Linux 6.9-rc1
[linux-2.6-microblaze.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69
70 #include <linux/uaccess.h>
71
72 #include <trace/events/vmscan.h>
73
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket __ro_after_init;
85
86 /* Kernel memory accounting disabled? */
87 bool cgroup_memory_nokmem __ro_after_init;
88
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 bool cgroup_memory_noswap __ro_after_init;
92 #else
93 #define cgroup_memory_noswap            1
94 #endif
95
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99
100 /* Whether legacy memory+swap accounting is active */
101 static bool do_memsw_account(void)
102 {
103         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 }
105
106 /* memcg and lruvec stats flushing */
107 static void flush_memcg_stats_dwork(struct work_struct *w);
108 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
109 static void flush_memcg_stats_work(struct work_struct *w);
110 static DECLARE_WORK(stats_flush_work, flush_memcg_stats_work);
111 static DEFINE_PER_CPU(unsigned int, stats_flush_threshold);
112 static DEFINE_SPINLOCK(stats_flush_lock);
113
114 #define THRESHOLDS_EVENTS_TARGET 128
115 #define SOFTLIMIT_EVENTS_TARGET 1024
116
117 /*
118  * Cgroups above their limits are maintained in a RB-Tree, independent of
119  * their hierarchy representation
120  */
121
122 struct mem_cgroup_tree_per_node {
123         struct rb_root rb_root;
124         struct rb_node *rb_rightmost;
125         spinlock_t lock;
126 };
127
128 struct mem_cgroup_tree {
129         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
130 };
131
132 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
133
134 /* for OOM */
135 struct mem_cgroup_eventfd_list {
136         struct list_head list;
137         struct eventfd_ctx *eventfd;
138 };
139
140 /*
141  * cgroup_event represents events which userspace want to receive.
142  */
143 struct mem_cgroup_event {
144         /*
145          * memcg which the event belongs to.
146          */
147         struct mem_cgroup *memcg;
148         /*
149          * eventfd to signal userspace about the event.
150          */
151         struct eventfd_ctx *eventfd;
152         /*
153          * Each of these stored in a list by the cgroup.
154          */
155         struct list_head list;
156         /*
157          * register_event() callback will be used to add new userspace
158          * waiter for changes related to this event.  Use eventfd_signal()
159          * on eventfd to send notification to userspace.
160          */
161         int (*register_event)(struct mem_cgroup *memcg,
162                               struct eventfd_ctx *eventfd, const char *args);
163         /*
164          * unregister_event() callback will be called when userspace closes
165          * the eventfd or on cgroup removing.  This callback must be set,
166          * if you want provide notification functionality.
167          */
168         void (*unregister_event)(struct mem_cgroup *memcg,
169                                  struct eventfd_ctx *eventfd);
170         /*
171          * All fields below needed to unregister event when
172          * userspace closes eventfd.
173          */
174         poll_table pt;
175         wait_queue_head_t *wqh;
176         wait_queue_entry_t wait;
177         struct work_struct remove;
178 };
179
180 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
181 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
182
183 /* Stuffs for move charges at task migration. */
184 /*
185  * Types of charges to be moved.
186  */
187 #define MOVE_ANON       0x1U
188 #define MOVE_FILE       0x2U
189 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
190
191 /* "mc" and its members are protected by cgroup_mutex */
192 static struct move_charge_struct {
193         spinlock_t        lock; /* for from, to */
194         struct mm_struct  *mm;
195         struct mem_cgroup *from;
196         struct mem_cgroup *to;
197         unsigned long flags;
198         unsigned long precharge;
199         unsigned long moved_charge;
200         unsigned long moved_swap;
201         struct task_struct *moving_task;        /* a task moving charges */
202         wait_queue_head_t waitq;                /* a waitq for other context */
203 } mc = {
204         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
205         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
206 };
207
208 /*
209  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
210  * limit reclaim to prevent infinite loops, if they ever occur.
211  */
212 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
213 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
214
215 /* for encoding cft->private value on file */
216 enum res_type {
217         _MEM,
218         _MEMSWAP,
219         _OOM_TYPE,
220         _KMEM,
221         _TCP,
222 };
223
224 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
225 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
226 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
227 /* Used for OOM notifier */
228 #define OOM_CONTROL             (0)
229
230 /*
231  * Iteration constructs for visiting all cgroups (under a tree).  If
232  * loops are exited prematurely (break), mem_cgroup_iter_break() must
233  * be used for reference counting.
234  */
235 #define for_each_mem_cgroup_tree(iter, root)            \
236         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
237              iter != NULL;                              \
238              iter = mem_cgroup_iter(root, iter, NULL))
239
240 #define for_each_mem_cgroup(iter)                       \
241         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
242              iter != NULL;                              \
243              iter = mem_cgroup_iter(NULL, iter, NULL))
244
245 static inline bool should_force_charge(void)
246 {
247         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
248                 (current->flags & PF_EXITING);
249 }
250
251 /* Some nice accessors for the vmpressure. */
252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253 {
254         if (!memcg)
255                 memcg = root_mem_cgroup;
256         return &memcg->vmpressure;
257 }
258
259 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
260 {
261         return container_of(vmpr, struct mem_cgroup, vmpressure);
262 }
263
264 #ifdef CONFIG_MEMCG_KMEM
265 extern spinlock_t css_set_lock;
266
267 bool mem_cgroup_kmem_disabled(void)
268 {
269         return cgroup_memory_nokmem;
270 }
271
272 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
273                                       unsigned int nr_pages);
274
275 static void obj_cgroup_release(struct percpu_ref *ref)
276 {
277         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
278         unsigned int nr_bytes;
279         unsigned int nr_pages;
280         unsigned long flags;
281
282         /*
283          * At this point all allocated objects are freed, and
284          * objcg->nr_charged_bytes can't have an arbitrary byte value.
285          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
286          *
287          * The following sequence can lead to it:
288          * 1) CPU0: objcg == stock->cached_objcg
289          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
290          *          PAGE_SIZE bytes are charged
291          * 3) CPU1: a process from another memcg is allocating something,
292          *          the stock if flushed,
293          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
294          * 5) CPU0: we do release this object,
295          *          92 bytes are added to stock->nr_bytes
296          * 6) CPU0: stock is flushed,
297          *          92 bytes are added to objcg->nr_charged_bytes
298          *
299          * In the result, nr_charged_bytes == PAGE_SIZE.
300          * This page will be uncharged in obj_cgroup_release().
301          */
302         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
303         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
304         nr_pages = nr_bytes >> PAGE_SHIFT;
305
306         if (nr_pages)
307                 obj_cgroup_uncharge_pages(objcg, nr_pages);
308
309         spin_lock_irqsave(&css_set_lock, flags);
310         list_del(&objcg->list);
311         spin_unlock_irqrestore(&css_set_lock, flags);
312
313         percpu_ref_exit(ref);
314         kfree_rcu(objcg, rcu);
315 }
316
317 static struct obj_cgroup *obj_cgroup_alloc(void)
318 {
319         struct obj_cgroup *objcg;
320         int ret;
321
322         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
323         if (!objcg)
324                 return NULL;
325
326         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
327                               GFP_KERNEL);
328         if (ret) {
329                 kfree(objcg);
330                 return NULL;
331         }
332         INIT_LIST_HEAD(&objcg->list);
333         return objcg;
334 }
335
336 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
337                                   struct mem_cgroup *parent)
338 {
339         struct obj_cgroup *objcg, *iter;
340
341         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
342
343         spin_lock_irq(&css_set_lock);
344
345         /* 1) Ready to reparent active objcg. */
346         list_add(&objcg->list, &memcg->objcg_list);
347         /* 2) Reparent active objcg and already reparented objcgs to parent. */
348         list_for_each_entry(iter, &memcg->objcg_list, list)
349                 WRITE_ONCE(iter->memcg, parent);
350         /* 3) Move already reparented objcgs to the parent's list */
351         list_splice(&memcg->objcg_list, &parent->objcg_list);
352
353         spin_unlock_irq(&css_set_lock);
354
355         percpu_ref_kill(&objcg->refcnt);
356 }
357
358 /*
359  * This will be used as a shrinker list's index.
360  * The main reason for not using cgroup id for this:
361  *  this works better in sparse environments, where we have a lot of memcgs,
362  *  but only a few kmem-limited. Or also, if we have, for instance, 200
363  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
364  *  200 entry array for that.
365  *
366  * The current size of the caches array is stored in memcg_nr_cache_ids. It
367  * will double each time we have to increase it.
368  */
369 static DEFINE_IDA(memcg_cache_ida);
370 int memcg_nr_cache_ids;
371
372 /* Protects memcg_nr_cache_ids */
373 static DECLARE_RWSEM(memcg_cache_ids_sem);
374
375 void memcg_get_cache_ids(void)
376 {
377         down_read(&memcg_cache_ids_sem);
378 }
379
380 void memcg_put_cache_ids(void)
381 {
382         up_read(&memcg_cache_ids_sem);
383 }
384
385 /*
386  * MIN_SIZE is different than 1, because we would like to avoid going through
387  * the alloc/free process all the time. In a small machine, 4 kmem-limited
388  * cgroups is a reasonable guess. In the future, it could be a parameter or
389  * tunable, but that is strictly not necessary.
390  *
391  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
392  * this constant directly from cgroup, but it is understandable that this is
393  * better kept as an internal representation in cgroup.c. In any case, the
394  * cgrp_id space is not getting any smaller, and we don't have to necessarily
395  * increase ours as well if it increases.
396  */
397 #define MEMCG_CACHES_MIN_SIZE 4
398 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
399
400 /*
401  * A lot of the calls to the cache allocation functions are expected to be
402  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
403  * conditional to this static branch, we'll have to allow modules that does
404  * kmem_cache_alloc and the such to see this symbol as well
405  */
406 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
407 EXPORT_SYMBOL(memcg_kmem_enabled_key);
408 #endif
409
410 /**
411  * mem_cgroup_css_from_page - css of the memcg associated with a page
412  * @page: page of interest
413  *
414  * If memcg is bound to the default hierarchy, css of the memcg associated
415  * with @page is returned.  The returned css remains associated with @page
416  * until it is released.
417  *
418  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
419  * is returned.
420  */
421 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
422 {
423         struct mem_cgroup *memcg;
424
425         memcg = page_memcg(page);
426
427         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
428                 memcg = root_mem_cgroup;
429
430         return &memcg->css;
431 }
432
433 /**
434  * page_cgroup_ino - return inode number of the memcg a page is charged to
435  * @page: the page
436  *
437  * Look up the closest online ancestor of the memory cgroup @page is charged to
438  * and return its inode number or 0 if @page is not charged to any cgroup. It
439  * is safe to call this function without holding a reference to @page.
440  *
441  * Note, this function is inherently racy, because there is nothing to prevent
442  * the cgroup inode from getting torn down and potentially reallocated a moment
443  * after page_cgroup_ino() returns, so it only should be used by callers that
444  * do not care (such as procfs interfaces).
445  */
446 ino_t page_cgroup_ino(struct page *page)
447 {
448         struct mem_cgroup *memcg;
449         unsigned long ino = 0;
450
451         rcu_read_lock();
452         memcg = page_memcg_check(page);
453
454         while (memcg && !(memcg->css.flags & CSS_ONLINE))
455                 memcg = parent_mem_cgroup(memcg);
456         if (memcg)
457                 ino = cgroup_ino(memcg->css.cgroup);
458         rcu_read_unlock();
459         return ino;
460 }
461
462 static struct mem_cgroup_per_node *
463 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
464 {
465         int nid = page_to_nid(page);
466
467         return memcg->nodeinfo[nid];
468 }
469
470 static struct mem_cgroup_tree_per_node *
471 soft_limit_tree_node(int nid)
472 {
473         return soft_limit_tree.rb_tree_per_node[nid];
474 }
475
476 static struct mem_cgroup_tree_per_node *
477 soft_limit_tree_from_page(struct page *page)
478 {
479         int nid = page_to_nid(page);
480
481         return soft_limit_tree.rb_tree_per_node[nid];
482 }
483
484 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
485                                          struct mem_cgroup_tree_per_node *mctz,
486                                          unsigned long new_usage_in_excess)
487 {
488         struct rb_node **p = &mctz->rb_root.rb_node;
489         struct rb_node *parent = NULL;
490         struct mem_cgroup_per_node *mz_node;
491         bool rightmost = true;
492
493         if (mz->on_tree)
494                 return;
495
496         mz->usage_in_excess = new_usage_in_excess;
497         if (!mz->usage_in_excess)
498                 return;
499         while (*p) {
500                 parent = *p;
501                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
502                                         tree_node);
503                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
504                         p = &(*p)->rb_left;
505                         rightmost = false;
506                 } else {
507                         p = &(*p)->rb_right;
508                 }
509         }
510
511         if (rightmost)
512                 mctz->rb_rightmost = &mz->tree_node;
513
514         rb_link_node(&mz->tree_node, parent, p);
515         rb_insert_color(&mz->tree_node, &mctz->rb_root);
516         mz->on_tree = true;
517 }
518
519 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
520                                          struct mem_cgroup_tree_per_node *mctz)
521 {
522         if (!mz->on_tree)
523                 return;
524
525         if (&mz->tree_node == mctz->rb_rightmost)
526                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
527
528         rb_erase(&mz->tree_node, &mctz->rb_root);
529         mz->on_tree = false;
530 }
531
532 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
533                                        struct mem_cgroup_tree_per_node *mctz)
534 {
535         unsigned long flags;
536
537         spin_lock_irqsave(&mctz->lock, flags);
538         __mem_cgroup_remove_exceeded(mz, mctz);
539         spin_unlock_irqrestore(&mctz->lock, flags);
540 }
541
542 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
543 {
544         unsigned long nr_pages = page_counter_read(&memcg->memory);
545         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
546         unsigned long excess = 0;
547
548         if (nr_pages > soft_limit)
549                 excess = nr_pages - soft_limit;
550
551         return excess;
552 }
553
554 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
555 {
556         unsigned long excess;
557         struct mem_cgroup_per_node *mz;
558         struct mem_cgroup_tree_per_node *mctz;
559
560         mctz = soft_limit_tree_from_page(page);
561         if (!mctz)
562                 return;
563         /*
564          * Necessary to update all ancestors when hierarchy is used.
565          * because their event counter is not touched.
566          */
567         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
568                 mz = mem_cgroup_page_nodeinfo(memcg, page);
569                 excess = soft_limit_excess(memcg);
570                 /*
571                  * We have to update the tree if mz is on RB-tree or
572                  * mem is over its softlimit.
573                  */
574                 if (excess || mz->on_tree) {
575                         unsigned long flags;
576
577                         spin_lock_irqsave(&mctz->lock, flags);
578                         /* if on-tree, remove it */
579                         if (mz->on_tree)
580                                 __mem_cgroup_remove_exceeded(mz, mctz);
581                         /*
582                          * Insert again. mz->usage_in_excess will be updated.
583                          * If excess is 0, no tree ops.
584                          */
585                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
586                         spin_unlock_irqrestore(&mctz->lock, flags);
587                 }
588         }
589 }
590
591 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
592 {
593         struct mem_cgroup_tree_per_node *mctz;
594         struct mem_cgroup_per_node *mz;
595         int nid;
596
597         for_each_node(nid) {
598                 mz = memcg->nodeinfo[nid];
599                 mctz = soft_limit_tree_node(nid);
600                 if (mctz)
601                         mem_cgroup_remove_exceeded(mz, mctz);
602         }
603 }
604
605 static struct mem_cgroup_per_node *
606 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
607 {
608         struct mem_cgroup_per_node *mz;
609
610 retry:
611         mz = NULL;
612         if (!mctz->rb_rightmost)
613                 goto done;              /* Nothing to reclaim from */
614
615         mz = rb_entry(mctz->rb_rightmost,
616                       struct mem_cgroup_per_node, tree_node);
617         /*
618          * Remove the node now but someone else can add it back,
619          * we will to add it back at the end of reclaim to its correct
620          * position in the tree.
621          */
622         __mem_cgroup_remove_exceeded(mz, mctz);
623         if (!soft_limit_excess(mz->memcg) ||
624             !css_tryget(&mz->memcg->css))
625                 goto retry;
626 done:
627         return mz;
628 }
629
630 static struct mem_cgroup_per_node *
631 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
632 {
633         struct mem_cgroup_per_node *mz;
634
635         spin_lock_irq(&mctz->lock);
636         mz = __mem_cgroup_largest_soft_limit_node(mctz);
637         spin_unlock_irq(&mctz->lock);
638         return mz;
639 }
640
641 /**
642  * __mod_memcg_state - update cgroup memory statistics
643  * @memcg: the memory cgroup
644  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
645  * @val: delta to add to the counter, can be negative
646  */
647 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
648 {
649         if (mem_cgroup_disabled())
650                 return;
651
652         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
653         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
654 }
655
656 /* idx can be of type enum memcg_stat_item or node_stat_item. */
657 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
658 {
659         long x = 0;
660         int cpu;
661
662         for_each_possible_cpu(cpu)
663                 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
664 #ifdef CONFIG_SMP
665         if (x < 0)
666                 x = 0;
667 #endif
668         return x;
669 }
670
671 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
672                               int val)
673 {
674         struct mem_cgroup_per_node *pn;
675         struct mem_cgroup *memcg;
676
677         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
678         memcg = pn->memcg;
679
680         /* Update memcg */
681         __mod_memcg_state(memcg, idx, val);
682
683         /* Update lruvec */
684         __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
685         if (!(__this_cpu_inc_return(stats_flush_threshold) % MEMCG_CHARGE_BATCH))
686                 queue_work(system_unbound_wq, &stats_flush_work);
687 }
688
689 /**
690  * __mod_lruvec_state - update lruvec memory statistics
691  * @lruvec: the lruvec
692  * @idx: the stat item
693  * @val: delta to add to the counter, can be negative
694  *
695  * The lruvec is the intersection of the NUMA node and a cgroup. This
696  * function updates the all three counters that are affected by a
697  * change of state at this level: per-node, per-cgroup, per-lruvec.
698  */
699 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
700                         int val)
701 {
702         /* Update node */
703         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
704
705         /* Update memcg and lruvec */
706         if (!mem_cgroup_disabled())
707                 __mod_memcg_lruvec_state(lruvec, idx, val);
708 }
709
710 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
711                              int val)
712 {
713         struct page *head = compound_head(page); /* rmap on tail pages */
714         struct mem_cgroup *memcg;
715         pg_data_t *pgdat = page_pgdat(page);
716         struct lruvec *lruvec;
717
718         rcu_read_lock();
719         memcg = page_memcg(head);
720         /* Untracked pages have no memcg, no lruvec. Update only the node */
721         if (!memcg) {
722                 rcu_read_unlock();
723                 __mod_node_page_state(pgdat, idx, val);
724                 return;
725         }
726
727         lruvec = mem_cgroup_lruvec(memcg, pgdat);
728         __mod_lruvec_state(lruvec, idx, val);
729         rcu_read_unlock();
730 }
731 EXPORT_SYMBOL(__mod_lruvec_page_state);
732
733 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
734 {
735         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
736         struct mem_cgroup *memcg;
737         struct lruvec *lruvec;
738
739         rcu_read_lock();
740         memcg = mem_cgroup_from_obj(p);
741
742         /*
743          * Untracked pages have no memcg, no lruvec. Update only the
744          * node. If we reparent the slab objects to the root memcg,
745          * when we free the slab object, we need to update the per-memcg
746          * vmstats to keep it correct for the root memcg.
747          */
748         if (!memcg) {
749                 __mod_node_page_state(pgdat, idx, val);
750         } else {
751                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
752                 __mod_lruvec_state(lruvec, idx, val);
753         }
754         rcu_read_unlock();
755 }
756
757 /*
758  * mod_objcg_mlstate() may be called with irq enabled, so
759  * mod_memcg_lruvec_state() should be used.
760  */
761 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
762                                      struct pglist_data *pgdat,
763                                      enum node_stat_item idx, int nr)
764 {
765         struct mem_cgroup *memcg;
766         struct lruvec *lruvec;
767
768         rcu_read_lock();
769         memcg = obj_cgroup_memcg(objcg);
770         lruvec = mem_cgroup_lruvec(memcg, pgdat);
771         mod_memcg_lruvec_state(lruvec, idx, nr);
772         rcu_read_unlock();
773 }
774
775 /**
776  * __count_memcg_events - account VM events in a cgroup
777  * @memcg: the memory cgroup
778  * @idx: the event item
779  * @count: the number of events that occurred
780  */
781 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
782                           unsigned long count)
783 {
784         if (mem_cgroup_disabled())
785                 return;
786
787         __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
788         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
789 }
790
791 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
792 {
793         return READ_ONCE(memcg->vmstats.events[event]);
794 }
795
796 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
797 {
798         long x = 0;
799         int cpu;
800
801         for_each_possible_cpu(cpu)
802                 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
803         return x;
804 }
805
806 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
807                                          struct page *page,
808                                          int nr_pages)
809 {
810         /* pagein of a big page is an event. So, ignore page size */
811         if (nr_pages > 0)
812                 __count_memcg_events(memcg, PGPGIN, 1);
813         else {
814                 __count_memcg_events(memcg, PGPGOUT, 1);
815                 nr_pages = -nr_pages; /* for event */
816         }
817
818         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
819 }
820
821 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
822                                        enum mem_cgroup_events_target target)
823 {
824         unsigned long val, next;
825
826         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
827         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
828         /* from time_after() in jiffies.h */
829         if ((long)(next - val) < 0) {
830                 switch (target) {
831                 case MEM_CGROUP_TARGET_THRESH:
832                         next = val + THRESHOLDS_EVENTS_TARGET;
833                         break;
834                 case MEM_CGROUP_TARGET_SOFTLIMIT:
835                         next = val + SOFTLIMIT_EVENTS_TARGET;
836                         break;
837                 default:
838                         break;
839                 }
840                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
841                 return true;
842         }
843         return false;
844 }
845
846 /*
847  * Check events in order.
848  *
849  */
850 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
851 {
852         /* threshold event is triggered in finer grain than soft limit */
853         if (unlikely(mem_cgroup_event_ratelimit(memcg,
854                                                 MEM_CGROUP_TARGET_THRESH))) {
855                 bool do_softlimit;
856
857                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
858                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
859                 mem_cgroup_threshold(memcg);
860                 if (unlikely(do_softlimit))
861                         mem_cgroup_update_tree(memcg, page);
862         }
863 }
864
865 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
866 {
867         /*
868          * mm_update_next_owner() may clear mm->owner to NULL
869          * if it races with swapoff, page migration, etc.
870          * So this can be called with p == NULL.
871          */
872         if (unlikely(!p))
873                 return NULL;
874
875         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
876 }
877 EXPORT_SYMBOL(mem_cgroup_from_task);
878
879 static __always_inline struct mem_cgroup *active_memcg(void)
880 {
881         if (!in_task())
882                 return this_cpu_read(int_active_memcg);
883         else
884                 return current->active_memcg;
885 }
886
887 /**
888  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
889  * @mm: mm from which memcg should be extracted. It can be NULL.
890  *
891  * Obtain a reference on mm->memcg and returns it if successful. If mm
892  * is NULL, then the memcg is chosen as follows:
893  * 1) The active memcg, if set.
894  * 2) current->mm->memcg, if available
895  * 3) root memcg
896  * If mem_cgroup is disabled, NULL is returned.
897  */
898 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
899 {
900         struct mem_cgroup *memcg;
901
902         if (mem_cgroup_disabled())
903                 return NULL;
904
905         /*
906          * Page cache insertions can happen without an
907          * actual mm context, e.g. during disk probing
908          * on boot, loopback IO, acct() writes etc.
909          *
910          * No need to css_get on root memcg as the reference
911          * counting is disabled on the root level in the
912          * cgroup core. See CSS_NO_REF.
913          */
914         if (unlikely(!mm)) {
915                 memcg = active_memcg();
916                 if (unlikely(memcg)) {
917                         /* remote memcg must hold a ref */
918                         css_get(&memcg->css);
919                         return memcg;
920                 }
921                 mm = current->mm;
922                 if (unlikely(!mm))
923                         return root_mem_cgroup;
924         }
925
926         rcu_read_lock();
927         do {
928                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
929                 if (unlikely(!memcg))
930                         memcg = root_mem_cgroup;
931         } while (!css_tryget(&memcg->css));
932         rcu_read_unlock();
933         return memcg;
934 }
935 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
936
937 static __always_inline bool memcg_kmem_bypass(void)
938 {
939         /* Allow remote memcg charging from any context. */
940         if (unlikely(active_memcg()))
941                 return false;
942
943         /* Memcg to charge can't be determined. */
944         if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
945                 return true;
946
947         return false;
948 }
949
950 /**
951  * mem_cgroup_iter - iterate over memory cgroup hierarchy
952  * @root: hierarchy root
953  * @prev: previously returned memcg, NULL on first invocation
954  * @reclaim: cookie for shared reclaim walks, NULL for full walks
955  *
956  * Returns references to children of the hierarchy below @root, or
957  * @root itself, or %NULL after a full round-trip.
958  *
959  * Caller must pass the return value in @prev on subsequent
960  * invocations for reference counting, or use mem_cgroup_iter_break()
961  * to cancel a hierarchy walk before the round-trip is complete.
962  *
963  * Reclaimers can specify a node in @reclaim to divide up the memcgs
964  * in the hierarchy among all concurrent reclaimers operating on the
965  * same node.
966  */
967 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
968                                    struct mem_cgroup *prev,
969                                    struct mem_cgroup_reclaim_cookie *reclaim)
970 {
971         struct mem_cgroup_reclaim_iter *iter;
972         struct cgroup_subsys_state *css = NULL;
973         struct mem_cgroup *memcg = NULL;
974         struct mem_cgroup *pos = NULL;
975
976         if (mem_cgroup_disabled())
977                 return NULL;
978
979         if (!root)
980                 root = root_mem_cgroup;
981
982         if (prev && !reclaim)
983                 pos = prev;
984
985         rcu_read_lock();
986
987         if (reclaim) {
988                 struct mem_cgroup_per_node *mz;
989
990                 mz = root->nodeinfo[reclaim->pgdat->node_id];
991                 iter = &mz->iter;
992
993                 if (prev && reclaim->generation != iter->generation)
994                         goto out_unlock;
995
996                 while (1) {
997                         pos = READ_ONCE(iter->position);
998                         if (!pos || css_tryget(&pos->css))
999                                 break;
1000                         /*
1001                          * css reference reached zero, so iter->position will
1002                          * be cleared by ->css_released. However, we should not
1003                          * rely on this happening soon, because ->css_released
1004                          * is called from a work queue, and by busy-waiting we
1005                          * might block it. So we clear iter->position right
1006                          * away.
1007                          */
1008                         (void)cmpxchg(&iter->position, pos, NULL);
1009                 }
1010         }
1011
1012         if (pos)
1013                 css = &pos->css;
1014
1015         for (;;) {
1016                 css = css_next_descendant_pre(css, &root->css);
1017                 if (!css) {
1018                         /*
1019                          * Reclaimers share the hierarchy walk, and a
1020                          * new one might jump in right at the end of
1021                          * the hierarchy - make sure they see at least
1022                          * one group and restart from the beginning.
1023                          */
1024                         if (!prev)
1025                                 continue;
1026                         break;
1027                 }
1028
1029                 /*
1030                  * Verify the css and acquire a reference.  The root
1031                  * is provided by the caller, so we know it's alive
1032                  * and kicking, and don't take an extra reference.
1033                  */
1034                 memcg = mem_cgroup_from_css(css);
1035
1036                 if (css == &root->css)
1037                         break;
1038
1039                 if (css_tryget(css))
1040                         break;
1041
1042                 memcg = NULL;
1043         }
1044
1045         if (reclaim) {
1046                 /*
1047                  * The position could have already been updated by a competing
1048                  * thread, so check that the value hasn't changed since we read
1049                  * it to avoid reclaiming from the same cgroup twice.
1050                  */
1051                 (void)cmpxchg(&iter->position, pos, memcg);
1052
1053                 if (pos)
1054                         css_put(&pos->css);
1055
1056                 if (!memcg)
1057                         iter->generation++;
1058                 else if (!prev)
1059                         reclaim->generation = iter->generation;
1060         }
1061
1062 out_unlock:
1063         rcu_read_unlock();
1064         if (prev && prev != root)
1065                 css_put(&prev->css);
1066
1067         return memcg;
1068 }
1069
1070 /**
1071  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1072  * @root: hierarchy root
1073  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1074  */
1075 void mem_cgroup_iter_break(struct mem_cgroup *root,
1076                            struct mem_cgroup *prev)
1077 {
1078         if (!root)
1079                 root = root_mem_cgroup;
1080         if (prev && prev != root)
1081                 css_put(&prev->css);
1082 }
1083
1084 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1085                                         struct mem_cgroup *dead_memcg)
1086 {
1087         struct mem_cgroup_reclaim_iter *iter;
1088         struct mem_cgroup_per_node *mz;
1089         int nid;
1090
1091         for_each_node(nid) {
1092                 mz = from->nodeinfo[nid];
1093                 iter = &mz->iter;
1094                 cmpxchg(&iter->position, dead_memcg, NULL);
1095         }
1096 }
1097
1098 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1099 {
1100         struct mem_cgroup *memcg = dead_memcg;
1101         struct mem_cgroup *last;
1102
1103         do {
1104                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1105                 last = memcg;
1106         } while ((memcg = parent_mem_cgroup(memcg)));
1107
1108         /*
1109          * When cgruop1 non-hierarchy mode is used,
1110          * parent_mem_cgroup() does not walk all the way up to the
1111          * cgroup root (root_mem_cgroup). So we have to handle
1112          * dead_memcg from cgroup root separately.
1113          */
1114         if (last != root_mem_cgroup)
1115                 __invalidate_reclaim_iterators(root_mem_cgroup,
1116                                                 dead_memcg);
1117 }
1118
1119 /**
1120  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1121  * @memcg: hierarchy root
1122  * @fn: function to call for each task
1123  * @arg: argument passed to @fn
1124  *
1125  * This function iterates over tasks attached to @memcg or to any of its
1126  * descendants and calls @fn for each task. If @fn returns a non-zero
1127  * value, the function breaks the iteration loop and returns the value.
1128  * Otherwise, it will iterate over all tasks and return 0.
1129  *
1130  * This function must not be called for the root memory cgroup.
1131  */
1132 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1133                           int (*fn)(struct task_struct *, void *), void *arg)
1134 {
1135         struct mem_cgroup *iter;
1136         int ret = 0;
1137
1138         BUG_ON(memcg == root_mem_cgroup);
1139
1140         for_each_mem_cgroup_tree(iter, memcg) {
1141                 struct css_task_iter it;
1142                 struct task_struct *task;
1143
1144                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1145                 while (!ret && (task = css_task_iter_next(&it)))
1146                         ret = fn(task, arg);
1147                 css_task_iter_end(&it);
1148                 if (ret) {
1149                         mem_cgroup_iter_break(memcg, iter);
1150                         break;
1151                 }
1152         }
1153         return ret;
1154 }
1155
1156 #ifdef CONFIG_DEBUG_VM
1157 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1158 {
1159         struct mem_cgroup *memcg;
1160
1161         if (mem_cgroup_disabled())
1162                 return;
1163
1164         memcg = page_memcg(page);
1165
1166         if (!memcg)
1167                 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1168         else
1169                 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1170 }
1171 #endif
1172
1173 /**
1174  * lock_page_lruvec - lock and return lruvec for a given page.
1175  * @page: the page
1176  *
1177  * These functions are safe to use under any of the following conditions:
1178  * - page locked
1179  * - PageLRU cleared
1180  * - lock_page_memcg()
1181  * - page->_refcount is zero
1182  */
1183 struct lruvec *lock_page_lruvec(struct page *page)
1184 {
1185         struct lruvec *lruvec;
1186
1187         lruvec = mem_cgroup_page_lruvec(page);
1188         spin_lock(&lruvec->lru_lock);
1189
1190         lruvec_memcg_debug(lruvec, page);
1191
1192         return lruvec;
1193 }
1194
1195 struct lruvec *lock_page_lruvec_irq(struct page *page)
1196 {
1197         struct lruvec *lruvec;
1198
1199         lruvec = mem_cgroup_page_lruvec(page);
1200         spin_lock_irq(&lruvec->lru_lock);
1201
1202         lruvec_memcg_debug(lruvec, page);
1203
1204         return lruvec;
1205 }
1206
1207 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1208 {
1209         struct lruvec *lruvec;
1210
1211         lruvec = mem_cgroup_page_lruvec(page);
1212         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1213
1214         lruvec_memcg_debug(lruvec, page);
1215
1216         return lruvec;
1217 }
1218
1219 /**
1220  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1221  * @lruvec: mem_cgroup per zone lru vector
1222  * @lru: index of lru list the page is sitting on
1223  * @zid: zone id of the accounted pages
1224  * @nr_pages: positive when adding or negative when removing
1225  *
1226  * This function must be called under lru_lock, just before a page is added
1227  * to or just after a page is removed from an lru list (that ordering being
1228  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1229  */
1230 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1231                                 int zid, int nr_pages)
1232 {
1233         struct mem_cgroup_per_node *mz;
1234         unsigned long *lru_size;
1235         long size;
1236
1237         if (mem_cgroup_disabled())
1238                 return;
1239
1240         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1241         lru_size = &mz->lru_zone_size[zid][lru];
1242
1243         if (nr_pages < 0)
1244                 *lru_size += nr_pages;
1245
1246         size = *lru_size;
1247         if (WARN_ONCE(size < 0,
1248                 "%s(%p, %d, %d): lru_size %ld\n",
1249                 __func__, lruvec, lru, nr_pages, size)) {
1250                 VM_BUG_ON(1);
1251                 *lru_size = 0;
1252         }
1253
1254         if (nr_pages > 0)
1255                 *lru_size += nr_pages;
1256 }
1257
1258 /**
1259  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1260  * @memcg: the memory cgroup
1261  *
1262  * Returns the maximum amount of memory @mem can be charged with, in
1263  * pages.
1264  */
1265 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1266 {
1267         unsigned long margin = 0;
1268         unsigned long count;
1269         unsigned long limit;
1270
1271         count = page_counter_read(&memcg->memory);
1272         limit = READ_ONCE(memcg->memory.max);
1273         if (count < limit)
1274                 margin = limit - count;
1275
1276         if (do_memsw_account()) {
1277                 count = page_counter_read(&memcg->memsw);
1278                 limit = READ_ONCE(memcg->memsw.max);
1279                 if (count < limit)
1280                         margin = min(margin, limit - count);
1281                 else
1282                         margin = 0;
1283         }
1284
1285         return margin;
1286 }
1287
1288 /*
1289  * A routine for checking "mem" is under move_account() or not.
1290  *
1291  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1292  * moving cgroups. This is for waiting at high-memory pressure
1293  * caused by "move".
1294  */
1295 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1296 {
1297         struct mem_cgroup *from;
1298         struct mem_cgroup *to;
1299         bool ret = false;
1300         /*
1301          * Unlike task_move routines, we access mc.to, mc.from not under
1302          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1303          */
1304         spin_lock(&mc.lock);
1305         from = mc.from;
1306         to = mc.to;
1307         if (!from)
1308                 goto unlock;
1309
1310         ret = mem_cgroup_is_descendant(from, memcg) ||
1311                 mem_cgroup_is_descendant(to, memcg);
1312 unlock:
1313         spin_unlock(&mc.lock);
1314         return ret;
1315 }
1316
1317 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1318 {
1319         if (mc.moving_task && current != mc.moving_task) {
1320                 if (mem_cgroup_under_move(memcg)) {
1321                         DEFINE_WAIT(wait);
1322                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1323                         /* moving charge context might have finished. */
1324                         if (mc.moving_task)
1325                                 schedule();
1326                         finish_wait(&mc.waitq, &wait);
1327                         return true;
1328                 }
1329         }
1330         return false;
1331 }
1332
1333 struct memory_stat {
1334         const char *name;
1335         unsigned int idx;
1336 };
1337
1338 static const struct memory_stat memory_stats[] = {
1339         { "anon",                       NR_ANON_MAPPED                  },
1340         { "file",                       NR_FILE_PAGES                   },
1341         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1342         { "pagetables",                 NR_PAGETABLE                    },
1343         { "percpu",                     MEMCG_PERCPU_B                  },
1344         { "sock",                       MEMCG_SOCK                      },
1345         { "shmem",                      NR_SHMEM                        },
1346         { "file_mapped",                NR_FILE_MAPPED                  },
1347         { "file_dirty",                 NR_FILE_DIRTY                   },
1348         { "file_writeback",             NR_WRITEBACK                    },
1349 #ifdef CONFIG_SWAP
1350         { "swapcached",                 NR_SWAPCACHE                    },
1351 #endif
1352 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1353         { "anon_thp",                   NR_ANON_THPS                    },
1354         { "file_thp",                   NR_FILE_THPS                    },
1355         { "shmem_thp",                  NR_SHMEM_THPS                   },
1356 #endif
1357         { "inactive_anon",              NR_INACTIVE_ANON                },
1358         { "active_anon",                NR_ACTIVE_ANON                  },
1359         { "inactive_file",              NR_INACTIVE_FILE                },
1360         { "active_file",                NR_ACTIVE_FILE                  },
1361         { "unevictable",                NR_UNEVICTABLE                  },
1362         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1363         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1364
1365         /* The memory events */
1366         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1367         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1368         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1369         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1370         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1371         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1372         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1373 };
1374
1375 /* Translate stat items to the correct unit for memory.stat output */
1376 static int memcg_page_state_unit(int item)
1377 {
1378         switch (item) {
1379         case MEMCG_PERCPU_B:
1380         case NR_SLAB_RECLAIMABLE_B:
1381         case NR_SLAB_UNRECLAIMABLE_B:
1382         case WORKINGSET_REFAULT_ANON:
1383         case WORKINGSET_REFAULT_FILE:
1384         case WORKINGSET_ACTIVATE_ANON:
1385         case WORKINGSET_ACTIVATE_FILE:
1386         case WORKINGSET_RESTORE_ANON:
1387         case WORKINGSET_RESTORE_FILE:
1388         case WORKINGSET_NODERECLAIM:
1389                 return 1;
1390         case NR_KERNEL_STACK_KB:
1391                 return SZ_1K;
1392         default:
1393                 return PAGE_SIZE;
1394         }
1395 }
1396
1397 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1398                                                     int item)
1399 {
1400         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1401 }
1402
1403 static char *memory_stat_format(struct mem_cgroup *memcg)
1404 {
1405         struct seq_buf s;
1406         int i;
1407
1408         seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1409         if (!s.buffer)
1410                 return NULL;
1411
1412         /*
1413          * Provide statistics on the state of the memory subsystem as
1414          * well as cumulative event counters that show past behavior.
1415          *
1416          * This list is ordered following a combination of these gradients:
1417          * 1) generic big picture -> specifics and details
1418          * 2) reflecting userspace activity -> reflecting kernel heuristics
1419          *
1420          * Current memory state:
1421          */
1422         cgroup_rstat_flush(memcg->css.cgroup);
1423
1424         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1425                 u64 size;
1426
1427                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1428                 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1429
1430                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1431                         size += memcg_page_state_output(memcg,
1432                                                         NR_SLAB_RECLAIMABLE_B);
1433                         seq_buf_printf(&s, "slab %llu\n", size);
1434                 }
1435         }
1436
1437         /* Accumulated memory events */
1438
1439         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1440                        memcg_events(memcg, PGFAULT));
1441         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1442                        memcg_events(memcg, PGMAJFAULT));
1443         seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1444                        memcg_events(memcg, PGREFILL));
1445         seq_buf_printf(&s, "pgscan %lu\n",
1446                        memcg_events(memcg, PGSCAN_KSWAPD) +
1447                        memcg_events(memcg, PGSCAN_DIRECT));
1448         seq_buf_printf(&s, "pgsteal %lu\n",
1449                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1450                        memcg_events(memcg, PGSTEAL_DIRECT));
1451         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1452                        memcg_events(memcg, PGACTIVATE));
1453         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1454                        memcg_events(memcg, PGDEACTIVATE));
1455         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1456                        memcg_events(memcg, PGLAZYFREE));
1457         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1458                        memcg_events(memcg, PGLAZYFREED));
1459
1460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1461         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1462                        memcg_events(memcg, THP_FAULT_ALLOC));
1463         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1464                        memcg_events(memcg, THP_COLLAPSE_ALLOC));
1465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1466
1467         /* The above should easily fit into one page */
1468         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1469
1470         return s.buffer;
1471 }
1472
1473 #define K(x) ((x) << (PAGE_SHIFT-10))
1474 /**
1475  * mem_cgroup_print_oom_context: Print OOM information relevant to
1476  * memory controller.
1477  * @memcg: The memory cgroup that went over limit
1478  * @p: Task that is going to be killed
1479  *
1480  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1481  * enabled
1482  */
1483 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1484 {
1485         rcu_read_lock();
1486
1487         if (memcg) {
1488                 pr_cont(",oom_memcg=");
1489                 pr_cont_cgroup_path(memcg->css.cgroup);
1490         } else
1491                 pr_cont(",global_oom");
1492         if (p) {
1493                 pr_cont(",task_memcg=");
1494                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1495         }
1496         rcu_read_unlock();
1497 }
1498
1499 /**
1500  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1501  * memory controller.
1502  * @memcg: The memory cgroup that went over limit
1503  */
1504 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1505 {
1506         char *buf;
1507
1508         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1509                 K((u64)page_counter_read(&memcg->memory)),
1510                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1511         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1512                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1513                         K((u64)page_counter_read(&memcg->swap)),
1514                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1515         else {
1516                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1517                         K((u64)page_counter_read(&memcg->memsw)),
1518                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1519                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1520                         K((u64)page_counter_read(&memcg->kmem)),
1521                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1522         }
1523
1524         pr_info("Memory cgroup stats for ");
1525         pr_cont_cgroup_path(memcg->css.cgroup);
1526         pr_cont(":");
1527         buf = memory_stat_format(memcg);
1528         if (!buf)
1529                 return;
1530         pr_info("%s", buf);
1531         kfree(buf);
1532 }
1533
1534 /*
1535  * Return the memory (and swap, if configured) limit for a memcg.
1536  */
1537 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1538 {
1539         unsigned long max = READ_ONCE(memcg->memory.max);
1540
1541         if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1542                 if (mem_cgroup_swappiness(memcg))
1543                         max += min(READ_ONCE(memcg->swap.max),
1544                                    (unsigned long)total_swap_pages);
1545         } else { /* v1 */
1546                 if (mem_cgroup_swappiness(memcg)) {
1547                         /* Calculate swap excess capacity from memsw limit */
1548                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1549
1550                         max += min(swap, (unsigned long)total_swap_pages);
1551                 }
1552         }
1553         return max;
1554 }
1555
1556 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1557 {
1558         return page_counter_read(&memcg->memory);
1559 }
1560
1561 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1562                                      int order)
1563 {
1564         struct oom_control oc = {
1565                 .zonelist = NULL,
1566                 .nodemask = NULL,
1567                 .memcg = memcg,
1568                 .gfp_mask = gfp_mask,
1569                 .order = order,
1570         };
1571         bool ret = true;
1572
1573         if (mutex_lock_killable(&oom_lock))
1574                 return true;
1575
1576         if (mem_cgroup_margin(memcg) >= (1 << order))
1577                 goto unlock;
1578
1579         /*
1580          * A few threads which were not waiting at mutex_lock_killable() can
1581          * fail to bail out. Therefore, check again after holding oom_lock.
1582          */
1583         ret = should_force_charge() || out_of_memory(&oc);
1584
1585 unlock:
1586         mutex_unlock(&oom_lock);
1587         return ret;
1588 }
1589
1590 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1591                                    pg_data_t *pgdat,
1592                                    gfp_t gfp_mask,
1593                                    unsigned long *total_scanned)
1594 {
1595         struct mem_cgroup *victim = NULL;
1596         int total = 0;
1597         int loop = 0;
1598         unsigned long excess;
1599         unsigned long nr_scanned;
1600         struct mem_cgroup_reclaim_cookie reclaim = {
1601                 .pgdat = pgdat,
1602         };
1603
1604         excess = soft_limit_excess(root_memcg);
1605
1606         while (1) {
1607                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1608                 if (!victim) {
1609                         loop++;
1610                         if (loop >= 2) {
1611                                 /*
1612                                  * If we have not been able to reclaim
1613                                  * anything, it might because there are
1614                                  * no reclaimable pages under this hierarchy
1615                                  */
1616                                 if (!total)
1617                                         break;
1618                                 /*
1619                                  * We want to do more targeted reclaim.
1620                                  * excess >> 2 is not to excessive so as to
1621                                  * reclaim too much, nor too less that we keep
1622                                  * coming back to reclaim from this cgroup
1623                                  */
1624                                 if (total >= (excess >> 2) ||
1625                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1626                                         break;
1627                         }
1628                         continue;
1629                 }
1630                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1631                                         pgdat, &nr_scanned);
1632                 *total_scanned += nr_scanned;
1633                 if (!soft_limit_excess(root_memcg))
1634                         break;
1635         }
1636         mem_cgroup_iter_break(root_memcg, victim);
1637         return total;
1638 }
1639
1640 #ifdef CONFIG_LOCKDEP
1641 static struct lockdep_map memcg_oom_lock_dep_map = {
1642         .name = "memcg_oom_lock",
1643 };
1644 #endif
1645
1646 static DEFINE_SPINLOCK(memcg_oom_lock);
1647
1648 /*
1649  * Check OOM-Killer is already running under our hierarchy.
1650  * If someone is running, return false.
1651  */
1652 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1653 {
1654         struct mem_cgroup *iter, *failed = NULL;
1655
1656         spin_lock(&memcg_oom_lock);
1657
1658         for_each_mem_cgroup_tree(iter, memcg) {
1659                 if (iter->oom_lock) {
1660                         /*
1661                          * this subtree of our hierarchy is already locked
1662                          * so we cannot give a lock.
1663                          */
1664                         failed = iter;
1665                         mem_cgroup_iter_break(memcg, iter);
1666                         break;
1667                 } else
1668                         iter->oom_lock = true;
1669         }
1670
1671         if (failed) {
1672                 /*
1673                  * OK, we failed to lock the whole subtree so we have
1674                  * to clean up what we set up to the failing subtree
1675                  */
1676                 for_each_mem_cgroup_tree(iter, memcg) {
1677                         if (iter == failed) {
1678                                 mem_cgroup_iter_break(memcg, iter);
1679                                 break;
1680                         }
1681                         iter->oom_lock = false;
1682                 }
1683         } else
1684                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1685
1686         spin_unlock(&memcg_oom_lock);
1687
1688         return !failed;
1689 }
1690
1691 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1692 {
1693         struct mem_cgroup *iter;
1694
1695         spin_lock(&memcg_oom_lock);
1696         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1697         for_each_mem_cgroup_tree(iter, memcg)
1698                 iter->oom_lock = false;
1699         spin_unlock(&memcg_oom_lock);
1700 }
1701
1702 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1703 {
1704         struct mem_cgroup *iter;
1705
1706         spin_lock(&memcg_oom_lock);
1707         for_each_mem_cgroup_tree(iter, memcg)
1708                 iter->under_oom++;
1709         spin_unlock(&memcg_oom_lock);
1710 }
1711
1712 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1713 {
1714         struct mem_cgroup *iter;
1715
1716         /*
1717          * Be careful about under_oom underflows because a child memcg
1718          * could have been added after mem_cgroup_mark_under_oom.
1719          */
1720         spin_lock(&memcg_oom_lock);
1721         for_each_mem_cgroup_tree(iter, memcg)
1722                 if (iter->under_oom > 0)
1723                         iter->under_oom--;
1724         spin_unlock(&memcg_oom_lock);
1725 }
1726
1727 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1728
1729 struct oom_wait_info {
1730         struct mem_cgroup *memcg;
1731         wait_queue_entry_t      wait;
1732 };
1733
1734 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1735         unsigned mode, int sync, void *arg)
1736 {
1737         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1738         struct mem_cgroup *oom_wait_memcg;
1739         struct oom_wait_info *oom_wait_info;
1740
1741         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1742         oom_wait_memcg = oom_wait_info->memcg;
1743
1744         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1745             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1746                 return 0;
1747         return autoremove_wake_function(wait, mode, sync, arg);
1748 }
1749
1750 static void memcg_oom_recover(struct mem_cgroup *memcg)
1751 {
1752         /*
1753          * For the following lockless ->under_oom test, the only required
1754          * guarantee is that it must see the state asserted by an OOM when
1755          * this function is called as a result of userland actions
1756          * triggered by the notification of the OOM.  This is trivially
1757          * achieved by invoking mem_cgroup_mark_under_oom() before
1758          * triggering notification.
1759          */
1760         if (memcg && memcg->under_oom)
1761                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1762 }
1763
1764 enum oom_status {
1765         OOM_SUCCESS,
1766         OOM_FAILED,
1767         OOM_ASYNC,
1768         OOM_SKIPPED
1769 };
1770
1771 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1772 {
1773         enum oom_status ret;
1774         bool locked;
1775
1776         if (order > PAGE_ALLOC_COSTLY_ORDER)
1777                 return OOM_SKIPPED;
1778
1779         memcg_memory_event(memcg, MEMCG_OOM);
1780
1781         /*
1782          * We are in the middle of the charge context here, so we
1783          * don't want to block when potentially sitting on a callstack
1784          * that holds all kinds of filesystem and mm locks.
1785          *
1786          * cgroup1 allows disabling the OOM killer and waiting for outside
1787          * handling until the charge can succeed; remember the context and put
1788          * the task to sleep at the end of the page fault when all locks are
1789          * released.
1790          *
1791          * On the other hand, in-kernel OOM killer allows for an async victim
1792          * memory reclaim (oom_reaper) and that means that we are not solely
1793          * relying on the oom victim to make a forward progress and we can
1794          * invoke the oom killer here.
1795          *
1796          * Please note that mem_cgroup_out_of_memory might fail to find a
1797          * victim and then we have to bail out from the charge path.
1798          */
1799         if (memcg->oom_kill_disable) {
1800                 if (!current->in_user_fault)
1801                         return OOM_SKIPPED;
1802                 css_get(&memcg->css);
1803                 current->memcg_in_oom = memcg;
1804                 current->memcg_oom_gfp_mask = mask;
1805                 current->memcg_oom_order = order;
1806
1807                 return OOM_ASYNC;
1808         }
1809
1810         mem_cgroup_mark_under_oom(memcg);
1811
1812         locked = mem_cgroup_oom_trylock(memcg);
1813
1814         if (locked)
1815                 mem_cgroup_oom_notify(memcg);
1816
1817         mem_cgroup_unmark_under_oom(memcg);
1818         if (mem_cgroup_out_of_memory(memcg, mask, order))
1819                 ret = OOM_SUCCESS;
1820         else
1821                 ret = OOM_FAILED;
1822
1823         if (locked)
1824                 mem_cgroup_oom_unlock(memcg);
1825
1826         return ret;
1827 }
1828
1829 /**
1830  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1831  * @handle: actually kill/wait or just clean up the OOM state
1832  *
1833  * This has to be called at the end of a page fault if the memcg OOM
1834  * handler was enabled.
1835  *
1836  * Memcg supports userspace OOM handling where failed allocations must
1837  * sleep on a waitqueue until the userspace task resolves the
1838  * situation.  Sleeping directly in the charge context with all kinds
1839  * of locks held is not a good idea, instead we remember an OOM state
1840  * in the task and mem_cgroup_oom_synchronize() has to be called at
1841  * the end of the page fault to complete the OOM handling.
1842  *
1843  * Returns %true if an ongoing memcg OOM situation was detected and
1844  * completed, %false otherwise.
1845  */
1846 bool mem_cgroup_oom_synchronize(bool handle)
1847 {
1848         struct mem_cgroup *memcg = current->memcg_in_oom;
1849         struct oom_wait_info owait;
1850         bool locked;
1851
1852         /* OOM is global, do not handle */
1853         if (!memcg)
1854                 return false;
1855
1856         if (!handle)
1857                 goto cleanup;
1858
1859         owait.memcg = memcg;
1860         owait.wait.flags = 0;
1861         owait.wait.func = memcg_oom_wake_function;
1862         owait.wait.private = current;
1863         INIT_LIST_HEAD(&owait.wait.entry);
1864
1865         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1866         mem_cgroup_mark_under_oom(memcg);
1867
1868         locked = mem_cgroup_oom_trylock(memcg);
1869
1870         if (locked)
1871                 mem_cgroup_oom_notify(memcg);
1872
1873         if (locked && !memcg->oom_kill_disable) {
1874                 mem_cgroup_unmark_under_oom(memcg);
1875                 finish_wait(&memcg_oom_waitq, &owait.wait);
1876                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1877                                          current->memcg_oom_order);
1878         } else {
1879                 schedule();
1880                 mem_cgroup_unmark_under_oom(memcg);
1881                 finish_wait(&memcg_oom_waitq, &owait.wait);
1882         }
1883
1884         if (locked) {
1885                 mem_cgroup_oom_unlock(memcg);
1886                 /*
1887                  * There is no guarantee that an OOM-lock contender
1888                  * sees the wakeups triggered by the OOM kill
1889                  * uncharges.  Wake any sleepers explicitly.
1890                  */
1891                 memcg_oom_recover(memcg);
1892         }
1893 cleanup:
1894         current->memcg_in_oom = NULL;
1895         css_put(&memcg->css);
1896         return true;
1897 }
1898
1899 /**
1900  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1901  * @victim: task to be killed by the OOM killer
1902  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1903  *
1904  * Returns a pointer to a memory cgroup, which has to be cleaned up
1905  * by killing all belonging OOM-killable tasks.
1906  *
1907  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1908  */
1909 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1910                                             struct mem_cgroup *oom_domain)
1911 {
1912         struct mem_cgroup *oom_group = NULL;
1913         struct mem_cgroup *memcg;
1914
1915         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1916                 return NULL;
1917
1918         if (!oom_domain)
1919                 oom_domain = root_mem_cgroup;
1920
1921         rcu_read_lock();
1922
1923         memcg = mem_cgroup_from_task(victim);
1924         if (memcg == root_mem_cgroup)
1925                 goto out;
1926
1927         /*
1928          * If the victim task has been asynchronously moved to a different
1929          * memory cgroup, we might end up killing tasks outside oom_domain.
1930          * In this case it's better to ignore memory.group.oom.
1931          */
1932         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1933                 goto out;
1934
1935         /*
1936          * Traverse the memory cgroup hierarchy from the victim task's
1937          * cgroup up to the OOMing cgroup (or root) to find the
1938          * highest-level memory cgroup with oom.group set.
1939          */
1940         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1941                 if (memcg->oom_group)
1942                         oom_group = memcg;
1943
1944                 if (memcg == oom_domain)
1945                         break;
1946         }
1947
1948         if (oom_group)
1949                 css_get(&oom_group->css);
1950 out:
1951         rcu_read_unlock();
1952
1953         return oom_group;
1954 }
1955
1956 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1957 {
1958         pr_info("Tasks in ");
1959         pr_cont_cgroup_path(memcg->css.cgroup);
1960         pr_cont(" are going to be killed due to memory.oom.group set\n");
1961 }
1962
1963 /**
1964  * lock_page_memcg - lock a page and memcg binding
1965  * @page: the page
1966  *
1967  * This function protects unlocked LRU pages from being moved to
1968  * another cgroup.
1969  *
1970  * It ensures lifetime of the locked memcg. Caller is responsible
1971  * for the lifetime of the page.
1972  */
1973 void lock_page_memcg(struct page *page)
1974 {
1975         struct page *head = compound_head(page); /* rmap on tail pages */
1976         struct mem_cgroup *memcg;
1977         unsigned long flags;
1978
1979         /*
1980          * The RCU lock is held throughout the transaction.  The fast
1981          * path can get away without acquiring the memcg->move_lock
1982          * because page moving starts with an RCU grace period.
1983          */
1984         rcu_read_lock();
1985
1986         if (mem_cgroup_disabled())
1987                 return;
1988 again:
1989         memcg = page_memcg(head);
1990         if (unlikely(!memcg))
1991                 return;
1992
1993 #ifdef CONFIG_PROVE_LOCKING
1994         local_irq_save(flags);
1995         might_lock(&memcg->move_lock);
1996         local_irq_restore(flags);
1997 #endif
1998
1999         if (atomic_read(&memcg->moving_account) <= 0)
2000                 return;
2001
2002         spin_lock_irqsave(&memcg->move_lock, flags);
2003         if (memcg != page_memcg(head)) {
2004                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2005                 goto again;
2006         }
2007
2008         /*
2009          * When charge migration first begins, we can have multiple
2010          * critical sections holding the fast-path RCU lock and one
2011          * holding the slowpath move_lock. Track the task who has the
2012          * move_lock for unlock_page_memcg().
2013          */
2014         memcg->move_lock_task = current;
2015         memcg->move_lock_flags = flags;
2016 }
2017 EXPORT_SYMBOL(lock_page_memcg);
2018
2019 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2020 {
2021         if (memcg && memcg->move_lock_task == current) {
2022                 unsigned long flags = memcg->move_lock_flags;
2023
2024                 memcg->move_lock_task = NULL;
2025                 memcg->move_lock_flags = 0;
2026
2027                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2028         }
2029
2030         rcu_read_unlock();
2031 }
2032
2033 /**
2034  * unlock_page_memcg - unlock a page and memcg binding
2035  * @page: the page
2036  */
2037 void unlock_page_memcg(struct page *page)
2038 {
2039         struct page *head = compound_head(page);
2040
2041         __unlock_page_memcg(page_memcg(head));
2042 }
2043 EXPORT_SYMBOL(unlock_page_memcg);
2044
2045 struct obj_stock {
2046 #ifdef CONFIG_MEMCG_KMEM
2047         struct obj_cgroup *cached_objcg;
2048         struct pglist_data *cached_pgdat;
2049         unsigned int nr_bytes;
2050         int nr_slab_reclaimable_b;
2051         int nr_slab_unreclaimable_b;
2052 #else
2053         int dummy[0];
2054 #endif
2055 };
2056
2057 struct memcg_stock_pcp {
2058         struct mem_cgroup *cached; /* this never be root cgroup */
2059         unsigned int nr_pages;
2060         struct obj_stock task_obj;
2061         struct obj_stock irq_obj;
2062
2063         struct work_struct work;
2064         unsigned long flags;
2065 #define FLUSHING_CACHED_CHARGE  0
2066 };
2067 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2068 static DEFINE_MUTEX(percpu_charge_mutex);
2069
2070 #ifdef CONFIG_MEMCG_KMEM
2071 static void drain_obj_stock(struct obj_stock *stock);
2072 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2073                                      struct mem_cgroup *root_memcg);
2074
2075 #else
2076 static inline void drain_obj_stock(struct obj_stock *stock)
2077 {
2078 }
2079 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2080                                      struct mem_cgroup *root_memcg)
2081 {
2082         return false;
2083 }
2084 #endif
2085
2086 /*
2087  * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2088  * sequence used in this case to access content from object stock is slow.
2089  * To optimize for user context access, there are now two object stocks for
2090  * task context and interrupt context access respectively.
2091  *
2092  * The task context object stock can be accessed by disabling preemption only
2093  * which is cheap in non-preempt kernel. The interrupt context object stock
2094  * can only be accessed after disabling interrupt. User context code can
2095  * access interrupt object stock, but not vice versa.
2096  */
2097 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2098 {
2099         struct memcg_stock_pcp *stock;
2100
2101         if (likely(in_task())) {
2102                 *pflags = 0UL;
2103                 preempt_disable();
2104                 stock = this_cpu_ptr(&memcg_stock);
2105                 return &stock->task_obj;
2106         }
2107
2108         local_irq_save(*pflags);
2109         stock = this_cpu_ptr(&memcg_stock);
2110         return &stock->irq_obj;
2111 }
2112
2113 static inline void put_obj_stock(unsigned long flags)
2114 {
2115         if (likely(in_task()))
2116                 preempt_enable();
2117         else
2118                 local_irq_restore(flags);
2119 }
2120
2121 /**
2122  * consume_stock: Try to consume stocked charge on this cpu.
2123  * @memcg: memcg to consume from.
2124  * @nr_pages: how many pages to charge.
2125  *
2126  * The charges will only happen if @memcg matches the current cpu's memcg
2127  * stock, and at least @nr_pages are available in that stock.  Failure to
2128  * service an allocation will refill the stock.
2129  *
2130  * returns true if successful, false otherwise.
2131  */
2132 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2133 {
2134         struct memcg_stock_pcp *stock;
2135         unsigned long flags;
2136         bool ret = false;
2137
2138         if (nr_pages > MEMCG_CHARGE_BATCH)
2139                 return ret;
2140
2141         local_irq_save(flags);
2142
2143         stock = this_cpu_ptr(&memcg_stock);
2144         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2145                 stock->nr_pages -= nr_pages;
2146                 ret = true;
2147         }
2148
2149         local_irq_restore(flags);
2150
2151         return ret;
2152 }
2153
2154 /*
2155  * Returns stocks cached in percpu and reset cached information.
2156  */
2157 static void drain_stock(struct memcg_stock_pcp *stock)
2158 {
2159         struct mem_cgroup *old = stock->cached;
2160
2161         if (!old)
2162                 return;
2163
2164         if (stock->nr_pages) {
2165                 page_counter_uncharge(&old->memory, stock->nr_pages);
2166                 if (do_memsw_account())
2167                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2168                 stock->nr_pages = 0;
2169         }
2170
2171         css_put(&old->css);
2172         stock->cached = NULL;
2173 }
2174
2175 static void drain_local_stock(struct work_struct *dummy)
2176 {
2177         struct memcg_stock_pcp *stock;
2178         unsigned long flags;
2179
2180         /*
2181          * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2182          * drain_stock races is that we always operate on local CPU stock
2183          * here with IRQ disabled
2184          */
2185         local_irq_save(flags);
2186
2187         stock = this_cpu_ptr(&memcg_stock);
2188         drain_obj_stock(&stock->irq_obj);
2189         if (in_task())
2190                 drain_obj_stock(&stock->task_obj);
2191         drain_stock(stock);
2192         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2193
2194         local_irq_restore(flags);
2195 }
2196
2197 /*
2198  * Cache charges(val) to local per_cpu area.
2199  * This will be consumed by consume_stock() function, later.
2200  */
2201 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2202 {
2203         struct memcg_stock_pcp *stock;
2204         unsigned long flags;
2205
2206         local_irq_save(flags);
2207
2208         stock = this_cpu_ptr(&memcg_stock);
2209         if (stock->cached != memcg) { /* reset if necessary */
2210                 drain_stock(stock);
2211                 css_get(&memcg->css);
2212                 stock->cached = memcg;
2213         }
2214         stock->nr_pages += nr_pages;
2215
2216         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2217                 drain_stock(stock);
2218
2219         local_irq_restore(flags);
2220 }
2221
2222 /*
2223  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2224  * of the hierarchy under it.
2225  */
2226 static void drain_all_stock(struct mem_cgroup *root_memcg)
2227 {
2228         int cpu, curcpu;
2229
2230         /* If someone's already draining, avoid adding running more workers. */
2231         if (!mutex_trylock(&percpu_charge_mutex))
2232                 return;
2233         /*
2234          * Notify other cpus that system-wide "drain" is running
2235          * We do not care about races with the cpu hotplug because cpu down
2236          * as well as workers from this path always operate on the local
2237          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2238          */
2239         curcpu = get_cpu();
2240         for_each_online_cpu(cpu) {
2241                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2242                 struct mem_cgroup *memcg;
2243                 bool flush = false;
2244
2245                 rcu_read_lock();
2246                 memcg = stock->cached;
2247                 if (memcg && stock->nr_pages &&
2248                     mem_cgroup_is_descendant(memcg, root_memcg))
2249                         flush = true;
2250                 else if (obj_stock_flush_required(stock, root_memcg))
2251                         flush = true;
2252                 rcu_read_unlock();
2253
2254                 if (flush &&
2255                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2256                         if (cpu == curcpu)
2257                                 drain_local_stock(&stock->work);
2258                         else
2259                                 schedule_work_on(cpu, &stock->work);
2260                 }
2261         }
2262         put_cpu();
2263         mutex_unlock(&percpu_charge_mutex);
2264 }
2265
2266 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2267 {
2268         struct memcg_stock_pcp *stock;
2269
2270         stock = &per_cpu(memcg_stock, cpu);
2271         drain_stock(stock);
2272
2273         return 0;
2274 }
2275
2276 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2277                                   unsigned int nr_pages,
2278                                   gfp_t gfp_mask)
2279 {
2280         unsigned long nr_reclaimed = 0;
2281
2282         do {
2283                 unsigned long pflags;
2284
2285                 if (page_counter_read(&memcg->memory) <=
2286                     READ_ONCE(memcg->memory.high))
2287                         continue;
2288
2289                 memcg_memory_event(memcg, MEMCG_HIGH);
2290
2291                 psi_memstall_enter(&pflags);
2292                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2293                                                              gfp_mask, true);
2294                 psi_memstall_leave(&pflags);
2295         } while ((memcg = parent_mem_cgroup(memcg)) &&
2296                  !mem_cgroup_is_root(memcg));
2297
2298         return nr_reclaimed;
2299 }
2300
2301 static void high_work_func(struct work_struct *work)
2302 {
2303         struct mem_cgroup *memcg;
2304
2305         memcg = container_of(work, struct mem_cgroup, high_work);
2306         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2307 }
2308
2309 /*
2310  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2311  * enough to still cause a significant slowdown in most cases, while still
2312  * allowing diagnostics and tracing to proceed without becoming stuck.
2313  */
2314 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2315
2316 /*
2317  * When calculating the delay, we use these either side of the exponentiation to
2318  * maintain precision and scale to a reasonable number of jiffies (see the table
2319  * below.
2320  *
2321  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2322  *   overage ratio to a delay.
2323  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2324  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2325  *   to produce a reasonable delay curve.
2326  *
2327  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2328  * reasonable delay curve compared to precision-adjusted overage, not
2329  * penalising heavily at first, but still making sure that growth beyond the
2330  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2331  * example, with a high of 100 megabytes:
2332  *
2333  *  +-------+------------------------+
2334  *  | usage | time to allocate in ms |
2335  *  +-------+------------------------+
2336  *  | 100M  |                      0 |
2337  *  | 101M  |                      6 |
2338  *  | 102M  |                     25 |
2339  *  | 103M  |                     57 |
2340  *  | 104M  |                    102 |
2341  *  | 105M  |                    159 |
2342  *  | 106M  |                    230 |
2343  *  | 107M  |                    313 |
2344  *  | 108M  |                    409 |
2345  *  | 109M  |                    518 |
2346  *  | 110M  |                    639 |
2347  *  | 111M  |                    774 |
2348  *  | 112M  |                    921 |
2349  *  | 113M  |                   1081 |
2350  *  | 114M  |                   1254 |
2351  *  | 115M  |                   1439 |
2352  *  | 116M  |                   1638 |
2353  *  | 117M  |                   1849 |
2354  *  | 118M  |                   2000 |
2355  *  | 119M  |                   2000 |
2356  *  | 120M  |                   2000 |
2357  *  +-------+------------------------+
2358  */
2359  #define MEMCG_DELAY_PRECISION_SHIFT 20
2360  #define MEMCG_DELAY_SCALING_SHIFT 14
2361
2362 static u64 calculate_overage(unsigned long usage, unsigned long high)
2363 {
2364         u64 overage;
2365
2366         if (usage <= high)
2367                 return 0;
2368
2369         /*
2370          * Prevent division by 0 in overage calculation by acting as if
2371          * it was a threshold of 1 page
2372          */
2373         high = max(high, 1UL);
2374
2375         overage = usage - high;
2376         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2377         return div64_u64(overage, high);
2378 }
2379
2380 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2381 {
2382         u64 overage, max_overage = 0;
2383
2384         do {
2385                 overage = calculate_overage(page_counter_read(&memcg->memory),
2386                                             READ_ONCE(memcg->memory.high));
2387                 max_overage = max(overage, max_overage);
2388         } while ((memcg = parent_mem_cgroup(memcg)) &&
2389                  !mem_cgroup_is_root(memcg));
2390
2391         return max_overage;
2392 }
2393
2394 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2395 {
2396         u64 overage, max_overage = 0;
2397
2398         do {
2399                 overage = calculate_overage(page_counter_read(&memcg->swap),
2400                                             READ_ONCE(memcg->swap.high));
2401                 if (overage)
2402                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2403                 max_overage = max(overage, max_overage);
2404         } while ((memcg = parent_mem_cgroup(memcg)) &&
2405                  !mem_cgroup_is_root(memcg));
2406
2407         return max_overage;
2408 }
2409
2410 /*
2411  * Get the number of jiffies that we should penalise a mischievous cgroup which
2412  * is exceeding its memory.high by checking both it and its ancestors.
2413  */
2414 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2415                                           unsigned int nr_pages,
2416                                           u64 max_overage)
2417 {
2418         unsigned long penalty_jiffies;
2419
2420         if (!max_overage)
2421                 return 0;
2422
2423         /*
2424          * We use overage compared to memory.high to calculate the number of
2425          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2426          * fairly lenient on small overages, and increasingly harsh when the
2427          * memcg in question makes it clear that it has no intention of stopping
2428          * its crazy behaviour, so we exponentially increase the delay based on
2429          * overage amount.
2430          */
2431         penalty_jiffies = max_overage * max_overage * HZ;
2432         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2433         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2434
2435         /*
2436          * Factor in the task's own contribution to the overage, such that four
2437          * N-sized allocations are throttled approximately the same as one
2438          * 4N-sized allocation.
2439          *
2440          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2441          * larger the current charge patch is than that.
2442          */
2443         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2444 }
2445
2446 /*
2447  * Scheduled by try_charge() to be executed from the userland return path
2448  * and reclaims memory over the high limit.
2449  */
2450 void mem_cgroup_handle_over_high(void)
2451 {
2452         unsigned long penalty_jiffies;
2453         unsigned long pflags;
2454         unsigned long nr_reclaimed;
2455         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2456         int nr_retries = MAX_RECLAIM_RETRIES;
2457         struct mem_cgroup *memcg;
2458         bool in_retry = false;
2459
2460         if (likely(!nr_pages))
2461                 return;
2462
2463         memcg = get_mem_cgroup_from_mm(current->mm);
2464         current->memcg_nr_pages_over_high = 0;
2465
2466 retry_reclaim:
2467         /*
2468          * The allocating task should reclaim at least the batch size, but for
2469          * subsequent retries we only want to do what's necessary to prevent oom
2470          * or breaching resource isolation.
2471          *
2472          * This is distinct from memory.max or page allocator behaviour because
2473          * memory.high is currently batched, whereas memory.max and the page
2474          * allocator run every time an allocation is made.
2475          */
2476         nr_reclaimed = reclaim_high(memcg,
2477                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2478                                     GFP_KERNEL);
2479
2480         /*
2481          * memory.high is breached and reclaim is unable to keep up. Throttle
2482          * allocators proactively to slow down excessive growth.
2483          */
2484         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2485                                                mem_find_max_overage(memcg));
2486
2487         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2488                                                 swap_find_max_overage(memcg));
2489
2490         /*
2491          * Clamp the max delay per usermode return so as to still keep the
2492          * application moving forwards and also permit diagnostics, albeit
2493          * extremely slowly.
2494          */
2495         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2496
2497         /*
2498          * Don't sleep if the amount of jiffies this memcg owes us is so low
2499          * that it's not even worth doing, in an attempt to be nice to those who
2500          * go only a small amount over their memory.high value and maybe haven't
2501          * been aggressively reclaimed enough yet.
2502          */
2503         if (penalty_jiffies <= HZ / 100)
2504                 goto out;
2505
2506         /*
2507          * If reclaim is making forward progress but we're still over
2508          * memory.high, we want to encourage that rather than doing allocator
2509          * throttling.
2510          */
2511         if (nr_reclaimed || nr_retries--) {
2512                 in_retry = true;
2513                 goto retry_reclaim;
2514         }
2515
2516         /*
2517          * If we exit early, we're guaranteed to die (since
2518          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2519          * need to account for any ill-begotten jiffies to pay them off later.
2520          */
2521         psi_memstall_enter(&pflags);
2522         schedule_timeout_killable(penalty_jiffies);
2523         psi_memstall_leave(&pflags);
2524
2525 out:
2526         css_put(&memcg->css);
2527 }
2528
2529 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2530                         unsigned int nr_pages)
2531 {
2532         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2533         int nr_retries = MAX_RECLAIM_RETRIES;
2534         struct mem_cgroup *mem_over_limit;
2535         struct page_counter *counter;
2536         enum oom_status oom_status;
2537         unsigned long nr_reclaimed;
2538         bool may_swap = true;
2539         bool drained = false;
2540         unsigned long pflags;
2541
2542 retry:
2543         if (consume_stock(memcg, nr_pages))
2544                 return 0;
2545
2546         if (!do_memsw_account() ||
2547             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2548                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2549                         goto done_restock;
2550                 if (do_memsw_account())
2551                         page_counter_uncharge(&memcg->memsw, batch);
2552                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2553         } else {
2554                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2555                 may_swap = false;
2556         }
2557
2558         if (batch > nr_pages) {
2559                 batch = nr_pages;
2560                 goto retry;
2561         }
2562
2563         /*
2564          * Memcg doesn't have a dedicated reserve for atomic
2565          * allocations. But like the global atomic pool, we need to
2566          * put the burden of reclaim on regular allocation requests
2567          * and let these go through as privileged allocations.
2568          */
2569         if (gfp_mask & __GFP_ATOMIC)
2570                 goto force;
2571
2572         /*
2573          * Unlike in global OOM situations, memcg is not in a physical
2574          * memory shortage.  Allow dying and OOM-killed tasks to
2575          * bypass the last charges so that they can exit quickly and
2576          * free their memory.
2577          */
2578         if (unlikely(should_force_charge()))
2579                 goto force;
2580
2581         /*
2582          * Prevent unbounded recursion when reclaim operations need to
2583          * allocate memory. This might exceed the limits temporarily,
2584          * but we prefer facilitating memory reclaim and getting back
2585          * under the limit over triggering OOM kills in these cases.
2586          */
2587         if (unlikely(current->flags & PF_MEMALLOC))
2588                 goto force;
2589
2590         if (unlikely(task_in_memcg_oom(current)))
2591                 goto nomem;
2592
2593         if (!gfpflags_allow_blocking(gfp_mask))
2594                 goto nomem;
2595
2596         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2597
2598         psi_memstall_enter(&pflags);
2599         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2600                                                     gfp_mask, may_swap);
2601         psi_memstall_leave(&pflags);
2602
2603         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2604                 goto retry;
2605
2606         if (!drained) {
2607                 drain_all_stock(mem_over_limit);
2608                 drained = true;
2609                 goto retry;
2610         }
2611
2612         if (gfp_mask & __GFP_NORETRY)
2613                 goto nomem;
2614         /*
2615          * Even though the limit is exceeded at this point, reclaim
2616          * may have been able to free some pages.  Retry the charge
2617          * before killing the task.
2618          *
2619          * Only for regular pages, though: huge pages are rather
2620          * unlikely to succeed so close to the limit, and we fall back
2621          * to regular pages anyway in case of failure.
2622          */
2623         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2624                 goto retry;
2625         /*
2626          * At task move, charge accounts can be doubly counted. So, it's
2627          * better to wait until the end of task_move if something is going on.
2628          */
2629         if (mem_cgroup_wait_acct_move(mem_over_limit))
2630                 goto retry;
2631
2632         if (nr_retries--)
2633                 goto retry;
2634
2635         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2636                 goto nomem;
2637
2638         if (fatal_signal_pending(current))
2639                 goto force;
2640
2641         /*
2642          * keep retrying as long as the memcg oom killer is able to make
2643          * a forward progress or bypass the charge if the oom killer
2644          * couldn't make any progress.
2645          */
2646         oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2647                        get_order(nr_pages * PAGE_SIZE));
2648         switch (oom_status) {
2649         case OOM_SUCCESS:
2650                 nr_retries = MAX_RECLAIM_RETRIES;
2651                 goto retry;
2652         case OOM_FAILED:
2653                 goto force;
2654         default:
2655                 goto nomem;
2656         }
2657 nomem:
2658         if (!(gfp_mask & __GFP_NOFAIL))
2659                 return -ENOMEM;
2660 force:
2661         /*
2662          * The allocation either can't fail or will lead to more memory
2663          * being freed very soon.  Allow memory usage go over the limit
2664          * temporarily by force charging it.
2665          */
2666         page_counter_charge(&memcg->memory, nr_pages);
2667         if (do_memsw_account())
2668                 page_counter_charge(&memcg->memsw, nr_pages);
2669
2670         return 0;
2671
2672 done_restock:
2673         if (batch > nr_pages)
2674                 refill_stock(memcg, batch - nr_pages);
2675
2676         /*
2677          * If the hierarchy is above the normal consumption range, schedule
2678          * reclaim on returning to userland.  We can perform reclaim here
2679          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2680          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2681          * not recorded as it most likely matches current's and won't
2682          * change in the meantime.  As high limit is checked again before
2683          * reclaim, the cost of mismatch is negligible.
2684          */
2685         do {
2686                 bool mem_high, swap_high;
2687
2688                 mem_high = page_counter_read(&memcg->memory) >
2689                         READ_ONCE(memcg->memory.high);
2690                 swap_high = page_counter_read(&memcg->swap) >
2691                         READ_ONCE(memcg->swap.high);
2692
2693                 /* Don't bother a random interrupted task */
2694                 if (in_interrupt()) {
2695                         if (mem_high) {
2696                                 schedule_work(&memcg->high_work);
2697                                 break;
2698                         }
2699                         continue;
2700                 }
2701
2702                 if (mem_high || swap_high) {
2703                         /*
2704                          * The allocating tasks in this cgroup will need to do
2705                          * reclaim or be throttled to prevent further growth
2706                          * of the memory or swap footprints.
2707                          *
2708                          * Target some best-effort fairness between the tasks,
2709                          * and distribute reclaim work and delay penalties
2710                          * based on how much each task is actually allocating.
2711                          */
2712                         current->memcg_nr_pages_over_high += batch;
2713                         set_notify_resume(current);
2714                         break;
2715                 }
2716         } while ((memcg = parent_mem_cgroup(memcg)));
2717
2718         return 0;
2719 }
2720
2721 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2722                              unsigned int nr_pages)
2723 {
2724         if (mem_cgroup_is_root(memcg))
2725                 return 0;
2726
2727         return try_charge_memcg(memcg, gfp_mask, nr_pages);
2728 }
2729
2730 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2731 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2732 {
2733         if (mem_cgroup_is_root(memcg))
2734                 return;
2735
2736         page_counter_uncharge(&memcg->memory, nr_pages);
2737         if (do_memsw_account())
2738                 page_counter_uncharge(&memcg->memsw, nr_pages);
2739 }
2740 #endif
2741
2742 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2743 {
2744         VM_BUG_ON_PAGE(page_memcg(page), page);
2745         /*
2746          * Any of the following ensures page's memcg stability:
2747          *
2748          * - the page lock
2749          * - LRU isolation
2750          * - lock_page_memcg()
2751          * - exclusive reference
2752          */
2753         page->memcg_data = (unsigned long)memcg;
2754 }
2755
2756 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2757 {
2758         struct mem_cgroup *memcg;
2759
2760         rcu_read_lock();
2761 retry:
2762         memcg = obj_cgroup_memcg(objcg);
2763         if (unlikely(!css_tryget(&memcg->css)))
2764                 goto retry;
2765         rcu_read_unlock();
2766
2767         return memcg;
2768 }
2769
2770 #ifdef CONFIG_MEMCG_KMEM
2771 /*
2772  * The allocated objcg pointers array is not accounted directly.
2773  * Moreover, it should not come from DMA buffer and is not readily
2774  * reclaimable. So those GFP bits should be masked off.
2775  */
2776 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2777
2778 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2779                                  gfp_t gfp, bool new_page)
2780 {
2781         unsigned int objects = objs_per_slab_page(s, page);
2782         unsigned long memcg_data;
2783         void *vec;
2784
2785         gfp &= ~OBJCGS_CLEAR_MASK;
2786         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2787                            page_to_nid(page));
2788         if (!vec)
2789                 return -ENOMEM;
2790
2791         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2792         if (new_page) {
2793                 /*
2794                  * If the slab page is brand new and nobody can yet access
2795                  * it's memcg_data, no synchronization is required and
2796                  * memcg_data can be simply assigned.
2797                  */
2798                 page->memcg_data = memcg_data;
2799         } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2800                 /*
2801                  * If the slab page is already in use, somebody can allocate
2802                  * and assign obj_cgroups in parallel. In this case the existing
2803                  * objcg vector should be reused.
2804                  */
2805                 kfree(vec);
2806                 return 0;
2807         }
2808
2809         kmemleak_not_leak(vec);
2810         return 0;
2811 }
2812
2813 /*
2814  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2815  *
2816  * A passed kernel object can be a slab object or a generic kernel page, so
2817  * different mechanisms for getting the memory cgroup pointer should be used.
2818  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2819  * can not know for sure how the kernel object is implemented.
2820  * mem_cgroup_from_obj() can be safely used in such cases.
2821  *
2822  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2823  * cgroup_mutex, etc.
2824  */
2825 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2826 {
2827         struct page *page;
2828
2829         if (mem_cgroup_disabled())
2830                 return NULL;
2831
2832         page = virt_to_head_page(p);
2833
2834         /*
2835          * Slab objects are accounted individually, not per-page.
2836          * Memcg membership data for each individual object is saved in
2837          * the page->obj_cgroups.
2838          */
2839         if (page_objcgs_check(page)) {
2840                 struct obj_cgroup *objcg;
2841                 unsigned int off;
2842
2843                 off = obj_to_index(page->slab_cache, page, p);
2844                 objcg = page_objcgs(page)[off];
2845                 if (objcg)
2846                         return obj_cgroup_memcg(objcg);
2847
2848                 return NULL;
2849         }
2850
2851         /*
2852          * page_memcg_check() is used here, because page_has_obj_cgroups()
2853          * check above could fail because the object cgroups vector wasn't set
2854          * at that moment, but it can be set concurrently.
2855          * page_memcg_check(page) will guarantee that a proper memory
2856          * cgroup pointer or NULL will be returned.
2857          */
2858         return page_memcg_check(page);
2859 }
2860
2861 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2862 {
2863         struct obj_cgroup *objcg = NULL;
2864         struct mem_cgroup *memcg;
2865
2866         if (memcg_kmem_bypass())
2867                 return NULL;
2868
2869         rcu_read_lock();
2870         if (unlikely(active_memcg()))
2871                 memcg = active_memcg();
2872         else
2873                 memcg = mem_cgroup_from_task(current);
2874
2875         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2876                 objcg = rcu_dereference(memcg->objcg);
2877                 if (objcg && obj_cgroup_tryget(objcg))
2878                         break;
2879                 objcg = NULL;
2880         }
2881         rcu_read_unlock();
2882
2883         return objcg;
2884 }
2885
2886 static int memcg_alloc_cache_id(void)
2887 {
2888         int id, size;
2889         int err;
2890
2891         id = ida_simple_get(&memcg_cache_ida,
2892                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2893         if (id < 0)
2894                 return id;
2895
2896         if (id < memcg_nr_cache_ids)
2897                 return id;
2898
2899         /*
2900          * There's no space for the new id in memcg_caches arrays,
2901          * so we have to grow them.
2902          */
2903         down_write(&memcg_cache_ids_sem);
2904
2905         size = 2 * (id + 1);
2906         if (size < MEMCG_CACHES_MIN_SIZE)
2907                 size = MEMCG_CACHES_MIN_SIZE;
2908         else if (size > MEMCG_CACHES_MAX_SIZE)
2909                 size = MEMCG_CACHES_MAX_SIZE;
2910
2911         err = memcg_update_all_list_lrus(size);
2912         if (!err)
2913                 memcg_nr_cache_ids = size;
2914
2915         up_write(&memcg_cache_ids_sem);
2916
2917         if (err) {
2918                 ida_simple_remove(&memcg_cache_ida, id);
2919                 return err;
2920         }
2921         return id;
2922 }
2923
2924 static void memcg_free_cache_id(int id)
2925 {
2926         ida_simple_remove(&memcg_cache_ida, id);
2927 }
2928
2929 /*
2930  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2931  * @objcg: object cgroup to uncharge
2932  * @nr_pages: number of pages to uncharge
2933  */
2934 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2935                                       unsigned int nr_pages)
2936 {
2937         struct mem_cgroup *memcg;
2938
2939         memcg = get_mem_cgroup_from_objcg(objcg);
2940
2941         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2942                 page_counter_uncharge(&memcg->kmem, nr_pages);
2943         refill_stock(memcg, nr_pages);
2944
2945         css_put(&memcg->css);
2946 }
2947
2948 /*
2949  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2950  * @objcg: object cgroup to charge
2951  * @gfp: reclaim mode
2952  * @nr_pages: number of pages to charge
2953  *
2954  * Returns 0 on success, an error code on failure.
2955  */
2956 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2957                                    unsigned int nr_pages)
2958 {
2959         struct page_counter *counter;
2960         struct mem_cgroup *memcg;
2961         int ret;
2962
2963         memcg = get_mem_cgroup_from_objcg(objcg);
2964
2965         ret = try_charge_memcg(memcg, gfp, nr_pages);
2966         if (ret)
2967                 goto out;
2968
2969         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2970             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2971
2972                 /*
2973                  * Enforce __GFP_NOFAIL allocation because callers are not
2974                  * prepared to see failures and likely do not have any failure
2975                  * handling code.
2976                  */
2977                 if (gfp & __GFP_NOFAIL) {
2978                         page_counter_charge(&memcg->kmem, nr_pages);
2979                         goto out;
2980                 }
2981                 cancel_charge(memcg, nr_pages);
2982                 ret = -ENOMEM;
2983         }
2984 out:
2985         css_put(&memcg->css);
2986
2987         return ret;
2988 }
2989
2990 /**
2991  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2992  * @page: page to charge
2993  * @gfp: reclaim mode
2994  * @order: allocation order
2995  *
2996  * Returns 0 on success, an error code on failure.
2997  */
2998 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2999 {
3000         struct obj_cgroup *objcg;
3001         int ret = 0;
3002
3003         objcg = get_obj_cgroup_from_current();
3004         if (objcg) {
3005                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3006                 if (!ret) {
3007                         page->memcg_data = (unsigned long)objcg |
3008                                 MEMCG_DATA_KMEM;
3009                         return 0;
3010                 }
3011                 obj_cgroup_put(objcg);
3012         }
3013         return ret;
3014 }
3015
3016 /**
3017  * __memcg_kmem_uncharge_page: uncharge a kmem page
3018  * @page: page to uncharge
3019  * @order: allocation order
3020  */
3021 void __memcg_kmem_uncharge_page(struct page *page, int order)
3022 {
3023         struct obj_cgroup *objcg;
3024         unsigned int nr_pages = 1 << order;
3025
3026         if (!PageMemcgKmem(page))
3027                 return;
3028
3029         objcg = __page_objcg(page);
3030         obj_cgroup_uncharge_pages(objcg, nr_pages);
3031         page->memcg_data = 0;
3032         obj_cgroup_put(objcg);
3033 }
3034
3035 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3036                      enum node_stat_item idx, int nr)
3037 {
3038         unsigned long flags;
3039         struct obj_stock *stock = get_obj_stock(&flags);
3040         int *bytes;
3041
3042         /*
3043          * Save vmstat data in stock and skip vmstat array update unless
3044          * accumulating over a page of vmstat data or when pgdat or idx
3045          * changes.
3046          */
3047         if (stock->cached_objcg != objcg) {
3048                 drain_obj_stock(stock);
3049                 obj_cgroup_get(objcg);
3050                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3051                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3052                 stock->cached_objcg = objcg;
3053                 stock->cached_pgdat = pgdat;
3054         } else if (stock->cached_pgdat != pgdat) {
3055                 /* Flush the existing cached vmstat data */
3056                 struct pglist_data *oldpg = stock->cached_pgdat;
3057
3058                 if (stock->nr_slab_reclaimable_b) {
3059                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3060                                           stock->nr_slab_reclaimable_b);
3061                         stock->nr_slab_reclaimable_b = 0;
3062                 }
3063                 if (stock->nr_slab_unreclaimable_b) {
3064                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3065                                           stock->nr_slab_unreclaimable_b);
3066                         stock->nr_slab_unreclaimable_b = 0;
3067                 }
3068                 stock->cached_pgdat = pgdat;
3069         }
3070
3071         bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3072                                                : &stock->nr_slab_unreclaimable_b;
3073         /*
3074          * Even for large object >= PAGE_SIZE, the vmstat data will still be
3075          * cached locally at least once before pushing it out.
3076          */
3077         if (!*bytes) {
3078                 *bytes = nr;
3079                 nr = 0;
3080         } else {
3081                 *bytes += nr;
3082                 if (abs(*bytes) > PAGE_SIZE) {
3083                         nr = *bytes;
3084                         *bytes = 0;
3085                 } else {
3086                         nr = 0;
3087                 }
3088         }
3089         if (nr)
3090                 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3091
3092         put_obj_stock(flags);
3093 }
3094
3095 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3096 {
3097         unsigned long flags;
3098         struct obj_stock *stock = get_obj_stock(&flags);
3099         bool ret = false;
3100
3101         if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3102                 stock->nr_bytes -= nr_bytes;
3103                 ret = true;
3104         }
3105
3106         put_obj_stock(flags);
3107
3108         return ret;
3109 }
3110
3111 static void drain_obj_stock(struct obj_stock *stock)
3112 {
3113         struct obj_cgroup *old = stock->cached_objcg;
3114
3115         if (!old)
3116                 return;
3117
3118         if (stock->nr_bytes) {
3119                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3120                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3121
3122                 if (nr_pages)
3123                         obj_cgroup_uncharge_pages(old, nr_pages);
3124
3125                 /*
3126                  * The leftover is flushed to the centralized per-memcg value.
3127                  * On the next attempt to refill obj stock it will be moved
3128                  * to a per-cpu stock (probably, on an other CPU), see
3129                  * refill_obj_stock().
3130                  *
3131                  * How often it's flushed is a trade-off between the memory
3132                  * limit enforcement accuracy and potential CPU contention,
3133                  * so it might be changed in the future.
3134                  */
3135                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3136                 stock->nr_bytes = 0;
3137         }
3138
3139         /*
3140          * Flush the vmstat data in current stock
3141          */
3142         if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3143                 if (stock->nr_slab_reclaimable_b) {
3144                         mod_objcg_mlstate(old, stock->cached_pgdat,
3145                                           NR_SLAB_RECLAIMABLE_B,
3146                                           stock->nr_slab_reclaimable_b);
3147                         stock->nr_slab_reclaimable_b = 0;
3148                 }
3149                 if (stock->nr_slab_unreclaimable_b) {
3150                         mod_objcg_mlstate(old, stock->cached_pgdat,
3151                                           NR_SLAB_UNRECLAIMABLE_B,
3152                                           stock->nr_slab_unreclaimable_b);
3153                         stock->nr_slab_unreclaimable_b = 0;
3154                 }
3155                 stock->cached_pgdat = NULL;
3156         }
3157
3158         obj_cgroup_put(old);
3159         stock->cached_objcg = NULL;
3160 }
3161
3162 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3163                                      struct mem_cgroup *root_memcg)
3164 {
3165         struct mem_cgroup *memcg;
3166
3167         if (in_task() && stock->task_obj.cached_objcg) {
3168                 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3169                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3170                         return true;
3171         }
3172         if (stock->irq_obj.cached_objcg) {
3173                 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3174                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3175                         return true;
3176         }
3177
3178         return false;
3179 }
3180
3181 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3182                              bool allow_uncharge)
3183 {
3184         unsigned long flags;
3185         struct obj_stock *stock = get_obj_stock(&flags);
3186         unsigned int nr_pages = 0;
3187
3188         if (stock->cached_objcg != objcg) { /* reset if necessary */
3189                 drain_obj_stock(stock);
3190                 obj_cgroup_get(objcg);
3191                 stock->cached_objcg = objcg;
3192                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3193                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3194                 allow_uncharge = true;  /* Allow uncharge when objcg changes */
3195         }
3196         stock->nr_bytes += nr_bytes;
3197
3198         if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3199                 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3200                 stock->nr_bytes &= (PAGE_SIZE - 1);
3201         }
3202
3203         put_obj_stock(flags);
3204
3205         if (nr_pages)
3206                 obj_cgroup_uncharge_pages(objcg, nr_pages);
3207 }
3208
3209 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3210 {
3211         unsigned int nr_pages, nr_bytes;
3212         int ret;
3213
3214         if (consume_obj_stock(objcg, size))
3215                 return 0;
3216
3217         /*
3218          * In theory, objcg->nr_charged_bytes can have enough
3219          * pre-charged bytes to satisfy the allocation. However,
3220          * flushing objcg->nr_charged_bytes requires two atomic
3221          * operations, and objcg->nr_charged_bytes can't be big.
3222          * The shared objcg->nr_charged_bytes can also become a
3223          * performance bottleneck if all tasks of the same memcg are
3224          * trying to update it. So it's better to ignore it and try
3225          * grab some new pages. The stock's nr_bytes will be flushed to
3226          * objcg->nr_charged_bytes later on when objcg changes.
3227          *
3228          * The stock's nr_bytes may contain enough pre-charged bytes
3229          * to allow one less page from being charged, but we can't rely
3230          * on the pre-charged bytes not being changed outside of
3231          * consume_obj_stock() or refill_obj_stock(). So ignore those
3232          * pre-charged bytes as well when charging pages. To avoid a
3233          * page uncharge right after a page charge, we set the
3234          * allow_uncharge flag to false when calling refill_obj_stock()
3235          * to temporarily allow the pre-charged bytes to exceed the page
3236          * size limit. The maximum reachable value of the pre-charged
3237          * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3238          * race.
3239          */
3240         nr_pages = size >> PAGE_SHIFT;
3241         nr_bytes = size & (PAGE_SIZE - 1);
3242
3243         if (nr_bytes)
3244                 nr_pages += 1;
3245
3246         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3247         if (!ret && nr_bytes)
3248                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3249
3250         return ret;
3251 }
3252
3253 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3254 {
3255         refill_obj_stock(objcg, size, true);
3256 }
3257
3258 #endif /* CONFIG_MEMCG_KMEM */
3259
3260 /*
3261  * Because page_memcg(head) is not set on tails, set it now.
3262  */
3263 void split_page_memcg(struct page *head, unsigned int nr)
3264 {
3265         struct mem_cgroup *memcg = page_memcg(head);
3266         int i;
3267
3268         if (mem_cgroup_disabled() || !memcg)
3269                 return;
3270
3271         for (i = 1; i < nr; i++)
3272                 head[i].memcg_data = head->memcg_data;
3273
3274         if (PageMemcgKmem(head))
3275                 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3276         else
3277                 css_get_many(&memcg->css, nr - 1);
3278 }
3279
3280 #ifdef CONFIG_MEMCG_SWAP
3281 /**
3282  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3283  * @entry: swap entry to be moved
3284  * @from:  mem_cgroup which the entry is moved from
3285  * @to:  mem_cgroup which the entry is moved to
3286  *
3287  * It succeeds only when the swap_cgroup's record for this entry is the same
3288  * as the mem_cgroup's id of @from.
3289  *
3290  * Returns 0 on success, -EINVAL on failure.
3291  *
3292  * The caller must have charged to @to, IOW, called page_counter_charge() about
3293  * both res and memsw, and called css_get().
3294  */
3295 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3296                                 struct mem_cgroup *from, struct mem_cgroup *to)
3297 {
3298         unsigned short old_id, new_id;
3299
3300         old_id = mem_cgroup_id(from);
3301         new_id = mem_cgroup_id(to);
3302
3303         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3304                 mod_memcg_state(from, MEMCG_SWAP, -1);
3305                 mod_memcg_state(to, MEMCG_SWAP, 1);
3306                 return 0;
3307         }
3308         return -EINVAL;
3309 }
3310 #else
3311 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3312                                 struct mem_cgroup *from, struct mem_cgroup *to)
3313 {
3314         return -EINVAL;
3315 }
3316 #endif
3317
3318 static DEFINE_MUTEX(memcg_max_mutex);
3319
3320 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3321                                  unsigned long max, bool memsw)
3322 {
3323         bool enlarge = false;
3324         bool drained = false;
3325         int ret;
3326         bool limits_invariant;
3327         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3328
3329         do {
3330                 if (signal_pending(current)) {
3331                         ret = -EINTR;
3332                         break;
3333                 }
3334
3335                 mutex_lock(&memcg_max_mutex);
3336                 /*
3337                  * Make sure that the new limit (memsw or memory limit) doesn't
3338                  * break our basic invariant rule memory.max <= memsw.max.
3339                  */
3340                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3341                                            max <= memcg->memsw.max;
3342                 if (!limits_invariant) {
3343                         mutex_unlock(&memcg_max_mutex);
3344                         ret = -EINVAL;
3345                         break;
3346                 }
3347                 if (max > counter->max)
3348                         enlarge = true;
3349                 ret = page_counter_set_max(counter, max);
3350                 mutex_unlock(&memcg_max_mutex);
3351
3352                 if (!ret)
3353                         break;
3354
3355                 if (!drained) {
3356                         drain_all_stock(memcg);
3357                         drained = true;
3358                         continue;
3359                 }
3360
3361                 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3362                                         GFP_KERNEL, !memsw)) {
3363                         ret = -EBUSY;
3364                         break;
3365                 }
3366         } while (true);
3367
3368         if (!ret && enlarge)
3369                 memcg_oom_recover(memcg);
3370
3371         return ret;
3372 }
3373
3374 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3375                                             gfp_t gfp_mask,
3376                                             unsigned long *total_scanned)
3377 {
3378         unsigned long nr_reclaimed = 0;
3379         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3380         unsigned long reclaimed;
3381         int loop = 0;
3382         struct mem_cgroup_tree_per_node *mctz;
3383         unsigned long excess;
3384         unsigned long nr_scanned;
3385
3386         if (order > 0)
3387                 return 0;
3388
3389         mctz = soft_limit_tree_node(pgdat->node_id);
3390
3391         /*
3392          * Do not even bother to check the largest node if the root
3393          * is empty. Do it lockless to prevent lock bouncing. Races
3394          * are acceptable as soft limit is best effort anyway.
3395          */
3396         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3397                 return 0;
3398
3399         /*
3400          * This loop can run a while, specially if mem_cgroup's continuously
3401          * keep exceeding their soft limit and putting the system under
3402          * pressure
3403          */
3404         do {
3405                 if (next_mz)
3406                         mz = next_mz;
3407                 else
3408                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3409                 if (!mz)
3410                         break;
3411
3412                 nr_scanned = 0;
3413                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3414                                                     gfp_mask, &nr_scanned);
3415                 nr_reclaimed += reclaimed;
3416                 *total_scanned += nr_scanned;
3417                 spin_lock_irq(&mctz->lock);
3418                 __mem_cgroup_remove_exceeded(mz, mctz);
3419
3420                 /*
3421                  * If we failed to reclaim anything from this memory cgroup
3422                  * it is time to move on to the next cgroup
3423                  */
3424                 next_mz = NULL;
3425                 if (!reclaimed)
3426                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3427
3428                 excess = soft_limit_excess(mz->memcg);
3429                 /*
3430                  * One school of thought says that we should not add
3431                  * back the node to the tree if reclaim returns 0.
3432                  * But our reclaim could return 0, simply because due
3433                  * to priority we are exposing a smaller subset of
3434                  * memory to reclaim from. Consider this as a longer
3435                  * term TODO.
3436                  */
3437                 /* If excess == 0, no tree ops */
3438                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3439                 spin_unlock_irq(&mctz->lock);
3440                 css_put(&mz->memcg->css);
3441                 loop++;
3442                 /*
3443                  * Could not reclaim anything and there are no more
3444                  * mem cgroups to try or we seem to be looping without
3445                  * reclaiming anything.
3446                  */
3447                 if (!nr_reclaimed &&
3448                         (next_mz == NULL ||
3449                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3450                         break;
3451         } while (!nr_reclaimed);
3452         if (next_mz)
3453                 css_put(&next_mz->memcg->css);
3454         return nr_reclaimed;
3455 }
3456
3457 /*
3458  * Reclaims as many pages from the given memcg as possible.
3459  *
3460  * Caller is responsible for holding css reference for memcg.
3461  */
3462 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3463 {
3464         int nr_retries = MAX_RECLAIM_RETRIES;
3465
3466         /* we call try-to-free pages for make this cgroup empty */
3467         lru_add_drain_all();
3468
3469         drain_all_stock(memcg);
3470
3471         /* try to free all pages in this cgroup */
3472         while (nr_retries && page_counter_read(&memcg->memory)) {
3473                 int progress;
3474
3475                 if (signal_pending(current))
3476                         return -EINTR;
3477
3478                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3479                                                         GFP_KERNEL, true);
3480                 if (!progress) {
3481                         nr_retries--;
3482                         /* maybe some writeback is necessary */
3483                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3484                 }
3485
3486         }
3487
3488         return 0;
3489 }
3490
3491 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3492                                             char *buf, size_t nbytes,
3493                                             loff_t off)
3494 {
3495         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3496
3497         if (mem_cgroup_is_root(memcg))
3498                 return -EINVAL;
3499         return mem_cgroup_force_empty(memcg) ?: nbytes;
3500 }
3501
3502 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3503                                      struct cftype *cft)
3504 {
3505         return 1;
3506 }
3507
3508 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3509                                       struct cftype *cft, u64 val)
3510 {
3511         if (val == 1)
3512                 return 0;
3513
3514         pr_warn_once("Non-hierarchical mode is deprecated. "
3515                      "Please report your usecase to linux-mm@kvack.org if you "
3516                      "depend on this functionality.\n");
3517
3518         return -EINVAL;
3519 }
3520
3521 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3522 {
3523         unsigned long val;
3524
3525         if (mem_cgroup_is_root(memcg)) {
3526                 /* mem_cgroup_threshold() calls here from irqsafe context */
3527                 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3528                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3529                         memcg_page_state(memcg, NR_ANON_MAPPED);
3530                 if (swap)
3531                         val += memcg_page_state(memcg, MEMCG_SWAP);
3532         } else {
3533                 if (!swap)
3534                         val = page_counter_read(&memcg->memory);
3535                 else
3536                         val = page_counter_read(&memcg->memsw);
3537         }
3538         return val;
3539 }
3540
3541 enum {
3542         RES_USAGE,
3543         RES_LIMIT,
3544         RES_MAX_USAGE,
3545         RES_FAILCNT,
3546         RES_SOFT_LIMIT,
3547 };
3548
3549 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3550                                struct cftype *cft)
3551 {
3552         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3553         struct page_counter *counter;
3554
3555         switch (MEMFILE_TYPE(cft->private)) {
3556         case _MEM:
3557                 counter = &memcg->memory;
3558                 break;
3559         case _MEMSWAP:
3560                 counter = &memcg->memsw;
3561                 break;
3562         case _KMEM:
3563                 counter = &memcg->kmem;
3564                 break;
3565         case _TCP:
3566                 counter = &memcg->tcpmem;
3567                 break;
3568         default:
3569                 BUG();
3570         }
3571
3572         switch (MEMFILE_ATTR(cft->private)) {
3573         case RES_USAGE:
3574                 if (counter == &memcg->memory)
3575                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3576                 if (counter == &memcg->memsw)
3577                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3578                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3579         case RES_LIMIT:
3580                 return (u64)counter->max * PAGE_SIZE;
3581         case RES_MAX_USAGE:
3582                 return (u64)counter->watermark * PAGE_SIZE;
3583         case RES_FAILCNT:
3584                 return counter->failcnt;
3585         case RES_SOFT_LIMIT:
3586                 return (u64)memcg->soft_limit * PAGE_SIZE;
3587         default:
3588                 BUG();
3589         }
3590 }
3591
3592 #ifdef CONFIG_MEMCG_KMEM
3593 static int memcg_online_kmem(struct mem_cgroup *memcg)
3594 {
3595         struct obj_cgroup *objcg;
3596         int memcg_id;
3597
3598         if (cgroup_memory_nokmem)
3599                 return 0;
3600
3601         BUG_ON(memcg->kmemcg_id >= 0);
3602         BUG_ON(memcg->kmem_state);
3603
3604         memcg_id = memcg_alloc_cache_id();
3605         if (memcg_id < 0)
3606                 return memcg_id;
3607
3608         objcg = obj_cgroup_alloc();
3609         if (!objcg) {
3610                 memcg_free_cache_id(memcg_id);
3611                 return -ENOMEM;
3612         }
3613         objcg->memcg = memcg;
3614         rcu_assign_pointer(memcg->objcg, objcg);
3615
3616         static_branch_enable(&memcg_kmem_enabled_key);
3617
3618         memcg->kmemcg_id = memcg_id;
3619         memcg->kmem_state = KMEM_ONLINE;
3620
3621         return 0;
3622 }
3623
3624 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3625 {
3626         struct cgroup_subsys_state *css;
3627         struct mem_cgroup *parent, *child;
3628         int kmemcg_id;
3629
3630         if (memcg->kmem_state != KMEM_ONLINE)
3631                 return;
3632
3633         memcg->kmem_state = KMEM_ALLOCATED;
3634
3635         parent = parent_mem_cgroup(memcg);
3636         if (!parent)
3637                 parent = root_mem_cgroup;
3638
3639         memcg_reparent_objcgs(memcg, parent);
3640
3641         kmemcg_id = memcg->kmemcg_id;
3642         BUG_ON(kmemcg_id < 0);
3643
3644         /*
3645          * Change kmemcg_id of this cgroup and all its descendants to the
3646          * parent's id, and then move all entries from this cgroup's list_lrus
3647          * to ones of the parent. After we have finished, all list_lrus
3648          * corresponding to this cgroup are guaranteed to remain empty. The
3649          * ordering is imposed by list_lru_node->lock taken by
3650          * memcg_drain_all_list_lrus().
3651          */
3652         rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3653         css_for_each_descendant_pre(css, &memcg->css) {
3654                 child = mem_cgroup_from_css(css);
3655                 BUG_ON(child->kmemcg_id != kmemcg_id);
3656                 child->kmemcg_id = parent->kmemcg_id;
3657         }
3658         rcu_read_unlock();
3659
3660         memcg_drain_all_list_lrus(kmemcg_id, parent);
3661
3662         memcg_free_cache_id(kmemcg_id);
3663 }
3664
3665 static void memcg_free_kmem(struct mem_cgroup *memcg)
3666 {
3667         /* css_alloc() failed, offlining didn't happen */
3668         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3669                 memcg_offline_kmem(memcg);
3670 }
3671 #else
3672 static int memcg_online_kmem(struct mem_cgroup *memcg)
3673 {
3674         return 0;
3675 }
3676 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3677 {
3678 }
3679 static void memcg_free_kmem(struct mem_cgroup *memcg)
3680 {
3681 }
3682 #endif /* CONFIG_MEMCG_KMEM */
3683
3684 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3685                                  unsigned long max)
3686 {
3687         int ret;
3688
3689         mutex_lock(&memcg_max_mutex);
3690         ret = page_counter_set_max(&memcg->kmem, max);
3691         mutex_unlock(&memcg_max_mutex);
3692         return ret;
3693 }
3694
3695 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3696 {
3697         int ret;
3698
3699         mutex_lock(&memcg_max_mutex);
3700
3701         ret = page_counter_set_max(&memcg->tcpmem, max);
3702         if (ret)
3703                 goto out;
3704
3705         if (!memcg->tcpmem_active) {
3706                 /*
3707                  * The active flag needs to be written after the static_key
3708                  * update. This is what guarantees that the socket activation
3709                  * function is the last one to run. See mem_cgroup_sk_alloc()
3710                  * for details, and note that we don't mark any socket as
3711                  * belonging to this memcg until that flag is up.
3712                  *
3713                  * We need to do this, because static_keys will span multiple
3714                  * sites, but we can't control their order. If we mark a socket
3715                  * as accounted, but the accounting functions are not patched in
3716                  * yet, we'll lose accounting.
3717                  *
3718                  * We never race with the readers in mem_cgroup_sk_alloc(),
3719                  * because when this value change, the code to process it is not
3720                  * patched in yet.
3721                  */
3722                 static_branch_inc(&memcg_sockets_enabled_key);
3723                 memcg->tcpmem_active = true;
3724         }
3725 out:
3726         mutex_unlock(&memcg_max_mutex);
3727         return ret;
3728 }
3729
3730 /*
3731  * The user of this function is...
3732  * RES_LIMIT.
3733  */
3734 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3735                                 char *buf, size_t nbytes, loff_t off)
3736 {
3737         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3738         unsigned long nr_pages;
3739         int ret;
3740
3741         buf = strstrip(buf);
3742         ret = page_counter_memparse(buf, "-1", &nr_pages);
3743         if (ret)
3744                 return ret;
3745
3746         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3747         case RES_LIMIT:
3748                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3749                         ret = -EINVAL;
3750                         break;
3751                 }
3752                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3753                 case _MEM:
3754                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3755                         break;
3756                 case _MEMSWAP:
3757                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3758                         break;
3759                 case _KMEM:
3760                         pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3761                                      "Please report your usecase to linux-mm@kvack.org if you "
3762                                      "depend on this functionality.\n");
3763                         ret = memcg_update_kmem_max(memcg, nr_pages);
3764                         break;
3765                 case _TCP:
3766                         ret = memcg_update_tcp_max(memcg, nr_pages);
3767                         break;
3768                 }
3769                 break;
3770         case RES_SOFT_LIMIT:
3771                 memcg->soft_limit = nr_pages;
3772                 ret = 0;
3773                 break;
3774         }
3775         return ret ?: nbytes;
3776 }
3777
3778 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3779                                 size_t nbytes, loff_t off)
3780 {
3781         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3782         struct page_counter *counter;
3783
3784         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3785         case _MEM:
3786                 counter = &memcg->memory;
3787                 break;
3788         case _MEMSWAP:
3789                 counter = &memcg->memsw;
3790                 break;
3791         case _KMEM:
3792                 counter = &memcg->kmem;
3793                 break;
3794         case _TCP:
3795                 counter = &memcg->tcpmem;
3796                 break;
3797         default:
3798                 BUG();
3799         }
3800
3801         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3802         case RES_MAX_USAGE:
3803                 page_counter_reset_watermark(counter);
3804                 break;
3805         case RES_FAILCNT:
3806                 counter->failcnt = 0;
3807                 break;
3808         default:
3809                 BUG();
3810         }
3811
3812         return nbytes;
3813 }
3814
3815 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3816                                         struct cftype *cft)
3817 {
3818         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3819 }
3820
3821 #ifdef CONFIG_MMU
3822 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3823                                         struct cftype *cft, u64 val)
3824 {
3825         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3826
3827         if (val & ~MOVE_MASK)
3828                 return -EINVAL;
3829
3830         /*
3831          * No kind of locking is needed in here, because ->can_attach() will
3832          * check this value once in the beginning of the process, and then carry
3833          * on with stale data. This means that changes to this value will only
3834          * affect task migrations starting after the change.
3835          */
3836         memcg->move_charge_at_immigrate = val;
3837         return 0;
3838 }
3839 #else
3840 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3841                                         struct cftype *cft, u64 val)
3842 {
3843         return -ENOSYS;
3844 }
3845 #endif
3846
3847 #ifdef CONFIG_NUMA
3848
3849 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3850 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3851 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3852
3853 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3854                                 int nid, unsigned int lru_mask, bool tree)
3855 {
3856         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3857         unsigned long nr = 0;
3858         enum lru_list lru;
3859
3860         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3861
3862         for_each_lru(lru) {
3863                 if (!(BIT(lru) & lru_mask))
3864                         continue;
3865                 if (tree)
3866                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3867                 else
3868                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3869         }
3870         return nr;
3871 }
3872
3873 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3874                                              unsigned int lru_mask,
3875                                              bool tree)
3876 {
3877         unsigned long nr = 0;
3878         enum lru_list lru;
3879
3880         for_each_lru(lru) {
3881                 if (!(BIT(lru) & lru_mask))
3882                         continue;
3883                 if (tree)
3884                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3885                 else
3886                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3887         }
3888         return nr;
3889 }
3890
3891 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3892 {
3893         struct numa_stat {
3894                 const char *name;
3895                 unsigned int lru_mask;
3896         };
3897
3898         static const struct numa_stat stats[] = {
3899                 { "total", LRU_ALL },
3900                 { "file", LRU_ALL_FILE },
3901                 { "anon", LRU_ALL_ANON },
3902                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3903         };
3904         const struct numa_stat *stat;
3905         int nid;
3906         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3907
3908         cgroup_rstat_flush(memcg->css.cgroup);
3909
3910         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3911                 seq_printf(m, "%s=%lu", stat->name,
3912                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3913                                                    false));
3914                 for_each_node_state(nid, N_MEMORY)
3915                         seq_printf(m, " N%d=%lu", nid,
3916                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3917                                                         stat->lru_mask, false));
3918                 seq_putc(m, '\n');
3919         }
3920
3921         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3922
3923                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3924                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3925                                                    true));
3926                 for_each_node_state(nid, N_MEMORY)
3927                         seq_printf(m, " N%d=%lu", nid,
3928                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3929                                                         stat->lru_mask, true));
3930                 seq_putc(m, '\n');
3931         }
3932
3933         return 0;
3934 }
3935 #endif /* CONFIG_NUMA */
3936
3937 static const unsigned int memcg1_stats[] = {
3938         NR_FILE_PAGES,
3939         NR_ANON_MAPPED,
3940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3941         NR_ANON_THPS,
3942 #endif
3943         NR_SHMEM,
3944         NR_FILE_MAPPED,
3945         NR_FILE_DIRTY,
3946         NR_WRITEBACK,
3947         MEMCG_SWAP,
3948 };
3949
3950 static const char *const memcg1_stat_names[] = {
3951         "cache",
3952         "rss",
3953 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3954         "rss_huge",
3955 #endif
3956         "shmem",
3957         "mapped_file",
3958         "dirty",
3959         "writeback",
3960         "swap",
3961 };
3962
3963 /* Universal VM events cgroup1 shows, original sort order */
3964 static const unsigned int memcg1_events[] = {
3965         PGPGIN,
3966         PGPGOUT,
3967         PGFAULT,
3968         PGMAJFAULT,
3969 };
3970
3971 static int memcg_stat_show(struct seq_file *m, void *v)
3972 {
3973         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3974         unsigned long memory, memsw;
3975         struct mem_cgroup *mi;
3976         unsigned int i;
3977
3978         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3979
3980         cgroup_rstat_flush(memcg->css.cgroup);
3981
3982         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3983                 unsigned long nr;
3984
3985                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3986                         continue;
3987                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3988                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3989         }
3990
3991         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3992                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3993                            memcg_events_local(memcg, memcg1_events[i]));
3994
3995         for (i = 0; i < NR_LRU_LISTS; i++)
3996                 seq_printf(m, "%s %lu\n", lru_list_name(i),
3997                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3998                            PAGE_SIZE);
3999
4000         /* Hierarchical information */
4001         memory = memsw = PAGE_COUNTER_MAX;
4002         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4003                 memory = min(memory, READ_ONCE(mi->memory.max));
4004                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4005         }
4006         seq_printf(m, "hierarchical_memory_limit %llu\n",
4007                    (u64)memory * PAGE_SIZE);
4008         if (do_memsw_account())
4009                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4010                            (u64)memsw * PAGE_SIZE);
4011
4012         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4013                 unsigned long nr;
4014
4015                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4016                         continue;
4017                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4018                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4019                                                 (u64)nr * PAGE_SIZE);
4020         }
4021
4022         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4023                 seq_printf(m, "total_%s %llu\n",
4024                            vm_event_name(memcg1_events[i]),
4025                            (u64)memcg_events(memcg, memcg1_events[i]));
4026
4027         for (i = 0; i < NR_LRU_LISTS; i++)
4028                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4029                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4030                            PAGE_SIZE);
4031
4032 #ifdef CONFIG_DEBUG_VM
4033         {
4034                 pg_data_t *pgdat;
4035                 struct mem_cgroup_per_node *mz;
4036                 unsigned long anon_cost = 0;
4037                 unsigned long file_cost = 0;
4038
4039                 for_each_online_pgdat(pgdat) {
4040                         mz = memcg->nodeinfo[pgdat->node_id];
4041
4042                         anon_cost += mz->lruvec.anon_cost;
4043                         file_cost += mz->lruvec.file_cost;
4044                 }
4045                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4046                 seq_printf(m, "file_cost %lu\n", file_cost);
4047         }
4048 #endif
4049
4050         return 0;
4051 }
4052
4053 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4054                                       struct cftype *cft)
4055 {
4056         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4057
4058         return mem_cgroup_swappiness(memcg);
4059 }
4060
4061 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4062                                        struct cftype *cft, u64 val)
4063 {
4064         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4065
4066         if (val > 200)
4067                 return -EINVAL;
4068
4069         if (!mem_cgroup_is_root(memcg))
4070                 memcg->swappiness = val;
4071         else
4072                 vm_swappiness = val;
4073
4074         return 0;
4075 }
4076
4077 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4078 {
4079         struct mem_cgroup_threshold_ary *t;
4080         unsigned long usage;
4081         int i;
4082
4083         rcu_read_lock();
4084         if (!swap)
4085                 t = rcu_dereference(memcg->thresholds.primary);
4086         else
4087                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4088
4089         if (!t)
4090                 goto unlock;
4091
4092         usage = mem_cgroup_usage(memcg, swap);
4093
4094         /*
4095          * current_threshold points to threshold just below or equal to usage.
4096          * If it's not true, a threshold was crossed after last
4097          * call of __mem_cgroup_threshold().
4098          */
4099         i = t->current_threshold;
4100
4101         /*
4102          * Iterate backward over array of thresholds starting from
4103          * current_threshold and check if a threshold is crossed.
4104          * If none of thresholds below usage is crossed, we read
4105          * only one element of the array here.
4106          */
4107         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4108                 eventfd_signal(t->entries[i].eventfd, 1);
4109
4110         /* i = current_threshold + 1 */
4111         i++;
4112
4113         /*
4114          * Iterate forward over array of thresholds starting from
4115          * current_threshold+1 and check if a threshold is crossed.
4116          * If none of thresholds above usage is crossed, we read
4117          * only one element of the array here.
4118          */
4119         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4120                 eventfd_signal(t->entries[i].eventfd, 1);
4121
4122         /* Update current_threshold */
4123         t->current_threshold = i - 1;
4124 unlock:
4125         rcu_read_unlock();
4126 }
4127
4128 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4129 {
4130         while (memcg) {
4131                 __mem_cgroup_threshold(memcg, false);
4132                 if (do_memsw_account())
4133                         __mem_cgroup_threshold(memcg, true);
4134
4135                 memcg = parent_mem_cgroup(memcg);
4136         }
4137 }
4138
4139 static int compare_thresholds(const void *a, const void *b)
4140 {
4141         const struct mem_cgroup_threshold *_a = a;
4142         const struct mem_cgroup_threshold *_b = b;
4143
4144         if (_a->threshold > _b->threshold)
4145                 return 1;
4146
4147         if (_a->threshold < _b->threshold)
4148                 return -1;
4149
4150         return 0;
4151 }
4152
4153 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4154 {
4155         struct mem_cgroup_eventfd_list *ev;
4156
4157         spin_lock(&memcg_oom_lock);
4158
4159         list_for_each_entry(ev, &memcg->oom_notify, list)
4160                 eventfd_signal(ev->eventfd, 1);
4161
4162         spin_unlock(&memcg_oom_lock);
4163         return 0;
4164 }
4165
4166 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4167 {
4168         struct mem_cgroup *iter;
4169
4170         for_each_mem_cgroup_tree(iter, memcg)
4171                 mem_cgroup_oom_notify_cb(iter);
4172 }
4173
4174 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4175         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4176 {
4177         struct mem_cgroup_thresholds *thresholds;
4178         struct mem_cgroup_threshold_ary *new;
4179         unsigned long threshold;
4180         unsigned long usage;
4181         int i, size, ret;
4182
4183         ret = page_counter_memparse(args, "-1", &threshold);
4184         if (ret)
4185                 return ret;
4186
4187         mutex_lock(&memcg->thresholds_lock);
4188
4189         if (type == _MEM) {
4190                 thresholds = &memcg->thresholds;
4191                 usage = mem_cgroup_usage(memcg, false);
4192         } else if (type == _MEMSWAP) {
4193                 thresholds = &memcg->memsw_thresholds;
4194                 usage = mem_cgroup_usage(memcg, true);
4195         } else
4196                 BUG();
4197
4198         /* Check if a threshold crossed before adding a new one */
4199         if (thresholds->primary)
4200                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4201
4202         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4203
4204         /* Allocate memory for new array of thresholds */
4205         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4206         if (!new) {
4207                 ret = -ENOMEM;
4208                 goto unlock;
4209         }
4210         new->size = size;
4211
4212         /* Copy thresholds (if any) to new array */
4213         if (thresholds->primary)
4214                 memcpy(new->entries, thresholds->primary->entries,
4215                        flex_array_size(new, entries, size - 1));
4216
4217         /* Add new threshold */
4218         new->entries[size - 1].eventfd = eventfd;
4219         new->entries[size - 1].threshold = threshold;
4220
4221         /* Sort thresholds. Registering of new threshold isn't time-critical */
4222         sort(new->entries, size, sizeof(*new->entries),
4223                         compare_thresholds, NULL);
4224
4225         /* Find current threshold */
4226         new->current_threshold = -1;
4227         for (i = 0; i < size; i++) {
4228                 if (new->entries[i].threshold <= usage) {
4229                         /*
4230                          * new->current_threshold will not be used until
4231                          * rcu_assign_pointer(), so it's safe to increment
4232                          * it here.
4233                          */
4234                         ++new->current_threshold;
4235                 } else
4236                         break;
4237         }
4238
4239         /* Free old spare buffer and save old primary buffer as spare */
4240         kfree(thresholds->spare);
4241         thresholds->spare = thresholds->primary;
4242
4243         rcu_assign_pointer(thresholds->primary, new);
4244
4245         /* To be sure that nobody uses thresholds */
4246         synchronize_rcu();
4247
4248 unlock:
4249         mutex_unlock(&memcg->thresholds_lock);
4250
4251         return ret;
4252 }
4253
4254 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4255         struct eventfd_ctx *eventfd, const char *args)
4256 {
4257         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4258 }
4259
4260 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4261         struct eventfd_ctx *eventfd, const char *args)
4262 {
4263         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4264 }
4265
4266 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4267         struct eventfd_ctx *eventfd, enum res_type type)
4268 {
4269         struct mem_cgroup_thresholds *thresholds;
4270         struct mem_cgroup_threshold_ary *new;
4271         unsigned long usage;
4272         int i, j, size, entries;
4273
4274         mutex_lock(&memcg->thresholds_lock);
4275
4276         if (type == _MEM) {
4277                 thresholds = &memcg->thresholds;
4278                 usage = mem_cgroup_usage(memcg, false);
4279         } else if (type == _MEMSWAP) {
4280                 thresholds = &memcg->memsw_thresholds;
4281                 usage = mem_cgroup_usage(memcg, true);
4282         } else
4283                 BUG();
4284
4285         if (!thresholds->primary)
4286                 goto unlock;
4287
4288         /* Check if a threshold crossed before removing */
4289         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4290
4291         /* Calculate new number of threshold */
4292         size = entries = 0;
4293         for (i = 0; i < thresholds->primary->size; i++) {
4294                 if (thresholds->primary->entries[i].eventfd != eventfd)
4295                         size++;
4296                 else
4297                         entries++;
4298         }
4299
4300         new = thresholds->spare;
4301
4302         /* If no items related to eventfd have been cleared, nothing to do */
4303         if (!entries)
4304                 goto unlock;
4305
4306         /* Set thresholds array to NULL if we don't have thresholds */
4307         if (!size) {
4308                 kfree(new);
4309                 new = NULL;
4310                 goto swap_buffers;
4311         }
4312
4313         new->size = size;
4314
4315         /* Copy thresholds and find current threshold */
4316         new->current_threshold = -1;
4317         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4318                 if (thresholds->primary->entries[i].eventfd == eventfd)
4319                         continue;
4320
4321                 new->entries[j] = thresholds->primary->entries[i];
4322                 if (new->entries[j].threshold <= usage) {
4323                         /*
4324                          * new->current_threshold will not be used
4325                          * until rcu_assign_pointer(), so it's safe to increment
4326                          * it here.
4327                          */
4328                         ++new->current_threshold;
4329                 }
4330                 j++;
4331         }
4332
4333 swap_buffers:
4334         /* Swap primary and spare array */
4335         thresholds->spare = thresholds->primary;
4336
4337         rcu_assign_pointer(thresholds->primary, new);
4338
4339         /* To be sure that nobody uses thresholds */
4340         synchronize_rcu();
4341
4342         /* If all events are unregistered, free the spare array */
4343         if (!new) {
4344                 kfree(thresholds->spare);
4345                 thresholds->spare = NULL;
4346         }
4347 unlock:
4348         mutex_unlock(&memcg->thresholds_lock);
4349 }
4350
4351 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4352         struct eventfd_ctx *eventfd)
4353 {
4354         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4355 }
4356
4357 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4358         struct eventfd_ctx *eventfd)
4359 {
4360         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4361 }
4362
4363 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4364         struct eventfd_ctx *eventfd, const char *args)
4365 {
4366         struct mem_cgroup_eventfd_list *event;
4367
4368         event = kmalloc(sizeof(*event), GFP_KERNEL);
4369         if (!event)
4370                 return -ENOMEM;
4371
4372         spin_lock(&memcg_oom_lock);
4373
4374         event->eventfd = eventfd;
4375         list_add(&event->list, &memcg->oom_notify);
4376
4377         /* already in OOM ? */
4378         if (memcg->under_oom)
4379                 eventfd_signal(eventfd, 1);
4380         spin_unlock(&memcg_oom_lock);
4381
4382         return 0;
4383 }
4384
4385 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4386         struct eventfd_ctx *eventfd)
4387 {
4388         struct mem_cgroup_eventfd_list *ev, *tmp;
4389
4390         spin_lock(&memcg_oom_lock);
4391
4392         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4393                 if (ev->eventfd == eventfd) {
4394                         list_del(&ev->list);
4395                         kfree(ev);
4396                 }
4397         }
4398
4399         spin_unlock(&memcg_oom_lock);
4400 }
4401
4402 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4403 {
4404         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4405
4406         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4407         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4408         seq_printf(sf, "oom_kill %lu\n",
4409                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4410         return 0;
4411 }
4412
4413 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4414         struct cftype *cft, u64 val)
4415 {
4416         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4417
4418         /* cannot set to root cgroup and only 0 and 1 are allowed */
4419         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4420                 return -EINVAL;
4421
4422         memcg->oom_kill_disable = val;
4423         if (!val)
4424                 memcg_oom_recover(memcg);
4425
4426         return 0;
4427 }
4428
4429 #ifdef CONFIG_CGROUP_WRITEBACK
4430
4431 #include <trace/events/writeback.h>
4432
4433 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4434 {
4435         return wb_domain_init(&memcg->cgwb_domain, gfp);
4436 }
4437
4438 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4439 {
4440         wb_domain_exit(&memcg->cgwb_domain);
4441 }
4442
4443 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4444 {
4445         wb_domain_size_changed(&memcg->cgwb_domain);
4446 }
4447
4448 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4449 {
4450         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4451
4452         if (!memcg->css.parent)
4453                 return NULL;
4454
4455         return &memcg->cgwb_domain;
4456 }
4457
4458 /**
4459  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4460  * @wb: bdi_writeback in question
4461  * @pfilepages: out parameter for number of file pages
4462  * @pheadroom: out parameter for number of allocatable pages according to memcg
4463  * @pdirty: out parameter for number of dirty pages
4464  * @pwriteback: out parameter for number of pages under writeback
4465  *
4466  * Determine the numbers of file, headroom, dirty, and writeback pages in
4467  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4468  * is a bit more involved.
4469  *
4470  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4471  * headroom is calculated as the lowest headroom of itself and the
4472  * ancestors.  Note that this doesn't consider the actual amount of
4473  * available memory in the system.  The caller should further cap
4474  * *@pheadroom accordingly.
4475  */
4476 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4477                          unsigned long *pheadroom, unsigned long *pdirty,
4478                          unsigned long *pwriteback)
4479 {
4480         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4481         struct mem_cgroup *parent;
4482
4483         cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4484
4485         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4486         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4487         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4488                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4489
4490         *pheadroom = PAGE_COUNTER_MAX;
4491         while ((parent = parent_mem_cgroup(memcg))) {
4492                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4493                                             READ_ONCE(memcg->memory.high));
4494                 unsigned long used = page_counter_read(&memcg->memory);
4495
4496                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4497                 memcg = parent;
4498         }
4499 }
4500
4501 /*
4502  * Foreign dirty flushing
4503  *
4504  * There's an inherent mismatch between memcg and writeback.  The former
4505  * tracks ownership per-page while the latter per-inode.  This was a
4506  * deliberate design decision because honoring per-page ownership in the
4507  * writeback path is complicated, may lead to higher CPU and IO overheads
4508  * and deemed unnecessary given that write-sharing an inode across
4509  * different cgroups isn't a common use-case.
4510  *
4511  * Combined with inode majority-writer ownership switching, this works well
4512  * enough in most cases but there are some pathological cases.  For
4513  * example, let's say there are two cgroups A and B which keep writing to
4514  * different but confined parts of the same inode.  B owns the inode and
4515  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4516  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4517  * triggering background writeback.  A will be slowed down without a way to
4518  * make writeback of the dirty pages happen.
4519  *
4520  * Conditions like the above can lead to a cgroup getting repeatedly and
4521  * severely throttled after making some progress after each
4522  * dirty_expire_interval while the underlying IO device is almost
4523  * completely idle.
4524  *
4525  * Solving this problem completely requires matching the ownership tracking
4526  * granularities between memcg and writeback in either direction.  However,
4527  * the more egregious behaviors can be avoided by simply remembering the
4528  * most recent foreign dirtying events and initiating remote flushes on
4529  * them when local writeback isn't enough to keep the memory clean enough.
4530  *
4531  * The following two functions implement such mechanism.  When a foreign
4532  * page - a page whose memcg and writeback ownerships don't match - is
4533  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4534  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4535  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4536  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4537  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4538  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4539  * limited to MEMCG_CGWB_FRN_CNT.
4540  *
4541  * The mechanism only remembers IDs and doesn't hold any object references.
4542  * As being wrong occasionally doesn't matter, updates and accesses to the
4543  * records are lockless and racy.
4544  */
4545 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4546                                              struct bdi_writeback *wb)
4547 {
4548         struct mem_cgroup *memcg = page_memcg(page);
4549         struct memcg_cgwb_frn *frn;
4550         u64 now = get_jiffies_64();
4551         u64 oldest_at = now;
4552         int oldest = -1;
4553         int i;
4554
4555         trace_track_foreign_dirty(page, wb);
4556
4557         /*
4558          * Pick the slot to use.  If there is already a slot for @wb, keep
4559          * using it.  If not replace the oldest one which isn't being
4560          * written out.
4561          */
4562         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4563                 frn = &memcg->cgwb_frn[i];
4564                 if (frn->bdi_id == wb->bdi->id &&
4565                     frn->memcg_id == wb->memcg_css->id)
4566                         break;
4567                 if (time_before64(frn->at, oldest_at) &&
4568                     atomic_read(&frn->done.cnt) == 1) {
4569                         oldest = i;
4570                         oldest_at = frn->at;
4571                 }
4572         }
4573
4574         if (i < MEMCG_CGWB_FRN_CNT) {
4575                 /*
4576                  * Re-using an existing one.  Update timestamp lazily to
4577                  * avoid making the cacheline hot.  We want them to be
4578                  * reasonably up-to-date and significantly shorter than
4579                  * dirty_expire_interval as that's what expires the record.
4580                  * Use the shorter of 1s and dirty_expire_interval / 8.
4581                  */
4582                 unsigned long update_intv =
4583                         min_t(unsigned long, HZ,
4584                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4585
4586                 if (time_before64(frn->at, now - update_intv))
4587                         frn->at = now;
4588         } else if (oldest >= 0) {
4589                 /* replace the oldest free one */
4590                 frn = &memcg->cgwb_frn[oldest];
4591                 frn->bdi_id = wb->bdi->id;
4592                 frn->memcg_id = wb->memcg_css->id;
4593                 frn->at = now;
4594         }
4595 }
4596
4597 /* issue foreign writeback flushes for recorded foreign dirtying events */
4598 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4599 {
4600         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4601         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4602         u64 now = jiffies_64;
4603         int i;
4604
4605         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4606                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4607
4608                 /*
4609                  * If the record is older than dirty_expire_interval,
4610                  * writeback on it has already started.  No need to kick it
4611                  * off again.  Also, don't start a new one if there's
4612                  * already one in flight.
4613                  */
4614                 if (time_after64(frn->at, now - intv) &&
4615                     atomic_read(&frn->done.cnt) == 1) {
4616                         frn->at = 0;
4617                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4618                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4619                                                WB_REASON_FOREIGN_FLUSH,
4620                                                &frn->done);
4621                 }
4622         }
4623 }
4624
4625 #else   /* CONFIG_CGROUP_WRITEBACK */
4626
4627 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4628 {
4629         return 0;
4630 }
4631
4632 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4633 {
4634 }
4635
4636 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4637 {
4638 }
4639
4640 #endif  /* CONFIG_CGROUP_WRITEBACK */
4641
4642 /*
4643  * DO NOT USE IN NEW FILES.
4644  *
4645  * "cgroup.event_control" implementation.
4646  *
4647  * This is way over-engineered.  It tries to support fully configurable
4648  * events for each user.  Such level of flexibility is completely
4649  * unnecessary especially in the light of the planned unified hierarchy.
4650  *
4651  * Please deprecate this and replace with something simpler if at all
4652  * possible.
4653  */
4654
4655 /*
4656  * Unregister event and free resources.
4657  *
4658  * Gets called from workqueue.
4659  */
4660 static void memcg_event_remove(struct work_struct *work)
4661 {
4662         struct mem_cgroup_event *event =
4663                 container_of(work, struct mem_cgroup_event, remove);
4664         struct mem_cgroup *memcg = event->memcg;
4665
4666         remove_wait_queue(event->wqh, &event->wait);
4667
4668         event->unregister_event(memcg, event->eventfd);
4669
4670         /* Notify userspace the event is going away. */
4671         eventfd_signal(event->eventfd, 1);
4672
4673         eventfd_ctx_put(event->eventfd);
4674         kfree(event);
4675         css_put(&memcg->css);
4676 }
4677
4678 /*
4679  * Gets called on EPOLLHUP on eventfd when user closes it.
4680  *
4681  * Called with wqh->lock held and interrupts disabled.
4682  */
4683 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4684                             int sync, void *key)
4685 {
4686         struct mem_cgroup_event *event =
4687                 container_of(wait, struct mem_cgroup_event, wait);
4688         struct mem_cgroup *memcg = event->memcg;
4689         __poll_t flags = key_to_poll(key);
4690
4691         if (flags & EPOLLHUP) {
4692                 /*
4693                  * If the event has been detached at cgroup removal, we
4694                  * can simply return knowing the other side will cleanup
4695                  * for us.
4696                  *
4697                  * We can't race against event freeing since the other
4698                  * side will require wqh->lock via remove_wait_queue(),
4699                  * which we hold.
4700                  */
4701                 spin_lock(&memcg->event_list_lock);
4702                 if (!list_empty(&event->list)) {
4703                         list_del_init(&event->list);
4704                         /*
4705                          * We are in atomic context, but cgroup_event_remove()
4706                          * may sleep, so we have to call it in workqueue.
4707                          */
4708                         schedule_work(&event->remove);
4709                 }
4710                 spin_unlock(&memcg->event_list_lock);
4711         }
4712
4713         return 0;
4714 }
4715
4716 static void memcg_event_ptable_queue_proc(struct file *file,
4717                 wait_queue_head_t *wqh, poll_table *pt)
4718 {
4719         struct mem_cgroup_event *event =
4720                 container_of(pt, struct mem_cgroup_event, pt);
4721
4722         event->wqh = wqh;
4723         add_wait_queue(wqh, &event->wait);
4724 }
4725
4726 /*
4727  * DO NOT USE IN NEW FILES.
4728  *
4729  * Parse input and register new cgroup event handler.
4730  *
4731  * Input must be in format '<event_fd> <control_fd> <args>'.
4732  * Interpretation of args is defined by control file implementation.
4733  */
4734 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4735                                          char *buf, size_t nbytes, loff_t off)
4736 {
4737         struct cgroup_subsys_state *css = of_css(of);
4738         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4739         struct mem_cgroup_event *event;
4740         struct cgroup_subsys_state *cfile_css;
4741         unsigned int efd, cfd;
4742         struct fd efile;
4743         struct fd cfile;
4744         const char *name;
4745         char *endp;
4746         int ret;
4747
4748         buf = strstrip(buf);
4749
4750         efd = simple_strtoul(buf, &endp, 10);
4751         if (*endp != ' ')
4752                 return -EINVAL;
4753         buf = endp + 1;
4754
4755         cfd = simple_strtoul(buf, &endp, 10);
4756         if ((*endp != ' ') && (*endp != '\0'))
4757                 return -EINVAL;
4758         buf = endp + 1;
4759
4760         event = kzalloc(sizeof(*event), GFP_KERNEL);
4761         if (!event)
4762                 return -ENOMEM;
4763
4764         event->memcg = memcg;
4765         INIT_LIST_HEAD(&event->list);
4766         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4767         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4768         INIT_WORK(&event->remove, memcg_event_remove);
4769
4770         efile = fdget(efd);
4771         if (!efile.file) {
4772                 ret = -EBADF;
4773                 goto out_kfree;
4774         }
4775
4776         event->eventfd = eventfd_ctx_fileget(efile.file);
4777         if (IS_ERR(event->eventfd)) {
4778                 ret = PTR_ERR(event->eventfd);
4779                 goto out_put_efile;
4780         }
4781
4782         cfile = fdget(cfd);
4783         if (!cfile.file) {
4784                 ret = -EBADF;
4785                 goto out_put_eventfd;
4786         }
4787
4788         /* the process need read permission on control file */
4789         /* AV: shouldn't we check that it's been opened for read instead? */
4790         ret = file_permission(cfile.file, MAY_READ);
4791         if (ret < 0)
4792                 goto out_put_cfile;
4793
4794         /*
4795          * Determine the event callbacks and set them in @event.  This used
4796          * to be done via struct cftype but cgroup core no longer knows
4797          * about these events.  The following is crude but the whole thing
4798          * is for compatibility anyway.
4799          *
4800          * DO NOT ADD NEW FILES.
4801          */
4802         name = cfile.file->f_path.dentry->d_name.name;
4803
4804         if (!strcmp(name, "memory.usage_in_bytes")) {
4805                 event->register_event = mem_cgroup_usage_register_event;
4806                 event->unregister_event = mem_cgroup_usage_unregister_event;
4807         } else if (!strcmp(name, "memory.oom_control")) {
4808                 event->register_event = mem_cgroup_oom_register_event;
4809                 event->unregister_event = mem_cgroup_oom_unregister_event;
4810         } else if (!strcmp(name, "memory.pressure_level")) {
4811                 event->register_event = vmpressure_register_event;
4812                 event->unregister_event = vmpressure_unregister_event;
4813         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4814                 event->register_event = memsw_cgroup_usage_register_event;
4815                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4816         } else {
4817                 ret = -EINVAL;
4818                 goto out_put_cfile;
4819         }
4820
4821         /*
4822          * Verify @cfile should belong to @css.  Also, remaining events are
4823          * automatically removed on cgroup destruction but the removal is
4824          * asynchronous, so take an extra ref on @css.
4825          */
4826         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4827                                                &memory_cgrp_subsys);
4828         ret = -EINVAL;
4829         if (IS_ERR(cfile_css))
4830                 goto out_put_cfile;
4831         if (cfile_css != css) {
4832                 css_put(cfile_css);
4833                 goto out_put_cfile;
4834         }
4835
4836         ret = event->register_event(memcg, event->eventfd, buf);
4837         if (ret)
4838                 goto out_put_css;
4839
4840         vfs_poll(efile.file, &event->pt);
4841
4842         spin_lock_irq(&memcg->event_list_lock);
4843         list_add(&event->list, &memcg->event_list);
4844         spin_unlock_irq(&memcg->event_list_lock);
4845
4846         fdput(cfile);
4847         fdput(efile);
4848
4849         return nbytes;
4850
4851 out_put_css:
4852         css_put(css);
4853 out_put_cfile:
4854         fdput(cfile);
4855 out_put_eventfd:
4856         eventfd_ctx_put(event->eventfd);
4857 out_put_efile:
4858         fdput(efile);
4859 out_kfree:
4860         kfree(event);
4861
4862         return ret;
4863 }
4864
4865 static struct cftype mem_cgroup_legacy_files[] = {
4866         {
4867                 .name = "usage_in_bytes",
4868                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4869                 .read_u64 = mem_cgroup_read_u64,
4870         },
4871         {
4872                 .name = "max_usage_in_bytes",
4873                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4874                 .write = mem_cgroup_reset,
4875                 .read_u64 = mem_cgroup_read_u64,
4876         },
4877         {
4878                 .name = "limit_in_bytes",
4879                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4880                 .write = mem_cgroup_write,
4881                 .read_u64 = mem_cgroup_read_u64,
4882         },
4883         {
4884                 .name = "soft_limit_in_bytes",
4885                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4886                 .write = mem_cgroup_write,
4887                 .read_u64 = mem_cgroup_read_u64,
4888         },
4889         {
4890                 .name = "failcnt",
4891                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4892                 .write = mem_cgroup_reset,
4893                 .read_u64 = mem_cgroup_read_u64,
4894         },
4895         {
4896                 .name = "stat",
4897                 .seq_show = memcg_stat_show,
4898         },
4899         {
4900                 .name = "force_empty",
4901                 .write = mem_cgroup_force_empty_write,
4902         },
4903         {
4904                 .name = "use_hierarchy",
4905                 .write_u64 = mem_cgroup_hierarchy_write,
4906                 .read_u64 = mem_cgroup_hierarchy_read,
4907         },
4908         {
4909                 .name = "cgroup.event_control",         /* XXX: for compat */
4910                 .write = memcg_write_event_control,
4911                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4912         },
4913         {
4914                 .name = "swappiness",
4915                 .read_u64 = mem_cgroup_swappiness_read,
4916                 .write_u64 = mem_cgroup_swappiness_write,
4917         },
4918         {
4919                 .name = "move_charge_at_immigrate",
4920                 .read_u64 = mem_cgroup_move_charge_read,
4921                 .write_u64 = mem_cgroup_move_charge_write,
4922         },
4923         {
4924                 .name = "oom_control",
4925                 .seq_show = mem_cgroup_oom_control_read,
4926                 .write_u64 = mem_cgroup_oom_control_write,
4927                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4928         },
4929         {
4930                 .name = "pressure_level",
4931         },
4932 #ifdef CONFIG_NUMA
4933         {
4934                 .name = "numa_stat",
4935                 .seq_show = memcg_numa_stat_show,
4936         },
4937 #endif
4938         {
4939                 .name = "kmem.limit_in_bytes",
4940                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4941                 .write = mem_cgroup_write,
4942                 .read_u64 = mem_cgroup_read_u64,
4943         },
4944         {
4945                 .name = "kmem.usage_in_bytes",
4946                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4947                 .read_u64 = mem_cgroup_read_u64,
4948         },
4949         {
4950                 .name = "kmem.failcnt",
4951                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4952                 .write = mem_cgroup_reset,
4953                 .read_u64 = mem_cgroup_read_u64,
4954         },
4955         {
4956                 .name = "kmem.max_usage_in_bytes",
4957                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4958                 .write = mem_cgroup_reset,
4959                 .read_u64 = mem_cgroup_read_u64,
4960         },
4961 #if defined(CONFIG_MEMCG_KMEM) && \
4962         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4963         {
4964                 .name = "kmem.slabinfo",
4965                 .seq_show = memcg_slab_show,
4966         },
4967 #endif
4968         {
4969                 .name = "kmem.tcp.limit_in_bytes",
4970                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4971                 .write = mem_cgroup_write,
4972                 .read_u64 = mem_cgroup_read_u64,
4973         },
4974         {
4975                 .name = "kmem.tcp.usage_in_bytes",
4976                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4977                 .read_u64 = mem_cgroup_read_u64,
4978         },
4979         {
4980                 .name = "kmem.tcp.failcnt",
4981                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4982                 .write = mem_cgroup_reset,
4983                 .read_u64 = mem_cgroup_read_u64,
4984         },
4985         {
4986                 .name = "kmem.tcp.max_usage_in_bytes",
4987                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4988                 .write = mem_cgroup_reset,
4989                 .read_u64 = mem_cgroup_read_u64,
4990         },
4991         { },    /* terminate */
4992 };
4993
4994 /*
4995  * Private memory cgroup IDR
4996  *
4997  * Swap-out records and page cache shadow entries need to store memcg
4998  * references in constrained space, so we maintain an ID space that is
4999  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5000  * memory-controlled cgroups to 64k.
5001  *
5002  * However, there usually are many references to the offline CSS after
5003  * the cgroup has been destroyed, such as page cache or reclaimable
5004  * slab objects, that don't need to hang on to the ID. We want to keep
5005  * those dead CSS from occupying IDs, or we might quickly exhaust the
5006  * relatively small ID space and prevent the creation of new cgroups
5007  * even when there are much fewer than 64k cgroups - possibly none.
5008  *
5009  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5010  * be freed and recycled when it's no longer needed, which is usually
5011  * when the CSS is offlined.
5012  *
5013  * The only exception to that are records of swapped out tmpfs/shmem
5014  * pages that need to be attributed to live ancestors on swapin. But
5015  * those references are manageable from userspace.
5016  */
5017
5018 static DEFINE_IDR(mem_cgroup_idr);
5019
5020 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5021 {
5022         if (memcg->id.id > 0) {
5023                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5024                 memcg->id.id = 0;
5025         }
5026 }
5027
5028 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5029                                                   unsigned int n)
5030 {
5031         refcount_add(n, &memcg->id.ref);
5032 }
5033
5034 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5035 {
5036         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5037                 mem_cgroup_id_remove(memcg);
5038
5039                 /* Memcg ID pins CSS */
5040                 css_put(&memcg->css);
5041         }
5042 }
5043
5044 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5045 {
5046         mem_cgroup_id_put_many(memcg, 1);
5047 }
5048
5049 /**
5050  * mem_cgroup_from_id - look up a memcg from a memcg id
5051  * @id: the memcg id to look up
5052  *
5053  * Caller must hold rcu_read_lock().
5054  */
5055 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5056 {
5057         WARN_ON_ONCE(!rcu_read_lock_held());
5058         return idr_find(&mem_cgroup_idr, id);
5059 }
5060
5061 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5062 {
5063         struct mem_cgroup_per_node *pn;
5064         int tmp = node;
5065         /*
5066          * This routine is called against possible nodes.
5067          * But it's BUG to call kmalloc() against offline node.
5068          *
5069          * TODO: this routine can waste much memory for nodes which will
5070          *       never be onlined. It's better to use memory hotplug callback
5071          *       function.
5072          */
5073         if (!node_state(node, N_NORMAL_MEMORY))
5074                 tmp = -1;
5075         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5076         if (!pn)
5077                 return 1;
5078
5079         pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5080                                                    GFP_KERNEL_ACCOUNT);
5081         if (!pn->lruvec_stats_percpu) {
5082                 kfree(pn);
5083                 return 1;
5084         }
5085
5086         lruvec_init(&pn->lruvec);
5087         pn->usage_in_excess = 0;
5088         pn->on_tree = false;
5089         pn->memcg = memcg;
5090
5091         memcg->nodeinfo[node] = pn;
5092         return 0;
5093 }
5094
5095 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5096 {
5097         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5098
5099         if (!pn)
5100                 return;
5101
5102         free_percpu(pn->lruvec_stats_percpu);
5103         kfree(pn);
5104 }
5105
5106 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5107 {
5108         int node;
5109
5110         for_each_node(node)
5111                 free_mem_cgroup_per_node_info(memcg, node);
5112         free_percpu(memcg->vmstats_percpu);
5113         kfree(memcg);
5114 }
5115
5116 static void mem_cgroup_free(struct mem_cgroup *memcg)
5117 {
5118         memcg_wb_domain_exit(memcg);
5119         __mem_cgroup_free(memcg);
5120 }
5121
5122 static struct mem_cgroup *mem_cgroup_alloc(void)
5123 {
5124         struct mem_cgroup *memcg;
5125         unsigned int size;
5126         int node;
5127         int __maybe_unused i;
5128         long error = -ENOMEM;
5129
5130         size = sizeof(struct mem_cgroup);
5131         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5132
5133         memcg = kzalloc(size, GFP_KERNEL);
5134         if (!memcg)
5135                 return ERR_PTR(error);
5136
5137         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5138                                  1, MEM_CGROUP_ID_MAX,
5139                                  GFP_KERNEL);
5140         if (memcg->id.id < 0) {
5141                 error = memcg->id.id;
5142                 goto fail;
5143         }
5144
5145         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5146                                                  GFP_KERNEL_ACCOUNT);
5147         if (!memcg->vmstats_percpu)
5148                 goto fail;
5149
5150         for_each_node(node)
5151                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5152                         goto fail;
5153
5154         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5155                 goto fail;
5156
5157         INIT_WORK(&memcg->high_work, high_work_func);
5158         INIT_LIST_HEAD(&memcg->oom_notify);
5159         mutex_init(&memcg->thresholds_lock);
5160         spin_lock_init(&memcg->move_lock);
5161         vmpressure_init(&memcg->vmpressure);
5162         INIT_LIST_HEAD(&memcg->event_list);
5163         spin_lock_init(&memcg->event_list_lock);
5164         memcg->socket_pressure = jiffies;
5165 #ifdef CONFIG_MEMCG_KMEM
5166         memcg->kmemcg_id = -1;
5167         INIT_LIST_HEAD(&memcg->objcg_list);
5168 #endif
5169 #ifdef CONFIG_CGROUP_WRITEBACK
5170         INIT_LIST_HEAD(&memcg->cgwb_list);
5171         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5172                 memcg->cgwb_frn[i].done =
5173                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5174 #endif
5175 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5176         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5177         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5178         memcg->deferred_split_queue.split_queue_len = 0;
5179 #endif
5180         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5181         return memcg;
5182 fail:
5183         mem_cgroup_id_remove(memcg);
5184         __mem_cgroup_free(memcg);
5185         return ERR_PTR(error);
5186 }
5187
5188 static struct cgroup_subsys_state * __ref
5189 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5190 {
5191         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5192         struct mem_cgroup *memcg, *old_memcg;
5193         long error = -ENOMEM;
5194
5195         old_memcg = set_active_memcg(parent);
5196         memcg = mem_cgroup_alloc();
5197         set_active_memcg(old_memcg);
5198         if (IS_ERR(memcg))
5199                 return ERR_CAST(memcg);
5200
5201         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5202         memcg->soft_limit = PAGE_COUNTER_MAX;
5203         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5204         if (parent) {
5205                 memcg->swappiness = mem_cgroup_swappiness(parent);
5206                 memcg->oom_kill_disable = parent->oom_kill_disable;
5207
5208                 page_counter_init(&memcg->memory, &parent->memory);
5209                 page_counter_init(&memcg->swap, &parent->swap);
5210                 page_counter_init(&memcg->kmem, &parent->kmem);
5211                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5212         } else {
5213                 page_counter_init(&memcg->memory, NULL);
5214                 page_counter_init(&memcg->swap, NULL);
5215                 page_counter_init(&memcg->kmem, NULL);
5216                 page_counter_init(&memcg->tcpmem, NULL);
5217
5218                 root_mem_cgroup = memcg;
5219                 return &memcg->css;
5220         }
5221
5222         /* The following stuff does not apply to the root */
5223         error = memcg_online_kmem(memcg);
5224         if (error)
5225                 goto fail;
5226
5227         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5228                 static_branch_inc(&memcg_sockets_enabled_key);
5229
5230         return &memcg->css;
5231 fail:
5232         mem_cgroup_id_remove(memcg);
5233         mem_cgroup_free(memcg);
5234         return ERR_PTR(error);
5235 }
5236
5237 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5238 {
5239         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5240
5241         /*
5242          * A memcg must be visible for expand_shrinker_info()
5243          * by the time the maps are allocated. So, we allocate maps
5244          * here, when for_each_mem_cgroup() can't skip it.
5245          */
5246         if (alloc_shrinker_info(memcg)) {
5247                 mem_cgroup_id_remove(memcg);
5248                 return -ENOMEM;
5249         }
5250
5251         /* Online state pins memcg ID, memcg ID pins CSS */
5252         refcount_set(&memcg->id.ref, 1);
5253         css_get(css);
5254
5255         if (unlikely(mem_cgroup_is_root(memcg)))
5256                 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5257                                    2UL*HZ);
5258         return 0;
5259 }
5260
5261 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5262 {
5263         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5264         struct mem_cgroup_event *event, *tmp;
5265
5266         /*
5267          * Unregister events and notify userspace.
5268          * Notify userspace about cgroup removing only after rmdir of cgroup
5269          * directory to avoid race between userspace and kernelspace.
5270          */
5271         spin_lock_irq(&memcg->event_list_lock);
5272         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5273                 list_del_init(&event->list);
5274                 schedule_work(&event->remove);
5275         }
5276         spin_unlock_irq(&memcg->event_list_lock);
5277
5278         page_counter_set_min(&memcg->memory, 0);
5279         page_counter_set_low(&memcg->memory, 0);
5280
5281         memcg_offline_kmem(memcg);
5282         reparent_shrinker_deferred(memcg);
5283         wb_memcg_offline(memcg);
5284
5285         drain_all_stock(memcg);
5286
5287         mem_cgroup_id_put(memcg);
5288 }
5289
5290 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5291 {
5292         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5293
5294         invalidate_reclaim_iterators(memcg);
5295 }
5296
5297 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5298 {
5299         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5300         int __maybe_unused i;
5301
5302 #ifdef CONFIG_CGROUP_WRITEBACK
5303         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5304                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5305 #endif
5306         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5307                 static_branch_dec(&memcg_sockets_enabled_key);
5308
5309         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5310                 static_branch_dec(&memcg_sockets_enabled_key);
5311
5312         vmpressure_cleanup(&memcg->vmpressure);
5313         cancel_work_sync(&memcg->high_work);
5314         mem_cgroup_remove_from_trees(memcg);
5315         free_shrinker_info(memcg);
5316         memcg_free_kmem(memcg);
5317         mem_cgroup_free(memcg);
5318 }
5319
5320 /**
5321  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5322  * @css: the target css
5323  *
5324  * Reset the states of the mem_cgroup associated with @css.  This is
5325  * invoked when the userland requests disabling on the default hierarchy
5326  * but the memcg is pinned through dependency.  The memcg should stop
5327  * applying policies and should revert to the vanilla state as it may be
5328  * made visible again.
5329  *
5330  * The current implementation only resets the essential configurations.
5331  * This needs to be expanded to cover all the visible parts.
5332  */
5333 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5334 {
5335         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5336
5337         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5338         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5339         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5340         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5341         page_counter_set_min(&memcg->memory, 0);
5342         page_counter_set_low(&memcg->memory, 0);
5343         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5344         memcg->soft_limit = PAGE_COUNTER_MAX;
5345         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5346         memcg_wb_domain_size_changed(memcg);
5347 }
5348
5349 void mem_cgroup_flush_stats(void)
5350 {
5351         if (!spin_trylock(&stats_flush_lock))
5352                 return;
5353
5354         cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
5355         spin_unlock(&stats_flush_lock);
5356 }
5357
5358 static void flush_memcg_stats_dwork(struct work_struct *w)
5359 {
5360         mem_cgroup_flush_stats();
5361         queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
5362 }
5363
5364 static void flush_memcg_stats_work(struct work_struct *w)
5365 {
5366         mem_cgroup_flush_stats();
5367 }
5368
5369 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5370 {
5371         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5372         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5373         struct memcg_vmstats_percpu *statc;
5374         long delta, v;
5375         int i, nid;
5376
5377         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5378
5379         for (i = 0; i < MEMCG_NR_STAT; i++) {
5380                 /*
5381                  * Collect the aggregated propagation counts of groups
5382                  * below us. We're in a per-cpu loop here and this is
5383                  * a global counter, so the first cycle will get them.
5384                  */
5385                 delta = memcg->vmstats.state_pending[i];
5386                 if (delta)
5387                         memcg->vmstats.state_pending[i] = 0;
5388
5389                 /* Add CPU changes on this level since the last flush */
5390                 v = READ_ONCE(statc->state[i]);
5391                 if (v != statc->state_prev[i]) {
5392                         delta += v - statc->state_prev[i];
5393                         statc->state_prev[i] = v;
5394                 }
5395
5396                 if (!delta)
5397                         continue;
5398
5399                 /* Aggregate counts on this level and propagate upwards */
5400                 memcg->vmstats.state[i] += delta;
5401                 if (parent)
5402                         parent->vmstats.state_pending[i] += delta;
5403         }
5404
5405         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5406                 delta = memcg->vmstats.events_pending[i];
5407                 if (delta)
5408                         memcg->vmstats.events_pending[i] = 0;
5409
5410                 v = READ_ONCE(statc->events[i]);
5411                 if (v != statc->events_prev[i]) {
5412                         delta += v - statc->events_prev[i];
5413                         statc->events_prev[i] = v;
5414                 }
5415
5416                 if (!delta)
5417                         continue;
5418
5419                 memcg->vmstats.events[i] += delta;
5420                 if (parent)
5421                         parent->vmstats.events_pending[i] += delta;
5422         }
5423
5424         for_each_node_state(nid, N_MEMORY) {
5425                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5426                 struct mem_cgroup_per_node *ppn = NULL;
5427                 struct lruvec_stats_percpu *lstatc;
5428
5429                 if (parent)
5430                         ppn = parent->nodeinfo[nid];
5431
5432                 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5433
5434                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5435                         delta = pn->lruvec_stats.state_pending[i];
5436                         if (delta)
5437                                 pn->lruvec_stats.state_pending[i] = 0;
5438
5439                         v = READ_ONCE(lstatc->state[i]);
5440                         if (v != lstatc->state_prev[i]) {
5441                                 delta += v - lstatc->state_prev[i];
5442                                 lstatc->state_prev[i] = v;
5443                         }
5444
5445                         if (!delta)
5446                                 continue;
5447
5448                         pn->lruvec_stats.state[i] += delta;
5449                         if (ppn)
5450                                 ppn->lruvec_stats.state_pending[i] += delta;
5451                 }
5452         }
5453 }
5454
5455 #ifdef CONFIG_MMU
5456 /* Handlers for move charge at task migration. */
5457 static int mem_cgroup_do_precharge(unsigned long count)
5458 {
5459         int ret;
5460
5461         /* Try a single bulk charge without reclaim first, kswapd may wake */
5462         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5463         if (!ret) {
5464                 mc.precharge += count;
5465                 return ret;
5466         }
5467
5468         /* Try charges one by one with reclaim, but do not retry */
5469         while (count--) {
5470                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5471                 if (ret)
5472                         return ret;
5473                 mc.precharge++;
5474                 cond_resched();
5475         }
5476         return 0;
5477 }
5478
5479 union mc_target {
5480         struct page     *page;
5481         swp_entry_t     ent;
5482 };
5483
5484 enum mc_target_type {
5485         MC_TARGET_NONE = 0,
5486         MC_TARGET_PAGE,
5487         MC_TARGET_SWAP,
5488         MC_TARGET_DEVICE,
5489 };
5490
5491 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5492                                                 unsigned long addr, pte_t ptent)
5493 {
5494         struct page *page = vm_normal_page(vma, addr, ptent);
5495
5496         if (!page || !page_mapped(page))
5497                 return NULL;
5498         if (PageAnon(page)) {
5499                 if (!(mc.flags & MOVE_ANON))
5500                         return NULL;
5501         } else {
5502                 if (!(mc.flags & MOVE_FILE))
5503                         return NULL;
5504         }
5505         if (!get_page_unless_zero(page))
5506                 return NULL;
5507
5508         return page;
5509 }
5510
5511 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5512 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5513                         pte_t ptent, swp_entry_t *entry)
5514 {
5515         struct page *page = NULL;
5516         swp_entry_t ent = pte_to_swp_entry(ptent);
5517
5518         if (!(mc.flags & MOVE_ANON))
5519                 return NULL;
5520
5521         /*
5522          * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5523          * a device and because they are not accessible by CPU they are store
5524          * as special swap entry in the CPU page table.
5525          */
5526         if (is_device_private_entry(ent)) {
5527                 page = pfn_swap_entry_to_page(ent);
5528                 /*
5529                  * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5530                  * a refcount of 1 when free (unlike normal page)
5531                  */
5532                 if (!page_ref_add_unless(page, 1, 1))
5533                         return NULL;
5534                 return page;
5535         }
5536
5537         if (non_swap_entry(ent))
5538                 return NULL;
5539
5540         /*
5541          * Because lookup_swap_cache() updates some statistics counter,
5542          * we call find_get_page() with swapper_space directly.
5543          */
5544         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5545         entry->val = ent.val;
5546
5547         return page;
5548 }
5549 #else
5550 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5551                         pte_t ptent, swp_entry_t *entry)
5552 {
5553         return NULL;
5554 }
5555 #endif
5556
5557 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5558                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5559 {
5560         if (!vma->vm_file) /* anonymous vma */
5561                 return NULL;
5562         if (!(mc.flags & MOVE_FILE))
5563                 return NULL;
5564
5565         /* page is moved even if it's not RSS of this task(page-faulted). */
5566         /* shmem/tmpfs may report page out on swap: account for that too. */
5567         return find_get_incore_page(vma->vm_file->f_mapping,
5568                         linear_page_index(vma, addr));
5569 }
5570
5571 /**
5572  * mem_cgroup_move_account - move account of the page
5573  * @page: the page
5574  * @compound: charge the page as compound or small page
5575  * @from: mem_cgroup which the page is moved from.
5576  * @to: mem_cgroup which the page is moved to. @from != @to.
5577  *
5578  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5579  *
5580  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5581  * from old cgroup.
5582  */
5583 static int mem_cgroup_move_account(struct page *page,
5584                                    bool compound,
5585                                    struct mem_cgroup *from,
5586                                    struct mem_cgroup *to)
5587 {
5588         struct lruvec *from_vec, *to_vec;
5589         struct pglist_data *pgdat;
5590         unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5591         int ret;
5592
5593         VM_BUG_ON(from == to);
5594         VM_BUG_ON_PAGE(PageLRU(page), page);
5595         VM_BUG_ON(compound && !PageTransHuge(page));
5596
5597         /*
5598          * Prevent mem_cgroup_migrate() from looking at
5599          * page's memory cgroup of its source page while we change it.
5600          */
5601         ret = -EBUSY;
5602         if (!trylock_page(page))
5603                 goto out;
5604
5605         ret = -EINVAL;
5606         if (page_memcg(page) != from)
5607                 goto out_unlock;
5608
5609         pgdat = page_pgdat(page);
5610         from_vec = mem_cgroup_lruvec(from, pgdat);
5611         to_vec = mem_cgroup_lruvec(to, pgdat);
5612
5613         lock_page_memcg(page);
5614
5615         if (PageAnon(page)) {
5616                 if (page_mapped(page)) {
5617                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5618                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5619                         if (PageTransHuge(page)) {
5620                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5621                                                    -nr_pages);
5622                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5623                                                    nr_pages);
5624                         }
5625                 }
5626         } else {
5627                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5628                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5629
5630                 if (PageSwapBacked(page)) {
5631                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5632                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5633                 }
5634
5635                 if (page_mapped(page)) {
5636                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5637                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5638                 }
5639
5640                 if (PageDirty(page)) {
5641                         struct address_space *mapping = page_mapping(page);
5642
5643                         if (mapping_can_writeback(mapping)) {
5644                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5645                                                    -nr_pages);
5646                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5647                                                    nr_pages);
5648                         }
5649                 }
5650         }
5651
5652         if (PageWriteback(page)) {
5653                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5654                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5655         }
5656
5657         /*
5658          * All state has been migrated, let's switch to the new memcg.
5659          *
5660          * It is safe to change page's memcg here because the page
5661          * is referenced, charged, isolated, and locked: we can't race
5662          * with (un)charging, migration, LRU putback, or anything else
5663          * that would rely on a stable page's memory cgroup.
5664          *
5665          * Note that lock_page_memcg is a memcg lock, not a page lock,
5666          * to save space. As soon as we switch page's memory cgroup to a
5667          * new memcg that isn't locked, the above state can change
5668          * concurrently again. Make sure we're truly done with it.
5669          */
5670         smp_mb();
5671
5672         css_get(&to->css);
5673         css_put(&from->css);
5674
5675         page->memcg_data = (unsigned long)to;
5676
5677         __unlock_page_memcg(from);
5678
5679         ret = 0;
5680
5681         local_irq_disable();
5682         mem_cgroup_charge_statistics(to, page, nr_pages);
5683         memcg_check_events(to, page);
5684         mem_cgroup_charge_statistics(from, page, -nr_pages);
5685         memcg_check_events(from, page);
5686         local_irq_enable();
5687 out_unlock:
5688         unlock_page(page);
5689 out:
5690         return ret;
5691 }
5692
5693 /**
5694  * get_mctgt_type - get target type of moving charge
5695  * @vma: the vma the pte to be checked belongs
5696  * @addr: the address corresponding to the pte to be checked
5697  * @ptent: the pte to be checked
5698  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5699  *
5700  * Returns
5701  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5702  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5703  *     move charge. if @target is not NULL, the page is stored in target->page
5704  *     with extra refcnt got(Callers should handle it).
5705  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5706  *     target for charge migration. if @target is not NULL, the entry is stored
5707  *     in target->ent.
5708  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5709  *     (so ZONE_DEVICE page and thus not on the lru).
5710  *     For now we such page is charge like a regular page would be as for all
5711  *     intent and purposes it is just special memory taking the place of a
5712  *     regular page.
5713  *
5714  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5715  *
5716  * Called with pte lock held.
5717  */
5718
5719 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5720                 unsigned long addr, pte_t ptent, union mc_target *target)
5721 {
5722         struct page *page = NULL;
5723         enum mc_target_type ret = MC_TARGET_NONE;
5724         swp_entry_t ent = { .val = 0 };
5725
5726         if (pte_present(ptent))
5727                 page = mc_handle_present_pte(vma, addr, ptent);
5728         else if (is_swap_pte(ptent))
5729                 page = mc_handle_swap_pte(vma, ptent, &ent);
5730         else if (pte_none(ptent))
5731                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5732
5733         if (!page && !ent.val)
5734                 return ret;
5735         if (page) {
5736                 /*
5737                  * Do only loose check w/o serialization.
5738                  * mem_cgroup_move_account() checks the page is valid or
5739                  * not under LRU exclusion.
5740                  */
5741                 if (page_memcg(page) == mc.from) {
5742                         ret = MC_TARGET_PAGE;
5743                         if (is_device_private_page(page))
5744                                 ret = MC_TARGET_DEVICE;
5745                         if (target)
5746                                 target->page = page;
5747                 }
5748                 if (!ret || !target)
5749                         put_page(page);
5750         }
5751         /*
5752          * There is a swap entry and a page doesn't exist or isn't charged.
5753          * But we cannot move a tail-page in a THP.
5754          */
5755         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5756             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5757                 ret = MC_TARGET_SWAP;
5758                 if (target)
5759                         target->ent = ent;
5760         }
5761         return ret;
5762 }
5763
5764 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5765 /*
5766  * We don't consider PMD mapped swapping or file mapped pages because THP does
5767  * not support them for now.
5768  * Caller should make sure that pmd_trans_huge(pmd) is true.
5769  */
5770 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5771                 unsigned long addr, pmd_t pmd, union mc_target *target)
5772 {
5773         struct page *page = NULL;
5774         enum mc_target_type ret = MC_TARGET_NONE;
5775
5776         if (unlikely(is_swap_pmd(pmd))) {
5777                 VM_BUG_ON(thp_migration_supported() &&
5778                                   !is_pmd_migration_entry(pmd));
5779                 return ret;
5780         }
5781         page = pmd_page(pmd);
5782         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5783         if (!(mc.flags & MOVE_ANON))
5784                 return ret;
5785         if (page_memcg(page) == mc.from) {
5786                 ret = MC_TARGET_PAGE;
5787                 if (target) {
5788                         get_page(page);
5789                         target->page = page;
5790                 }
5791         }
5792         return ret;
5793 }
5794 #else
5795 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5796                 unsigned long addr, pmd_t pmd, union mc_target *target)
5797 {
5798         return MC_TARGET_NONE;
5799 }
5800 #endif
5801
5802 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5803                                         unsigned long addr, unsigned long end,
5804                                         struct mm_walk *walk)
5805 {
5806         struct vm_area_struct *vma = walk->vma;
5807         pte_t *pte;
5808         spinlock_t *ptl;
5809
5810         ptl = pmd_trans_huge_lock(pmd, vma);
5811         if (ptl) {
5812                 /*
5813                  * Note their can not be MC_TARGET_DEVICE for now as we do not
5814                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5815                  * this might change.
5816                  */
5817                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5818                         mc.precharge += HPAGE_PMD_NR;
5819                 spin_unlock(ptl);
5820                 return 0;
5821         }
5822
5823         if (pmd_trans_unstable(pmd))
5824                 return 0;
5825         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5826         for (; addr != end; pte++, addr += PAGE_SIZE)
5827                 if (get_mctgt_type(vma, addr, *pte, NULL))
5828                         mc.precharge++; /* increment precharge temporarily */
5829         pte_unmap_unlock(pte - 1, ptl);
5830         cond_resched();
5831
5832         return 0;
5833 }
5834
5835 static const struct mm_walk_ops precharge_walk_ops = {
5836         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
5837 };
5838
5839 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5840 {
5841         unsigned long precharge;
5842
5843         mmap_read_lock(mm);
5844         walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5845         mmap_read_unlock(mm);
5846
5847         precharge = mc.precharge;
5848         mc.precharge = 0;
5849
5850         return precharge;
5851 }
5852
5853 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5854 {
5855         unsigned long precharge = mem_cgroup_count_precharge(mm);
5856
5857         VM_BUG_ON(mc.moving_task);
5858         mc.moving_task = current;
5859         return mem_cgroup_do_precharge(precharge);
5860 }
5861
5862 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5863 static void __mem_cgroup_clear_mc(void)
5864 {
5865         struct mem_cgroup *from = mc.from;
5866         struct mem_cgroup *to = mc.to;
5867
5868         /* we must uncharge all the leftover precharges from mc.to */
5869         if (mc.precharge) {
5870                 cancel_charge(mc.to, mc.precharge);
5871                 mc.precharge = 0;
5872         }
5873         /*
5874          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5875          * we must uncharge here.
5876          */
5877         if (mc.moved_charge) {
5878                 cancel_charge(mc.from, mc.moved_charge);
5879                 mc.moved_charge = 0;
5880         }
5881         /* we must fixup refcnts and charges */
5882         if (mc.moved_swap) {
5883                 /* uncharge swap account from the old cgroup */
5884                 if (!mem_cgroup_is_root(mc.from))
5885                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5886
5887                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5888
5889                 /*
5890                  * we charged both to->memory and to->memsw, so we
5891                  * should uncharge to->memory.
5892                  */
5893                 if (!mem_cgroup_is_root(mc.to))
5894                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5895
5896                 mc.moved_swap = 0;
5897         }
5898         memcg_oom_recover(from);
5899         memcg_oom_recover(to);
5900         wake_up_all(&mc.waitq);
5901 }
5902
5903 static void mem_cgroup_clear_mc(void)
5904 {
5905         struct mm_struct *mm = mc.mm;
5906
5907         /*
5908          * we must clear moving_task before waking up waiters at the end of
5909          * task migration.
5910          */
5911         mc.moving_task = NULL;
5912         __mem_cgroup_clear_mc();
5913         spin_lock(&mc.lock);
5914         mc.from = NULL;
5915         mc.to = NULL;
5916         mc.mm = NULL;
5917         spin_unlock(&mc.lock);
5918
5919         mmput(mm);
5920 }
5921
5922 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5923 {
5924         struct cgroup_subsys_state *css;
5925         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5926         struct mem_cgroup *from;
5927         struct task_struct *leader, *p;
5928         struct mm_struct *mm;
5929         unsigned long move_flags;
5930         int ret = 0;
5931
5932         /* charge immigration isn't supported on the default hierarchy */
5933         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5934                 return 0;
5935
5936         /*
5937          * Multi-process migrations only happen on the default hierarchy
5938          * where charge immigration is not used.  Perform charge
5939          * immigration if @tset contains a leader and whine if there are
5940          * multiple.
5941          */
5942         p = NULL;
5943         cgroup_taskset_for_each_leader(leader, css, tset) {
5944                 WARN_ON_ONCE(p);
5945                 p = leader;
5946                 memcg = mem_cgroup_from_css(css);
5947         }
5948         if (!p)
5949                 return 0;
5950
5951         /*
5952          * We are now committed to this value whatever it is. Changes in this
5953          * tunable will only affect upcoming migrations, not the current one.
5954          * So we need to save it, and keep it going.
5955          */
5956         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5957         if (!move_flags)
5958                 return 0;
5959
5960         from = mem_cgroup_from_task(p);
5961
5962         VM_BUG_ON(from == memcg);
5963
5964         mm = get_task_mm(p);
5965         if (!mm)
5966                 return 0;
5967         /* We move charges only when we move a owner of the mm */
5968         if (mm->owner == p) {
5969                 VM_BUG_ON(mc.from);
5970                 VM_BUG_ON(mc.to);
5971                 VM_BUG_ON(mc.precharge);
5972                 VM_BUG_ON(mc.moved_charge);
5973                 VM_BUG_ON(mc.moved_swap);
5974
5975                 spin_lock(&mc.lock);
5976                 mc.mm = mm;
5977                 mc.from = from;
5978                 mc.to = memcg;
5979                 mc.flags = move_flags;
5980                 spin_unlock(&mc.lock);
5981                 /* We set mc.moving_task later */
5982
5983                 ret = mem_cgroup_precharge_mc(mm);
5984                 if (ret)
5985                         mem_cgroup_clear_mc();
5986         } else {
5987                 mmput(mm);
5988         }
5989         return ret;
5990 }
5991
5992 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5993 {
5994         if (mc.to)
5995                 mem_cgroup_clear_mc();
5996 }
5997
5998 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5999                                 unsigned long addr, unsigned long end,
6000                                 struct mm_walk *walk)
6001 {
6002         int ret = 0;
6003         struct vm_area_struct *vma = walk->vma;
6004         pte_t *pte;
6005         spinlock_t *ptl;
6006         enum mc_target_type target_type;
6007         union mc_target target;
6008         struct page *page;
6009
6010         ptl = pmd_trans_huge_lock(pmd, vma);
6011         if (ptl) {
6012                 if (mc.precharge < HPAGE_PMD_NR) {
6013                         spin_unlock(ptl);
6014                         return 0;
6015                 }
6016                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6017                 if (target_type == MC_TARGET_PAGE) {
6018                         page = target.page;
6019                         if (!isolate_lru_page(page)) {
6020                                 if (!mem_cgroup_move_account(page, true,
6021                                                              mc.from, mc.to)) {
6022                                         mc.precharge -= HPAGE_PMD_NR;
6023                                         mc.moved_charge += HPAGE_PMD_NR;
6024                                 }
6025                                 putback_lru_page(page);
6026                         }
6027                         put_page(page);
6028                 } else if (target_type == MC_TARGET_DEVICE) {
6029                         page = target.page;
6030                         if (!mem_cgroup_move_account(page, true,
6031                                                      mc.from, mc.to)) {
6032                                 mc.precharge -= HPAGE_PMD_NR;
6033                                 mc.moved_charge += HPAGE_PMD_NR;
6034                         }
6035                         put_page(page);
6036                 }
6037                 spin_unlock(ptl);
6038                 return 0;
6039         }
6040
6041         if (pmd_trans_unstable(pmd))
6042                 return 0;
6043 retry:
6044         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6045         for (; addr != end; addr += PAGE_SIZE) {
6046                 pte_t ptent = *(pte++);
6047                 bool device = false;
6048                 swp_entry_t ent;
6049
6050                 if (!mc.precharge)
6051                         break;
6052
6053                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6054                 case MC_TARGET_DEVICE:
6055                         device = true;
6056                         fallthrough;
6057                 case MC_TARGET_PAGE:
6058                         page = target.page;
6059                         /*
6060                          * We can have a part of the split pmd here. Moving it
6061                          * can be done but it would be too convoluted so simply
6062                          * ignore such a partial THP and keep it in original
6063                          * memcg. There should be somebody mapping the head.
6064                          */
6065                         if (PageTransCompound(page))
6066                                 goto put;
6067                         if (!device && isolate_lru_page(page))
6068                                 goto put;
6069                         if (!mem_cgroup_move_account(page, false,
6070                                                 mc.from, mc.to)) {
6071                                 mc.precharge--;
6072                                 /* we uncharge from mc.from later. */
6073                                 mc.moved_charge++;
6074                         }
6075                         if (!device)
6076                                 putback_lru_page(page);
6077 put:                    /* get_mctgt_type() gets the page */
6078                         put_page(page);
6079                         break;
6080                 case MC_TARGET_SWAP:
6081                         ent = target.ent;
6082                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6083                                 mc.precharge--;
6084                                 mem_cgroup_id_get_many(mc.to, 1);
6085                                 /* we fixup other refcnts and charges later. */
6086                                 mc.moved_swap++;
6087                         }
6088                         break;
6089                 default:
6090                         break;
6091                 }
6092         }
6093         pte_unmap_unlock(pte - 1, ptl);
6094         cond_resched();
6095
6096         if (addr != end) {
6097                 /*
6098                  * We have consumed all precharges we got in can_attach().
6099                  * We try charge one by one, but don't do any additional
6100                  * charges to mc.to if we have failed in charge once in attach()
6101                  * phase.
6102                  */
6103                 ret = mem_cgroup_do_precharge(1);
6104                 if (!ret)
6105                         goto retry;
6106         }
6107
6108         return ret;
6109 }
6110
6111 static const struct mm_walk_ops charge_walk_ops = {
6112         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6113 };
6114
6115 static void mem_cgroup_move_charge(void)
6116 {
6117         lru_add_drain_all();
6118         /*
6119          * Signal lock_page_memcg() to take the memcg's move_lock
6120          * while we're moving its pages to another memcg. Then wait
6121          * for already started RCU-only updates to finish.
6122          */
6123         atomic_inc(&mc.from->moving_account);
6124         synchronize_rcu();
6125 retry:
6126         if (unlikely(!mmap_read_trylock(mc.mm))) {
6127                 /*
6128                  * Someone who are holding the mmap_lock might be waiting in
6129                  * waitq. So we cancel all extra charges, wake up all waiters,
6130                  * and retry. Because we cancel precharges, we might not be able
6131                  * to move enough charges, but moving charge is a best-effort
6132                  * feature anyway, so it wouldn't be a big problem.
6133                  */
6134                 __mem_cgroup_clear_mc();
6135                 cond_resched();
6136                 goto retry;
6137         }
6138         /*
6139          * When we have consumed all precharges and failed in doing
6140          * additional charge, the page walk just aborts.
6141          */
6142         walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6143                         NULL);
6144
6145         mmap_read_unlock(mc.mm);
6146         atomic_dec(&mc.from->moving_account);
6147 }
6148
6149 static void mem_cgroup_move_task(void)
6150 {
6151         if (mc.to) {
6152                 mem_cgroup_move_charge();
6153                 mem_cgroup_clear_mc();
6154         }
6155 }
6156 #else   /* !CONFIG_MMU */
6157 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6158 {
6159         return 0;
6160 }
6161 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6162 {
6163 }
6164 static void mem_cgroup_move_task(void)
6165 {
6166 }
6167 #endif
6168
6169 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6170 {
6171         if (value == PAGE_COUNTER_MAX)
6172                 seq_puts(m, "max\n");
6173         else
6174                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6175
6176         return 0;
6177 }
6178
6179 static u64 memory_current_read(struct cgroup_subsys_state *css,
6180                                struct cftype *cft)
6181 {
6182         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6183
6184         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6185 }
6186
6187 static int memory_min_show(struct seq_file *m, void *v)
6188 {
6189         return seq_puts_memcg_tunable(m,
6190                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6191 }
6192
6193 static ssize_t memory_min_write(struct kernfs_open_file *of,
6194                                 char *buf, size_t nbytes, loff_t off)
6195 {
6196         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6197         unsigned long min;
6198         int err;
6199
6200         buf = strstrip(buf);
6201         err = page_counter_memparse(buf, "max", &min);
6202         if (err)
6203                 return err;
6204
6205         page_counter_set_min(&memcg->memory, min);
6206
6207         return nbytes;
6208 }
6209
6210 static int memory_low_show(struct seq_file *m, void *v)
6211 {
6212         return seq_puts_memcg_tunable(m,
6213                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6214 }
6215
6216 static ssize_t memory_low_write(struct kernfs_open_file *of,
6217                                 char *buf, size_t nbytes, loff_t off)
6218 {
6219         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6220         unsigned long low;
6221         int err;
6222
6223         buf = strstrip(buf);
6224         err = page_counter_memparse(buf, "max", &low);
6225         if (err)
6226                 return err;
6227
6228         page_counter_set_low(&memcg->memory, low);
6229
6230         return nbytes;
6231 }
6232
6233 static int memory_high_show(struct seq_file *m, void *v)
6234 {
6235         return seq_puts_memcg_tunable(m,
6236                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6237 }
6238
6239 static ssize_t memory_high_write(struct kernfs_open_file *of,
6240                                  char *buf, size_t nbytes, loff_t off)
6241 {
6242         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6243         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6244         bool drained = false;
6245         unsigned long high;
6246         int err;
6247
6248         buf = strstrip(buf);
6249         err = page_counter_memparse(buf, "max", &high);
6250         if (err)
6251                 return err;
6252
6253         page_counter_set_high(&memcg->memory, high);
6254
6255         for (;;) {
6256                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6257                 unsigned long reclaimed;
6258
6259                 if (nr_pages <= high)
6260                         break;
6261
6262                 if (signal_pending(current))
6263                         break;
6264
6265                 if (!drained) {
6266                         drain_all_stock(memcg);
6267                         drained = true;
6268                         continue;
6269                 }
6270
6271                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6272                                                          GFP_KERNEL, true);
6273
6274                 if (!reclaimed && !nr_retries--)
6275                         break;
6276         }
6277
6278         memcg_wb_domain_size_changed(memcg);
6279         return nbytes;
6280 }
6281
6282 static int memory_max_show(struct seq_file *m, void *v)
6283 {
6284         return seq_puts_memcg_tunable(m,
6285                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6286 }
6287
6288 static ssize_t memory_max_write(struct kernfs_open_file *of,
6289                                 char *buf, size_t nbytes, loff_t off)
6290 {
6291         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6292         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6293         bool drained = false;
6294         unsigned long max;
6295         int err;
6296
6297         buf = strstrip(buf);
6298         err = page_counter_memparse(buf, "max", &max);
6299         if (err)
6300                 return err;
6301
6302         xchg(&memcg->memory.max, max);
6303
6304         for (;;) {
6305                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6306
6307                 if (nr_pages <= max)
6308                         break;
6309
6310                 if (signal_pending(current))
6311                         break;
6312
6313                 if (!drained) {
6314                         drain_all_stock(memcg);
6315                         drained = true;
6316                         continue;
6317                 }
6318
6319                 if (nr_reclaims) {
6320                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6321                                                           GFP_KERNEL, true))
6322                                 nr_reclaims--;
6323                         continue;
6324                 }
6325
6326                 memcg_memory_event(memcg, MEMCG_OOM);
6327                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6328                         break;
6329         }
6330
6331         memcg_wb_domain_size_changed(memcg);
6332         return nbytes;
6333 }
6334
6335 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6336 {
6337         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6338         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6339         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6340         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6341         seq_printf(m, "oom_kill %lu\n",
6342                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6343 }
6344
6345 static int memory_events_show(struct seq_file *m, void *v)
6346 {
6347         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6348
6349         __memory_events_show(m, memcg->memory_events);
6350         return 0;
6351 }
6352
6353 static int memory_events_local_show(struct seq_file *m, void *v)
6354 {
6355         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6356
6357         __memory_events_show(m, memcg->memory_events_local);
6358         return 0;
6359 }
6360
6361 static int memory_stat_show(struct seq_file *m, void *v)
6362 {
6363         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6364         char *buf;
6365
6366         buf = memory_stat_format(memcg);
6367         if (!buf)
6368                 return -ENOMEM;
6369         seq_puts(m, buf);
6370         kfree(buf);
6371         return 0;
6372 }
6373
6374 #ifdef CONFIG_NUMA
6375 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6376                                                      int item)
6377 {
6378         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6379 }
6380
6381 static int memory_numa_stat_show(struct seq_file *m, void *v)
6382 {
6383         int i;
6384         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6385
6386         cgroup_rstat_flush(memcg->css.cgroup);
6387
6388         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6389                 int nid;
6390
6391                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6392                         continue;
6393
6394                 seq_printf(m, "%s", memory_stats[i].name);
6395                 for_each_node_state(nid, N_MEMORY) {
6396                         u64 size;
6397                         struct lruvec *lruvec;
6398
6399                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6400                         size = lruvec_page_state_output(lruvec,
6401                                                         memory_stats[i].idx);
6402                         seq_printf(m, " N%d=%llu", nid, size);
6403                 }
6404                 seq_putc(m, '\n');
6405         }
6406
6407         return 0;
6408 }
6409 #endif
6410
6411 static int memory_oom_group_show(struct seq_file *m, void *v)
6412 {
6413         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6414
6415         seq_printf(m, "%d\n", memcg->oom_group);
6416
6417         return 0;
6418 }
6419
6420 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6421                                       char *buf, size_t nbytes, loff_t off)
6422 {
6423         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6424         int ret, oom_group;
6425
6426         buf = strstrip(buf);
6427         if (!buf)
6428                 return -EINVAL;
6429
6430         ret = kstrtoint(buf, 0, &oom_group);
6431         if (ret)
6432                 return ret;
6433
6434         if (oom_group != 0 && oom_group != 1)
6435                 return -EINVAL;
6436
6437         memcg->oom_group = oom_group;
6438
6439         return nbytes;
6440 }
6441
6442 static struct cftype memory_files[] = {
6443         {
6444                 .name = "current",
6445                 .flags = CFTYPE_NOT_ON_ROOT,
6446                 .read_u64 = memory_current_read,
6447         },
6448         {
6449                 .name = "min",
6450                 .flags = CFTYPE_NOT_ON_ROOT,
6451                 .seq_show = memory_min_show,
6452                 .write = memory_min_write,
6453         },
6454         {
6455                 .name = "low",
6456                 .flags = CFTYPE_NOT_ON_ROOT,
6457                 .seq_show = memory_low_show,
6458                 .write = memory_low_write,
6459         },
6460         {
6461                 .name = "high",
6462                 .flags = CFTYPE_NOT_ON_ROOT,
6463                 .seq_show = memory_high_show,
6464                 .write = memory_high_write,
6465         },
6466         {
6467                 .name = "max",
6468                 .flags = CFTYPE_NOT_ON_ROOT,
6469                 .seq_show = memory_max_show,
6470                 .write = memory_max_write,
6471         },
6472         {
6473                 .name = "events",
6474                 .flags = CFTYPE_NOT_ON_ROOT,
6475                 .file_offset = offsetof(struct mem_cgroup, events_file),
6476                 .seq_show = memory_events_show,
6477         },
6478         {
6479                 .name = "events.local",
6480                 .flags = CFTYPE_NOT_ON_ROOT,
6481                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6482                 .seq_show = memory_events_local_show,
6483         },
6484         {
6485                 .name = "stat",
6486                 .seq_show = memory_stat_show,
6487         },
6488 #ifdef CONFIG_NUMA
6489         {
6490                 .name = "numa_stat",
6491                 .seq_show = memory_numa_stat_show,
6492         },
6493 #endif
6494         {
6495                 .name = "oom.group",
6496                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6497                 .seq_show = memory_oom_group_show,
6498                 .write = memory_oom_group_write,
6499         },
6500         { }     /* terminate */
6501 };
6502
6503 struct cgroup_subsys memory_cgrp_subsys = {
6504         .css_alloc = mem_cgroup_css_alloc,
6505         .css_online = mem_cgroup_css_online,
6506         .css_offline = mem_cgroup_css_offline,
6507         .css_released = mem_cgroup_css_released,
6508         .css_free = mem_cgroup_css_free,
6509         .css_reset = mem_cgroup_css_reset,
6510         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6511         .can_attach = mem_cgroup_can_attach,
6512         .cancel_attach = mem_cgroup_cancel_attach,
6513         .post_attach = mem_cgroup_move_task,
6514         .dfl_cftypes = memory_files,
6515         .legacy_cftypes = mem_cgroup_legacy_files,
6516         .early_init = 0,
6517 };
6518
6519 /*
6520  * This function calculates an individual cgroup's effective
6521  * protection which is derived from its own memory.min/low, its
6522  * parent's and siblings' settings, as well as the actual memory
6523  * distribution in the tree.
6524  *
6525  * The following rules apply to the effective protection values:
6526  *
6527  * 1. At the first level of reclaim, effective protection is equal to
6528  *    the declared protection in memory.min and memory.low.
6529  *
6530  * 2. To enable safe delegation of the protection configuration, at
6531  *    subsequent levels the effective protection is capped to the
6532  *    parent's effective protection.
6533  *
6534  * 3. To make complex and dynamic subtrees easier to configure, the
6535  *    user is allowed to overcommit the declared protection at a given
6536  *    level. If that is the case, the parent's effective protection is
6537  *    distributed to the children in proportion to how much protection
6538  *    they have declared and how much of it they are utilizing.
6539  *
6540  *    This makes distribution proportional, but also work-conserving:
6541  *    if one cgroup claims much more protection than it uses memory,
6542  *    the unused remainder is available to its siblings.
6543  *
6544  * 4. Conversely, when the declared protection is undercommitted at a
6545  *    given level, the distribution of the larger parental protection
6546  *    budget is NOT proportional. A cgroup's protection from a sibling
6547  *    is capped to its own memory.min/low setting.
6548  *
6549  * 5. However, to allow protecting recursive subtrees from each other
6550  *    without having to declare each individual cgroup's fixed share
6551  *    of the ancestor's claim to protection, any unutilized -
6552  *    "floating" - protection from up the tree is distributed in
6553  *    proportion to each cgroup's *usage*. This makes the protection
6554  *    neutral wrt sibling cgroups and lets them compete freely over
6555  *    the shared parental protection budget, but it protects the
6556  *    subtree as a whole from neighboring subtrees.
6557  *
6558  * Note that 4. and 5. are not in conflict: 4. is about protecting
6559  * against immediate siblings whereas 5. is about protecting against
6560  * neighboring subtrees.
6561  */
6562 static unsigned long effective_protection(unsigned long usage,
6563                                           unsigned long parent_usage,
6564                                           unsigned long setting,
6565                                           unsigned long parent_effective,
6566                                           unsigned long siblings_protected)
6567 {
6568         unsigned long protected;
6569         unsigned long ep;
6570
6571         protected = min(usage, setting);
6572         /*
6573          * If all cgroups at this level combined claim and use more
6574          * protection then what the parent affords them, distribute
6575          * shares in proportion to utilization.
6576          *
6577          * We are using actual utilization rather than the statically
6578          * claimed protection in order to be work-conserving: claimed
6579          * but unused protection is available to siblings that would
6580          * otherwise get a smaller chunk than what they claimed.
6581          */
6582         if (siblings_protected > parent_effective)
6583                 return protected * parent_effective / siblings_protected;
6584
6585         /*
6586          * Ok, utilized protection of all children is within what the
6587          * parent affords them, so we know whatever this child claims
6588          * and utilizes is effectively protected.
6589          *
6590          * If there is unprotected usage beyond this value, reclaim
6591          * will apply pressure in proportion to that amount.
6592          *
6593          * If there is unutilized protection, the cgroup will be fully
6594          * shielded from reclaim, but we do return a smaller value for
6595          * protection than what the group could enjoy in theory. This
6596          * is okay. With the overcommit distribution above, effective
6597          * protection is always dependent on how memory is actually
6598          * consumed among the siblings anyway.
6599          */
6600         ep = protected;
6601
6602         /*
6603          * If the children aren't claiming (all of) the protection
6604          * afforded to them by the parent, distribute the remainder in
6605          * proportion to the (unprotected) memory of each cgroup. That
6606          * way, cgroups that aren't explicitly prioritized wrt each
6607          * other compete freely over the allowance, but they are
6608          * collectively protected from neighboring trees.
6609          *
6610          * We're using unprotected memory for the weight so that if
6611          * some cgroups DO claim explicit protection, we don't protect
6612          * the same bytes twice.
6613          *
6614          * Check both usage and parent_usage against the respective
6615          * protected values. One should imply the other, but they
6616          * aren't read atomically - make sure the division is sane.
6617          */
6618         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6619                 return ep;
6620         if (parent_effective > siblings_protected &&
6621             parent_usage > siblings_protected &&
6622             usage > protected) {
6623                 unsigned long unclaimed;
6624
6625                 unclaimed = parent_effective - siblings_protected;
6626                 unclaimed *= usage - protected;
6627                 unclaimed /= parent_usage - siblings_protected;
6628
6629                 ep += unclaimed;
6630         }
6631
6632         return ep;
6633 }
6634
6635 /**
6636  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6637  * @root: the top ancestor of the sub-tree being checked
6638  * @memcg: the memory cgroup to check
6639  *
6640  * WARNING: This function is not stateless! It can only be used as part
6641  *          of a top-down tree iteration, not for isolated queries.
6642  */
6643 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6644                                      struct mem_cgroup *memcg)
6645 {
6646         unsigned long usage, parent_usage;
6647         struct mem_cgroup *parent;
6648
6649         if (mem_cgroup_disabled())
6650                 return;
6651
6652         if (!root)
6653                 root = root_mem_cgroup;
6654
6655         /*
6656          * Effective values of the reclaim targets are ignored so they
6657          * can be stale. Have a look at mem_cgroup_protection for more
6658          * details.
6659          * TODO: calculation should be more robust so that we do not need
6660          * that special casing.
6661          */
6662         if (memcg == root)
6663                 return;
6664
6665         usage = page_counter_read(&memcg->memory);
6666         if (!usage)
6667                 return;
6668
6669         parent = parent_mem_cgroup(memcg);
6670         /* No parent means a non-hierarchical mode on v1 memcg */
6671         if (!parent)
6672                 return;
6673
6674         if (parent == root) {
6675                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6676                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6677                 return;
6678         }
6679
6680         parent_usage = page_counter_read(&parent->memory);
6681
6682         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6683                         READ_ONCE(memcg->memory.min),
6684                         READ_ONCE(parent->memory.emin),
6685                         atomic_long_read(&parent->memory.children_min_usage)));
6686
6687         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6688                         READ_ONCE(memcg->memory.low),
6689                         READ_ONCE(parent->memory.elow),
6690                         atomic_long_read(&parent->memory.children_low_usage)));
6691 }
6692
6693 static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp)
6694 {
6695         unsigned int nr_pages = thp_nr_pages(page);
6696         int ret;
6697
6698         ret = try_charge(memcg, gfp, nr_pages);
6699         if (ret)
6700                 goto out;
6701
6702         css_get(&memcg->css);
6703         commit_charge(page, memcg);
6704
6705         local_irq_disable();
6706         mem_cgroup_charge_statistics(memcg, page, nr_pages);
6707         memcg_check_events(memcg, page);
6708         local_irq_enable();
6709 out:
6710         return ret;
6711 }
6712
6713 /**
6714  * __mem_cgroup_charge - charge a newly allocated page to a cgroup
6715  * @page: page to charge
6716  * @mm: mm context of the victim
6717  * @gfp_mask: reclaim mode
6718  *
6719  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6720  * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6721  * charge to the active memcg.
6722  *
6723  * Do not use this for pages allocated for swapin.
6724  *
6725  * Returns 0 on success. Otherwise, an error code is returned.
6726  */
6727 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
6728                         gfp_t gfp_mask)
6729 {
6730         struct mem_cgroup *memcg;
6731         int ret;
6732
6733         memcg = get_mem_cgroup_from_mm(mm);
6734         ret = charge_memcg(page, memcg, gfp_mask);
6735         css_put(&memcg->css);
6736
6737         return ret;
6738 }
6739
6740 /**
6741  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6742  * @page: page to charge
6743  * @mm: mm context of the victim
6744  * @gfp: reclaim mode
6745  * @entry: swap entry for which the page is allocated
6746  *
6747  * This function charges a page allocated for swapin. Please call this before
6748  * adding the page to the swapcache.
6749  *
6750  * Returns 0 on success. Otherwise, an error code is returned.
6751  */
6752 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6753                                   gfp_t gfp, swp_entry_t entry)
6754 {
6755         struct mem_cgroup *memcg;
6756         unsigned short id;
6757         int ret;
6758
6759         if (mem_cgroup_disabled())
6760                 return 0;
6761
6762         id = lookup_swap_cgroup_id(entry);
6763         rcu_read_lock();
6764         memcg = mem_cgroup_from_id(id);
6765         if (!memcg || !css_tryget_online(&memcg->css))
6766                 memcg = get_mem_cgroup_from_mm(mm);
6767         rcu_read_unlock();
6768
6769         ret = charge_memcg(page, memcg, gfp);
6770
6771         css_put(&memcg->css);
6772         return ret;
6773 }
6774
6775 /*
6776  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6777  * @entry: swap entry for which the page is charged
6778  *
6779  * Call this function after successfully adding the charged page to swapcache.
6780  *
6781  * Note: This function assumes the page for which swap slot is being uncharged
6782  * is order 0 page.
6783  */
6784 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6785 {
6786         /*
6787          * Cgroup1's unified memory+swap counter has been charged with the
6788          * new swapcache page, finish the transfer by uncharging the swap
6789          * slot. The swap slot would also get uncharged when it dies, but
6790          * it can stick around indefinitely and we'd count the page twice
6791          * the entire time.
6792          *
6793          * Cgroup2 has separate resource counters for memory and swap,
6794          * so this is a non-issue here. Memory and swap charge lifetimes
6795          * correspond 1:1 to page and swap slot lifetimes: we charge the
6796          * page to memory here, and uncharge swap when the slot is freed.
6797          */
6798         if (!mem_cgroup_disabled() && do_memsw_account()) {
6799                 /*
6800                  * The swap entry might not get freed for a long time,
6801                  * let's not wait for it.  The page already received a
6802                  * memory+swap charge, drop the swap entry duplicate.
6803                  */
6804                 mem_cgroup_uncharge_swap(entry, 1);
6805         }
6806 }
6807
6808 struct uncharge_gather {
6809         struct mem_cgroup *memcg;
6810         unsigned long nr_memory;
6811         unsigned long pgpgout;
6812         unsigned long nr_kmem;
6813         struct page *dummy_page;
6814 };
6815
6816 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6817 {
6818         memset(ug, 0, sizeof(*ug));
6819 }
6820
6821 static void uncharge_batch(const struct uncharge_gather *ug)
6822 {
6823         unsigned long flags;
6824
6825         if (ug->nr_memory) {
6826                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6827                 if (do_memsw_account())
6828                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6829                 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6830                         page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6831                 memcg_oom_recover(ug->memcg);
6832         }
6833
6834         local_irq_save(flags);
6835         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6836         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6837         memcg_check_events(ug->memcg, ug->dummy_page);
6838         local_irq_restore(flags);
6839
6840         /* drop reference from uncharge_page */
6841         css_put(&ug->memcg->css);
6842 }
6843
6844 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6845 {
6846         unsigned long nr_pages;
6847         struct mem_cgroup *memcg;
6848         struct obj_cgroup *objcg;
6849         bool use_objcg = PageMemcgKmem(page);
6850
6851         VM_BUG_ON_PAGE(PageLRU(page), page);
6852
6853         /*
6854          * Nobody should be changing or seriously looking at
6855          * page memcg or objcg at this point, we have fully
6856          * exclusive access to the page.
6857          */
6858         if (use_objcg) {
6859                 objcg = __page_objcg(page);
6860                 /*
6861                  * This get matches the put at the end of the function and
6862                  * kmem pages do not hold memcg references anymore.
6863                  */
6864                 memcg = get_mem_cgroup_from_objcg(objcg);
6865         } else {
6866                 memcg = __page_memcg(page);
6867         }
6868
6869         if (!memcg)
6870                 return;
6871
6872         if (ug->memcg != memcg) {
6873                 if (ug->memcg) {
6874                         uncharge_batch(ug);
6875                         uncharge_gather_clear(ug);
6876                 }
6877                 ug->memcg = memcg;
6878                 ug->dummy_page = page;
6879
6880                 /* pairs with css_put in uncharge_batch */
6881                 css_get(&memcg->css);
6882         }
6883
6884         nr_pages = compound_nr(page);
6885
6886         if (use_objcg) {
6887                 ug->nr_memory += nr_pages;
6888                 ug->nr_kmem += nr_pages;
6889
6890                 page->memcg_data = 0;
6891                 obj_cgroup_put(objcg);
6892         } else {
6893                 /* LRU pages aren't accounted at the root level */
6894                 if (!mem_cgroup_is_root(memcg))
6895                         ug->nr_memory += nr_pages;
6896                 ug->pgpgout++;
6897
6898                 page->memcg_data = 0;
6899         }
6900
6901         css_put(&memcg->css);
6902 }
6903
6904 /**
6905  * __mem_cgroup_uncharge - uncharge a page
6906  * @page: page to uncharge
6907  *
6908  * Uncharge a page previously charged with __mem_cgroup_charge().
6909  */
6910 void __mem_cgroup_uncharge(struct page *page)
6911 {
6912         struct uncharge_gather ug;
6913
6914         /* Don't touch page->lru of any random page, pre-check: */
6915         if (!page_memcg(page))
6916                 return;
6917
6918         uncharge_gather_clear(&ug);
6919         uncharge_page(page, &ug);
6920         uncharge_batch(&ug);
6921 }
6922
6923 /**
6924  * __mem_cgroup_uncharge_list - uncharge a list of page
6925  * @page_list: list of pages to uncharge
6926  *
6927  * Uncharge a list of pages previously charged with
6928  * __mem_cgroup_charge().
6929  */
6930 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6931 {
6932         struct uncharge_gather ug;
6933         struct page *page;
6934
6935         uncharge_gather_clear(&ug);
6936         list_for_each_entry(page, page_list, lru)
6937                 uncharge_page(page, &ug);
6938         if (ug.memcg)
6939                 uncharge_batch(&ug);
6940 }
6941
6942 /**
6943  * mem_cgroup_migrate - charge a page's replacement
6944  * @oldpage: currently circulating page
6945  * @newpage: replacement page
6946  *
6947  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6948  * be uncharged upon free.
6949  *
6950  * Both pages must be locked, @newpage->mapping must be set up.
6951  */
6952 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6953 {
6954         struct mem_cgroup *memcg;
6955         unsigned int nr_pages;
6956         unsigned long flags;
6957
6958         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6959         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6960         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6961         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6962                        newpage);
6963
6964         if (mem_cgroup_disabled())
6965                 return;
6966
6967         /* Page cache replacement: new page already charged? */
6968         if (page_memcg(newpage))
6969                 return;
6970
6971         memcg = page_memcg(oldpage);
6972         VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6973         if (!memcg)
6974                 return;
6975
6976         /* Force-charge the new page. The old one will be freed soon */
6977         nr_pages = thp_nr_pages(newpage);
6978
6979         if (!mem_cgroup_is_root(memcg)) {
6980                 page_counter_charge(&memcg->memory, nr_pages);
6981                 if (do_memsw_account())
6982                         page_counter_charge(&memcg->memsw, nr_pages);
6983         }
6984
6985         css_get(&memcg->css);
6986         commit_charge(newpage, memcg);
6987
6988         local_irq_save(flags);
6989         mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6990         memcg_check_events(memcg, newpage);
6991         local_irq_restore(flags);
6992 }
6993
6994 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6995 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6996
6997 void mem_cgroup_sk_alloc(struct sock *sk)
6998 {
6999         struct mem_cgroup *memcg;
7000
7001         if (!mem_cgroup_sockets_enabled)
7002                 return;
7003
7004         /* Do not associate the sock with unrelated interrupted task's memcg. */
7005         if (in_interrupt())
7006                 return;
7007
7008         rcu_read_lock();
7009         memcg = mem_cgroup_from_task(current);
7010         if (memcg == root_mem_cgroup)
7011                 goto out;
7012         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7013                 goto out;
7014         if (css_tryget(&memcg->css))
7015                 sk->sk_memcg = memcg;
7016 out:
7017         rcu_read_unlock();
7018 }
7019
7020 void mem_cgroup_sk_free(struct sock *sk)
7021 {
7022         if (sk->sk_memcg)
7023                 css_put(&sk->sk_memcg->css);
7024 }
7025
7026 /**
7027  * mem_cgroup_charge_skmem - charge socket memory
7028  * @memcg: memcg to charge
7029  * @nr_pages: number of pages to charge
7030  * @gfp_mask: reclaim mode
7031  *
7032  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7033  * @memcg's configured limit, %false if it doesn't.
7034  */
7035 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7036                              gfp_t gfp_mask)
7037 {
7038         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7039                 struct page_counter *fail;
7040
7041                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7042                         memcg->tcpmem_pressure = 0;
7043                         return true;
7044                 }
7045                 memcg->tcpmem_pressure = 1;
7046                 if (gfp_mask & __GFP_NOFAIL) {
7047                         page_counter_charge(&memcg->tcpmem, nr_pages);
7048                         return true;
7049                 }
7050                 return false;
7051         }
7052
7053         if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7054                 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7055                 return true;
7056         }
7057
7058         return false;
7059 }
7060
7061 /**
7062  * mem_cgroup_uncharge_skmem - uncharge socket memory
7063  * @memcg: memcg to uncharge
7064  * @nr_pages: number of pages to uncharge
7065  */
7066 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7067 {
7068         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7069                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7070                 return;
7071         }
7072
7073         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7074
7075         refill_stock(memcg, nr_pages);
7076 }
7077
7078 static int __init cgroup_memory(char *s)
7079 {
7080         char *token;
7081
7082         while ((token = strsep(&s, ",")) != NULL) {
7083                 if (!*token)
7084                         continue;
7085                 if (!strcmp(token, "nosocket"))
7086                         cgroup_memory_nosocket = true;
7087                 if (!strcmp(token, "nokmem"))
7088                         cgroup_memory_nokmem = true;
7089         }
7090         return 0;
7091 }
7092 __setup("cgroup.memory=", cgroup_memory);
7093
7094 /*
7095  * subsys_initcall() for memory controller.
7096  *
7097  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7098  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7099  * basically everything that doesn't depend on a specific mem_cgroup structure
7100  * should be initialized from here.
7101  */
7102 static int __init mem_cgroup_init(void)
7103 {
7104         int cpu, node;
7105
7106         /*
7107          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7108          * used for per-memcg-per-cpu caching of per-node statistics. In order
7109          * to work fine, we should make sure that the overfill threshold can't
7110          * exceed S32_MAX / PAGE_SIZE.
7111          */
7112         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7113
7114         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7115                                   memcg_hotplug_cpu_dead);
7116
7117         for_each_possible_cpu(cpu)
7118                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7119                           drain_local_stock);
7120
7121         for_each_node(node) {
7122                 struct mem_cgroup_tree_per_node *rtpn;
7123
7124                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7125                                     node_online(node) ? node : NUMA_NO_NODE);
7126
7127                 rtpn->rb_root = RB_ROOT;
7128                 rtpn->rb_rightmost = NULL;
7129                 spin_lock_init(&rtpn->lock);
7130                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7131         }
7132
7133         return 0;
7134 }
7135 subsys_initcall(mem_cgroup_init);
7136
7137 #ifdef CONFIG_MEMCG_SWAP
7138 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7139 {
7140         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7141                 /*
7142                  * The root cgroup cannot be destroyed, so it's refcount must
7143                  * always be >= 1.
7144                  */
7145                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7146                         VM_BUG_ON(1);
7147                         break;
7148                 }
7149                 memcg = parent_mem_cgroup(memcg);
7150                 if (!memcg)
7151                         memcg = root_mem_cgroup;
7152         }
7153         return memcg;
7154 }
7155
7156 /**
7157  * mem_cgroup_swapout - transfer a memsw charge to swap
7158  * @page: page whose memsw charge to transfer
7159  * @entry: swap entry to move the charge to
7160  *
7161  * Transfer the memsw charge of @page to @entry.
7162  */
7163 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7164 {
7165         struct mem_cgroup *memcg, *swap_memcg;
7166         unsigned int nr_entries;
7167         unsigned short oldid;
7168
7169         VM_BUG_ON_PAGE(PageLRU(page), page);
7170         VM_BUG_ON_PAGE(page_count(page), page);
7171
7172         if (mem_cgroup_disabled())
7173                 return;
7174
7175         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7176                 return;
7177
7178         memcg = page_memcg(page);
7179
7180         VM_WARN_ON_ONCE_PAGE(!memcg, page);
7181         if (!memcg)
7182                 return;
7183
7184         /*
7185          * In case the memcg owning these pages has been offlined and doesn't
7186          * have an ID allocated to it anymore, charge the closest online
7187          * ancestor for the swap instead and transfer the memory+swap charge.
7188          */
7189         swap_memcg = mem_cgroup_id_get_online(memcg);
7190         nr_entries = thp_nr_pages(page);
7191         /* Get references for the tail pages, too */
7192         if (nr_entries > 1)
7193                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7194         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7195                                    nr_entries);
7196         VM_BUG_ON_PAGE(oldid, page);
7197         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7198
7199         page->memcg_data = 0;
7200
7201         if (!mem_cgroup_is_root(memcg))
7202                 page_counter_uncharge(&memcg->memory, nr_entries);
7203
7204         if (!cgroup_memory_noswap && memcg != swap_memcg) {
7205                 if (!mem_cgroup_is_root(swap_memcg))
7206                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7207                 page_counter_uncharge(&memcg->memsw, nr_entries);
7208         }
7209
7210         /*
7211          * Interrupts should be disabled here because the caller holds the
7212          * i_pages lock which is taken with interrupts-off. It is
7213          * important here to have the interrupts disabled because it is the
7214          * only synchronisation we have for updating the per-CPU variables.
7215          */
7216         VM_BUG_ON(!irqs_disabled());
7217         mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7218         memcg_check_events(memcg, page);
7219
7220         css_put(&memcg->css);
7221 }
7222
7223 /**
7224  * __mem_cgroup_try_charge_swap - try charging swap space for a page
7225  * @page: page being added to swap
7226  * @entry: swap entry to charge
7227  *
7228  * Try to charge @page's memcg for the swap space at @entry.
7229  *
7230  * Returns 0 on success, -ENOMEM on failure.
7231  */
7232 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7233 {
7234         unsigned int nr_pages = thp_nr_pages(page);
7235         struct page_counter *counter;
7236         struct mem_cgroup *memcg;
7237         unsigned short oldid;
7238
7239         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7240                 return 0;
7241
7242         memcg = page_memcg(page);
7243
7244         VM_WARN_ON_ONCE_PAGE(!memcg, page);
7245         if (!memcg)
7246                 return 0;
7247
7248         if (!entry.val) {
7249                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7250                 return 0;
7251         }
7252
7253         memcg = mem_cgroup_id_get_online(memcg);
7254
7255         if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7256             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7257                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7258                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7259                 mem_cgroup_id_put(memcg);
7260                 return -ENOMEM;
7261         }
7262
7263         /* Get references for the tail pages, too */
7264         if (nr_pages > 1)
7265                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7266         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7267         VM_BUG_ON_PAGE(oldid, page);
7268         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7269
7270         return 0;
7271 }
7272
7273 /**
7274  * __mem_cgroup_uncharge_swap - uncharge swap space
7275  * @entry: swap entry to uncharge
7276  * @nr_pages: the amount of swap space to uncharge
7277  */
7278 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7279 {
7280         struct mem_cgroup *memcg;
7281         unsigned short id;
7282
7283         id = swap_cgroup_record(entry, 0, nr_pages);
7284         rcu_read_lock();
7285         memcg = mem_cgroup_from_id(id);
7286         if (memcg) {
7287                 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7288                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7289                                 page_counter_uncharge(&memcg->swap, nr_pages);
7290                         else
7291                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7292                 }
7293                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7294                 mem_cgroup_id_put_many(memcg, nr_pages);
7295         }
7296         rcu_read_unlock();
7297 }
7298
7299 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7300 {
7301         long nr_swap_pages = get_nr_swap_pages();
7302
7303         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7304                 return nr_swap_pages;
7305         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7306                 nr_swap_pages = min_t(long, nr_swap_pages,
7307                                       READ_ONCE(memcg->swap.max) -
7308                                       page_counter_read(&memcg->swap));
7309         return nr_swap_pages;
7310 }
7311
7312 bool mem_cgroup_swap_full(struct page *page)
7313 {
7314         struct mem_cgroup *memcg;
7315
7316         VM_BUG_ON_PAGE(!PageLocked(page), page);
7317
7318         if (vm_swap_full())
7319                 return true;
7320         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7321                 return false;
7322
7323         memcg = page_memcg(page);
7324         if (!memcg)
7325                 return false;
7326
7327         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7328                 unsigned long usage = page_counter_read(&memcg->swap);
7329
7330                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7331                     usage * 2 >= READ_ONCE(memcg->swap.max))
7332                         return true;
7333         }
7334
7335         return false;
7336 }
7337
7338 static int __init setup_swap_account(char *s)
7339 {
7340         if (!strcmp(s, "1"))
7341                 cgroup_memory_noswap = false;
7342         else if (!strcmp(s, "0"))
7343                 cgroup_memory_noswap = true;
7344         return 1;
7345 }
7346 __setup("swapaccount=", setup_swap_account);
7347
7348 static u64 swap_current_read(struct cgroup_subsys_state *css,
7349                              struct cftype *cft)
7350 {
7351         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7352
7353         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7354 }
7355
7356 static int swap_high_show(struct seq_file *m, void *v)
7357 {
7358         return seq_puts_memcg_tunable(m,
7359                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7360 }
7361
7362 static ssize_t swap_high_write(struct kernfs_open_file *of,
7363                                char *buf, size_t nbytes, loff_t off)
7364 {
7365         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7366         unsigned long high;
7367         int err;
7368
7369         buf = strstrip(buf);
7370         err = page_counter_memparse(buf, "max", &high);
7371         if (err)
7372                 return err;
7373
7374         page_counter_set_high(&memcg->swap, high);
7375
7376         return nbytes;
7377 }
7378
7379 static int swap_max_show(struct seq_file *m, void *v)
7380 {
7381         return seq_puts_memcg_tunable(m,
7382                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7383 }
7384
7385 static ssize_t swap_max_write(struct kernfs_open_file *of,
7386                               char *buf, size_t nbytes, loff_t off)
7387 {
7388         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7389         unsigned long max;
7390         int err;
7391
7392         buf = strstrip(buf);
7393         err = page_counter_memparse(buf, "max", &max);
7394         if (err)
7395                 return err;
7396
7397         xchg(&memcg->swap.max, max);
7398
7399         return nbytes;
7400 }
7401
7402 static int swap_events_show(struct seq_file *m, void *v)
7403 {
7404         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7405
7406         seq_printf(m, "high %lu\n",
7407                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7408         seq_printf(m, "max %lu\n",
7409                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7410         seq_printf(m, "fail %lu\n",
7411                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7412
7413         return 0;
7414 }
7415
7416 static struct cftype swap_files[] = {
7417         {
7418                 .name = "swap.current",
7419                 .flags = CFTYPE_NOT_ON_ROOT,
7420                 .read_u64 = swap_current_read,
7421         },
7422         {
7423                 .name = "swap.high",
7424                 .flags = CFTYPE_NOT_ON_ROOT,
7425                 .seq_show = swap_high_show,
7426                 .write = swap_high_write,
7427         },
7428         {
7429                 .name = "swap.max",
7430                 .flags = CFTYPE_NOT_ON_ROOT,
7431                 .seq_show = swap_max_show,
7432                 .write = swap_max_write,
7433         },
7434         {
7435                 .name = "swap.events",
7436                 .flags = CFTYPE_NOT_ON_ROOT,
7437                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7438                 .seq_show = swap_events_show,
7439         },
7440         { }     /* terminate */
7441 };
7442
7443 static struct cftype memsw_files[] = {
7444         {
7445                 .name = "memsw.usage_in_bytes",
7446                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7447                 .read_u64 = mem_cgroup_read_u64,
7448         },
7449         {
7450                 .name = "memsw.max_usage_in_bytes",
7451                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7452                 .write = mem_cgroup_reset,
7453                 .read_u64 = mem_cgroup_read_u64,
7454         },
7455         {
7456                 .name = "memsw.limit_in_bytes",
7457                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7458                 .write = mem_cgroup_write,
7459                 .read_u64 = mem_cgroup_read_u64,
7460         },
7461         {
7462                 .name = "memsw.failcnt",
7463                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7464                 .write = mem_cgroup_reset,
7465                 .read_u64 = mem_cgroup_read_u64,
7466         },
7467         { },    /* terminate */
7468 };
7469
7470 /*
7471  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7472  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7473  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7474  * boot parameter. This may result in premature OOPS inside
7475  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7476  */
7477 static int __init mem_cgroup_swap_init(void)
7478 {
7479         /* No memory control -> no swap control */
7480         if (mem_cgroup_disabled())
7481                 cgroup_memory_noswap = true;
7482
7483         if (cgroup_memory_noswap)
7484                 return 0;
7485
7486         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7487         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7488
7489         return 0;
7490 }
7491 core_initcall(mem_cgroup_swap_init);
7492
7493 #endif /* CONFIG_MEMCG_SWAP */