Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62         struct address_space *mapping;
63
64         /*
65          * Avoid burning cycles with pages that are yet under __free_pages(),
66          * or just got freed under us.
67          *
68          * In case we 'win' a race for a movable page being freed under us and
69          * raise its refcount preventing __free_pages() from doing its job
70          * the put_page() at the end of this block will take care of
71          * release this page, thus avoiding a nasty leakage.
72          */
73         if (unlikely(!get_page_unless_zero(page)))
74                 goto out;
75
76         /*
77          * Check PageMovable before holding a PG_lock because page's owner
78          * assumes anybody doesn't touch PG_lock of newly allocated page
79          * so unconditionally grabbing the lock ruins page's owner side.
80          */
81         if (unlikely(!__PageMovable(page)))
82                 goto out_putpage;
83         /*
84          * As movable pages are not isolated from LRU lists, concurrent
85          * compaction threads can race against page migration functions
86          * as well as race against the releasing a page.
87          *
88          * In order to avoid having an already isolated movable page
89          * being (wrongly) re-isolated while it is under migration,
90          * or to avoid attempting to isolate pages being released,
91          * lets be sure we have the page lock
92          * before proceeding with the movable page isolation steps.
93          */
94         if (unlikely(!trylock_page(page)))
95                 goto out_putpage;
96
97         if (!PageMovable(page) || PageIsolated(page))
98                 goto out_no_isolated;
99
100         mapping = page_mapping(page);
101         VM_BUG_ON_PAGE(!mapping, page);
102
103         if (!mapping->a_ops->isolate_page(page, mode))
104                 goto out_no_isolated;
105
106         /* Driver shouldn't use PG_isolated bit of page->flags */
107         WARN_ON_ONCE(PageIsolated(page));
108         __SetPageIsolated(page);
109         unlock_page(page);
110
111         return 0;
112
113 out_no_isolated:
114         unlock_page(page);
115 out_putpage:
116         put_page(page);
117 out:
118         return -EBUSY;
119 }
120
121 static void putback_movable_page(struct page *page)
122 {
123         struct address_space *mapping;
124
125         mapping = page_mapping(page);
126         mapping->a_ops->putback_page(page);
127         __ClearPageIsolated(page);
128 }
129
130 /*
131  * Put previously isolated pages back onto the appropriate lists
132  * from where they were once taken off for compaction/migration.
133  *
134  * This function shall be used whenever the isolated pageset has been
135  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136  * and isolate_huge_page().
137  */
138 void putback_movable_pages(struct list_head *l)
139 {
140         struct page *page;
141         struct page *page2;
142
143         list_for_each_entry_safe(page, page2, l, lru) {
144                 if (unlikely(PageHuge(page))) {
145                         putback_active_hugepage(page);
146                         continue;
147                 }
148                 list_del(&page->lru);
149                 /*
150                  * We isolated non-lru movable page so here we can use
151                  * __PageMovable because LRU page's mapping cannot have
152                  * PAGE_MAPPING_MOVABLE.
153                  */
154                 if (unlikely(__PageMovable(page))) {
155                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
156                         lock_page(page);
157                         if (PageMovable(page))
158                                 putback_movable_page(page);
159                         else
160                                 __ClearPageIsolated(page);
161                         unlock_page(page);
162                         put_page(page);
163                 } else {
164                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165                                         page_is_file_lru(page), -thp_nr_pages(page));
166                         putback_lru_page(page);
167                 }
168         }
169 }
170
171 /*
172  * Restore a potential migration pte to a working pte entry
173  */
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175                                  unsigned long addr, void *old)
176 {
177         struct page_vma_mapped_walk pvmw = {
178                 .page = old,
179                 .vma = vma,
180                 .address = addr,
181                 .flags = PVMW_SYNC | PVMW_MIGRATION,
182         };
183         struct page *new;
184         pte_t pte;
185         swp_entry_t entry;
186
187         VM_BUG_ON_PAGE(PageTail(page), page);
188         while (page_vma_mapped_walk(&pvmw)) {
189                 if (PageKsm(page))
190                         new = page;
191                 else
192                         new = page - pvmw.page->index +
193                                 linear_page_index(vma, pvmw.address);
194
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196                 /* PMD-mapped THP migration entry */
197                 if (!pvmw.pte) {
198                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199                         remove_migration_pmd(&pvmw, new);
200                         continue;
201                 }
202 #endif
203
204                 get_page(new);
205                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206                 if (pte_swp_soft_dirty(*pvmw.pte))
207                         pte = pte_mksoft_dirty(pte);
208
209                 /*
210                  * Recheck VMA as permissions can change since migration started
211                  */
212                 entry = pte_to_swp_entry(*pvmw.pte);
213                 if (is_write_migration_entry(entry))
214                         pte = maybe_mkwrite(pte, vma);
215                 else if (pte_swp_uffd_wp(*pvmw.pte))
216                         pte = pte_mkuffd_wp(pte);
217
218                 if (unlikely(is_device_private_page(new))) {
219                         entry = make_device_private_entry(new, pte_write(pte));
220                         pte = swp_entry_to_pte(entry);
221                         if (pte_swp_soft_dirty(*pvmw.pte))
222                                 pte = pte_swp_mksoft_dirty(pte);
223                         if (pte_swp_uffd_wp(*pvmw.pte))
224                                 pte = pte_swp_mkuffd_wp(pte);
225                 }
226
227 #ifdef CONFIG_HUGETLB_PAGE
228                 if (PageHuge(new)) {
229                         pte = pte_mkhuge(pte);
230                         pte = arch_make_huge_pte(pte, vma, new, 0);
231                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
232                         if (PageAnon(new))
233                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
234                         else
235                                 page_dup_rmap(new, true);
236                 } else
237 #endif
238                 {
239                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
240
241                         if (PageAnon(new))
242                                 page_add_anon_rmap(new, vma, pvmw.address, false);
243                         else
244                                 page_add_file_rmap(new, false);
245                 }
246                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
247                         mlock_vma_page(new);
248
249                 if (PageTransHuge(page) && PageMlocked(page))
250                         clear_page_mlock(page);
251
252                 /* No need to invalidate - it was non-present before */
253                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
254         }
255
256         return true;
257 }
258
259 /*
260  * Get rid of all migration entries and replace them by
261  * references to the indicated page.
262  */
263 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
264 {
265         struct rmap_walk_control rwc = {
266                 .rmap_one = remove_migration_pte,
267                 .arg = old,
268         };
269
270         if (locked)
271                 rmap_walk_locked(new, &rwc);
272         else
273                 rmap_walk(new, &rwc);
274 }
275
276 /*
277  * Something used the pte of a page under migration. We need to
278  * get to the page and wait until migration is finished.
279  * When we return from this function the fault will be retried.
280  */
281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
282                                 spinlock_t *ptl)
283 {
284         pte_t pte;
285         swp_entry_t entry;
286         struct page *page;
287
288         spin_lock(ptl);
289         pte = *ptep;
290         if (!is_swap_pte(pte))
291                 goto out;
292
293         entry = pte_to_swp_entry(pte);
294         if (!is_migration_entry(entry))
295                 goto out;
296
297         page = migration_entry_to_page(entry);
298         page = compound_head(page);
299
300         /*
301          * Once page cache replacement of page migration started, page_count
302          * is zero; but we must not call put_and_wait_on_page_locked() without
303          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
304          */
305         if (!get_page_unless_zero(page))
306                 goto out;
307         pte_unmap_unlock(ptep, ptl);
308         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
309         return;
310 out:
311         pte_unmap_unlock(ptep, ptl);
312 }
313
314 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
315                                 unsigned long address)
316 {
317         spinlock_t *ptl = pte_lockptr(mm, pmd);
318         pte_t *ptep = pte_offset_map(pmd, address);
319         __migration_entry_wait(mm, ptep, ptl);
320 }
321
322 void migration_entry_wait_huge(struct vm_area_struct *vma,
323                 struct mm_struct *mm, pte_t *pte)
324 {
325         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
326         __migration_entry_wait(mm, pte, ptl);
327 }
328
329 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
330 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
331 {
332         spinlock_t *ptl;
333         struct page *page;
334
335         ptl = pmd_lock(mm, pmd);
336         if (!is_pmd_migration_entry(*pmd))
337                 goto unlock;
338         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
339         if (!get_page_unless_zero(page))
340                 goto unlock;
341         spin_unlock(ptl);
342         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
343         return;
344 unlock:
345         spin_unlock(ptl);
346 }
347 #endif
348
349 static int expected_page_refs(struct address_space *mapping, struct page *page)
350 {
351         int expected_count = 1;
352
353         /*
354          * Device private pages have an extra refcount as they are
355          * ZONE_DEVICE pages.
356          */
357         expected_count += is_device_private_page(page);
358         if (mapping)
359                 expected_count += thp_nr_pages(page) + page_has_private(page);
360
361         return expected_count;
362 }
363
364 /*
365  * Replace the page in the mapping.
366  *
367  * The number of remaining references must be:
368  * 1 for anonymous pages without a mapping
369  * 2 for pages with a mapping
370  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
371  */
372 int migrate_page_move_mapping(struct address_space *mapping,
373                 struct page *newpage, struct page *page, int extra_count)
374 {
375         XA_STATE(xas, &mapping->i_pages, page_index(page));
376         struct zone *oldzone, *newzone;
377         int dirty;
378         int expected_count = expected_page_refs(mapping, page) + extra_count;
379         int nr = thp_nr_pages(page);
380
381         if (!mapping) {
382                 /* Anonymous page without mapping */
383                 if (page_count(page) != expected_count)
384                         return -EAGAIN;
385
386                 /* No turning back from here */
387                 newpage->index = page->index;
388                 newpage->mapping = page->mapping;
389                 if (PageSwapBacked(page))
390                         __SetPageSwapBacked(newpage);
391
392                 return MIGRATEPAGE_SUCCESS;
393         }
394
395         oldzone = page_zone(page);
396         newzone = page_zone(newpage);
397
398         xas_lock_irq(&xas);
399         if (page_count(page) != expected_count || xas_load(&xas) != page) {
400                 xas_unlock_irq(&xas);
401                 return -EAGAIN;
402         }
403
404         if (!page_ref_freeze(page, expected_count)) {
405                 xas_unlock_irq(&xas);
406                 return -EAGAIN;
407         }
408
409         /*
410          * Now we know that no one else is looking at the page:
411          * no turning back from here.
412          */
413         newpage->index = page->index;
414         newpage->mapping = page->mapping;
415         page_ref_add(newpage, nr); /* add cache reference */
416         if (PageSwapBacked(page)) {
417                 __SetPageSwapBacked(newpage);
418                 if (PageSwapCache(page)) {
419                         SetPageSwapCache(newpage);
420                         set_page_private(newpage, page_private(page));
421                 }
422         } else {
423                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
424         }
425
426         /* Move dirty while page refs frozen and newpage not yet exposed */
427         dirty = PageDirty(page);
428         if (dirty) {
429                 ClearPageDirty(page);
430                 SetPageDirty(newpage);
431         }
432
433         xas_store(&xas, newpage);
434         if (PageTransHuge(page)) {
435                 int i;
436
437                 for (i = 1; i < nr; i++) {
438                         xas_next(&xas);
439                         xas_store(&xas, newpage);
440                 }
441         }
442
443         /*
444          * Drop cache reference from old page by unfreezing
445          * to one less reference.
446          * We know this isn't the last reference.
447          */
448         page_ref_unfreeze(page, expected_count - nr);
449
450         xas_unlock(&xas);
451         /* Leave irq disabled to prevent preemption while updating stats */
452
453         /*
454          * If moved to a different zone then also account
455          * the page for that zone. Other VM counters will be
456          * taken care of when we establish references to the
457          * new page and drop references to the old page.
458          *
459          * Note that anonymous pages are accounted for
460          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
461          * are mapped to swap space.
462          */
463         if (newzone != oldzone) {
464                 struct lruvec *old_lruvec, *new_lruvec;
465                 struct mem_cgroup *memcg;
466
467                 memcg = page_memcg(page);
468                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
469                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
470
471                 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
472                 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
473                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
474                         __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
475                         __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
476                 }
477 #ifdef CONFIG_SWAP
478                 if (PageSwapCache(page)) {
479                         __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
480                         __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
481                 }
482 #endif
483                 if (dirty && mapping_can_writeback(mapping)) {
484                         __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
485                         __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
486                         __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
487                         __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
488                 }
489         }
490         local_irq_enable();
491
492         return MIGRATEPAGE_SUCCESS;
493 }
494 EXPORT_SYMBOL(migrate_page_move_mapping);
495
496 /*
497  * The expected number of remaining references is the same as that
498  * of migrate_page_move_mapping().
499  */
500 int migrate_huge_page_move_mapping(struct address_space *mapping,
501                                    struct page *newpage, struct page *page)
502 {
503         XA_STATE(xas, &mapping->i_pages, page_index(page));
504         int expected_count;
505
506         xas_lock_irq(&xas);
507         expected_count = 2 + page_has_private(page);
508         if (page_count(page) != expected_count || xas_load(&xas) != page) {
509                 xas_unlock_irq(&xas);
510                 return -EAGAIN;
511         }
512
513         if (!page_ref_freeze(page, expected_count)) {
514                 xas_unlock_irq(&xas);
515                 return -EAGAIN;
516         }
517
518         newpage->index = page->index;
519         newpage->mapping = page->mapping;
520
521         get_page(newpage);
522
523         xas_store(&xas, newpage);
524
525         page_ref_unfreeze(page, expected_count - 1);
526
527         xas_unlock_irq(&xas);
528
529         return MIGRATEPAGE_SUCCESS;
530 }
531
532 /*
533  * Gigantic pages are so large that we do not guarantee that page++ pointer
534  * arithmetic will work across the entire page.  We need something more
535  * specialized.
536  */
537 static void __copy_gigantic_page(struct page *dst, struct page *src,
538                                 int nr_pages)
539 {
540         int i;
541         struct page *dst_base = dst;
542         struct page *src_base = src;
543
544         for (i = 0; i < nr_pages; ) {
545                 cond_resched();
546                 copy_highpage(dst, src);
547
548                 i++;
549                 dst = mem_map_next(dst, dst_base, i);
550                 src = mem_map_next(src, src_base, i);
551         }
552 }
553
554 static void copy_huge_page(struct page *dst, struct page *src)
555 {
556         int i;
557         int nr_pages;
558
559         if (PageHuge(src)) {
560                 /* hugetlbfs page */
561                 struct hstate *h = page_hstate(src);
562                 nr_pages = pages_per_huge_page(h);
563
564                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
565                         __copy_gigantic_page(dst, src, nr_pages);
566                         return;
567                 }
568         } else {
569                 /* thp page */
570                 BUG_ON(!PageTransHuge(src));
571                 nr_pages = thp_nr_pages(src);
572         }
573
574         for (i = 0; i < nr_pages; i++) {
575                 cond_resched();
576                 copy_highpage(dst + i, src + i);
577         }
578 }
579
580 /*
581  * Copy the page to its new location
582  */
583 void migrate_page_states(struct page *newpage, struct page *page)
584 {
585         int cpupid;
586
587         if (PageError(page))
588                 SetPageError(newpage);
589         if (PageReferenced(page))
590                 SetPageReferenced(newpage);
591         if (PageUptodate(page))
592                 SetPageUptodate(newpage);
593         if (TestClearPageActive(page)) {
594                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
595                 SetPageActive(newpage);
596         } else if (TestClearPageUnevictable(page))
597                 SetPageUnevictable(newpage);
598         if (PageWorkingset(page))
599                 SetPageWorkingset(newpage);
600         if (PageChecked(page))
601                 SetPageChecked(newpage);
602         if (PageMappedToDisk(page))
603                 SetPageMappedToDisk(newpage);
604
605         /* Move dirty on pages not done by migrate_page_move_mapping() */
606         if (PageDirty(page))
607                 SetPageDirty(newpage);
608
609         if (page_is_young(page))
610                 set_page_young(newpage);
611         if (page_is_idle(page))
612                 set_page_idle(newpage);
613
614         /*
615          * Copy NUMA information to the new page, to prevent over-eager
616          * future migrations of this same page.
617          */
618         cpupid = page_cpupid_xchg_last(page, -1);
619         page_cpupid_xchg_last(newpage, cpupid);
620
621         ksm_migrate_page(newpage, page);
622         /*
623          * Please do not reorder this without considering how mm/ksm.c's
624          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
625          */
626         if (PageSwapCache(page))
627                 ClearPageSwapCache(page);
628         ClearPagePrivate(page);
629         set_page_private(page, 0);
630
631         /*
632          * If any waiters have accumulated on the new page then
633          * wake them up.
634          */
635         if (PageWriteback(newpage))
636                 end_page_writeback(newpage);
637
638         /*
639          * PG_readahead shares the same bit with PG_reclaim.  The above
640          * end_page_writeback() may clear PG_readahead mistakenly, so set the
641          * bit after that.
642          */
643         if (PageReadahead(page))
644                 SetPageReadahead(newpage);
645
646         copy_page_owner(page, newpage);
647
648         if (!PageHuge(page))
649                 mem_cgroup_migrate(page, newpage);
650 }
651 EXPORT_SYMBOL(migrate_page_states);
652
653 void migrate_page_copy(struct page *newpage, struct page *page)
654 {
655         if (PageHuge(page) || PageTransHuge(page))
656                 copy_huge_page(newpage, page);
657         else
658                 copy_highpage(newpage, page);
659
660         migrate_page_states(newpage, page);
661 }
662 EXPORT_SYMBOL(migrate_page_copy);
663
664 /************************************************************
665  *                    Migration functions
666  ***********************************************************/
667
668 /*
669  * Common logic to directly migrate a single LRU page suitable for
670  * pages that do not use PagePrivate/PagePrivate2.
671  *
672  * Pages are locked upon entry and exit.
673  */
674 int migrate_page(struct address_space *mapping,
675                 struct page *newpage, struct page *page,
676                 enum migrate_mode mode)
677 {
678         int rc;
679
680         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
681
682         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
683
684         if (rc != MIGRATEPAGE_SUCCESS)
685                 return rc;
686
687         if (mode != MIGRATE_SYNC_NO_COPY)
688                 migrate_page_copy(newpage, page);
689         else
690                 migrate_page_states(newpage, page);
691         return MIGRATEPAGE_SUCCESS;
692 }
693 EXPORT_SYMBOL(migrate_page);
694
695 #ifdef CONFIG_BLOCK
696 /* Returns true if all buffers are successfully locked */
697 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
698                                                         enum migrate_mode mode)
699 {
700         struct buffer_head *bh = head;
701
702         /* Simple case, sync compaction */
703         if (mode != MIGRATE_ASYNC) {
704                 do {
705                         lock_buffer(bh);
706                         bh = bh->b_this_page;
707
708                 } while (bh != head);
709
710                 return true;
711         }
712
713         /* async case, we cannot block on lock_buffer so use trylock_buffer */
714         do {
715                 if (!trylock_buffer(bh)) {
716                         /*
717                          * We failed to lock the buffer and cannot stall in
718                          * async migration. Release the taken locks
719                          */
720                         struct buffer_head *failed_bh = bh;
721                         bh = head;
722                         while (bh != failed_bh) {
723                                 unlock_buffer(bh);
724                                 bh = bh->b_this_page;
725                         }
726                         return false;
727                 }
728
729                 bh = bh->b_this_page;
730         } while (bh != head);
731         return true;
732 }
733
734 static int __buffer_migrate_page(struct address_space *mapping,
735                 struct page *newpage, struct page *page, enum migrate_mode mode,
736                 bool check_refs)
737 {
738         struct buffer_head *bh, *head;
739         int rc;
740         int expected_count;
741
742         if (!page_has_buffers(page))
743                 return migrate_page(mapping, newpage, page, mode);
744
745         /* Check whether page does not have extra refs before we do more work */
746         expected_count = expected_page_refs(mapping, page);
747         if (page_count(page) != expected_count)
748                 return -EAGAIN;
749
750         head = page_buffers(page);
751         if (!buffer_migrate_lock_buffers(head, mode))
752                 return -EAGAIN;
753
754         if (check_refs) {
755                 bool busy;
756                 bool invalidated = false;
757
758 recheck_buffers:
759                 busy = false;
760                 spin_lock(&mapping->private_lock);
761                 bh = head;
762                 do {
763                         if (atomic_read(&bh->b_count)) {
764                                 busy = true;
765                                 break;
766                         }
767                         bh = bh->b_this_page;
768                 } while (bh != head);
769                 if (busy) {
770                         if (invalidated) {
771                                 rc = -EAGAIN;
772                                 goto unlock_buffers;
773                         }
774                         spin_unlock(&mapping->private_lock);
775                         invalidate_bh_lrus();
776                         invalidated = true;
777                         goto recheck_buffers;
778                 }
779         }
780
781         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
782         if (rc != MIGRATEPAGE_SUCCESS)
783                 goto unlock_buffers;
784
785         attach_page_private(newpage, detach_page_private(page));
786
787         bh = head;
788         do {
789                 set_bh_page(bh, newpage, bh_offset(bh));
790                 bh = bh->b_this_page;
791
792         } while (bh != head);
793
794         if (mode != MIGRATE_SYNC_NO_COPY)
795                 migrate_page_copy(newpage, page);
796         else
797                 migrate_page_states(newpage, page);
798
799         rc = MIGRATEPAGE_SUCCESS;
800 unlock_buffers:
801         if (check_refs)
802                 spin_unlock(&mapping->private_lock);
803         bh = head;
804         do {
805                 unlock_buffer(bh);
806                 bh = bh->b_this_page;
807
808         } while (bh != head);
809
810         return rc;
811 }
812
813 /*
814  * Migration function for pages with buffers. This function can only be used
815  * if the underlying filesystem guarantees that no other references to "page"
816  * exist. For example attached buffer heads are accessed only under page lock.
817  */
818 int buffer_migrate_page(struct address_space *mapping,
819                 struct page *newpage, struct page *page, enum migrate_mode mode)
820 {
821         return __buffer_migrate_page(mapping, newpage, page, mode, false);
822 }
823 EXPORT_SYMBOL(buffer_migrate_page);
824
825 /*
826  * Same as above except that this variant is more careful and checks that there
827  * are also no buffer head references. This function is the right one for
828  * mappings where buffer heads are directly looked up and referenced (such as
829  * block device mappings).
830  */
831 int buffer_migrate_page_norefs(struct address_space *mapping,
832                 struct page *newpage, struct page *page, enum migrate_mode mode)
833 {
834         return __buffer_migrate_page(mapping, newpage, page, mode, true);
835 }
836 #endif
837
838 /*
839  * Writeback a page to clean the dirty state
840  */
841 static int writeout(struct address_space *mapping, struct page *page)
842 {
843         struct writeback_control wbc = {
844                 .sync_mode = WB_SYNC_NONE,
845                 .nr_to_write = 1,
846                 .range_start = 0,
847                 .range_end = LLONG_MAX,
848                 .for_reclaim = 1
849         };
850         int rc;
851
852         if (!mapping->a_ops->writepage)
853                 /* No write method for the address space */
854                 return -EINVAL;
855
856         if (!clear_page_dirty_for_io(page))
857                 /* Someone else already triggered a write */
858                 return -EAGAIN;
859
860         /*
861          * A dirty page may imply that the underlying filesystem has
862          * the page on some queue. So the page must be clean for
863          * migration. Writeout may mean we loose the lock and the
864          * page state is no longer what we checked for earlier.
865          * At this point we know that the migration attempt cannot
866          * be successful.
867          */
868         remove_migration_ptes(page, page, false);
869
870         rc = mapping->a_ops->writepage(page, &wbc);
871
872         if (rc != AOP_WRITEPAGE_ACTIVATE)
873                 /* unlocked. Relock */
874                 lock_page(page);
875
876         return (rc < 0) ? -EIO : -EAGAIN;
877 }
878
879 /*
880  * Default handling if a filesystem does not provide a migration function.
881  */
882 static int fallback_migrate_page(struct address_space *mapping,
883         struct page *newpage, struct page *page, enum migrate_mode mode)
884 {
885         if (PageDirty(page)) {
886                 /* Only writeback pages in full synchronous migration */
887                 switch (mode) {
888                 case MIGRATE_SYNC:
889                 case MIGRATE_SYNC_NO_COPY:
890                         break;
891                 default:
892                         return -EBUSY;
893                 }
894                 return writeout(mapping, page);
895         }
896
897         /*
898          * Buffers may be managed in a filesystem specific way.
899          * We must have no buffers or drop them.
900          */
901         if (page_has_private(page) &&
902             !try_to_release_page(page, GFP_KERNEL))
903                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
904
905         return migrate_page(mapping, newpage, page, mode);
906 }
907
908 /*
909  * Move a page to a newly allocated page
910  * The page is locked and all ptes have been successfully removed.
911  *
912  * The new page will have replaced the old page if this function
913  * is successful.
914  *
915  * Return value:
916  *   < 0 - error code
917  *  MIGRATEPAGE_SUCCESS - success
918  */
919 static int move_to_new_page(struct page *newpage, struct page *page,
920                                 enum migrate_mode mode)
921 {
922         struct address_space *mapping;
923         int rc = -EAGAIN;
924         bool is_lru = !__PageMovable(page);
925
926         VM_BUG_ON_PAGE(!PageLocked(page), page);
927         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
928
929         mapping = page_mapping(page);
930
931         if (likely(is_lru)) {
932                 if (!mapping)
933                         rc = migrate_page(mapping, newpage, page, mode);
934                 else if (mapping->a_ops->migratepage)
935                         /*
936                          * Most pages have a mapping and most filesystems
937                          * provide a migratepage callback. Anonymous pages
938                          * are part of swap space which also has its own
939                          * migratepage callback. This is the most common path
940                          * for page migration.
941                          */
942                         rc = mapping->a_ops->migratepage(mapping, newpage,
943                                                         page, mode);
944                 else
945                         rc = fallback_migrate_page(mapping, newpage,
946                                                         page, mode);
947         } else {
948                 /*
949                  * In case of non-lru page, it could be released after
950                  * isolation step. In that case, we shouldn't try migration.
951                  */
952                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
953                 if (!PageMovable(page)) {
954                         rc = MIGRATEPAGE_SUCCESS;
955                         __ClearPageIsolated(page);
956                         goto out;
957                 }
958
959                 rc = mapping->a_ops->migratepage(mapping, newpage,
960                                                 page, mode);
961                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
962                         !PageIsolated(page));
963         }
964
965         /*
966          * When successful, old pagecache page->mapping must be cleared before
967          * page is freed; but stats require that PageAnon be left as PageAnon.
968          */
969         if (rc == MIGRATEPAGE_SUCCESS) {
970                 if (__PageMovable(page)) {
971                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
972
973                         /*
974                          * We clear PG_movable under page_lock so any compactor
975                          * cannot try to migrate this page.
976                          */
977                         __ClearPageIsolated(page);
978                 }
979
980                 /*
981                  * Anonymous and movable page->mapping will be cleared by
982                  * free_pages_prepare so don't reset it here for keeping
983                  * the type to work PageAnon, for example.
984                  */
985                 if (!PageMappingFlags(page))
986                         page->mapping = NULL;
987
988                 if (likely(!is_zone_device_page(newpage)))
989                         flush_dcache_page(newpage);
990
991         }
992 out:
993         return rc;
994 }
995
996 static int __unmap_and_move(struct page *page, struct page *newpage,
997                                 int force, enum migrate_mode mode)
998 {
999         int rc = -EAGAIN;
1000         int page_was_mapped = 0;
1001         struct anon_vma *anon_vma = NULL;
1002         bool is_lru = !__PageMovable(page);
1003
1004         if (!trylock_page(page)) {
1005                 if (!force || mode == MIGRATE_ASYNC)
1006                         goto out;
1007
1008                 /*
1009                  * It's not safe for direct compaction to call lock_page.
1010                  * For example, during page readahead pages are added locked
1011                  * to the LRU. Later, when the IO completes the pages are
1012                  * marked uptodate and unlocked. However, the queueing
1013                  * could be merging multiple pages for one bio (e.g.
1014                  * mpage_readahead). If an allocation happens for the
1015                  * second or third page, the process can end up locking
1016                  * the same page twice and deadlocking. Rather than
1017                  * trying to be clever about what pages can be locked,
1018                  * avoid the use of lock_page for direct compaction
1019                  * altogether.
1020                  */
1021                 if (current->flags & PF_MEMALLOC)
1022                         goto out;
1023
1024                 lock_page(page);
1025         }
1026
1027         if (PageWriteback(page)) {
1028                 /*
1029                  * Only in the case of a full synchronous migration is it
1030                  * necessary to wait for PageWriteback. In the async case,
1031                  * the retry loop is too short and in the sync-light case,
1032                  * the overhead of stalling is too much
1033                  */
1034                 switch (mode) {
1035                 case MIGRATE_SYNC:
1036                 case MIGRATE_SYNC_NO_COPY:
1037                         break;
1038                 default:
1039                         rc = -EBUSY;
1040                         goto out_unlock;
1041                 }
1042                 if (!force)
1043                         goto out_unlock;
1044                 wait_on_page_writeback(page);
1045         }
1046
1047         /*
1048          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1049          * we cannot notice that anon_vma is freed while we migrates a page.
1050          * This get_anon_vma() delays freeing anon_vma pointer until the end
1051          * of migration. File cache pages are no problem because of page_lock()
1052          * File Caches may use write_page() or lock_page() in migration, then,
1053          * just care Anon page here.
1054          *
1055          * Only page_get_anon_vma() understands the subtleties of
1056          * getting a hold on an anon_vma from outside one of its mms.
1057          * But if we cannot get anon_vma, then we won't need it anyway,
1058          * because that implies that the anon page is no longer mapped
1059          * (and cannot be remapped so long as we hold the page lock).
1060          */
1061         if (PageAnon(page) && !PageKsm(page))
1062                 anon_vma = page_get_anon_vma(page);
1063
1064         /*
1065          * Block others from accessing the new page when we get around to
1066          * establishing additional references. We are usually the only one
1067          * holding a reference to newpage at this point. We used to have a BUG
1068          * here if trylock_page(newpage) fails, but would like to allow for
1069          * cases where there might be a race with the previous use of newpage.
1070          * This is much like races on refcount of oldpage: just don't BUG().
1071          */
1072         if (unlikely(!trylock_page(newpage)))
1073                 goto out_unlock;
1074
1075         if (unlikely(!is_lru)) {
1076                 rc = move_to_new_page(newpage, page, mode);
1077                 goto out_unlock_both;
1078         }
1079
1080         /*
1081          * Corner case handling:
1082          * 1. When a new swap-cache page is read into, it is added to the LRU
1083          * and treated as swapcache but it has no rmap yet.
1084          * Calling try_to_unmap() against a page->mapping==NULL page will
1085          * trigger a BUG.  So handle it here.
1086          * 2. An orphaned page (see truncate_cleanup_page) might have
1087          * fs-private metadata. The page can be picked up due to memory
1088          * offlining.  Everywhere else except page reclaim, the page is
1089          * invisible to the vm, so the page can not be migrated.  So try to
1090          * free the metadata, so the page can be freed.
1091          */
1092         if (!page->mapping) {
1093                 VM_BUG_ON_PAGE(PageAnon(page), page);
1094                 if (page_has_private(page)) {
1095                         try_to_free_buffers(page);
1096                         goto out_unlock_both;
1097                 }
1098         } else if (page_mapped(page)) {
1099                 /* Establish migration ptes */
1100                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1101                                 page);
1102                 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1103                 page_was_mapped = 1;
1104         }
1105
1106         if (!page_mapped(page))
1107                 rc = move_to_new_page(newpage, page, mode);
1108
1109         if (page_was_mapped)
1110                 remove_migration_ptes(page,
1111                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1112
1113 out_unlock_both:
1114         unlock_page(newpage);
1115 out_unlock:
1116         /* Drop an anon_vma reference if we took one */
1117         if (anon_vma)
1118                 put_anon_vma(anon_vma);
1119         unlock_page(page);
1120 out:
1121         /*
1122          * If migration is successful, decrease refcount of the newpage
1123          * which will not free the page because new page owner increased
1124          * refcounter. As well, if it is LRU page, add the page to LRU
1125          * list in here. Use the old state of the isolated source page to
1126          * determine if we migrated a LRU page. newpage was already unlocked
1127          * and possibly modified by its owner - don't rely on the page
1128          * state.
1129          */
1130         if (rc == MIGRATEPAGE_SUCCESS) {
1131                 if (unlikely(!is_lru))
1132                         put_page(newpage);
1133                 else
1134                         putback_lru_page(newpage);
1135         }
1136
1137         return rc;
1138 }
1139
1140 /*
1141  * Obtain the lock on page, remove all ptes and migrate the page
1142  * to the newly allocated page in newpage.
1143  */
1144 static int unmap_and_move(new_page_t get_new_page,
1145                                    free_page_t put_new_page,
1146                                    unsigned long private, struct page *page,
1147                                    int force, enum migrate_mode mode,
1148                                    enum migrate_reason reason,
1149                                    struct list_head *ret)
1150 {
1151         int rc = MIGRATEPAGE_SUCCESS;
1152         struct page *newpage = NULL;
1153
1154         if (!thp_migration_supported() && PageTransHuge(page))
1155                 return -ENOSYS;
1156
1157         if (page_count(page) == 1) {
1158                 /* page was freed from under us. So we are done. */
1159                 ClearPageActive(page);
1160                 ClearPageUnevictable(page);
1161                 if (unlikely(__PageMovable(page))) {
1162                         lock_page(page);
1163                         if (!PageMovable(page))
1164                                 __ClearPageIsolated(page);
1165                         unlock_page(page);
1166                 }
1167                 goto out;
1168         }
1169
1170         newpage = get_new_page(page, private);
1171         if (!newpage)
1172                 return -ENOMEM;
1173
1174         rc = __unmap_and_move(page, newpage, force, mode);
1175         if (rc == MIGRATEPAGE_SUCCESS)
1176                 set_page_owner_migrate_reason(newpage, reason);
1177
1178 out:
1179         if (rc != -EAGAIN) {
1180                 /*
1181                  * A page that has been migrated has all references
1182                  * removed and will be freed. A page that has not been
1183                  * migrated will have kept its references and be restored.
1184                  */
1185                 list_del(&page->lru);
1186         }
1187
1188         /*
1189          * If migration is successful, releases reference grabbed during
1190          * isolation. Otherwise, restore the page to right list unless
1191          * we want to retry.
1192          */
1193         if (rc == MIGRATEPAGE_SUCCESS) {
1194                 /*
1195                  * Compaction can migrate also non-LRU pages which are
1196                  * not accounted to NR_ISOLATED_*. They can be recognized
1197                  * as __PageMovable
1198                  */
1199                 if (likely(!__PageMovable(page)))
1200                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1201                                         page_is_file_lru(page), -thp_nr_pages(page));
1202
1203                 if (reason != MR_MEMORY_FAILURE)
1204                         /*
1205                          * We release the page in page_handle_poison.
1206                          */
1207                         put_page(page);
1208         } else {
1209                 if (rc != -EAGAIN)
1210                         list_add_tail(&page->lru, ret);
1211
1212                 if (put_new_page)
1213                         put_new_page(newpage, private);
1214                 else
1215                         put_page(newpage);
1216         }
1217
1218         return rc;
1219 }
1220
1221 /*
1222  * Counterpart of unmap_and_move_page() for hugepage migration.
1223  *
1224  * This function doesn't wait the completion of hugepage I/O
1225  * because there is no race between I/O and migration for hugepage.
1226  * Note that currently hugepage I/O occurs only in direct I/O
1227  * where no lock is held and PG_writeback is irrelevant,
1228  * and writeback status of all subpages are counted in the reference
1229  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1230  * under direct I/O, the reference of the head page is 512 and a bit more.)
1231  * This means that when we try to migrate hugepage whose subpages are
1232  * doing direct I/O, some references remain after try_to_unmap() and
1233  * hugepage migration fails without data corruption.
1234  *
1235  * There is also no race when direct I/O is issued on the page under migration,
1236  * because then pte is replaced with migration swap entry and direct I/O code
1237  * will wait in the page fault for migration to complete.
1238  */
1239 static int unmap_and_move_huge_page(new_page_t get_new_page,
1240                                 free_page_t put_new_page, unsigned long private,
1241                                 struct page *hpage, int force,
1242                                 enum migrate_mode mode, int reason,
1243                                 struct list_head *ret)
1244 {
1245         int rc = -EAGAIN;
1246         int page_was_mapped = 0;
1247         struct page *new_hpage;
1248         struct anon_vma *anon_vma = NULL;
1249         struct address_space *mapping = NULL;
1250
1251         /*
1252          * Migratability of hugepages depends on architectures and their size.
1253          * This check is necessary because some callers of hugepage migration
1254          * like soft offline and memory hotremove don't walk through page
1255          * tables or check whether the hugepage is pmd-based or not before
1256          * kicking migration.
1257          */
1258         if (!hugepage_migration_supported(page_hstate(hpage))) {
1259                 list_move_tail(&hpage->lru, ret);
1260                 return -ENOSYS;
1261         }
1262
1263         if (page_count(hpage) == 1) {
1264                 /* page was freed from under us. So we are done. */
1265                 putback_active_hugepage(hpage);
1266                 return MIGRATEPAGE_SUCCESS;
1267         }
1268
1269         new_hpage = get_new_page(hpage, private);
1270         if (!new_hpage)
1271                 return -ENOMEM;
1272
1273         if (!trylock_page(hpage)) {
1274                 if (!force)
1275                         goto out;
1276                 switch (mode) {
1277                 case MIGRATE_SYNC:
1278                 case MIGRATE_SYNC_NO_COPY:
1279                         break;
1280                 default:
1281                         goto out;
1282                 }
1283                 lock_page(hpage);
1284         }
1285
1286         /*
1287          * Check for pages which are in the process of being freed.  Without
1288          * page_mapping() set, hugetlbfs specific move page routine will not
1289          * be called and we could leak usage counts for subpools.
1290          */
1291         if (page_private(hpage) && !page_mapping(hpage)) {
1292                 rc = -EBUSY;
1293                 goto out_unlock;
1294         }
1295
1296         if (PageAnon(hpage))
1297                 anon_vma = page_get_anon_vma(hpage);
1298
1299         if (unlikely(!trylock_page(new_hpage)))
1300                 goto put_anon;
1301
1302         if (page_mapped(hpage)) {
1303                 bool mapping_locked = false;
1304                 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1305
1306                 if (!PageAnon(hpage)) {
1307                         /*
1308                          * In shared mappings, try_to_unmap could potentially
1309                          * call huge_pmd_unshare.  Because of this, take
1310                          * semaphore in write mode here and set TTU_RMAP_LOCKED
1311                          * to let lower levels know we have taken the lock.
1312                          */
1313                         mapping = hugetlb_page_mapping_lock_write(hpage);
1314                         if (unlikely(!mapping))
1315                                 goto unlock_put_anon;
1316
1317                         mapping_locked = true;
1318                         ttu |= TTU_RMAP_LOCKED;
1319                 }
1320
1321                 try_to_unmap(hpage, ttu);
1322                 page_was_mapped = 1;
1323
1324                 if (mapping_locked)
1325                         i_mmap_unlock_write(mapping);
1326         }
1327
1328         if (!page_mapped(hpage))
1329                 rc = move_to_new_page(new_hpage, hpage, mode);
1330
1331         if (page_was_mapped)
1332                 remove_migration_ptes(hpage,
1333                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1334
1335 unlock_put_anon:
1336         unlock_page(new_hpage);
1337
1338 put_anon:
1339         if (anon_vma)
1340                 put_anon_vma(anon_vma);
1341
1342         if (rc == MIGRATEPAGE_SUCCESS) {
1343                 move_hugetlb_state(hpage, new_hpage, reason);
1344                 put_new_page = NULL;
1345         }
1346
1347 out_unlock:
1348         unlock_page(hpage);
1349 out:
1350         if (rc == MIGRATEPAGE_SUCCESS)
1351                 putback_active_hugepage(hpage);
1352         else if (rc != -EAGAIN)
1353                 list_move_tail(&hpage->lru, ret);
1354
1355         /*
1356          * If migration was not successful and there's a freeing callback, use
1357          * it.  Otherwise, put_page() will drop the reference grabbed during
1358          * isolation.
1359          */
1360         if (put_new_page)
1361                 put_new_page(new_hpage, private);
1362         else
1363                 putback_active_hugepage(new_hpage);
1364
1365         return rc;
1366 }
1367
1368 static inline int try_split_thp(struct page *page, struct page **page2,
1369                                 struct list_head *from)
1370 {
1371         int rc = 0;
1372
1373         lock_page(page);
1374         rc = split_huge_page_to_list(page, from);
1375         unlock_page(page);
1376         if (!rc)
1377                 list_safe_reset_next(page, *page2, lru);
1378
1379         return rc;
1380 }
1381
1382 /*
1383  * migrate_pages - migrate the pages specified in a list, to the free pages
1384  *                 supplied as the target for the page migration
1385  *
1386  * @from:               The list of pages to be migrated.
1387  * @get_new_page:       The function used to allocate free pages to be used
1388  *                      as the target of the page migration.
1389  * @put_new_page:       The function used to free target pages if migration
1390  *                      fails, or NULL if no special handling is necessary.
1391  * @private:            Private data to be passed on to get_new_page()
1392  * @mode:               The migration mode that specifies the constraints for
1393  *                      page migration, if any.
1394  * @reason:             The reason for page migration.
1395  *
1396  * The function returns after 10 attempts or if no pages are movable any more
1397  * because the list has become empty or no retryable pages exist any more.
1398  * It is caller's responsibility to call putback_movable_pages() to return pages
1399  * to the LRU or free list only if ret != 0.
1400  *
1401  * Returns the number of pages that were not migrated, or an error code.
1402  */
1403 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1404                 free_page_t put_new_page, unsigned long private,
1405                 enum migrate_mode mode, int reason)
1406 {
1407         int retry = 1;
1408         int thp_retry = 1;
1409         int nr_failed = 0;
1410         int nr_succeeded = 0;
1411         int nr_thp_succeeded = 0;
1412         int nr_thp_failed = 0;
1413         int nr_thp_split = 0;
1414         int pass = 0;
1415         bool is_thp = false;
1416         struct page *page;
1417         struct page *page2;
1418         int swapwrite = current->flags & PF_SWAPWRITE;
1419         int rc, nr_subpages;
1420         LIST_HEAD(ret_pages);
1421
1422         trace_mm_migrate_pages_start(mode, reason);
1423
1424         if (!swapwrite)
1425                 current->flags |= PF_SWAPWRITE;
1426
1427         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1428                 retry = 0;
1429                 thp_retry = 0;
1430
1431                 list_for_each_entry_safe(page, page2, from, lru) {
1432 retry:
1433                         /*
1434                          * THP statistics is based on the source huge page.
1435                          * Capture required information that might get lost
1436                          * during migration.
1437                          */
1438                         is_thp = PageTransHuge(page) && !PageHuge(page);
1439                         nr_subpages = thp_nr_pages(page);
1440                         cond_resched();
1441
1442                         if (PageHuge(page))
1443                                 rc = unmap_and_move_huge_page(get_new_page,
1444                                                 put_new_page, private, page,
1445                                                 pass > 2, mode, reason,
1446                                                 &ret_pages);
1447                         else
1448                                 rc = unmap_and_move(get_new_page, put_new_page,
1449                                                 private, page, pass > 2, mode,
1450                                                 reason, &ret_pages);
1451                         /*
1452                          * The rules are:
1453                          *      Success: non hugetlb page will be freed, hugetlb
1454                          *               page will be put back
1455                          *      -EAGAIN: stay on the from list
1456                          *      -ENOMEM: stay on the from list
1457                          *      Other errno: put on ret_pages list then splice to
1458                          *                   from list
1459                          */
1460                         switch(rc) {
1461                         /*
1462                          * THP migration might be unsupported or the
1463                          * allocation could've failed so we should
1464                          * retry on the same page with the THP split
1465                          * to base pages.
1466                          *
1467                          * Head page is retried immediately and tail
1468                          * pages are added to the tail of the list so
1469                          * we encounter them after the rest of the list
1470                          * is processed.
1471                          */
1472                         case -ENOSYS:
1473                                 /* THP migration is unsupported */
1474                                 if (is_thp) {
1475                                         if (!try_split_thp(page, &page2, from)) {
1476                                                 nr_thp_split++;
1477                                                 goto retry;
1478                                         }
1479
1480                                         nr_thp_failed++;
1481                                         nr_failed += nr_subpages;
1482                                         break;
1483                                 }
1484
1485                                 /* Hugetlb migration is unsupported */
1486                                 nr_failed++;
1487                                 break;
1488                         case -ENOMEM:
1489                                 /*
1490                                  * When memory is low, don't bother to try to migrate
1491                                  * other pages, just exit.
1492                                  */
1493                                 if (is_thp) {
1494                                         if (!try_split_thp(page, &page2, from)) {
1495                                                 nr_thp_split++;
1496                                                 goto retry;
1497                                         }
1498
1499                                         nr_thp_failed++;
1500                                         nr_failed += nr_subpages;
1501                                         goto out;
1502                                 }
1503                                 nr_failed++;
1504                                 goto out;
1505                         case -EAGAIN:
1506                                 if (is_thp) {
1507                                         thp_retry++;
1508                                         break;
1509                                 }
1510                                 retry++;
1511                                 break;
1512                         case MIGRATEPAGE_SUCCESS:
1513                                 if (is_thp) {
1514                                         nr_thp_succeeded++;
1515                                         nr_succeeded += nr_subpages;
1516                                         break;
1517                                 }
1518                                 nr_succeeded++;
1519                                 break;
1520                         default:
1521                                 /*
1522                                  * Permanent failure (-EBUSY, etc.):
1523                                  * unlike -EAGAIN case, the failed page is
1524                                  * removed from migration page list and not
1525                                  * retried in the next outer loop.
1526                                  */
1527                                 if (is_thp) {
1528                                         nr_thp_failed++;
1529                                         nr_failed += nr_subpages;
1530                                         break;
1531                                 }
1532                                 nr_failed++;
1533                                 break;
1534                         }
1535                 }
1536         }
1537         nr_failed += retry + thp_retry;
1538         nr_thp_failed += thp_retry;
1539         rc = nr_failed;
1540 out:
1541         /*
1542          * Put the permanent failure page back to migration list, they
1543          * will be put back to the right list by the caller.
1544          */
1545         list_splice(&ret_pages, from);
1546
1547         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1548         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1549         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1550         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1551         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1552         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1553                                nr_thp_failed, nr_thp_split, mode, reason);
1554
1555         if (!swapwrite)
1556                 current->flags &= ~PF_SWAPWRITE;
1557
1558         return rc;
1559 }
1560
1561 struct page *alloc_migration_target(struct page *page, unsigned long private)
1562 {
1563         struct migration_target_control *mtc;
1564         gfp_t gfp_mask;
1565         unsigned int order = 0;
1566         struct page *new_page = NULL;
1567         int nid;
1568         int zidx;
1569
1570         mtc = (struct migration_target_control *)private;
1571         gfp_mask = mtc->gfp_mask;
1572         nid = mtc->nid;
1573         if (nid == NUMA_NO_NODE)
1574                 nid = page_to_nid(page);
1575
1576         if (PageHuge(page)) {
1577                 struct hstate *h = page_hstate(compound_head(page));
1578
1579                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1580                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1581         }
1582
1583         if (PageTransHuge(page)) {
1584                 /*
1585                  * clear __GFP_RECLAIM to make the migration callback
1586                  * consistent with regular THP allocations.
1587                  */
1588                 gfp_mask &= ~__GFP_RECLAIM;
1589                 gfp_mask |= GFP_TRANSHUGE;
1590                 order = HPAGE_PMD_ORDER;
1591         }
1592         zidx = zone_idx(page_zone(page));
1593         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1594                 gfp_mask |= __GFP_HIGHMEM;
1595
1596         new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1597
1598         if (new_page && PageTransHuge(new_page))
1599                 prep_transhuge_page(new_page);
1600
1601         return new_page;
1602 }
1603
1604 #ifdef CONFIG_NUMA
1605
1606 static int store_status(int __user *status, int start, int value, int nr)
1607 {
1608         while (nr-- > 0) {
1609                 if (put_user(value, status + start))
1610                         return -EFAULT;
1611                 start++;
1612         }
1613
1614         return 0;
1615 }
1616
1617 static int do_move_pages_to_node(struct mm_struct *mm,
1618                 struct list_head *pagelist, int node)
1619 {
1620         int err;
1621         struct migration_target_control mtc = {
1622                 .nid = node,
1623                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1624         };
1625
1626         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1627                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1628         if (err)
1629                 putback_movable_pages(pagelist);
1630         return err;
1631 }
1632
1633 /*
1634  * Resolves the given address to a struct page, isolates it from the LRU and
1635  * puts it to the given pagelist.
1636  * Returns:
1637  *     errno - if the page cannot be found/isolated
1638  *     0 - when it doesn't have to be migrated because it is already on the
1639  *         target node
1640  *     1 - when it has been queued
1641  */
1642 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1643                 int node, struct list_head *pagelist, bool migrate_all)
1644 {
1645         struct vm_area_struct *vma;
1646         struct page *page;
1647         unsigned int follflags;
1648         int err;
1649
1650         mmap_read_lock(mm);
1651         err = -EFAULT;
1652         vma = find_vma(mm, addr);
1653         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1654                 goto out;
1655
1656         /* FOLL_DUMP to ignore special (like zero) pages */
1657         follflags = FOLL_GET | FOLL_DUMP;
1658         page = follow_page(vma, addr, follflags);
1659
1660         err = PTR_ERR(page);
1661         if (IS_ERR(page))
1662                 goto out;
1663
1664         err = -ENOENT;
1665         if (!page)
1666                 goto out;
1667
1668         err = 0;
1669         if (page_to_nid(page) == node)
1670                 goto out_putpage;
1671
1672         err = -EACCES;
1673         if (page_mapcount(page) > 1 && !migrate_all)
1674                 goto out_putpage;
1675
1676         if (PageHuge(page)) {
1677                 if (PageHead(page)) {
1678                         isolate_huge_page(page, pagelist);
1679                         err = 1;
1680                 }
1681         } else {
1682                 struct page *head;
1683
1684                 head = compound_head(page);
1685                 err = isolate_lru_page(head);
1686                 if (err)
1687                         goto out_putpage;
1688
1689                 err = 1;
1690                 list_add_tail(&head->lru, pagelist);
1691                 mod_node_page_state(page_pgdat(head),
1692                         NR_ISOLATED_ANON + page_is_file_lru(head),
1693                         thp_nr_pages(head));
1694         }
1695 out_putpage:
1696         /*
1697          * Either remove the duplicate refcount from
1698          * isolate_lru_page() or drop the page ref if it was
1699          * not isolated.
1700          */
1701         put_page(page);
1702 out:
1703         mmap_read_unlock(mm);
1704         return err;
1705 }
1706
1707 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1708                 struct list_head *pagelist, int __user *status,
1709                 int start, int i, unsigned long nr_pages)
1710 {
1711         int err;
1712
1713         if (list_empty(pagelist))
1714                 return 0;
1715
1716         err = do_move_pages_to_node(mm, pagelist, node);
1717         if (err) {
1718                 /*
1719                  * Positive err means the number of failed
1720                  * pages to migrate.  Since we are going to
1721                  * abort and return the number of non-migrated
1722                  * pages, so need to include the rest of the
1723                  * nr_pages that have not been attempted as
1724                  * well.
1725                  */
1726                 if (err > 0)
1727                         err += nr_pages - i - 1;
1728                 return err;
1729         }
1730         return store_status(status, start, node, i - start);
1731 }
1732
1733 /*
1734  * Migrate an array of page address onto an array of nodes and fill
1735  * the corresponding array of status.
1736  */
1737 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1738                          unsigned long nr_pages,
1739                          const void __user * __user *pages,
1740                          const int __user *nodes,
1741                          int __user *status, int flags)
1742 {
1743         int current_node = NUMA_NO_NODE;
1744         LIST_HEAD(pagelist);
1745         int start, i;
1746         int err = 0, err1;
1747
1748         lru_cache_disable();
1749
1750         for (i = start = 0; i < nr_pages; i++) {
1751                 const void __user *p;
1752                 unsigned long addr;
1753                 int node;
1754
1755                 err = -EFAULT;
1756                 if (get_user(p, pages + i))
1757                         goto out_flush;
1758                 if (get_user(node, nodes + i))
1759                         goto out_flush;
1760                 addr = (unsigned long)untagged_addr(p);
1761
1762                 err = -ENODEV;
1763                 if (node < 0 || node >= MAX_NUMNODES)
1764                         goto out_flush;
1765                 if (!node_state(node, N_MEMORY))
1766                         goto out_flush;
1767
1768                 err = -EACCES;
1769                 if (!node_isset(node, task_nodes))
1770                         goto out_flush;
1771
1772                 if (current_node == NUMA_NO_NODE) {
1773                         current_node = node;
1774                         start = i;
1775                 } else if (node != current_node) {
1776                         err = move_pages_and_store_status(mm, current_node,
1777                                         &pagelist, status, start, i, nr_pages);
1778                         if (err)
1779                                 goto out;
1780                         start = i;
1781                         current_node = node;
1782                 }
1783
1784                 /*
1785                  * Errors in the page lookup or isolation are not fatal and we simply
1786                  * report them via status
1787                  */
1788                 err = add_page_for_migration(mm, addr, current_node,
1789                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1790
1791                 if (err > 0) {
1792                         /* The page is successfully queued for migration */
1793                         continue;
1794                 }
1795
1796                 /*
1797                  * If the page is already on the target node (!err), store the
1798                  * node, otherwise, store the err.
1799                  */
1800                 err = store_status(status, i, err ? : current_node, 1);
1801                 if (err)
1802                         goto out_flush;
1803
1804                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1805                                 status, start, i, nr_pages);
1806                 if (err)
1807                         goto out;
1808                 current_node = NUMA_NO_NODE;
1809         }
1810 out_flush:
1811         /* Make sure we do not overwrite the existing error */
1812         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1813                                 status, start, i, nr_pages);
1814         if (err >= 0)
1815                 err = err1;
1816 out:
1817         lru_cache_enable();
1818         return err;
1819 }
1820
1821 /*
1822  * Determine the nodes of an array of pages and store it in an array of status.
1823  */
1824 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1825                                 const void __user **pages, int *status)
1826 {
1827         unsigned long i;
1828
1829         mmap_read_lock(mm);
1830
1831         for (i = 0; i < nr_pages; i++) {
1832                 unsigned long addr = (unsigned long)(*pages);
1833                 struct vm_area_struct *vma;
1834                 struct page *page;
1835                 int err = -EFAULT;
1836
1837                 vma = find_vma(mm, addr);
1838                 if (!vma || addr < vma->vm_start)
1839                         goto set_status;
1840
1841                 /* FOLL_DUMP to ignore special (like zero) pages */
1842                 page = follow_page(vma, addr, FOLL_DUMP);
1843
1844                 err = PTR_ERR(page);
1845                 if (IS_ERR(page))
1846                         goto set_status;
1847
1848                 err = page ? page_to_nid(page) : -ENOENT;
1849 set_status:
1850                 *status = err;
1851
1852                 pages++;
1853                 status++;
1854         }
1855
1856         mmap_read_unlock(mm);
1857 }
1858
1859 /*
1860  * Determine the nodes of a user array of pages and store it in
1861  * a user array of status.
1862  */
1863 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1864                          const void __user * __user *pages,
1865                          int __user *status)
1866 {
1867 #define DO_PAGES_STAT_CHUNK_NR 16
1868         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1869         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1870
1871         while (nr_pages) {
1872                 unsigned long chunk_nr;
1873
1874                 chunk_nr = nr_pages;
1875                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1876                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1877
1878                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1879                         break;
1880
1881                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1882
1883                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1884                         break;
1885
1886                 pages += chunk_nr;
1887                 status += chunk_nr;
1888                 nr_pages -= chunk_nr;
1889         }
1890         return nr_pages ? -EFAULT : 0;
1891 }
1892
1893 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1894 {
1895         struct task_struct *task;
1896         struct mm_struct *mm;
1897
1898         /*
1899          * There is no need to check if current process has the right to modify
1900          * the specified process when they are same.
1901          */
1902         if (!pid) {
1903                 mmget(current->mm);
1904                 *mem_nodes = cpuset_mems_allowed(current);
1905                 return current->mm;
1906         }
1907
1908         /* Find the mm_struct */
1909         rcu_read_lock();
1910         task = find_task_by_vpid(pid);
1911         if (!task) {
1912                 rcu_read_unlock();
1913                 return ERR_PTR(-ESRCH);
1914         }
1915         get_task_struct(task);
1916
1917         /*
1918          * Check if this process has the right to modify the specified
1919          * process. Use the regular "ptrace_may_access()" checks.
1920          */
1921         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1922                 rcu_read_unlock();
1923                 mm = ERR_PTR(-EPERM);
1924                 goto out;
1925         }
1926         rcu_read_unlock();
1927
1928         mm = ERR_PTR(security_task_movememory(task));
1929         if (IS_ERR(mm))
1930                 goto out;
1931         *mem_nodes = cpuset_mems_allowed(task);
1932         mm = get_task_mm(task);
1933 out:
1934         put_task_struct(task);
1935         if (!mm)
1936                 mm = ERR_PTR(-EINVAL);
1937         return mm;
1938 }
1939
1940 /*
1941  * Move a list of pages in the address space of the currently executing
1942  * process.
1943  */
1944 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1945                              const void __user * __user *pages,
1946                              const int __user *nodes,
1947                              int __user *status, int flags)
1948 {
1949         struct mm_struct *mm;
1950         int err;
1951         nodemask_t task_nodes;
1952
1953         /* Check flags */
1954         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1955                 return -EINVAL;
1956
1957         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1958                 return -EPERM;
1959
1960         mm = find_mm_struct(pid, &task_nodes);
1961         if (IS_ERR(mm))
1962                 return PTR_ERR(mm);
1963
1964         if (nodes)
1965                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1966                                     nodes, status, flags);
1967         else
1968                 err = do_pages_stat(mm, nr_pages, pages, status);
1969
1970         mmput(mm);
1971         return err;
1972 }
1973
1974 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1975                 const void __user * __user *, pages,
1976                 const int __user *, nodes,
1977                 int __user *, status, int, flags)
1978 {
1979         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1980 }
1981
1982 #ifdef CONFIG_COMPAT
1983 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1984                        compat_uptr_t __user *, pages32,
1985                        const int __user *, nodes,
1986                        int __user *, status,
1987                        int, flags)
1988 {
1989         const void __user * __user *pages;
1990         int i;
1991
1992         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1993         for (i = 0; i < nr_pages; i++) {
1994                 compat_uptr_t p;
1995
1996                 if (get_user(p, pages32 + i) ||
1997                         put_user(compat_ptr(p), pages + i))
1998                         return -EFAULT;
1999         }
2000         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2001 }
2002 #endif /* CONFIG_COMPAT */
2003
2004 #ifdef CONFIG_NUMA_BALANCING
2005 /*
2006  * Returns true if this is a safe migration target node for misplaced NUMA
2007  * pages. Currently it only checks the watermarks which crude
2008  */
2009 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2010                                    unsigned long nr_migrate_pages)
2011 {
2012         int z;
2013
2014         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2015                 struct zone *zone = pgdat->node_zones + z;
2016
2017                 if (!populated_zone(zone))
2018                         continue;
2019
2020                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2021                 if (!zone_watermark_ok(zone, 0,
2022                                        high_wmark_pages(zone) +
2023                                        nr_migrate_pages,
2024                                        ZONE_MOVABLE, 0))
2025                         continue;
2026                 return true;
2027         }
2028         return false;
2029 }
2030
2031 static struct page *alloc_misplaced_dst_page(struct page *page,
2032                                            unsigned long data)
2033 {
2034         int nid = (int) data;
2035         struct page *newpage;
2036
2037         newpage = __alloc_pages_node(nid,
2038                                          (GFP_HIGHUSER_MOVABLE |
2039                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2040                                           __GFP_NORETRY | __GFP_NOWARN) &
2041                                          ~__GFP_RECLAIM, 0);
2042
2043         return newpage;
2044 }
2045
2046 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2047 {
2048         int page_lru;
2049
2050         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2051
2052         /* Avoid migrating to a node that is nearly full */
2053         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2054                 return 0;
2055
2056         if (isolate_lru_page(page))
2057                 return 0;
2058
2059         /*
2060          * migrate_misplaced_transhuge_page() skips page migration's usual
2061          * check on page_count(), so we must do it here, now that the page
2062          * has been isolated: a GUP pin, or any other pin, prevents migration.
2063          * The expected page count is 3: 1 for page's mapcount and 1 for the
2064          * caller's pin and 1 for the reference taken by isolate_lru_page().
2065          */
2066         if (PageTransHuge(page) && page_count(page) != 3) {
2067                 putback_lru_page(page);
2068                 return 0;
2069         }
2070
2071         page_lru = page_is_file_lru(page);
2072         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2073                                 thp_nr_pages(page));
2074
2075         /*
2076          * Isolating the page has taken another reference, so the
2077          * caller's reference can be safely dropped without the page
2078          * disappearing underneath us during migration.
2079          */
2080         put_page(page);
2081         return 1;
2082 }
2083
2084 bool pmd_trans_migrating(pmd_t pmd)
2085 {
2086         struct page *page = pmd_page(pmd);
2087         return PageLocked(page);
2088 }
2089
2090 /*
2091  * Attempt to migrate a misplaced page to the specified destination
2092  * node. Caller is expected to have an elevated reference count on
2093  * the page that will be dropped by this function before returning.
2094  */
2095 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2096                            int node)
2097 {
2098         pg_data_t *pgdat = NODE_DATA(node);
2099         int isolated;
2100         int nr_remaining;
2101         LIST_HEAD(migratepages);
2102
2103         /*
2104          * Don't migrate file pages that are mapped in multiple processes
2105          * with execute permissions as they are probably shared libraries.
2106          */
2107         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2108             (vma->vm_flags & VM_EXEC))
2109                 goto out;
2110
2111         /*
2112          * Also do not migrate dirty pages as not all filesystems can move
2113          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2114          */
2115         if (page_is_file_lru(page) && PageDirty(page))
2116                 goto out;
2117
2118         isolated = numamigrate_isolate_page(pgdat, page);
2119         if (!isolated)
2120                 goto out;
2121
2122         list_add(&page->lru, &migratepages);
2123         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2124                                      NULL, node, MIGRATE_ASYNC,
2125                                      MR_NUMA_MISPLACED);
2126         if (nr_remaining) {
2127                 if (!list_empty(&migratepages)) {
2128                         list_del(&page->lru);
2129                         dec_node_page_state(page, NR_ISOLATED_ANON +
2130                                         page_is_file_lru(page));
2131                         putback_lru_page(page);
2132                 }
2133                 isolated = 0;
2134         } else
2135                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2136         BUG_ON(!list_empty(&migratepages));
2137         return isolated;
2138
2139 out:
2140         put_page(page);
2141         return 0;
2142 }
2143 #endif /* CONFIG_NUMA_BALANCING */
2144
2145 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2146 /*
2147  * Migrates a THP to a given target node. page must be locked and is unlocked
2148  * before returning.
2149  */
2150 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2151                                 struct vm_area_struct *vma,
2152                                 pmd_t *pmd, pmd_t entry,
2153                                 unsigned long address,
2154                                 struct page *page, int node)
2155 {
2156         spinlock_t *ptl;
2157         pg_data_t *pgdat = NODE_DATA(node);
2158         int isolated = 0;
2159         struct page *new_page = NULL;
2160         int page_lru = page_is_file_lru(page);
2161         unsigned long start = address & HPAGE_PMD_MASK;
2162
2163         new_page = alloc_pages_node(node,
2164                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2165                 HPAGE_PMD_ORDER);
2166         if (!new_page)
2167                 goto out_fail;
2168         prep_transhuge_page(new_page);
2169
2170         isolated = numamigrate_isolate_page(pgdat, page);
2171         if (!isolated) {
2172                 put_page(new_page);
2173                 goto out_fail;
2174         }
2175
2176         /* Prepare a page as a migration target */
2177         __SetPageLocked(new_page);
2178         if (PageSwapBacked(page))
2179                 __SetPageSwapBacked(new_page);
2180
2181         /* anon mapping, we can simply copy page->mapping to the new page: */
2182         new_page->mapping = page->mapping;
2183         new_page->index = page->index;
2184         /* flush the cache before copying using the kernel virtual address */
2185         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2186         migrate_page_copy(new_page, page);
2187         WARN_ON(PageLRU(new_page));
2188
2189         /* Recheck the target PMD */
2190         ptl = pmd_lock(mm, pmd);
2191         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2192                 spin_unlock(ptl);
2193
2194                 /* Reverse changes made by migrate_page_copy() */
2195                 if (TestClearPageActive(new_page))
2196                         SetPageActive(page);
2197                 if (TestClearPageUnevictable(new_page))
2198                         SetPageUnevictable(page);
2199
2200                 unlock_page(new_page);
2201                 put_page(new_page);             /* Free it */
2202
2203                 /* Retake the callers reference and putback on LRU */
2204                 get_page(page);
2205                 putback_lru_page(page);
2206                 mod_node_page_state(page_pgdat(page),
2207                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2208
2209                 goto out_unlock;
2210         }
2211
2212         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2213         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2214
2215         /*
2216          * Overwrite the old entry under pagetable lock and establish
2217          * the new PTE. Any parallel GUP will either observe the old
2218          * page blocking on the page lock, block on the page table
2219          * lock or observe the new page. The SetPageUptodate on the
2220          * new page and page_add_new_anon_rmap guarantee the copy is
2221          * visible before the pagetable update.
2222          */
2223         page_add_anon_rmap(new_page, vma, start, true);
2224         /*
2225          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2226          * has already been flushed globally.  So no TLB can be currently
2227          * caching this non present pmd mapping.  There's no need to clear the
2228          * pmd before doing set_pmd_at(), nor to flush the TLB after
2229          * set_pmd_at().  Clearing the pmd here would introduce a race
2230          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2231          * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2232          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2233          * pmd.
2234          */
2235         set_pmd_at(mm, start, pmd, entry);
2236         update_mmu_cache_pmd(vma, address, &entry);
2237
2238         page_ref_unfreeze(page, 2);
2239         mlock_migrate_page(new_page, page);
2240         page_remove_rmap(page, true);
2241         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2242
2243         spin_unlock(ptl);
2244
2245         /* Take an "isolate" reference and put new page on the LRU. */
2246         get_page(new_page);
2247         putback_lru_page(new_page);
2248
2249         unlock_page(new_page);
2250         unlock_page(page);
2251         put_page(page);                 /* Drop the rmap reference */
2252         put_page(page);                 /* Drop the LRU isolation reference */
2253
2254         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2255         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2256
2257         mod_node_page_state(page_pgdat(page),
2258                         NR_ISOLATED_ANON + page_lru,
2259                         -HPAGE_PMD_NR);
2260         return isolated;
2261
2262 out_fail:
2263         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2264         ptl = pmd_lock(mm, pmd);
2265         if (pmd_same(*pmd, entry)) {
2266                 entry = pmd_modify(entry, vma->vm_page_prot);
2267                 set_pmd_at(mm, start, pmd, entry);
2268                 update_mmu_cache_pmd(vma, address, &entry);
2269         }
2270         spin_unlock(ptl);
2271
2272 out_unlock:
2273         unlock_page(page);
2274         put_page(page);
2275         return 0;
2276 }
2277 #endif /* CONFIG_NUMA_BALANCING */
2278
2279 #endif /* CONFIG_NUMA */
2280
2281 #ifdef CONFIG_DEVICE_PRIVATE
2282 static int migrate_vma_collect_skip(unsigned long start,
2283                                     unsigned long end,
2284                                     struct mm_walk *walk)
2285 {
2286         struct migrate_vma *migrate = walk->private;
2287         unsigned long addr;
2288
2289         for (addr = start; addr < end; addr += PAGE_SIZE) {
2290                 migrate->dst[migrate->npages] = 0;
2291                 migrate->src[migrate->npages++] = 0;
2292         }
2293
2294         return 0;
2295 }
2296
2297 static int migrate_vma_collect_hole(unsigned long start,
2298                                     unsigned long end,
2299                                     __always_unused int depth,
2300                                     struct mm_walk *walk)
2301 {
2302         struct migrate_vma *migrate = walk->private;
2303         unsigned long addr;
2304
2305         /* Only allow populating anonymous memory. */
2306         if (!vma_is_anonymous(walk->vma))
2307                 return migrate_vma_collect_skip(start, end, walk);
2308
2309         for (addr = start; addr < end; addr += PAGE_SIZE) {
2310                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2311                 migrate->dst[migrate->npages] = 0;
2312                 migrate->npages++;
2313                 migrate->cpages++;
2314         }
2315
2316         return 0;
2317 }
2318
2319 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2320                                    unsigned long start,
2321                                    unsigned long end,
2322                                    struct mm_walk *walk)
2323 {
2324         struct migrate_vma *migrate = walk->private;
2325         struct vm_area_struct *vma = walk->vma;
2326         struct mm_struct *mm = vma->vm_mm;
2327         unsigned long addr = start, unmapped = 0;
2328         spinlock_t *ptl;
2329         pte_t *ptep;
2330
2331 again:
2332         if (pmd_none(*pmdp))
2333                 return migrate_vma_collect_hole(start, end, -1, walk);
2334
2335         if (pmd_trans_huge(*pmdp)) {
2336                 struct page *page;
2337
2338                 ptl = pmd_lock(mm, pmdp);
2339                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2340                         spin_unlock(ptl);
2341                         goto again;
2342                 }
2343
2344                 page = pmd_page(*pmdp);
2345                 if (is_huge_zero_page(page)) {
2346                         spin_unlock(ptl);
2347                         split_huge_pmd(vma, pmdp, addr);
2348                         if (pmd_trans_unstable(pmdp))
2349                                 return migrate_vma_collect_skip(start, end,
2350                                                                 walk);
2351                 } else {
2352                         int ret;
2353
2354                         get_page(page);
2355                         spin_unlock(ptl);
2356                         if (unlikely(!trylock_page(page)))
2357                                 return migrate_vma_collect_skip(start, end,
2358                                                                 walk);
2359                         ret = split_huge_page(page);
2360                         unlock_page(page);
2361                         put_page(page);
2362                         if (ret)
2363                                 return migrate_vma_collect_skip(start, end,
2364                                                                 walk);
2365                         if (pmd_none(*pmdp))
2366                                 return migrate_vma_collect_hole(start, end, -1,
2367                                                                 walk);
2368                 }
2369         }
2370
2371         if (unlikely(pmd_bad(*pmdp)))
2372                 return migrate_vma_collect_skip(start, end, walk);
2373
2374         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2375         arch_enter_lazy_mmu_mode();
2376
2377         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2378                 unsigned long mpfn = 0, pfn;
2379                 struct page *page;
2380                 swp_entry_t entry;
2381                 pte_t pte;
2382
2383                 pte = *ptep;
2384
2385                 if (pte_none(pte)) {
2386                         if (vma_is_anonymous(vma)) {
2387                                 mpfn = MIGRATE_PFN_MIGRATE;
2388                                 migrate->cpages++;
2389                         }
2390                         goto next;
2391                 }
2392
2393                 if (!pte_present(pte)) {
2394                         /*
2395                          * Only care about unaddressable device page special
2396                          * page table entry. Other special swap entries are not
2397                          * migratable, and we ignore regular swapped page.
2398                          */
2399                         entry = pte_to_swp_entry(pte);
2400                         if (!is_device_private_entry(entry))
2401                                 goto next;
2402
2403                         page = device_private_entry_to_page(entry);
2404                         if (!(migrate->flags &
2405                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2406                             page->pgmap->owner != migrate->pgmap_owner)
2407                                 goto next;
2408
2409                         mpfn = migrate_pfn(page_to_pfn(page)) |
2410                                         MIGRATE_PFN_MIGRATE;
2411                         if (is_write_device_private_entry(entry))
2412                                 mpfn |= MIGRATE_PFN_WRITE;
2413                 } else {
2414                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2415                                 goto next;
2416                         pfn = pte_pfn(pte);
2417                         if (is_zero_pfn(pfn)) {
2418                                 mpfn = MIGRATE_PFN_MIGRATE;
2419                                 migrate->cpages++;
2420                                 goto next;
2421                         }
2422                         page = vm_normal_page(migrate->vma, addr, pte);
2423                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2424                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2425                 }
2426
2427                 /* FIXME support THP */
2428                 if (!page || !page->mapping || PageTransCompound(page)) {
2429                         mpfn = 0;
2430                         goto next;
2431                 }
2432
2433                 /*
2434                  * By getting a reference on the page we pin it and that blocks
2435                  * any kind of migration. Side effect is that it "freezes" the
2436                  * pte.
2437                  *
2438                  * We drop this reference after isolating the page from the lru
2439                  * for non device page (device page are not on the lru and thus
2440                  * can't be dropped from it).
2441                  */
2442                 get_page(page);
2443                 migrate->cpages++;
2444
2445                 /*
2446                  * Optimize for the common case where page is only mapped once
2447                  * in one process. If we can lock the page, then we can safely
2448                  * set up a special migration page table entry now.
2449                  */
2450                 if (trylock_page(page)) {
2451                         pte_t swp_pte;
2452
2453                         mpfn |= MIGRATE_PFN_LOCKED;
2454                         ptep_get_and_clear(mm, addr, ptep);
2455
2456                         /* Setup special migration page table entry */
2457                         entry = make_migration_entry(page, mpfn &
2458                                                      MIGRATE_PFN_WRITE);
2459                         swp_pte = swp_entry_to_pte(entry);
2460                         if (pte_present(pte)) {
2461                                 if (pte_soft_dirty(pte))
2462                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2463                                 if (pte_uffd_wp(pte))
2464                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2465                         } else {
2466                                 if (pte_swp_soft_dirty(pte))
2467                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2468                                 if (pte_swp_uffd_wp(pte))
2469                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2470                         }
2471                         set_pte_at(mm, addr, ptep, swp_pte);
2472
2473                         /*
2474                          * This is like regular unmap: we remove the rmap and
2475                          * drop page refcount. Page won't be freed, as we took
2476                          * a reference just above.
2477                          */
2478                         page_remove_rmap(page, false);
2479                         put_page(page);
2480
2481                         if (pte_present(pte))
2482                                 unmapped++;
2483                 }
2484
2485 next:
2486                 migrate->dst[migrate->npages] = 0;
2487                 migrate->src[migrate->npages++] = mpfn;
2488         }
2489         arch_leave_lazy_mmu_mode();
2490         pte_unmap_unlock(ptep - 1, ptl);
2491
2492         /* Only flush the TLB if we actually modified any entries */
2493         if (unmapped)
2494                 flush_tlb_range(walk->vma, start, end);
2495
2496         return 0;
2497 }
2498
2499 static const struct mm_walk_ops migrate_vma_walk_ops = {
2500         .pmd_entry              = migrate_vma_collect_pmd,
2501         .pte_hole               = migrate_vma_collect_hole,
2502 };
2503
2504 /*
2505  * migrate_vma_collect() - collect pages over a range of virtual addresses
2506  * @migrate: migrate struct containing all migration information
2507  *
2508  * This will walk the CPU page table. For each virtual address backed by a
2509  * valid page, it updates the src array and takes a reference on the page, in
2510  * order to pin the page until we lock it and unmap it.
2511  */
2512 static void migrate_vma_collect(struct migrate_vma *migrate)
2513 {
2514         struct mmu_notifier_range range;
2515
2516         /*
2517          * Note that the pgmap_owner is passed to the mmu notifier callback so
2518          * that the registered device driver can skip invalidating device
2519          * private page mappings that won't be migrated.
2520          */
2521         mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2522                 migrate->vma->vm_mm, migrate->start, migrate->end,
2523                 migrate->pgmap_owner);
2524         mmu_notifier_invalidate_range_start(&range);
2525
2526         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2527                         &migrate_vma_walk_ops, migrate);
2528
2529         mmu_notifier_invalidate_range_end(&range);
2530         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2531 }
2532
2533 /*
2534  * migrate_vma_check_page() - check if page is pinned or not
2535  * @page: struct page to check
2536  *
2537  * Pinned pages cannot be migrated. This is the same test as in
2538  * migrate_page_move_mapping(), except that here we allow migration of a
2539  * ZONE_DEVICE page.
2540  */
2541 static bool migrate_vma_check_page(struct page *page)
2542 {
2543         /*
2544          * One extra ref because caller holds an extra reference, either from
2545          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2546          * a device page.
2547          */
2548         int extra = 1;
2549
2550         /*
2551          * FIXME support THP (transparent huge page), it is bit more complex to
2552          * check them than regular pages, because they can be mapped with a pmd
2553          * or with a pte (split pte mapping).
2554          */
2555         if (PageCompound(page))
2556                 return false;
2557
2558         /* Page from ZONE_DEVICE have one extra reference */
2559         if (is_zone_device_page(page)) {
2560                 /*
2561                  * Private page can never be pin as they have no valid pte and
2562                  * GUP will fail for those. Yet if there is a pending migration
2563                  * a thread might try to wait on the pte migration entry and
2564                  * will bump the page reference count. Sadly there is no way to
2565                  * differentiate a regular pin from migration wait. Hence to
2566                  * avoid 2 racing thread trying to migrate back to CPU to enter
2567                  * infinite loop (one stopping migration because the other is
2568                  * waiting on pte migration entry). We always return true here.
2569                  *
2570                  * FIXME proper solution is to rework migration_entry_wait() so
2571                  * it does not need to take a reference on page.
2572                  */
2573                 return is_device_private_page(page);
2574         }
2575
2576         /* For file back page */
2577         if (page_mapping(page))
2578                 extra += 1 + page_has_private(page);
2579
2580         if ((page_count(page) - extra) > page_mapcount(page))
2581                 return false;
2582
2583         return true;
2584 }
2585
2586 /*
2587  * migrate_vma_prepare() - lock pages and isolate them from the lru
2588  * @migrate: migrate struct containing all migration information
2589  *
2590  * This locks pages that have been collected by migrate_vma_collect(). Once each
2591  * page is locked it is isolated from the lru (for non-device pages). Finally,
2592  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2593  * migrated by concurrent kernel threads.
2594  */
2595 static void migrate_vma_prepare(struct migrate_vma *migrate)
2596 {
2597         const unsigned long npages = migrate->npages;
2598         const unsigned long start = migrate->start;
2599         unsigned long addr, i, restore = 0;
2600         bool allow_drain = true;
2601
2602         lru_add_drain();
2603
2604         for (i = 0; (i < npages) && migrate->cpages; i++) {
2605                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2606                 bool remap = true;
2607
2608                 if (!page)
2609                         continue;
2610
2611                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2612                         /*
2613                          * Because we are migrating several pages there can be
2614                          * a deadlock between 2 concurrent migration where each
2615                          * are waiting on each other page lock.
2616                          *
2617                          * Make migrate_vma() a best effort thing and backoff
2618                          * for any page we can not lock right away.
2619                          */
2620                         if (!trylock_page(page)) {
2621                                 migrate->src[i] = 0;
2622                                 migrate->cpages--;
2623                                 put_page(page);
2624                                 continue;
2625                         }
2626                         remap = false;
2627                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2628                 }
2629
2630                 /* ZONE_DEVICE pages are not on LRU */
2631                 if (!is_zone_device_page(page)) {
2632                         if (!PageLRU(page) && allow_drain) {
2633                                 /* Drain CPU's pagevec */
2634                                 lru_add_drain_all();
2635                                 allow_drain = false;
2636                         }
2637
2638                         if (isolate_lru_page(page)) {
2639                                 if (remap) {
2640                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2641                                         migrate->cpages--;
2642                                         restore++;
2643                                 } else {
2644                                         migrate->src[i] = 0;
2645                                         unlock_page(page);
2646                                         migrate->cpages--;
2647                                         put_page(page);
2648                                 }
2649                                 continue;
2650                         }
2651
2652                         /* Drop the reference we took in collect */
2653                         put_page(page);
2654                 }
2655
2656                 if (!migrate_vma_check_page(page)) {
2657                         if (remap) {
2658                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2659                                 migrate->cpages--;
2660                                 restore++;
2661
2662                                 if (!is_zone_device_page(page)) {
2663                                         get_page(page);
2664                                         putback_lru_page(page);
2665                                 }
2666                         } else {
2667                                 migrate->src[i] = 0;
2668                                 unlock_page(page);
2669                                 migrate->cpages--;
2670
2671                                 if (!is_zone_device_page(page))
2672                                         putback_lru_page(page);
2673                                 else
2674                                         put_page(page);
2675                         }
2676                 }
2677         }
2678
2679         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2680                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2681
2682                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2683                         continue;
2684
2685                 remove_migration_pte(page, migrate->vma, addr, page);
2686
2687                 migrate->src[i] = 0;
2688                 unlock_page(page);
2689                 put_page(page);
2690                 restore--;
2691         }
2692 }
2693
2694 /*
2695  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2696  * @migrate: migrate struct containing all migration information
2697  *
2698  * Replace page mapping (CPU page table pte) with a special migration pte entry
2699  * and check again if it has been pinned. Pinned pages are restored because we
2700  * cannot migrate them.
2701  *
2702  * This is the last step before we call the device driver callback to allocate
2703  * destination memory and copy contents of original page over to new page.
2704  */
2705 static void migrate_vma_unmap(struct migrate_vma *migrate)
2706 {
2707         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2708         const unsigned long npages = migrate->npages;
2709         const unsigned long start = migrate->start;
2710         unsigned long addr, i, restore = 0;
2711
2712         for (i = 0; i < npages; i++) {
2713                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2714
2715                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2716                         continue;
2717
2718                 if (page_mapped(page)) {
2719                         try_to_unmap(page, flags);
2720                         if (page_mapped(page))
2721                                 goto restore;
2722                 }
2723
2724                 if (migrate_vma_check_page(page))
2725                         continue;
2726
2727 restore:
2728                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2729                 migrate->cpages--;
2730                 restore++;
2731         }
2732
2733         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2734                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2735
2736                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2737                         continue;
2738
2739                 remove_migration_ptes(page, page, false);
2740
2741                 migrate->src[i] = 0;
2742                 unlock_page(page);
2743                 restore--;
2744
2745                 if (is_zone_device_page(page))
2746                         put_page(page);
2747                 else
2748                         putback_lru_page(page);
2749         }
2750 }
2751
2752 /**
2753  * migrate_vma_setup() - prepare to migrate a range of memory
2754  * @args: contains the vma, start, and pfns arrays for the migration
2755  *
2756  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2757  * without an error.
2758  *
2759  * Prepare to migrate a range of memory virtual address range by collecting all
2760  * the pages backing each virtual address in the range, saving them inside the
2761  * src array.  Then lock those pages and unmap them. Once the pages are locked
2762  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2763  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2764  * corresponding src array entry.  Then restores any pages that are pinned, by
2765  * remapping and unlocking those pages.
2766  *
2767  * The caller should then allocate destination memory and copy source memory to
2768  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2769  * flag set).  Once these are allocated and copied, the caller must update each
2770  * corresponding entry in the dst array with the pfn value of the destination
2771  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2772  * (destination pages must have their struct pages locked, via lock_page()).
2773  *
2774  * Note that the caller does not have to migrate all the pages that are marked
2775  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2776  * device memory to system memory.  If the caller cannot migrate a device page
2777  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2778  * consequences for the userspace process, so it must be avoided if at all
2779  * possible.
2780  *
2781  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2782  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2783  * allowing the caller to allocate device memory for those unbacked virtual
2784  * addresses.  For this the caller simply has to allocate device memory and
2785  * properly set the destination entry like for regular migration.  Note that
2786  * this can still fail, and thus inside the device driver you must check if the
2787  * migration was successful for those entries after calling migrate_vma_pages(),
2788  * just like for regular migration.
2789  *
2790  * After that, the callers must call migrate_vma_pages() to go over each entry
2791  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2792  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2793  * then migrate_vma_pages() to migrate struct page information from the source
2794  * struct page to the destination struct page.  If it fails to migrate the
2795  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2796  * src array.
2797  *
2798  * At this point all successfully migrated pages have an entry in the src
2799  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2800  * array entry with MIGRATE_PFN_VALID flag set.
2801  *
2802  * Once migrate_vma_pages() returns the caller may inspect which pages were
2803  * successfully migrated, and which were not.  Successfully migrated pages will
2804  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2805  *
2806  * It is safe to update device page table after migrate_vma_pages() because
2807  * both destination and source page are still locked, and the mmap_lock is held
2808  * in read mode (hence no one can unmap the range being migrated).
2809  *
2810  * Once the caller is done cleaning up things and updating its page table (if it
2811  * chose to do so, this is not an obligation) it finally calls
2812  * migrate_vma_finalize() to update the CPU page table to point to new pages
2813  * for successfully migrated pages or otherwise restore the CPU page table to
2814  * point to the original source pages.
2815  */
2816 int migrate_vma_setup(struct migrate_vma *args)
2817 {
2818         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2819
2820         args->start &= PAGE_MASK;
2821         args->end &= PAGE_MASK;
2822         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2823             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2824                 return -EINVAL;
2825         if (nr_pages <= 0)
2826                 return -EINVAL;
2827         if (args->start < args->vma->vm_start ||
2828             args->start >= args->vma->vm_end)
2829                 return -EINVAL;
2830         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2831                 return -EINVAL;
2832         if (!args->src || !args->dst)
2833                 return -EINVAL;
2834
2835         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2836         args->cpages = 0;
2837         args->npages = 0;
2838
2839         migrate_vma_collect(args);
2840
2841         if (args->cpages)
2842                 migrate_vma_prepare(args);
2843         if (args->cpages)
2844                 migrate_vma_unmap(args);
2845
2846         /*
2847          * At this point pages are locked and unmapped, and thus they have
2848          * stable content and can safely be copied to destination memory that
2849          * is allocated by the drivers.
2850          */
2851         return 0;
2852
2853 }
2854 EXPORT_SYMBOL(migrate_vma_setup);
2855
2856 /*
2857  * This code closely matches the code in:
2858  *   __handle_mm_fault()
2859  *     handle_pte_fault()
2860  *       do_anonymous_page()
2861  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2862  * private page.
2863  */
2864 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2865                                     unsigned long addr,
2866                                     struct page *page,
2867                                     unsigned long *src)
2868 {
2869         struct vm_area_struct *vma = migrate->vma;
2870         struct mm_struct *mm = vma->vm_mm;
2871         bool flush = false;
2872         spinlock_t *ptl;
2873         pte_t entry;
2874         pgd_t *pgdp;
2875         p4d_t *p4dp;
2876         pud_t *pudp;
2877         pmd_t *pmdp;
2878         pte_t *ptep;
2879
2880         /* Only allow populating anonymous memory */
2881         if (!vma_is_anonymous(vma))
2882                 goto abort;
2883
2884         pgdp = pgd_offset(mm, addr);
2885         p4dp = p4d_alloc(mm, pgdp, addr);
2886         if (!p4dp)
2887                 goto abort;
2888         pudp = pud_alloc(mm, p4dp, addr);
2889         if (!pudp)
2890                 goto abort;
2891         pmdp = pmd_alloc(mm, pudp, addr);
2892         if (!pmdp)
2893                 goto abort;
2894
2895         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2896                 goto abort;
2897
2898         /*
2899          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2900          * pte_offset_map() on pmds where a huge pmd might be created
2901          * from a different thread.
2902          *
2903          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2904          * parallel threads are excluded by other means.
2905          *
2906          * Here we only have mmap_read_lock(mm).
2907          */
2908         if (pte_alloc(mm, pmdp))
2909                 goto abort;
2910
2911         /* See the comment in pte_alloc_one_map() */
2912         if (unlikely(pmd_trans_unstable(pmdp)))
2913                 goto abort;
2914
2915         if (unlikely(anon_vma_prepare(vma)))
2916                 goto abort;
2917         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2918                 goto abort;
2919
2920         /*
2921          * The memory barrier inside __SetPageUptodate makes sure that
2922          * preceding stores to the page contents become visible before
2923          * the set_pte_at() write.
2924          */
2925         __SetPageUptodate(page);
2926
2927         if (is_zone_device_page(page)) {
2928                 if (is_device_private_page(page)) {
2929                         swp_entry_t swp_entry;
2930
2931                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2932                         entry = swp_entry_to_pte(swp_entry);
2933                 } else {
2934                         /*
2935                          * For now we only support migrating to un-addressable
2936                          * device memory.
2937                          */
2938                         pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2939                         goto abort;
2940                 }
2941         } else {
2942                 entry = mk_pte(page, vma->vm_page_prot);
2943                 if (vma->vm_flags & VM_WRITE)
2944                         entry = pte_mkwrite(pte_mkdirty(entry));
2945         }
2946
2947         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2948
2949         if (check_stable_address_space(mm))
2950                 goto unlock_abort;
2951
2952         if (pte_present(*ptep)) {
2953                 unsigned long pfn = pte_pfn(*ptep);
2954
2955                 if (!is_zero_pfn(pfn))
2956                         goto unlock_abort;
2957                 flush = true;
2958         } else if (!pte_none(*ptep))
2959                 goto unlock_abort;
2960
2961         /*
2962          * Check for userfaultfd but do not deliver the fault. Instead,
2963          * just back off.
2964          */
2965         if (userfaultfd_missing(vma))
2966                 goto unlock_abort;
2967
2968         inc_mm_counter(mm, MM_ANONPAGES);
2969         page_add_new_anon_rmap(page, vma, addr, false);
2970         if (!is_zone_device_page(page))
2971                 lru_cache_add_inactive_or_unevictable(page, vma);
2972         get_page(page);
2973
2974         if (flush) {
2975                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2976                 ptep_clear_flush_notify(vma, addr, ptep);
2977                 set_pte_at_notify(mm, addr, ptep, entry);
2978                 update_mmu_cache(vma, addr, ptep);
2979         } else {
2980                 /* No need to invalidate - it was non-present before */
2981                 set_pte_at(mm, addr, ptep, entry);
2982                 update_mmu_cache(vma, addr, ptep);
2983         }
2984
2985         pte_unmap_unlock(ptep, ptl);
2986         *src = MIGRATE_PFN_MIGRATE;
2987         return;
2988
2989 unlock_abort:
2990         pte_unmap_unlock(ptep, ptl);
2991 abort:
2992         *src &= ~MIGRATE_PFN_MIGRATE;
2993 }
2994
2995 /**
2996  * migrate_vma_pages() - migrate meta-data from src page to dst page
2997  * @migrate: migrate struct containing all migration information
2998  *
2999  * This migrates struct page meta-data from source struct page to destination
3000  * struct page. This effectively finishes the migration from source page to the
3001  * destination page.
3002  */
3003 void migrate_vma_pages(struct migrate_vma *migrate)
3004 {
3005         const unsigned long npages = migrate->npages;
3006         const unsigned long start = migrate->start;
3007         struct mmu_notifier_range range;
3008         unsigned long addr, i;
3009         bool notified = false;
3010
3011         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3012                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3013                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3014                 struct address_space *mapping;
3015                 int r;
3016
3017                 if (!newpage) {
3018                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3019                         continue;
3020                 }
3021
3022                 if (!page) {
3023                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3024                                 continue;
3025                         if (!notified) {
3026                                 notified = true;
3027
3028                                 mmu_notifier_range_init_migrate(&range, 0,
3029                                         migrate->vma, migrate->vma->vm_mm,
3030                                         addr, migrate->end,
3031                                         migrate->pgmap_owner);
3032                                 mmu_notifier_invalidate_range_start(&range);
3033                         }
3034                         migrate_vma_insert_page(migrate, addr, newpage,
3035                                                 &migrate->src[i]);
3036                         continue;
3037                 }
3038
3039                 mapping = page_mapping(page);
3040
3041                 if (is_zone_device_page(newpage)) {
3042                         if (is_device_private_page(newpage)) {
3043                                 /*
3044                                  * For now only support private anonymous when
3045                                  * migrating to un-addressable device memory.
3046                                  */
3047                                 if (mapping) {
3048                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3049                                         continue;
3050                                 }
3051                         } else {
3052                                 /*
3053                                  * Other types of ZONE_DEVICE page are not
3054                                  * supported.
3055                                  */
3056                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3057                                 continue;
3058                         }
3059                 }
3060
3061                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3062                 if (r != MIGRATEPAGE_SUCCESS)
3063                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3064         }
3065
3066         /*
3067          * No need to double call mmu_notifier->invalidate_range() callback as
3068          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3069          * did already call it.
3070          */
3071         if (notified)
3072                 mmu_notifier_invalidate_range_only_end(&range);
3073 }
3074 EXPORT_SYMBOL(migrate_vma_pages);
3075
3076 /**
3077  * migrate_vma_finalize() - restore CPU page table entry
3078  * @migrate: migrate struct containing all migration information
3079  *
3080  * This replaces the special migration pte entry with either a mapping to the
3081  * new page if migration was successful for that page, or to the original page
3082  * otherwise.
3083  *
3084  * This also unlocks the pages and puts them back on the lru, or drops the extra
3085  * refcount, for device pages.
3086  */
3087 void migrate_vma_finalize(struct migrate_vma *migrate)
3088 {
3089         const unsigned long npages = migrate->npages;
3090         unsigned long i;
3091
3092         for (i = 0; i < npages; i++) {
3093                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3094                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3095
3096                 if (!page) {
3097                         if (newpage) {
3098                                 unlock_page(newpage);
3099                                 put_page(newpage);
3100                         }
3101                         continue;
3102                 }
3103
3104                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3105                         if (newpage) {
3106                                 unlock_page(newpage);
3107                                 put_page(newpage);
3108                         }
3109                         newpage = page;
3110                 }
3111
3112                 remove_migration_ptes(page, newpage, false);
3113                 unlock_page(page);
3114
3115                 if (is_zone_device_page(page))
3116                         put_page(page);
3117                 else
3118                         putback_lru_page(page);
3119
3120                 if (newpage != page) {
3121                         unlock_page(newpage);
3122                         if (is_zone_device_page(newpage))
3123                                 put_page(newpage);
3124                         else
3125                                 putback_lru_page(newpage);
3126                 }
3127         }
3128 }
3129 EXPORT_SYMBOL(migrate_vma_finalize);
3130 #endif /* CONFIG_DEVICE_PRIVATE */