mapping->private_lock);
780                 bh = head;
781                 do {
782                         if (atomic_read(&bh->b_count)) {
783                                 busy = true;
784                                 break;
785                         }
786                         bh = bh->b_this_page;
787                 } while (bh != head);
788                 if (busy) {
789                         if (invalidated) {
790                                 rc = -EAGAIN;
791                                 goto unlock_buffers;
792                         }
793                         spin_unlock(&mapping->private_lock);
794                         invalidate_bh_lrus();
795                         invalidated = true;
796                         goto recheck_buffers;
797                 }
798         }
799
800         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
801         if (rc != MIGRATEPAGE_SUCCESS)
802                 goto unlock_buffers;
803
804         attach_page_private(newpage, detach_page_private(page));
805
806         bh = head;
807         do {
808                 set_bh_page(bh, newpage, bh_offset(bh));
809                 bh = bh->b_this_page;
810
811         } while (bh != head);
812
813         if (mode != MIGRATE_SYNC_NO_COPY)
814                 migrate_page_copy(newpage, page);
815         else
816                 migrate_page_states(newpage, page);
817
818         rc = MIGRATEPAGE_SUCCESS;
819 unlock_buffers:
820         if (check_refs)
821                 spin_unlock(&mapping->private_lock);
822         bh = head;
823         do {
824                 unlock_buffer(bh);
825                 bh = bh->b_this_page;
826
827         } while (bh != head);
828
829         return rc;
830 }
831
832 /*
833  * Migration function for pages with buffers. This function can only be used
834  * if the underlying filesystem guarantees that no other references to "page"
835  * exist. For example attached buffer heads are accessed only under page lock.
836  */
837 int buffer_migrate_page(struct address_space *mapping,
838                 struct page *newpage, struct page *page, enum migrate_mode mode)
839 {
840         return __buffer_migrate_page(mapping, newpage, page, mode, false);
841 }
842 EXPORT_SYMBOL(buffer_migrate_page);
843
844 /*
845  * Same as above except that this variant is more careful and checks that there
846  * are also no buffer head references. This function is the right one for
847  * mappings where buffer heads are directly looked up and referenced (such as
848  * block device mappings).
849  */
850 int buffer_migrate_page_norefs(struct address_space *mapping,
851                 struct page *newpage, struct page *page, enum migrate_mode mode)
852 {
853         return __buffer_migrate_page(mapping, newpage, page, mode, true);
854 }
855 #endif
856
857 /*
858  * Writeback a page to clean the dirty state
859  */
860 static int writeout(struct address_space *mapping, struct page *page)
861 {
862         struct writeback_control wbc = {
863                 .sync_mode = WB_SYNC_NONE,
864                 .nr_to_write = 1,
865                 .range_start = 0,
866                 .range_end = LLONG_MAX,
867                 .for_reclaim = 1
868         };
869         int rc;
870
871         if (!mapping->a_ops->writepage)
872                 /* No write method for the address space */
873                 return -EINVAL;
874
875         if (!clear_page_dirty_for_io(page))
876                 /* Someone else already triggered a write */
877                 return -EAGAIN;
878
879         /*
880          * A dirty page may imply that the underlying filesystem has
881          * the page on some queue. So the page must be clean for
882          * migration. Writeout may mean we loose the lock and the
883          * page state is no longer what we checked for earlier.
884          * At this point we know that the migration attempt cannot
885          * be successful.
886          */
887         remove_migration_ptes(page, page, false);
888
889         rc = mapping->a_ops->writepage(page, &wbc);
890
891         if (rc != AOP_WRITEPAGE_ACTIVATE)
892                 /* unlocked. Relock */
893                 lock_page(page);
894
895         return (rc < 0) ? -EIO : -EAGAIN;
896 }
897
898 /*
899  * Default handling if a filesystem does not provide a migration function.
900  */
901 static int fallback_migrate_page(struct address_space *mapping,
902         struct page *newpage, struct page *page, enum migrate_mode mode)
903 {
904         if (PageDirty(page)) {
905                 /* Only writeback pages in full synchronous migration */
906                 switch (mode) {
907                 case MIGRATE_SYNC:
908                 case MIGRATE_SYNC_NO_COPY:
909                         break;
910                 default:
911                         return -EBUSY;
912                 }
913                 return writeout(mapping, page);
914         }
915
916         /*
917          * Buffers may be managed in a filesystem specific way.
918          * We must have no buffers or drop them.
919          */
920         if (page_has_private(page) &&
921             !try_to_release_page(page, GFP_KERNEL))
922                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
923
924         return migrate_page(mapping, newpage, page, mode);
925 }
926
927 /*
928  * Move a page to a newly allocated page
929  * The page is locked and all ptes have been successfully removed.
930  *
931  * The new page will have replaced the old page if this function
932  * is successful.
933  *
934  * Return value:
935  *   < 0 - error code
936  *  MIGRATEPAGE_SUCCESS - success
937  */
938 static int move_to_new_page(struct page *newpage, struct page *page,
939                                 enum migrate_mode mode)
940 {
941         struct address_space *mapping;
942         int rc = -EAGAIN;
943         bool is_lru = !__PageMovable(page);
944
945         VM_BUG_ON_PAGE(!PageLocked(page), page);
946         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
947
948         mapping = page_mapping(page);
949
950         if (likely(is_lru)) {
951                 if (!mapping)
952                         rc = migrate_page(mapping, newpage, page, mode);
953                 else if (mapping->a_ops->migratepage)
954                         /*
955                          * Most pages have a mapping and most filesystems
956                          * provide a migratepage callback. Anonymous pages
957                          * are part of swap space which also has its own
958                          * migratepage callback. This is the most common path
959                          * for page migration.
960                          */
961                         rc = mapping->a_ops->migratepage(mapping, newpage,
962                                                         page, mode);
963                 else
964                         rc = fallback_migrate_page(mapping, newpage,
965                                                         page, mode);
966         } else {
967                 /*
968                  * In case of non-lru page, it could be released after
969                  * isolation step. In that case, we shouldn't try migration.
970                  */
971                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
972                 if (!PageMovable(page)) {
973                         rc = MIGRATEPAGE_SUCCESS;
974                         __ClearPageIsolated(page);
975                         goto out;
976                 }
977
978                 rc = mapping->a_ops->migratepage(mapping, newpage,
979                                                 page, mode);
980                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
981                         !PageIsolated(page));
982         }
983
984         /*
985          * When successful, old pagecache page->mapping must be cleared before
986          * page is freed; but stats require that PageAnon be left as PageAnon.
987          */
988         if (rc == MIGRATEPAGE_SUCCESS) {
989                 if (__PageMovable(page)) {
990                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
991
992                         /*
993                          * We clear PG_movable under page_lock so any compactor
994                          * cannot try to migrate this page.
995                          */
996                         __ClearPageIsolated(page);
997                 }
998
999                 /*
1000                  * Anonymous and movable page->mapping will be cleared by
1001                  * free_pages_prepare so don't reset it here for keeping
1002                  * the type to work PageAnon, for example.
1003                  */
1004                 if (!PageMappingFlags(page))
1005                         page->mapping = NULL;
1006
1007                 if (likely(!is_zone_device_page(newpage)))
1008                         flush_dcache_page(newpage);
1009
1010         }
1011 out:
1012         return rc;
1013 }
1014
1015 static int __unmap_and_move(struct page *page, struct page *newpage,
1016                                 int force, enum migrate_mode mode)
1017 {
1018         int rc = -EAGAIN;
1019         int page_was_mapped = 0;
1020         struct anon_vma *anon_vma = NULL;
1021         bool is_lru = !__PageMovable(page);
1022
1023         if (!trylock_page(page)) {
1024                 if (!force || mode == MIGRATE_ASYNC)
1025                         goto out;
1026
1027                 /*
1028                  * It's not safe for direct compaction to call lock_page.
1029                  * For example, during page readahead pages are added locked
1030                  * to the LRU. Later, when the IO completes the pages are
1031                  * marked uptodate and unlocked. However, the queueing
1032                  * could be merging multiple pages for one bio (e.g.
1033                  * mpage_readahead). If an allocation happens for the
1034                  * second or third page, the process can end up locking
1035                  * the same page twice and deadlocking. Rather than
1036                  * trying to be clever about what pages can be locked,
1037                  * avoid the use of lock_page for direct compaction
1038                  * altogether.
1039                  */
1040                 if (current->flags & PF_MEMALLOC)
1041                         goto out;
1042
1043                 lock_page(page);
1044         }
1045
1046         if (PageWriteback(page)) {
1047                 /*
1048                  * Only in the case of a full synchronous migration is it
1049                  * necessary to wait for PageWriteback. In the async case,
1050                  * the retry loop is too short and in the sync-light case,
1051                  * the overhead of stalling is too much
1052                  */
1053                 switch (mode) {
1054                 case MIGRATE_SYNC:
1055                 case MIGRATE_SYNC_NO_COPY:
1056                         break;
1057                 default:
1058                         rc = -EBUSY;
1059                         goto out_unlock;
1060                 }
1061                 if (!force)
1062                         goto out_unlock;
1063                 wait_on_page_writeback(page);
1064         }
1065
1066         /*
1067          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1068          * we cannot notice that anon_vma is freed while we migrates a page.
1069          * This get_anon_vma() delays freeing anon_vma pointer until the end
1070          * of migration. File cache pages are no problem because of page_lock()
1071          * File Caches may use write_page() or lock_page() in migration, then,
1072          * just care Anon page here.
1073          *
1074          * Only page_get_anon_vma() understands the subtleties of
1075          * getting a hold on an anon_vma from outside one of its mms.
1076          * But if we cannot get anon_vma, then we won't need it anyway,
1077          * because that implies that the anon page is no longer mapped
1078          * (and cannot be remapped so long as we hold the page lock).
1079          */
1080         if (PageAnon(page) && !PageKsm(page))
1081                 anon_vma = page_get_anon_vma(page);
1082
1083         /*
1084          * Block others from accessing the new page when we get around to
1085          * establishing additional references. We are usually the only one
1086          * holding a reference to newpage at this point. We used to have a BUG
1087          * here if trylock_page(newpage) fails, but would like to allow for
1088          * cases where there might be a race with the previous use of newpage.
1089          * This is much like races on refcount of oldpage: just don't BUG().
1090          */
1091         if (unlikely(!trylock_page(newpage)))
1092                 goto out_unlock;
1093
1094         if (unlikely(!is_lru)) {
1095                 rc = move_to_new_page(newpage, page, mode);
1096                 goto out_unlock_both;
1097         }
1098
1099         /*
1100          * Corner case handling:
1101          * 1. When a new swap-cache page is read into, it is added to the LRU
1102          * and treated as swapcache but it has no rmap yet.
1103          * Calling try_to_unmap() against a page->mapping==NULL page will
1104          * trigger a BUG.  So handle it here.
1105          * 2. An orphaned page (see truncate_cleanup_page) might have
1106          * fs-private metadata. The page can be picked up due to memory
1107          * offlining.  Everywhere else except page reclaim, the page is
1108          * invisible to the vm, so the page can not be migrated.  So try to
1109          * free the metadata, so the page can be freed.
1110          */
1111         if (!page->mapping) {
1112                 VM_BUG_ON_PAGE(PageAnon(page), page);
1113                 if (page_has_private(page)) {
1114                         try_to_free_buffers(page);
1115                         goto out_unlock_both;
1116                 }
1117         } else if (page_mapped(page)) {
1118                 /* Establish migration ptes */
1119                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1120                                 page);
1121                 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1122                 page_was_mapped = 1;
1123         }
1124
1125         if (!page_mapped(page))
1126                 rc = move_to_new_page(newpage, page, mode);
1127
1128         if (page_was_mapped)
1129                 remove_migration_ptes(page,
1130                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1131
1132 out_unlock_both:
1133         unlock_page(newpage);
1134 out_unlock:
1135         /* Drop an anon_vma reference if we took one */
1136         if (anon_vma)
1137                 put_anon_vma(anon_vma);
1138         unlock_page(page);
1139 out:
1140         /*
1141          * If migration is successful, decrease refcount of the newpage
1142          * which will not free the page because new page owner increased
1143          * refcounter. As well, if it is LRU page, add the page to LRU
1144          * list in here. Use the old state of the isolated source page to
1145          * determine if we migrated a LRU page. newpage was already unlocked
1146          * and possibly modified by its owner - don't rely on the page
1147          * state.
1148          */
1149         if (rc == MIGRATEPAGE_SUCCESS) {
1150                 if (unlikely(!is_lru))
1151                         put_page(newpage);
1152                 else
1153                         putback_lru_page(newpage);
1154         }
1155
1156         return rc;
1157 }
1158
1159 /*
1160  * Obtain the lock on page, remove all ptes and migrate the page
1161  * to the newly allocated page in newpage.
1162  */
1163 static int unmap_and_move(new_page_t get_new_page,
1164                                    free_page_t put_new_page,
1165                                    unsigned long private, struct page *page,
1166                                    int force, enum migrate_mode mode,
1167                                    enum migrate_reason reason,
1168                                    struct list_head *ret)
1169 {
1170         int rc = MIGRATEPAGE_SUCCESS;
1171         struct page *newpage = NULL;
1172
1173         if (!thp_migration_supported() && PageTransHuge(page))
1174                 return -ENOSYS;
1175
1176         if (page_count(page) == 1) {
1177                 /* page was freed from under us. So we are done. */
1178                 ClearPageActive(page);
1179                 ClearPageUnevictable(page);
1180                 if (unlikely(__PageMovable(page))) {
1181                         lock_page(page);
1182                         if (!PageMovable(page))
1183                                 __ClearPageIsolated(page);
1184                         unlock_page(page);
1185                 }
1186                 goto out;
1187         }
1188
1189         newpage = get_new_page(page, private);
1190         if (!newpage)
1191                 return -ENOMEM;
1192
1193         rc = __unmap_and_move(page, newpage, force, mode);
1194         if (rc == MIGRATEPAGE_SUCCESS)
1195                 set_page_owner_migrate_reason(newpage, reason);
1196
1197 out:
1198         if (rc != -EAGAIN) {
1199                 /*
1200                  * A page that has been migrated has all references
1201                  * removed and will be freed. A page that has not been
1202                  * migrated will have kept its references and be restored.
1203                  */
1204                 list_del(&page->lru);
1205         }
1206
1207         /*
1208          * If migration is successful, releases reference grabbed during
1209          * isolation. Otherwise, restore the page to right list unless
1210          * we want to retry.
1211          */
1212         if (rc == MIGRATEPAGE_SUCCESS) {
1213                 /*
1214                  * Compaction can migrate also non-LRU pages which are
1215                  * not accounted to NR_ISOLATED_*. They can be recognized
1216                  * as __PageMovable
1217                  */
1218                 if (likely(!__PageMovable(page)))
1219                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1220                                         page_is_file_lru(page), -thp_nr_pages(page));
1221
1222                 if (reason != MR_MEMORY_FAILURE)
1223                         /*
1224                          * We release the page in page_handle_poison.
1225                          */
1226                         put_page(page);
1227         } else {
1228                 if (rc != -EAGAIN)
1229                         list_add_tail(&page->lru, ret);
1230
1231                 if (put_new_page)
1232                         put_new_page(newpage, private);
1233                 else
1234                         put_page(newpage);
1235         }
1236
1237         return rc;
1238 }
1239
1240 /*
1241  * Counterpart of unmap_and_move_page() for hugepage migration.
1242  *
1243  * This function doesn't wait the completion of hugepage I/O
1244  * because there is no race between I/O and migration for hugepage.
1245  * Note that currently hugepage I/O occurs only in direct I/O
1246  * where no lock is held and PG_writeback is irrelevant,
1247  * and writeback status of all subpages are counted in the reference
1248  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1249  * under direct I/O, the reference of the head page is 512 and a bit more.)
1250  * This means that when we try to migrate hugepage whose subpages are
1251  * doing direct I/O, some references remain after try_to_unmap() and
1252  * hugepage migration fails without data corruption.
1253  *
1254  * There is also no race when direct I/O is issued on the page under migration,
1255  * because then pte is replaced with migration swap entry and direct I/O code
1256  * will wait in the page fault for migration to complete.
1257  */
1258 static int unmap_and_move_huge_page(new_page_t get_new_page,
1259                                 free_page_t put_new_page, unsigned long private,
1260                                 struct page *hpage, int force,
1261                                 enum migrate_mode mode, int reason,
1262                                 struct list_head *ret)
1263 {
1264         int rc = -EAGAIN;
1265         int page_was_mapped = 0;
1266         struct page *new_hpage;
1267         struct anon_vma *anon_vma = NULL;
1268         struct address_space *mapping = NULL;
1269
1270         /*
1271          * Migratability of hugepages depends on architectures and their size.
1272          * This check is necessary because some callers of hugepage migration
1273          * like soft offline and memory hotremove don't walk through page
1274          * tables or check whether the hugepage is pmd-based or not before
1275          * kicking migration.
1276          */
1277         if (!hugepage_migration_supported(page_hstate(hpage))) {
1278                 list_move_tail(&hpage->lru, ret);
1279                 return -ENOSYS;
1280         }
1281
1282         new_hpage = get_new_page(hpage, private);
1283         if (!new_hpage)
1284                 return -ENOMEM;
1285
1286         if (!trylock_page(hpage)) {
1287                 if (!force)
1288                         goto out;
1289                 switch (mode) {
1290                 case MIGRATE_SYNC:
1291                 case MIGRATE_SYNC_NO_COPY:
1292                         break;
1293                 default:
1294                         goto out;
1295                 }
1296                 lock_page(hpage);
1297         }
1298
1299         /*
1300          * Check for pages which are in the process of being freed.  Without
1301          * page_mapping() set, hugetlbfs specific move page routine will not
1302          * be called and we could leak usage counts for subpools.
1303          */
1304         if (page_private(hpage) && !page_mapping(hpage)) {
1305                 rc = -EBUSY;
1306                 goto out_unlock;
1307         }
1308
1309         if (PageAnon(hpage))
1310                 anon_vma = page_get_anon_vma(hpage);
1311
1312         if (unlikely(!trylock_page(new_hpage)))
1313                 goto put_anon;
1314
1315         if (page_mapped(hpage)) {
1316                 bool mapping_locked = false;
1317                 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1318
1319                 if (!PageAnon(hpage)) {
1320                         /*
1321                          * In shared mappings, try_to_unmap could potentially
1322                          * call huge_pmd_unshare.  Because of this, take
1323                          * semaphore in write mode here and set TTU_RMAP_LOCKED
1324                          * to let lower levels know we have taken the lock.
1325                          */
1326                         mapping = hugetlb_page_mapping_lock_write(hpage);
1327                         if (unlikely(!mapping))
1328                                 goto unlock_put_anon;
1329
1330                         mapping_locked = true;
1331                         ttu |= TTU_RMAP_LOCKED;
1332                 }
1333
1334                 try_to_unmap(hpage, ttu);
1335                 page_was_mapped = 1;
1336
1337                 if (mapping_locked)
1338                         i_mmap_unlock_write(mapping);
1339         }
1340
1341         if (!page_mapped(hpage))
1342                 rc = move_to_new_page(new_hpage, hpage, mode);
1343
1344         if (page_was_mapped)
1345                 remove_migration_ptes(hpage,
1346                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1347
1348 unlock_put_anon:
1349         unlock_page(new_hpage);
1350
1351 put_anon:
1352         if (anon_vma)
1353                 put_anon_vma(anon_vma);
1354
1355         if (rc == MIGRATEPAGE_SUCCESS) {
1356                 move_hugetlb_state(hpage, new_hpage, reason);
1357                 put_new_page = NULL;
1358         }
1359
1360 out_unlock:
1361         unlock_page(hpage);
1362 out:
1363         if (rc == MIGRATEPAGE_SUCCESS)
1364                 putback_active_hugepage(hpage);
1365         else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS)
1366                 list_move_tail(&hpage->lru, ret);
1367
1368         /*
1369          * If migration was not successful and there's a freeing callback, use
1370          * it.  Otherwise, put_page() will drop the reference grabbed during
1371          * isolation.
1372          */
1373         if (put_new_page)
1374                 put_new_page(new_hpage, private);
1375         else
1376                 putback_active_hugepage(new_hpage);
1377
1378         return rc;
1379 }
1380
1381 static inline int try_split_thp(struct page *page, struct page **page2,
1382                                 struct list_head *from)
1383 {
1384         int rc = 0;
1385
1386         lock_page(page);
1387         rc = split_huge_page_to_list(page, from);
1388         unlock_page(page);
1389         if (!rc)
1390                 list_safe_reset_next(page, *page2, lru);
1391
1392         return rc;
1393 }
1394
1395 /*
1396  * migrate_pages - migrate the pages specified in a list, to the free pages
1397  *                 supplied as the target for the page migration
1398  *
1399  * @from:               The list of pages to be migrated.
1400  * @get_new_page:       The function used to allocate free pages to be used
1401  *                      as the target of the page migration.
1402  * @put_new_page:       The function used to free target pages if migration
1403  *                      fails, or NULL if no special handling is necessary.
1404  * @private:            Private data to be passed on to get_new_page()
1405  * @mode:               The migration mode that specifies the constraints for
1406  *                      page migration, if any.
1407  * @reason:             The reason for page migration.
1408  *
1409  * The function returns after 10 attempts or if no pages are movable any more
1410  * because the list has become empty or no retryable pages exist any more.
1411  * It is caller's responsibility to call putback_movable_pages() to return pages
1412  * to the LRU or free list only if ret != 0.
1413  *
1414  * Returns the number of pages that were not migrated, or an error code.
1415  */
1416 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1417                 free_page_t put_new_page, unsigned long private,
1418                 enum migrate_mode mode, int reason)
1419 {
1420         int retry = 1;
1421         int thp_retry = 1;
1422         int nr_failed = 0;
1423         int nr_succeeded = 0;
1424         int nr_thp_succeeded = 0;
1425         int nr_thp_failed = 0;
1426         int nr_thp_split = 0;
1427         int pass = 0;
1428         bool is_thp = false;
1429         struct page *page;
1430         struct page *page2;
1431         int swapwrite = current->flags & PF_SWAPWRITE;
1432         int rc, nr_subpages;
1433         LIST_HEAD(ret_pages);
1434
1435         if (!swapwrite)
1436                 current->flags |= PF_SWAPWRITE;
1437
1438         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1439                 retry = 0;
1440                 thp_retry = 0;
1441
1442                 list_for_each_entry_safe(page, page2, from, lru) {
1443 retry:
1444                         /*
1445                          * THP statistics is based on the source huge page.
1446                          * Capture required information that might get lost
1447                          * during migration.
1448                          */
1449                         is_thp = PageTransHuge(page) && !PageHuge(page);
1450                         nr_subpages = thp_nr_pages(page);
1451                         cond_resched();
1452
1453                         if (PageHuge(page))
1454                                 rc = unmap_and_move_huge_page(get_new_page,
1455                                                 put_new_page, private, page,
1456                                                 pass > 2, mode, reason,
1457                                                 &ret_pages);
1458                         else
1459                                 rc = unmap_and_move(get_new_page, put_new_page,
1460                                                 private, page, pass > 2, mode,
1461                                                 reason, &ret_pages);
1462                         /*
1463                          * The rules are:
1464                          *      Success: non hugetlb page will be freed, hugetlb
1465                          *               page will be put back
1466                          *      -EAGAIN: stay on the from list
1467                          *      -ENOMEM: stay on the from list
1468                          *      Other errno: put on ret_pages list then splice to
1469                          *                   from list
1470                          */
1471                         switch(rc) {
1472                         /*
1473                          * THP migration might be unsupported or the
1474                          * allocation could've failed so we should
1475                          * retry on the same page with the THP split
1476                          * to base pages.
1477                          *
1478                          * Head page is retried immediately and tail
1479                          * pages are added to the tail of the list so
1480                          * we encounter them after the rest of the list
1481                          * is processed.
1482                          */
1483                         case -ENOSYS:
1484                                 /* THP migration is unsupported */
1485                                 if (is_thp) {
1486                                         if (!try_split_thp(page, &page2, from)) {
1487                                                 nr_thp_split++;
1488                                                 goto retry;
1489                                         }
1490
1491                                         nr_thp_failed++;
1492                                         nr_failed += nr_subpages;
1493                                         break;
1494                                 }
1495
1496                                 /* Hugetlb migration is unsupported */
1497                                 nr_failed++;
1498                                 break;
1499                         case -ENOMEM:
1500                                 /*
1501                                  * When memory is low, don't bother to try to migrate
1502                                  * other pages, just exit.
1503                                  */
1504                                 if (is_thp) {
1505                                         if (!try_split_thp(page, &page2, from)) {
1506                                                 nr_thp_split++;
1507                                                 goto retry;
1508                                         }
1509
1510                                         nr_thp_failed++;
1511                                         nr_failed += nr_subpages;
1512                                         goto out;
1513                                 }
1514                                 nr_failed++;
1515                                 goto out;
1516                         case -EAGAIN:
1517                                 if (is_thp) {
1518                                         thp_retry++;
1519                                         break;
1520                                 }
1521                                 retry++;
1522                                 break;
1523                         case MIGRATEPAGE_SUCCESS:
1524                                 if (is_thp) {
1525                                         nr_thp_succeeded++;
1526                                         nr_succeeded += nr_subpages;
1527                                         break;
1528                                 }
1529                                 nr_succeeded++;
1530                                 break;
1531                         default:
1532                                 /*
1533                                  * Permanent failure (-EBUSY, etc.):
1534                                  * unlike -EAGAIN case, the failed page is
1535                                  * removed from migration page list and not
1536                                  * retried in the next outer loop.
1537                                  */
1538                                 if (is_thp) {
1539                                         nr_thp_failed++;
1540                                         nr_failed += nr_subpages;
1541                                         break;
1542                                 }
1543                                 nr_failed++;
1544                                 break;
1545                         }
1546                 }
1547         }
1548         nr_failed += retry + thp_retry;
1549         nr_thp_failed += thp_retry;
1550         rc = nr_failed;
1551 out:
1552         /*
1553          * Put the permanent failure page back to migration list, they
1554          * will be put back to the right list by the caller.
1555          */
1556         list_splice(&ret_pages, from);
1557
1558         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1559         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1560         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1561         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1562         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1563         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1564                                nr_thp_failed, nr_thp_split, mode, reason);
1565
1566         if (!swapwrite)
1567                 current->flags &= ~PF_SWAPWRITE;
1568
1569         return rc;
1570 }
1571
1572 struct page *alloc_migration_target(struct page *page, unsigned long private)
1573 {
1574         struct migration_target_control *mtc;
1575         gfp_t gfp_mask;
1576         unsigned int order = 0;
1577         struct page *new_page = NULL;
1578         int nid;
1579         int zidx;
1580
1581         mtc = (struct migration_target_control *)private;
1582         gfp_mask = mtc->gfp_mask;
1583         nid = mtc->nid;
1584         if (nid == NUMA_NO_NODE)
1585                 nid = page_to_nid(page);
1586
1587         if (PageHuge(page)) {
1588                 struct hstate *h = page_hstate(compound_head(page));
1589
1590                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1591                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1592         }
1593
1594         if (PageTransHuge(page)) {
1595                 /*
1596                  * clear __GFP_RECLAIM to make the migration callback
1597                  * consistent with regular THP allocations.
1598                  */
1599                 gfp_mask &= ~__GFP_RECLAIM;
1600                 gfp_mask |= GFP_TRANSHUGE;
1601                 order = HPAGE_PMD_ORDER;
1602         }
1603         zidx = zone_idx(page_zone(page));
1604         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1605                 gfp_mask |= __GFP_HIGHMEM;
1606
1607         new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1608
1609         if (new_page && PageTransHuge(new_page))
1610                 prep_transhuge_page(new_page);
1611
1612         return new_page;
1613 }
1614
1615 #ifdef CONFIG_NUMA
1616
1617 static int store_status(int __user *status, int start, int value, int nr)
1618 {
1619         while (nr-- > 0) {
1620                 if (put_user(value, status + start))
1621                         return -EFAULT;
1622                 start++;
1623         }
1624
1625         return 0;
1626 }
1627
1628 static int do_move_pages_to_node(struct mm_struct *mm,
1629                 struct list_head *pagelist, int node)
1630 {
1631         int err;
1632         struct migration_target_control mtc = {
1633                 .nid = node,
1634                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1635         };
1636
1637         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1638                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1639         if (err)
1640                 putback_movable_pages(pagelist);
1641         return err;
1642 }
1643
1644 /*
1645  * Resolves the given address to a struct page, isolates it from the LRU and
1646  * puts it to the given pagelist.
1647  * Returns:
1648  *     errno - if the page cannot be found/isolated
1649  *     0 - when it doesn't have to be migrated because it is already on the
1650  *         target node
1651  *     1 - when it has been queued
1652  */
1653 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1654                 int node, struct list_head *pagelist, bool migrate_all)
1655 {
1656         struct vm_area_struct *vma;
1657         struct page *page;
1658         unsigned int follflags;
1659         int err;
1660
1661         mmap_read_lock(mm);
1662         err = -EFAULT;
1663         vma = find_vma(mm, addr);
1664         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1665                 goto out;
1666
1667         /* FOLL_DUMP to ignore special (like zero) pages */
1668         follflags = FOLL_GET | FOLL_DUMP;
1669         page = follow_page(vma, addr, follflags);
1670
1671         err = PTR_ERR(page);
1672         if (IS_ERR(page))
1673                 goto out;
1674
1675         err = -ENOENT;
1676         if (!page)
1677                 goto out;
1678
1679         err = 0;
1680         if (page_to_nid(page) == node)
1681                 goto out_putpage;
1682
1683         err = -EACCES;
1684         if (page_mapcount(page) > 1 && !migrate_all)
1685                 goto out_putpage;
1686
1687         if (PageHuge(page)) {
1688                 if (PageHead(page)) {
1689                         isolate_huge_page(page, pagelist);
1690                         err = 1;
1691                 }
1692         } else {
1693                 struct page *head;
1694
1695                 head = compound_head(page);
1696                 err = isolate_lru_page(head);
1697                 if (err)
1698                         goto out_putpage;
1699
1700                 err = 1;
1701                 list_add_tail(&head->lru, pagelist);
1702                 mod_node_page_state(page_pgdat(head),
1703                         NR_ISOLATED_ANON + page_is_file_lru(head),
1704                         thp_nr_pages(head));
1705         }
1706 out_putpage:
1707         /*
1708          * Either remove the duplicate refcount from
1709          * isolate_lru_page() or drop the page ref if it was
1710          * not isolated.
1711          */
1712         put_page(page);
1713 out:
1714         mmap_read_unlock(mm);
1715         return err;
1716 }
1717
1718 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1719                 struct list_head *pagelist, int __user *status,
1720                 int start, int i, unsigned long nr_pages)
1721 {
1722         int err;
1723
1724         if (list_empty(pagelist))
1725                 return 0;
1726
1727         err = do_move_pages_to_node(mm, pagelist, node);
1728         if (err) {
1729                 /*
1730                  * Positive err means the number of failed
1731                  * pages to migrate.  Since we are going to
1732                  * abort and return the number of non-migrated
1733                  * pages, so need to include the rest of the
1734                  * nr_pages that have not been attempted as
1735                  * well.
1736                  */
1737                 if (err > 0)
1738                         err += nr_pages - i - 1;
1739                 return err;
1740         }
1741         return store_status(status, start, node, i - start);
1742 }
1743
1744 /*
1745  * Migrate an array of page address onto an array of nodes and fill
1746  * the corresponding array of status.
1747  */
1748 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1749                          unsigned long nr_pages,
1750                          const void __user * __user *pages,
1751                          const int __user *nodes,
1752                          int __user *status, int flags)
1753 {
1754         int current_node = NUMA_NO_NODE;
1755         LIST_HEAD(pagelist);
1756         int start, i;
1757         int err = 0, err1;
1758
1759         migrate_prep();
1760
1761         for (i = start = 0; i < nr_pages; i++) {
1762                 const void __user *p;
1763                 unsigned long addr;
1764                 int node;
1765
1766                 err = -EFAULT;
1767                 if (get_user(p, pages + i))
1768                         goto out_flush;
1769                 if (get_user(node, nodes + i))
1770                         goto out_flush;
1771                 addr = (unsigned long)untagged_addr(p);
1772
1773                 err = -ENODEV;
1774                 if (node < 0 || node >= MAX_NUMNODES)
1775                         goto out_flush;
1776                 if (!node_state(node, N_MEMORY))
1777                         goto out_flush;
1778
1779                 err = -EACCES;
1780                 if (!node_isset(node, task_nodes))
1781                         goto out_flush;
1782
1783                 if (current_node == NUMA_NO_NODE) {
1784                         current_node = node;
1785                         start = i;
1786                 } else if (node != current_node) {
1787                         err = move_pages_and_store_status(mm, current_node,
1788                                         &pagelist, status, start, i, nr_pages);
1789                         if (err)
1790                                 goto out;
1791                         start = i;
1792                         current_node = node;
1793                 }
1794
1795                 /*
1796                  * Errors in the page lookup or isolation are not fatal and we simply
1797                  * report them via status
1798                  */
1799                 err = add_page_for_migration(mm, addr, current_node,
1800                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1801
1802                 if (err > 0) {
1803                         /* The page is successfully queued for migration */
1804                         continue;
1805                 }
1806
1807                 /*
1808                  * If the page is already on the target node (!err), store the
1809                  * node, otherwise, store the err.
1810                  */
1811                 err = store_status(status, i, err ? : current_node, 1);
1812                 if (err)
1813                         goto out_flush;
1814
1815                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1816                                 status, start, i, nr_pages);
1817                 if (err)
1818                         goto out;
1819                 current_node = NUMA_NO_NODE;
1820         }
1821 out_flush:
1822         /* Make sure we do not overwrite the existing error */
1823         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1824                                 status, start, i, nr_pages);
1825         if (err >= 0)
1826                 err = err1;
1827 out:
1828         return err;
1829 }
1830
1831 /*
1832  * Determine the nodes of an array of pages and store it in an array of status.
1833  */
1834 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1835                                 const void __user **pages, int *status)
1836 {
1837         unsigned long i;
1838
1839         mmap_read_lock(mm);
1840
1841         for (i = 0; i < nr_pages; i++) {
1842                 unsigned long addr = (unsigned long)(*pages);
1843                 struct vm_area_struct *vma;
1844                 struct page *page;
1845                 int err = -EFAULT;
1846
1847                 vma = find_vma(mm, addr);
1848                 if (!vma || addr < vma->vm_start)
1849                         goto set_status;
1850
1851                 /* FOLL_DUMP to ignore special (like zero) pages */
1852                 page = follow_page(vma, addr, FOLL_DUMP);
1853
1854                 err = PTR_ERR(page);
1855                 if (IS_ERR(page))
1856                         goto set_status;
1857
1858                 err = page ? page_to_nid(page) : -ENOENT;
1859 set_status:
1860                 *status = err;
1861
1862                 pages++;
1863                 status++;
1864         }
1865
1866         mmap_read_unlock(mm);
1867 }
1868
1869 /*
1870  * Determine the nodes of a user array of pages and store it in
1871  * a user array of status.
1872  */
1873 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1874                          const void __user * __user *pages,
1875                          int __user *status)
1876 {
1877 #define DO_PAGES_STAT_CHUNK_NR 16
1878         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1879         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1880
1881         while (nr_pages) {
1882                 unsigned long chunk_nr;
1883
1884                 chunk_nr = nr_pages;
1885                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1886                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1887
1888                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1889                         break;
1890
1891                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1892
1893                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1894                         break;
1895
1896                 pages += chunk_nr;
1897                 status += chunk_nr;
1898                 nr_pages -= chunk_nr;
1899         }
1900         return nr_pages ? -EFAULT : 0;
1901 }
1902
1903 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1904 {
1905         struct task_struct *task;
1906         struct mm_struct *mm;
1907
1908         /*
1909          * There is no need to check if current process has the right to modify
1910          * the specified process when they are same.
1911          */
1912         if (!pid) {
1913                 mmget(current->mm);
1914                 *mem_nodes = cpuset_mems_allowed(current);
1915                 return current->mm;
1916         }
1917
1918         /* Find the mm_struct */
1919         rcu_read_lock();
1920         task = find_task_by_vpid(pid);
1921         if (!task) {
1922                 rcu_read_unlock();
1923                 return ERR_PTR(-ESRCH);
1924         }
1925         get_task_struct(task);
1926
1927         /*
1928          * Check if this process has the right to modify the specified
1929          * process. Use the regular "ptrace_may_access()" checks.
1930          */
1931         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1932                 rcu_read_unlock();
1933                 mm = ERR_PTR(-EPERM);
1934                 goto out;
1935         }
1936         rcu_read_unlock();
1937
1938         mm = ERR_PTR(security_task_movememory(task));
1939         if (IS_ERR(mm))
1940                 goto out;
1941         *mem_nodes = cpuset_mems_allowed(task);
1942         mm = get_task_mm(task);
1943 out:
1944         put_task_struct(task);
1945         if (!mm)
1946                 mm = ERR_PTR(-EINVAL);
1947         return mm;
1948 }
1949
1950 /*
1951  * Move a list of pages in the address space of the currently executing
1952  * process.
1953  */
1954 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1955                              const void __user * __user *pages,
1956                              const int __user *nodes,
1957                              int __user *status, int flags)
1958 {
1959         struct mm_struct *mm;
1960         int err;
1961         nodemask_t task_nodes;
1962
1963         /* Check flags */
1964         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1965                 return -EINVAL;
1966
1967         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1968                 return -EPERM;
1969
1970         mm = find_mm_struct(pid, &task_nodes);
1971         if (IS_ERR(mm))
1972                 return PTR_ERR(mm);
1973
1974         if (nodes)
1975                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1976                                     nodes, status, flags);
1977         else
1978                 err = do_pages_stat(mm, nr_pages, pages, status);
1979
1980         mmput(mm);
1981         return err;
1982 }
1983
1984 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1985                 const void __user * __user *, pages,
1986                 const int __user *, nodes,
1987                 int __user *, status, int, flags)
1988 {
1989         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1990 }
1991
1992 #ifdef CONFIG_COMPAT
1993 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1994                        compat_uptr_t __user *, pages32,
1995                        const int __user *, nodes,
1996                        int __user *, status,
1997                        int, flags)
1998 {
1999         const void __user * __user *pages;
2000         int i;
2001
2002         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2003         for (i = 0; i < nr_pages; i++) {
2004                 compat_uptr_t p;
2005
2006                 if (get_user(p, pages32 + i) ||
2007                         put_user(compat_ptr(p), pages + i))
2008                         return -EFAULT;
2009         }
2010         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2011 }
2012 #endif /* CONFIG_COMPAT */
2013
2014 #ifdef CONFIG_NUMA_BALANCING
2015 /*
2016  * Returns true if this is a safe migration target node for misplaced NUMA
2017  * pages. Currently it only checks the watermarks which crude
2018  */
2019 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2020                                    unsigned long nr_migrate_pages)
2021 {
2022         int z;
2023
2024         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2025                 struct zone *zone = pgdat->node_zones + z;
2026
2027                 if (!populated_zone(zone))
2028                         continue;
2029
2030                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2031                 if (!zone_watermark_ok(zone, 0,
2032                                        high_wmark_pages(zone) +
2033                                        nr_migrate_pages,
2034                                        ZONE_MOVABLE, 0))
2035                         continue;
2036                 return true;
2037         }
2038         return false;
2039 }
2040
2041 static struct page *alloc_misplaced_dst_page(struct page *page,
2042                                            unsigned long data)
2043 {
2044         int nid = (int) data;
2045         struct page *newpage;
2046
2047         newpage = __alloc_pages_node(nid,
2048                                          (GFP_HIGHUSER_MOVABLE |
2049                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2050                                           __GFP_NORETRY | __GFP_NOWARN) &
2051                                          ~__GFP_RECLAIM, 0);
2052
2053         return newpage;
2054 }
2055
2056 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2057 {
2058         int page_lru;
2059
2060         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2061
2062         /* Avoid migrating to a node that is nearly full */
2063         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2064                 return 0;
2065
2066         if (isolate_lru_page(page))
2067                 return 0;
2068
2069         /*
2070          * migrate_misplaced_transhuge_page() skips page migration's usual
2071          * check on page_count(), so we must do it here, now that the page
2072          * has been isolated: a GUP pin, or any other pin, prevents migration.
2073          * The expected page count is 3: 1 for page's mapcount and 1 for the
2074          * caller's pin and 1 for the reference taken by isolate_lru_page().
2075          */
2076         if (PageTransHuge(page) && page_count(page) != 3) {
2077                 putback_lru_page(page);
2078                 return 0;
2079         }
2080
2081         page_lru = page_is_file_lru(page);
2082         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2083                                 thp_nr_pages(page));
2084
2085         /*
2086          * Isolating the page has taken another reference, so the
2087          * caller's reference can be safely dropped without the page
2088          * disappearing underneath us during migration.
2089          */
2090         put_page(page);
2091         return 1;
2092 }
2093
2094 bool pmd_trans_migrating(pmd_t pmd)
2095 {
2096         struct page *page = pmd_page(pmd);
2097         return PageLocked(page);
2098 }
2099
2100 static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2101                                        struct page *page)
2102 {
2103         if (page_mapcount(page) != 1 &&
2104             (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2105             (vma->vm_flags & VM_EXEC))
2106                 return true;
2107
2108         return false;
2109 }
2110
2111 /*
2112  * Attempt to migrate a misplaced page to the specified destination
2113  * node. Caller is expected to have an elevated reference count on
2114  * the page that will be dropped by this function before returning.
2115  */
2116 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2117                            int node)
2118 {
2119         pg_data_t *pgdat = NODE_DATA(node);
2120         int isolated;
2121         int nr_remaining;
2122         LIST_HEAD(migratepages);
2123
2124         /*
2125          * Don't migrate file pages that are mapped in multiple processes
2126          * with execute permissions as they are probably shared libraries.
2127          */
2128         if (is_shared_exec_page(vma, page))
2129                 goto out;
2130
2131         /*
2132          * Also do not migrate dirty pages as not all filesystems can move
2133          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2134          */
2135         if (page_is_file_lru(page) && PageDirty(page))
2136                 goto out;
2137
2138         isolated = numamigrate_isolate_page(pgdat, page);
2139         if (!isolated)
2140                 goto out;
2141
2142         list_add(&page->lru, &migratepages);
2143         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2144                                      NULL, node, MIGRATE_ASYNC,
2145                                      MR_NUMA_MISPLACED);
2146         if (nr_remaining) {
2147                 if (!list_empty(&migratepages)) {
2148                         list_del(&page->lru);
2149                         dec_node_page_state(page, NR_ISOLATED_ANON +
2150                                         page_is_file_lru(page));
2151                         putback_lru_page(page);
2152                 }
2153                 isolated = 0;
2154         } else
2155                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2156         BUG_ON(!list_empty(&migratepages));
2157         return isolated;
2158
2159 out:
2160         put_page(page);
2161         return 0;
2162 }
2163 #endif /* CONFIG_NUMA_BALANCING */
2164
2165 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2166 /*
2167  * Migrates a THP to a given target node. page must be locked and is unlocked
2168  * before returning.
2169  */
2170 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2171                                 struct vm_area_struct *vma,
2172                                 pmd_t *pmd, pmd_t entry,
2173                                 unsigned long address,
2174                                 struct page *page, int node)
2175 {
2176         spinlock_t *ptl;
2177         pg_data_t *pgdat = NODE_DATA(node);
2178         int isolated = 0;
2179         struct page *new_page = NULL;
2180         int page_lru = page_is_file_lru(page);
2181         unsigned long start = address & HPAGE_PMD_MASK;
2182
2183         if (is_shared_exec_page(vma, page))
2184                 goto out;
2185
2186         new_page = alloc_pages_node(node,
2187                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2188                 HPAGE_PMD_ORDER);
2189         if (!new_page)
2190                 goto out_fail;
2191         prep_transhuge_page(new_page);
2192
2193         isolated = numamigrate_isolate_page(pgdat, page);
2194         if (!isolated) {
2195                 put_page(new_page);
2196                 goto out_fail;
2197         }
2198
2199         /* Prepare a page as a migration target */
2200         __SetPageLocked(new_page);
2201         if (PageSwapBacked(page))
2202                 __SetPageSwapBacked(new_page);
2203
2204         /* anon mapping, we can simply copy page->mapping to the new page: */
2205         new_page->mapping = page->mapping;
2206         new_page->index = page->index;
2207         /* flush the cache before copying using the kernel virtual address */
2208         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2209         migrate_page_copy(new_page, page);
2210         WARN_ON(PageLRU(new_page));
2211
2212         /* Recheck the target PMD */
2213         ptl = pmd_lock(mm, pmd);
2214         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2215                 spin_unlock(ptl);
2216
2217                 /* Reverse changes made by migrate_page_copy() */
2218                 if (TestClearPageActive(new_page))
2219                         SetPageActive(page);
2220                 if (TestClearPageUnevictable(new_page))
2221                         SetPageUnevictable(page);
2222
2223                 unlock_page(new_page);
2224                 put_page(new_page);             /* Free it */
2225
2226                 /* Retake the callers reference and putback on LRU */
2227                 get_page(page);
2228                 putback_lru_page(page);
2229                 mod_node_page_state(page_pgdat(page),
2230                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2231
2232                 goto out_unlock;
2233         }
2234
2235         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2236         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2237
2238         /*
2239          * Overwrite the old entry under pagetable lock and establish
2240          * the new PTE. Any parallel GUP will either observe the old
2241          * page blocking on the page lock, block on the page table
2242          * lock or observe the new page. The SetPageUptodate on the
2243          * new page and page_add_new_anon_rmap guarantee the copy is
2244          * visible before the pagetable update.
2245          */
2246         page_add_anon_rmap(new_page, vma, start, true);
2247         /*
2248          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2249          * has already been flushed globally.  So no TLB can be currently
2250          * caching this non present pmd mapping.  There's no need to clear the
2251          * pmd before doing set_pmd_at(), nor to flush the TLB after
2252          * set_pmd_at().  Clearing the pmd here would introduce a race
2253          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2254          * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2255          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2256          * pmd.
2257          */
2258         set_pmd_at(mm, start, pmd, entry);
2259         update_mmu_cache_pmd(vma, address, &entry);
2260
2261         page_ref_unfreeze(page, 2);
2262         mlock_migrate_page(new_page, page);
2263         page_remove_rmap(page, true);
2264         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2265
2266         spin_unlock(ptl);
2267
2268         /* Take an "isolate" reference and put new page on the LRU. */
2269         get_page(new_page);
2270         putback_lru_page(new_page);
2271
2272         unlock_page(new_page);
2273         unlock_page(page);
2274         put_page(page);                 /* Drop the rmap reference */
2275         put_page(page);                 /* Drop the LRU isolation reference */
2276
2277         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2278         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2279
2280         mod_node_page_state(page_pgdat(page),
2281                         NR_ISOLATED_ANON + page_lru,
2282                         -HPAGE_PMD_NR);
2283         return isolated;
2284
2285 out_fail:
2286         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2287         ptl = pmd_lock(mm, pmd);
2288         if (pmd_same(*pmd, entry)) {
2289                 entry = pmd_modify(entry, vma->vm_page_prot);
2290                 set_pmd_at(mm, start, pmd, entry);
2291                 update_mmu_cache_pmd(vma, address, &entry);
2292         }
2293         spin_unlock(ptl);
2294
2295 out_unlock:
2296         unlock_page(page);
2297 out:
2298         put_page(page);
2299         return 0;
2300 }
2301 #endif /* CONFIG_NUMA_BALANCING */
2302
2303 #endif /* CONFIG_NUMA */
2304
2305 #ifdef CONFIG_DEVICE_PRIVATE
2306 static int migrate_vma_collect_hole(unsigned long start,
2307                                     unsigned long end,
2308                                     __always_unused int depth,
2309                                     struct mm_walk *walk)
2310 {
2311         struct migrate_vma *migrate = walk->private;
2312         unsigned long addr;
2313
2314         /* Only allow populating anonymous memory. */
2315         if (!vma_is_anonymous(walk->vma)) {
2316                 for (addr = start; addr < end; addr += PAGE_SIZE) {
2317                         migrate->src[migrate->npages] = 0;
2318                         migrate->dst[migrate->npages] = 0;
2319                         migrate->npages++;
2320                 }
2321                 return 0;
2322         }
2323
2324         for (addr = start; addr < end; addr += PAGE_SIZE) {
2325                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2326                 migrate->dst[migrate->npages] = 0;
2327                 migrate->npages++;
2328                 migrate->cpages++;
2329         }
2330
2331         return 0;
2332 }
2333
2334 static int migrate_vma_collect_skip(unsigned long start,
2335                                     unsigned long end,
2336                                     struct mm_walk *walk)
2337 {
2338         struct migrate_vma *migrate = walk->private;
2339         unsigned long addr;
2340
2341         for (addr = start; addr < end; addr += PAGE_SIZE) {
2342                 migrate->dst[migrate->npages] = 0;
2343                 migrate->src[migrate->npages++] = 0;
2344         }
2345
2346         return 0;
2347 }
2348
2349 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2350                                    unsigned long start,
2351                                    unsigned long end,
2352                                    struct mm_walk *walk)
2353 {
2354         struct migrate_vma *migrate = walk->private;
2355         struct vm_area_struct *vma = walk->vma;
2356         struct mm_struct *mm = vma->vm_mm;
2357         unsigned long addr = start, unmapped = 0;
2358         spinlock_t *ptl;
2359         pte_t *ptep;
2360
2361 again:
2362         if (pmd_none(*pmdp))
2363                 return migrate_vma_collect_hole(start, end, -1, walk);
2364
2365         if (pmd_trans_huge(*pmdp)) {
2366                 struct page *page;
2367
2368                 ptl = pmd_lock(mm, pmdp);
2369                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2370                         spin_unlock(ptl);
2371                         goto again;
2372                 }
2373
2374                 page = pmd_page(*pmdp);
2375                 if (is_huge_zero_page(page)) {
2376                         spin_unlock(ptl);
2377                         split_huge_pmd(vma, pmdp, addr);
2378                         if (pmd_trans_unstable(pmdp))
2379                                 return migrate_vma_collect_skip(start, end,
2380                                                                 walk);
2381                 } else {
2382                         int ret;
2383
2384                         get_page(page);
2385                         spin_unlock(ptl);
2386                         if (unlikely(!trylock_page(page)))
2387                                 return migrate_vma_collect_skip(start, end,
2388                                                                 walk);
2389                         ret = split_huge_page(page);
2390                         unlock_page(page);
2391                         put_page(page);
2392                         if (ret)
2393                                 return migrate_vma_collect_skip(start, end,
2394                                                                 walk);
2395                         if (pmd_none(*pmdp))
2396                                 return migrate_vma_collect_hole(start, end, -1,
2397                                                                 walk);
2398                 }
2399         }
2400
2401         if (unlikely(pmd_bad(*pmdp)))
2402                 return migrate_vma_collect_skip(start, end, walk);
2403
2404         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2405         arch_enter_lazy_mmu_mode();
2406
2407         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2408                 unsigned long mpfn = 0, pfn;
2409                 struct page *page;
2410                 swp_entry_t entry;
2411                 pte_t pte;
2412
2413                 pte = *ptep;
2414
2415                 if (pte_none(pte)) {
2416                         if (vma_is_anonymous(vma)) {
2417                                 mpfn = MIGRATE_PFN_MIGRATE;
2418                                 migrate->cpages++;
2419                         }
2420                         goto next;
2421                 }
2422
2423                 if (!pte_present(pte)) {
2424                         /*
2425                          * Only care about unaddressable device page special
2426                          * page table entry. Other special swap entries are not
2427                          * migratable, and we ignore regular swapped page.
2428                          */
2429                         entry = pte_to_swp_entry(pte);
2430                         if (!is_device_private_entry(entry))
2431                                 goto next;
2432
2433                         page = device_private_entry_to_page(entry);
2434                         if (!(migrate->flags &
2435                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2436                             page->pgmap->owner != migrate->pgmap_owner)
2437                                 goto next;
2438
2439                         mpfn = migrate_pfn(page_to_pfn(page)) |
2440                                         MIGRATE_PFN_MIGRATE;
2441                         if (is_write_device_private_entry(entry))
2442                                 mpfn |= MIGRATE_PFN_WRITE;
2443                 } else {
2444                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2445                                 goto next;
2446                         pfn = pte_pfn(pte);
2447                         if (is_zero_pfn(pfn)) {
2448                                 mpfn = MIGRATE_PFN_MIGRATE;
2449                                 migrate->cpages++;
2450                                 goto next;
2451                         }
2452                         page = vm_normal_page(migrate->vma, addr, pte);
2453                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2454                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2455                 }
2456
2457                 /* FIXME support THP */
2458                 if (!page || !page->mapping || PageTransCompound(page)) {
2459                         mpfn = 0;
2460                         goto next;
2461                 }
2462
2463                 /*
2464                  * By getting a reference on the page we pin it and that blocks
2465                  * any kind of migration. Side effect is that it "freezes" the
2466                  * pte.
2467                  *
2468                  * We drop this reference after isolating the page from the lru
2469                  * for non device page (device page are not on the lru and thus
2470                  * can't be dropped from it).
2471                  */
2472                 get_page(page);
2473                 migrate->cpages++;
2474
2475                 /*
2476                  * Optimize for the common case where page is only mapped once
2477                  * in one process. If we can lock the page, then we can safely
2478                  * set up a special migration page table entry now.
2479                  */
2480                 if (trylock_page(page)) {
2481                         pte_t swp_pte;
2482
2483                         mpfn |= MIGRATE_PFN_LOCKED;
2484                         ptep_get_and_clear(mm, addr, ptep);
2485
2486                         /* Setup special migration page table entry */
2487                         entry = make_migration_entry(page, mpfn &
2488                                                      MIGRATE_PFN_WRITE);
2489                         swp_pte = swp_entry_to_pte(entry);
2490                         if (pte_present(pte)) {
2491                                 if (pte_soft_dirty(pte))
2492                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2493                                 if (pte_uffd_wp(pte))
2494                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2495                         } else {
2496                                 if (pte_swp_soft_dirty(pte))
2497                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2498                                 if (pte_swp_uffd_wp(pte))
2499                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2500                         }
2501                         set_pte_at(mm, addr, ptep, swp_pte);
2502
2503                         /*
2504                          * This is like regular unmap: we remove the rmap and
2505                          * drop page refcount. Page won't be freed, as we took
2506                          * a reference just above.
2507                          */
2508                         page_remove_rmap(page, false);
2509                         put_page(page);
2510
2511                         if (pte_present(pte))
2512                                 unmapped++;
2513                 }
2514
2515 next:
2516                 migrate->dst[migrate->npages] = 0;
2517                 migrate->src[migrate->npages++] = mpfn;
2518         }
2519         arch_leave_lazy_mmu_mode();
2520         pte_unmap_unlock(ptep - 1, ptl);
2521
2522         /* Only flush the TLB if we actually modified any entries */
2523         if (unmapped)
2524                 flush_tlb_range(walk->vma, start, end);
2525
2526         return 0;
2527 }
2528
2529 static const struct mm_walk_ops migrate_vma_walk_ops = {
2530         .pmd_entry              = migrate_vma_collect_pmd,
2531         .pte_hole               = migrate_vma_collect_hole,
2532 };
2533
2534 /*
2535  * migrate_vma_collect() - collect pages over a range of virtual addresses
2536  * @migrate: migrate struct containing all migration information
2537  *
2538  * This will walk the CPU page table. For each virtual address backed by a
2539  * valid page, it updates the src array and takes a reference on the page, in
2540  * order to pin the page until we lock it and unmap it.
2541  */
2542 static void migrate_vma_collect(struct migrate_vma *migrate)
2543 {
2544         struct mmu_notifier_range range;
2545
2546         /*
2547          * Note that the pgmap_owner is passed to the mmu notifier callback so
2548          * that the registered device driver can skip invalidating device
2549          * private page mappings that won't be migrated.
2550          */
2551         mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2552                 migrate->vma->vm_mm, migrate->start, migrate->end,
2553                 migrate->pgmap_owner);
2554         mmu_notifier_invalidate_range_start(&range);
2555
2556         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2557                         &migrate_vma_walk_ops, migrate);
2558
2559         mmu_notifier_invalidate_range_end(&range);
2560         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2561 }
2562
2563 /*
2564  * migrate_vma_check_page() - check if page is pinned or not
2565  * @page: struct page to check
2566  *
2567  * Pinned pages cannot be migrated. This is the same test as in
2568  * migrate_page_move_mapping(), except that here we allow migration of a
2569  * ZONE_DEVICE page.
2570  */
2571 static bool migrate_vma_check_page(struct page *page)
2572 {
2573         /*
2574          * One extra ref because caller holds an extra reference, either from
2575          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2576          * a device page.
2577          */
2578         int extra = 1;
2579
2580         /*
2581          * FIXME support THP (transparent huge page), it is bit more complex to
2582          * check them than regular pages, because they can be mapped with a pmd
2583          * or with a pte (split pte mapping).
2584          */
2585         if (PageCompound(page))
2586                 return false;
2587
2588         /* Page from ZONE_DEVICE have one extra reference */
2589         if (is_zone_device_page(page)) {
2590                 /*
2591                  * Private page can never be pin as they have no valid pte and
2592                  * GUP will fail for those. Yet if there is a pending migration
2593                  * a thread might try to wait on the pte migration entry and
2594                  * will bump the page reference count. Sadly there is no way to
2595                  * differentiate a regular pin from migration wait. Hence to
2596                  * avoid 2 racing thread trying to migrate back to CPU to enter
2597                  * infinite loop (one stopping migration because the other is
2598                  * waiting on pte migration entry). We always return true here.
2599                  *
2600                  * FIXME proper solution is to rework migration_entry_wait() so
2601                  * it does not need to take a reference on page.
2602                  */
2603                 return is_device_private_page(page);
2604         }
2605
2606         /* For file back page */
2607         if (page_mapping(page))
2608                 extra += 1 + page_has_private(page);
2609
2610         if ((page_count(page) - extra) > page_mapcount(page))
2611                 return false;
2612
2613         return true;
2614 }
2615
2616 /*
2617  * migrate_vma_prepare() - lock pages and isolate them from the lru
2618  * @migrate: migrate struct containing all migration information
2619  *
2620  * This locks pages that have been collected by migrate_vma_collect(). Once each
2621  * page is locked it is isolated from the lru (for non-device pages). Finally,
2622  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2623  * migrated by concurrent kernel threads.
2624  */
2625 static void migrate_vma_prepare(struct migrate_vma *migrate)
2626 {
2627         const unsigned long npages = migrate->npages;
2628         const unsigned long start = migrate->start;
2629         unsigned long addr, i, restore = 0;
2630         bool allow_drain = true;
2631
2632         lru_add_drain();
2633
2634         for (i = 0; (i < npages) && migrate->cpages; i++) {
2635                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2636                 bool remap = true;
2637
2638                 if (!page)
2639                         continue;
2640
2641                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2642                         /*
2643                          * Because we are migrating several pages there can be
2644                          * a deadlock between 2 concurrent migration where each
2645                          * are waiting on each other page lock.
2646                          *
2647                          * Make migrate_vma() a best effort thing and backoff
2648                          * for any page we can not lock right away.
2649                          */
2650                         if (!trylock_page(page)) {
2651                                 migrate->src[i] = 0;
2652                                 migrate->cpages--;
2653                                 put_page(page);
2654                                 continue;
2655                         }
2656                         remap = false;
2657                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2658                 }
2659
2660                 /* ZONE_DEVICE pages are not on LRU */
2661                 if (!is_zone_device_page(page)) {
2662                         if (!PageLRU(page) && allow_drain) {
2663                                 /* Drain CPU's pagevec */
2664                                 lru_add_drain_all();
2665                                 allow_drain = false;
2666                         }
2667
2668                         if (isolate_lru_page(page)) {
2669                                 if (remap) {
2670                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2671                                         migrate->cpages--;
2672                                         restore++;
2673                                 } else {
2674                                         migrate->src[i] = 0;
2675                                         unlock_page(page);
2676                                         migrate->cpages--;
2677                                         put_page(page);
2678                                 }
2679                                 continue;
2680                         }
2681
2682                         /* Drop the reference we took in collect */
2683                         put_page(page);
2684                 }
2685
2686                 if (!migrate_vma_check_page(page)) {
2687                         if (remap) {
2688                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2689                                 migrate->cpages--;
2690                                 restore++;
2691
2692                                 if (!is_zone_device_page(page)) {
2693                                         get_page(page);
2694                                         putback_lru_page(page);
2695                                 }
2696                         } else {
2697                                 migrate->src[i] = 0;
2698                                 unlock_page(page);
2699                                 migrate->cpages--;
2700
2701                                 if (!is_zone_device_page(page))
2702                                         putback_lru_page(page);
2703                                 else
2704                                         put_page(page);
2705                         }
2706                 }
2707         }
2708
2709         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2710                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2711
2712                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2713                         continue;
2714
2715                 remove_migration_pte(page, migrate->vma, addr, page);
2716
2717                 migrate->src[i] = 0;
2718                 unlock_page(page);
2719                 put_page(page);
2720                 restore--;
2721         }
2722 }
2723
2724 /*
2725  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2726  * @migrate: migrate struct containing all migration information
2727  *
2728  * Replace page mapping (CPU page table pte) with a special migration pte entry
2729  * and check again if it has been pinned. Pinned pages are restored because we
2730  * cannot migrate them.
2731  *
2732  * This is the last step before we call the device driver callback to allocate
2733  * destination memory and copy contents of original page over to new page.
2734  */
2735 static void migrate_vma_unmap(struct migrate_vma *migrate)
2736 {
2737         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2738         const unsigned long npages = migrate->npages;
2739         const unsigned long start = migrate->start;
2740         unsigned long addr, i, restore = 0;
2741
2742         for (i = 0; i < npages; i++) {
2743                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2744
2745                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2746                         continue;
2747
2748                 if (page_mapped(page)) {
2749                         try_to_unmap(page, flags);
2750                         if (page_mapped(page))
2751                                 goto restore;
2752                 }
2753
2754                 if (migrate_vma_check_page(page))
2755                         continue;
2756
2757 restore:
2758                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2759                 migrate->cpages--;
2760                 restore++;
2761         }
2762
2763         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2764                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2765
2766                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2767                         continue;
2768
2769                 remove_migration_ptes(page, page, false);
2770
2771                 migrate->src[i] = 0;
2772                 unlock_page(page);
2773                 restore--;
2774
2775                 if (is_zone_device_page(page))
2776                         put_page(page);
2777                 else
2778                         putback_lru_page(page);
2779         }
2780 }
2781
2782 /**
2783  * migrate_vma_setup() - prepare to migrate a range of memory
2784  * @args: contains the vma, start, and pfns arrays for the migration
2785  *
2786  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2787  * without an error.
2788  *
2789  * Prepare to migrate a range of memory virtual address range by collecting all
2790  * the pages backing each virtual address in the range, saving them inside the
2791  * src array.  Then lock those pages and unmap them. Once the pages are locked
2792  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2793  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2794  * corresponding src array entry.  Then restores any pages that are pinned, by
2795  * remapping and unlocking those pages.
2796  *
2797  * The caller should then allocate destination memory and copy source memory to
2798  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2799  * flag set).  Once these are allocated and copied, the caller must update each
2800  * corresponding entry in the dst array with the pfn value of the destination
2801  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2802  * (destination pages must have their struct pages locked, via lock_page()).
2803  *
2804  * Note that the caller does not have to migrate all the pages that are marked
2805  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2806  * device memory to system memory.  If the caller cannot migrate a device page
2807  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2808  * consequences for the userspace process, so it must be avoided if at all
2809  * possible.
2810  *
2811  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2812  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2813  * allowing the caller to allocate device memory for those unback virtual
2814  * address.  For this the caller simply has to allocate device memory and
2815  * properly set the destination entry like for regular migration.  Note that
2816  * this can still fails and thus inside the device driver must check if the
2817  * migration was successful for those entries after calling migrate_vma_pages()
2818  * just like for regular migration.
2819  *
2820  * After that, the callers must call migrate_vma_pages() to go over each entry
2821  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2822  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2823  * then migrate_vma_pages() to migrate struct page information from the source
2824  * struct page to the destination struct page.  If it fails to migrate the
2825  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2826  * src array.
2827  *
2828  * At this point all successfully migrated pages have an entry in the src
2829  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2830  * array entry with MIGRATE_PFN_VALID flag set.
2831  *
2832  * Once migrate_vma_pages() returns the caller may inspect which pages were
2833  * successfully migrated, and which were not.  Successfully migrated pages will
2834  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2835  *
2836  * It is safe to update device page table after migrate_vma_pages() because
2837  * both destination and source page are still locked, and the mmap_lock is held
2838  * in read mode (hence no one can unmap the range being migrated).
2839  *
2840  * Once the caller is done cleaning up things and updating its page table (if it
2841  * chose to do so, this is not an obligation) it finally calls
2842  * migrate_vma_finalize() to update the CPU page table to point to new pages
2843  * for successfully migrated pages or otherwise restore the CPU page table to
2844  * point to the original source pages.
2845  */
2846 int migrate_vma_setup(struct migrate_vma *args)
2847 {
2848         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2849
2850         args->start &= PAGE_MASK;
2851         args->end &= PAGE_MASK;
2852         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2853             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2854                 return -EINVAL;
2855         if (nr_pages <= 0)
2856                 return -EINVAL;
2857         if (args->start < args->vma->vm_start ||
2858             args->start >= args->vma->vm_end)
2859                 return -EINVAL;
2860         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2861                 return -EINVAL;
2862         if (!args->src || !args->dst)
2863                 return -EINVAL;
2864
2865         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2866         args->cpages = 0;
2867         args->npages = 0;
2868
2869         migrate_vma_collect(args);
2870
2871         if (args->cpages)
2872                 migrate_vma_prepare(args);
2873         if (args->cpages)
2874                 migrate_vma_unmap(args);
2875
2876         /*
2877          * At this point pages are locked and unmapped, and thus they have
2878          * stable content and can safely be copied to destination memory that
2879          * is allocated by the drivers.
2880          */
2881         return 0;
2882
2883 }
2884 EXPORT_SYMBOL(migrate_vma_setup);
2885
2886 /*
2887  * This code closely matches the code in:
2888  *   __handle_mm_fault()
2889  *     handle_pte_fault()
2890  *       do_anonymous_page()
2891  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2892  * private page.
2893  */
2894 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2895                                     unsigned long addr,
2896                                     struct page *page,
2897                                     unsigned long *src)
2898 {
2899         struct vm_area_struct *vma = migrate->vma;
2900         struct mm_struct *mm = vma->vm_mm;
2901         bool flush = false;
2902         spinlock_t *ptl;
2903         pte_t entry;
2904         pgd_t *pgdp;
2905         p4d_t *p4dp;
2906         pud_t *pudp;
2907         pmd_t *pmdp;
2908         pte_t *ptep;
2909
2910         /* Only allow populating anonymous memory */
2911         if (!vma_is_anonymous(vma))
2912                 goto abort;
2913
2914         pgdp = pgd_offset(mm, addr);
2915         p4dp = p4d_alloc(mm, pgdp, addr);
2916         if (!p4dp)
2917                 goto abort;
2918         pudp = pud_alloc(mm, p4dp, addr);
2919         if (!pudp)
2920                 goto abort;
2921         pmdp = pmd_alloc(mm, pudp, addr);
2922         if (!pmdp)
2923                 goto abort;
2924
2925         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2926                 goto abort;
2927
2928         /*
2929          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2930          * pte_offset_map() on pmds where a huge pmd might be created
2931          * from a different thread.
2932          *
2933          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2934          * parallel threads are excluded by other means.
2935          *
2936          * Here we only have mmap_read_lock(mm).
2937          */
2938         if (pte_alloc(mm, pmdp))
2939                 goto abort;
2940
2941         /* See the comment in pte_alloc_one_map() */
2942         if (unlikely(pmd_trans_unstable(pmdp)))
2943                 goto abort;
2944
2945         if (unlikely(anon_vma_prepare(vma)))
2946                 goto abort;
2947         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2948                 goto abort;
2949
2950         /*
2951          * The memory barrier inside __SetPageUptodate makes sure that
2952          * preceding stores to the page contents become visible before
2953          * the set_pte_at() write.
2954          */
2955         __SetPageUptodate(page);
2956
2957         if (is_zone_device_page(page)) {
2958                 if (is_device_private_page(page)) {
2959                         swp_entry_t swp_entry;
2960
2961                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2962                         entry = swp_entry_to_pte(swp_entry);
2963                 }
2964         } else {
2965                 entry = mk_pte(page, vma->vm_page_prot);
2966                 if (vma->vm_flags & VM_WRITE)
2967                         entry = pte_mkwrite(pte_mkdirty(entry));
2968         }
2969
2970         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2971
2972         if (check_stable_address_space(mm))
2973                 goto unlock_abort;
2974
2975         if (pte_present(*ptep)) {
2976                 unsigned long pfn = pte_pfn(*ptep);
2977
2978                 if (!is_zero_pfn(pfn))
2979                         goto unlock_abort;
2980                 flush = true;
2981         } else if (!pte_none(*ptep))
2982                 goto unlock_abort;
2983
2984         /*
2985          * Check for userfaultfd but do not deliver the fault. Instead,
2986          * just back off.
2987          */
2988         if (userfaultfd_missing(vma))
2989                 goto unlock_abort;
2990
2991         inc_mm_counter(mm, MM_ANONPAGES);
2992         page_add_new_anon_rmap(page, vma, addr, false);
2993         if (!is_zone_device_page(page))
2994                 lru_cache_add_inactive_or_unevictable(page, vma);
2995         get_page(page);
2996
2997         if (flush) {
2998                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2999                 ptep_clear_flush_notify(vma, addr, ptep);
3000                 set_pte_at_notify(mm, addr, ptep, entry);
3001                 update_mmu_cache(vma, addr, ptep);
3002         } else {
3003                 /* No need to invalidate - it was non-present before */
3004                 set_pte_at(mm, addr, ptep, entry);
3005                 update_mmu_cache(vma, addr, ptep);
3006         }
3007
3008         pte_unmap_unlock(ptep, ptl);
3009         *src = MIGRATE_PFN_MIGRATE;
3010         return;
3011
3012 unlock_abort:
3013         pte_unmap_unlock(ptep, ptl);
3014 abort:
3015         *src &= ~MIGRATE_PFN_MIGRATE;
3016 }
3017
3018 /**
3019  * migrate_vma_pages() - migrate meta-data from src page to dst page
3020  * @migrate: migrate struct containing all migration information
3021  *
3022  * This migrates struct page meta-data from source struct page to destination
3023  * struct page. This effectively finishes the migration from source page to the
3024  * destination page.
3025  */
3026 void migrate_vma_pages(struct migrate_vma *migrate)
3027 {
3028         const unsigned long npages = migrate->npages;
3029         const unsigned long start = migrate->start;
3030         struct mmu_notifier_range range;
3031         unsigned long addr, i;
3032         bool notified = false;
3033
3034         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3035                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3036                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3037                 struct address_space *mapping;
3038                 int r;
3039
3040                 if (!newpage) {
3041                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3042                         continue;
3043                 }
3044
3045                 if (!page) {
3046                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3047                                 continue;
3048                         if (!notified) {
3049                                 notified = true;
3050
3051                                 mmu_notifier_range_init_migrate(&range, 0,
3052                                         migrate->vma, migrate->vma->vm_mm,
3053                                         addr, migrate->end,
3054                                         migrate->pgmap_owner);
3055                                 mmu_notifier_invalidate_range_start(&range);
3056                         }
3057                         migrate_vma_insert_page(migrate, addr, newpage,
3058                                                 &migrate->src[i]);
3059                         continue;
3060                 }
3061
3062                 mapping = page_mapping(page);
3063
3064                 if (is_zone_device_page(newpage)) {
3065                         if (is_device_private_page(newpage)) {
3066                                 /*
3067                                  * For now only support private anonymous when
3068                                  * migrating to un-addressable device memory.
3069                                  */
3070                                 if (mapping) {
3071                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3072                                         continue;
3073                                 }
3074                         } else {
3075                                 /*
3076                                  * Other types of ZONE_DEVICE page are not
3077                                  * supported.
3078                                  */
3079                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3080                                 continue;
3081                         }
3082                 }
3083
3084                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3085                 if (r != MIGRATEPAGE_SUCCESS)
3086                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3087         }
3088
3089         /*
3090          * No need to double call mmu_notifier->invalidate_range() callback as
3091          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3092          * did already call it.
3093          */
3094         if (notified)
3095                 mmu_notifier_invalidate_range_only_end(&range);
3096 }
3097 EXPORT_SYMBOL(migrate_vma_pages);
3098
3099 /**
3100  * migrate_vma_finalize() - restore CPU page table entry
3101  * @migrate: migrate struct containing all migration information
3102  *
3103  * This replaces the special migration pte entry with either a mapping to the
3104  * new page if migration was successful for that page, or to the original page
3105  * otherwise.
3106  *
3107  * This also unlocks the pages and puts them back on the lru, or drops the extra
3108  * refcount, for device pages.
3109  */
3110 void migrate_vma_finalize(struct migrate_vma *migrate)
3111 {
3112         const unsigned long npages = migrate->npages;
3113         unsigned long i;
3114
3115         for (i = 0; i < npages; i++) {
3116                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3117                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3118
3119                 if (!page) {
3120                         if (newpage) {
3121                                 unlock_page(newpage);
3122                                 put_page(newpage);
3123                         }
3124                         continue;
3125                 }
3126
3127                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3128                         if (newpage) {
3129                                 unlock_page(newpage);
3130                                 put_page(newpage);
3131                         }
3132                         newpage = page;
3133                 }
3134
3135                 remove_migration_ptes(page, newpage, false);
3136                 unlock_page(page);
3137
3138                 if (is_zone_device_page(page))
3139                         put_page(page);
3140                 else
3141                         putback_lru_page(page);
3142
3143                 if (newpage != page) {
3144                         unlock_page(newpage);
3145                         if (is_zone_device_page(newpage))
3146                                 put_page(newpage);
3147                         else
3148                                 putback_lru_page(newpage);
3149                 }
3150         }
3151 }
3152 EXPORT_SYMBOL(migrate_vma_finalize);
3153 #endif /* CONFIG_DEVICE_PRIVATE */