tools headers UAPI: Sync linux/prctl.h with the kernel sources
[linux-2.6-microblaze.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69
70 #include <linux/uaccess.h>
71
72 #include <trace/events/vmscan.h>
73
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 bool cgroup_memory_noswap __read_mostly;
91 #else
92 #define cgroup_memory_noswap            1
93 #endif
94
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103 }
104
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112
113 struct mem_cgroup_tree_per_node {
114         struct rb_root rb_root;
115         struct rb_node *rb_rightmost;
116         spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127         struct list_head list;
128         struct eventfd_ctx *eventfd;
129 };
130
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135         /*
136          * memcg which the event belongs to.
137          */
138         struct mem_cgroup *memcg;
139         /*
140          * eventfd to signal userspace about the event.
141          */
142         struct eventfd_ctx *eventfd;
143         /*
144          * Each of these stored in a list by the cgroup.
145          */
146         struct list_head list;
147         /*
148          * register_event() callback will be used to add new userspace
149          * waiter for changes related to this event.  Use eventfd_signal()
150          * on eventfd to send notification to userspace.
151          */
152         int (*register_event)(struct mem_cgroup *memcg,
153                               struct eventfd_ctx *eventfd, const char *args);
154         /*
155          * unregister_event() callback will be called when userspace closes
156          * the eventfd or on cgroup removing.  This callback must be set,
157          * if you want provide notification functionality.
158          */
159         void (*unregister_event)(struct mem_cgroup *memcg,
160                                  struct eventfd_ctx *eventfd);
161         /*
162          * All fields below needed to unregister event when
163          * userspace closes eventfd.
164          */
165         poll_table pt;
166         wait_queue_head_t *wqh;
167         wait_queue_entry_t wait;
168         struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON       0x1U
179 #define MOVE_FILE       0x2U
180 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184         spinlock_t        lock; /* for from, to */
185         struct mm_struct  *mm;
186         struct mem_cgroup *from;
187         struct mem_cgroup *to;
188         unsigned long flags;
189         unsigned long precharge;
190         unsigned long moved_charge;
191         unsigned long moved_swap;
192         struct task_struct *moving_task;        /* a task moving charges */
193         wait_queue_head_t waitq;                /* a waitq for other context */
194 } mc = {
195         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 /* for encoding cft->private value on file */
207 enum res_type {
208         _MEM,
209         _MEMSWAP,
210         _OOM_TYPE,
211         _KMEM,
212         _TCP,
213 };
214
215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
218 /* Used for OOM notifier */
219 #define OOM_CONTROL             (0)
220
221 /*
222  * Iteration constructs for visiting all cgroups (under a tree).  If
223  * loops are exited prematurely (break), mem_cgroup_iter_break() must
224  * be used for reference counting.
225  */
226 #define for_each_mem_cgroup_tree(iter, root)            \
227         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
228              iter != NULL;                              \
229              iter = mem_cgroup_iter(root, iter, NULL))
230
231 #define for_each_mem_cgroup(iter)                       \
232         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
233              iter != NULL;                              \
234              iter = mem_cgroup_iter(NULL, iter, NULL))
235
236 static inline bool should_force_charge(void)
237 {
238         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239                 (current->flags & PF_EXITING);
240 }
241
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245         if (!memcg)
246                 memcg = root_mem_cgroup;
247         return &memcg->vmpressure;
248 }
249
250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251 {
252         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253 }
254
255 #ifdef CONFIG_MEMCG_KMEM
256 extern spinlock_t css_set_lock;
257
258 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
259                                       unsigned int nr_pages);
260
261 static void obj_cgroup_release(struct percpu_ref *ref)
262 {
263         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
264         struct mem_cgroup *memcg;
265         unsigned int nr_bytes;
266         unsigned int nr_pages;
267         unsigned long flags;
268
269         /*
270          * At this point all allocated objects are freed, and
271          * objcg->nr_charged_bytes can't have an arbitrary byte value.
272          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
273          *
274          * The following sequence can lead to it:
275          * 1) CPU0: objcg == stock->cached_objcg
276          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
277          *          PAGE_SIZE bytes are charged
278          * 3) CPU1: a process from another memcg is allocating something,
279          *          the stock if flushed,
280          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
281          * 5) CPU0: we do release this object,
282          *          92 bytes are added to stock->nr_bytes
283          * 6) CPU0: stock is flushed,
284          *          92 bytes are added to objcg->nr_charged_bytes
285          *
286          * In the result, nr_charged_bytes == PAGE_SIZE.
287          * This page will be uncharged in obj_cgroup_release().
288          */
289         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
290         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
291         nr_pages = nr_bytes >> PAGE_SHIFT;
292
293         spin_lock_irqsave(&css_set_lock, flags);
294         memcg = obj_cgroup_memcg(objcg);
295         if (nr_pages)
296                 obj_cgroup_uncharge_pages(objcg, nr_pages);
297         list_del(&objcg->list);
298         mem_cgroup_put(memcg);
299         spin_unlock_irqrestore(&css_set_lock, flags);
300
301         percpu_ref_exit(ref);
302         kfree_rcu(objcg, rcu);
303 }
304
305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307         struct obj_cgroup *objcg;
308         int ret;
309
310         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311         if (!objcg)
312                 return NULL;
313
314         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315                               GFP_KERNEL);
316         if (ret) {
317                 kfree(objcg);
318                 return NULL;
319         }
320         INIT_LIST_HEAD(&objcg->list);
321         return objcg;
322 }
323
324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325                                   struct mem_cgroup *parent)
326 {
327         struct obj_cgroup *objcg, *iter;
328
329         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
331         spin_lock_irq(&css_set_lock);
332
333         /* Move active objcg to the parent's list */
334         xchg(&objcg->memcg, parent);
335         css_get(&parent->css);
336         list_add(&objcg->list, &parent->objcg_list);
337
338         /* Move already reparented objcgs to the parent's list */
339         list_for_each_entry(iter, &memcg->objcg_list, list) {
340                 css_get(&parent->css);
341                 xchg(&iter->memcg, parent);
342                 css_put(&memcg->css);
343         }
344         list_splice(&memcg->objcg_list, &parent->objcg_list);
345
346         spin_unlock_irq(&css_set_lock);
347
348         percpu_ref_kill(&objcg->refcnt);
349 }
350
351 /*
352  * This will be used as a shrinker list's index.
353  * The main reason for not using cgroup id for this:
354  *  this works better in sparse environments, where we have a lot of memcgs,
355  *  but only a few kmem-limited. Or also, if we have, for instance, 200
356  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
357  *  200 entry array for that.
358  *
359  * The current size of the caches array is stored in memcg_nr_cache_ids. It
360  * will double each time we have to increase it.
361  */
362 static DEFINE_IDA(memcg_cache_ida);
363 int memcg_nr_cache_ids;
364
365 /* Protects memcg_nr_cache_ids */
366 static DECLARE_RWSEM(memcg_cache_ids_sem);
367
368 void memcg_get_cache_ids(void)
369 {
370         down_read(&memcg_cache_ids_sem);
371 }
372
373 void memcg_put_cache_ids(void)
374 {
375         up_read(&memcg_cache_ids_sem);
376 }
377
378 /*
379  * MIN_SIZE is different than 1, because we would like to avoid going through
380  * the alloc/free process all the time. In a small machine, 4 kmem-limited
381  * cgroups is a reasonable guess. In the future, it could be a parameter or
382  * tunable, but that is strictly not necessary.
383  *
384  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
385  * this constant directly from cgroup, but it is understandable that this is
386  * better kept as an internal representation in cgroup.c. In any case, the
387  * cgrp_id space is not getting any smaller, and we don't have to necessarily
388  * increase ours as well if it increases.
389  */
390 #define MEMCG_CACHES_MIN_SIZE 4
391 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
392
393 /*
394  * A lot of the calls to the cache allocation functions are expected to be
395  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
396  * conditional to this static branch, we'll have to allow modules that does
397  * kmem_cache_alloc and the such to see this symbol as well
398  */
399 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
400 EXPORT_SYMBOL(memcg_kmem_enabled_key);
401 #endif
402
403 /**
404  * mem_cgroup_css_from_page - css of the memcg associated with a page
405  * @page: page of interest
406  *
407  * If memcg is bound to the default hierarchy, css of the memcg associated
408  * with @page is returned.  The returned css remains associated with @page
409  * until it is released.
410  *
411  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
412  * is returned.
413  */
414 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
415 {
416         struct mem_cgroup *memcg;
417
418         memcg = page_memcg(page);
419
420         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
421                 memcg = root_mem_cgroup;
422
423         return &memcg->css;
424 }
425
426 /**
427  * page_cgroup_ino - return inode number of the memcg a page is charged to
428  * @page: the page
429  *
430  * Look up the closest online ancestor of the memory cgroup @page is charged to
431  * and return its inode number or 0 if @page is not charged to any cgroup. It
432  * is safe to call this function without holding a reference to @page.
433  *
434  * Note, this function is inherently racy, because there is nothing to prevent
435  * the cgroup inode from getting torn down and potentially reallocated a moment
436  * after page_cgroup_ino() returns, so it only should be used by callers that
437  * do not care (such as procfs interfaces).
438  */
439 ino_t page_cgroup_ino(struct page *page)
440 {
441         struct mem_cgroup *memcg;
442         unsigned long ino = 0;
443
444         rcu_read_lock();
445         memcg = page_memcg_check(page);
446
447         while (memcg && !(memcg->css.flags & CSS_ONLINE))
448                 memcg = parent_mem_cgroup(memcg);
449         if (memcg)
450                 ino = cgroup_ino(memcg->css.cgroup);
451         rcu_read_unlock();
452         return ino;
453 }
454
455 static struct mem_cgroup_per_node *
456 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
457 {
458         int nid = page_to_nid(page);
459
460         return memcg->nodeinfo[nid];
461 }
462
463 static struct mem_cgroup_tree_per_node *
464 soft_limit_tree_node(int nid)
465 {
466         return soft_limit_tree.rb_tree_per_node[nid];
467 }
468
469 static struct mem_cgroup_tree_per_node *
470 soft_limit_tree_from_page(struct page *page)
471 {
472         int nid = page_to_nid(page);
473
474         return soft_limit_tree.rb_tree_per_node[nid];
475 }
476
477 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
478                                          struct mem_cgroup_tree_per_node *mctz,
479                                          unsigned long new_usage_in_excess)
480 {
481         struct rb_node **p = &mctz->rb_root.rb_node;
482         struct rb_node *parent = NULL;
483         struct mem_cgroup_per_node *mz_node;
484         bool rightmost = true;
485
486         if (mz->on_tree)
487                 return;
488
489         mz->usage_in_excess = new_usage_in_excess;
490         if (!mz->usage_in_excess)
491                 return;
492         while (*p) {
493                 parent = *p;
494                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
495                                         tree_node);
496                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
497                         p = &(*p)->rb_left;
498                         rightmost = false;
499                 } else {
500                         p = &(*p)->rb_right;
501                 }
502         }
503
504         if (rightmost)
505                 mctz->rb_rightmost = &mz->tree_node;
506
507         rb_link_node(&mz->tree_node, parent, p);
508         rb_insert_color(&mz->tree_node, &mctz->rb_root);
509         mz->on_tree = true;
510 }
511
512 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
513                                          struct mem_cgroup_tree_per_node *mctz)
514 {
515         if (!mz->on_tree)
516                 return;
517
518         if (&mz->tree_node == mctz->rb_rightmost)
519                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
520
521         rb_erase(&mz->tree_node, &mctz->rb_root);
522         mz->on_tree = false;
523 }
524
525 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
526                                        struct mem_cgroup_tree_per_node *mctz)
527 {
528         unsigned long flags;
529
530         spin_lock_irqsave(&mctz->lock, flags);
531         __mem_cgroup_remove_exceeded(mz, mctz);
532         spin_unlock_irqrestore(&mctz->lock, flags);
533 }
534
535 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
536 {
537         unsigned long nr_pages = page_counter_read(&memcg->memory);
538         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
539         unsigned long excess = 0;
540
541         if (nr_pages > soft_limit)
542                 excess = nr_pages - soft_limit;
543
544         return excess;
545 }
546
547 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
548 {
549         unsigned long excess;
550         struct mem_cgroup_per_node *mz;
551         struct mem_cgroup_tree_per_node *mctz;
552
553         mctz = soft_limit_tree_from_page(page);
554         if (!mctz)
555                 return;
556         /*
557          * Necessary to update all ancestors when hierarchy is used.
558          * because their event counter is not touched.
559          */
560         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
561                 mz = mem_cgroup_page_nodeinfo(memcg, page);
562                 excess = soft_limit_excess(memcg);
563                 /*
564                  * We have to update the tree if mz is on RB-tree or
565                  * mem is over its softlimit.
566                  */
567                 if (excess || mz->on_tree) {
568                         unsigned long flags;
569
570                         spin_lock_irqsave(&mctz->lock, flags);
571                         /* if on-tree, remove it */
572                         if (mz->on_tree)
573                                 __mem_cgroup_remove_exceeded(mz, mctz);
574                         /*
575                          * Insert again. mz->usage_in_excess will be updated.
576                          * If excess is 0, no tree ops.
577                          */
578                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
579                         spin_unlock_irqrestore(&mctz->lock, flags);
580                 }
581         }
582 }
583
584 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
585 {
586         struct mem_cgroup_tree_per_node *mctz;
587         struct mem_cgroup_per_node *mz;
588         int nid;
589
590         for_each_node(nid) {
591                 mz = memcg->nodeinfo[nid];
592                 mctz = soft_limit_tree_node(nid);
593                 if (mctz)
594                         mem_cgroup_remove_exceeded(mz, mctz);
595         }
596 }
597
598 static struct mem_cgroup_per_node *
599 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
600 {
601         struct mem_cgroup_per_node *mz;
602
603 retry:
604         mz = NULL;
605         if (!mctz->rb_rightmost)
606                 goto done;              /* Nothing to reclaim from */
607
608         mz = rb_entry(mctz->rb_rightmost,
609                       struct mem_cgroup_per_node, tree_node);
610         /*
611          * Remove the node now but someone else can add it back,
612          * we will to add it back at the end of reclaim to its correct
613          * position in the tree.
614          */
615         __mem_cgroup_remove_exceeded(mz, mctz);
616         if (!soft_limit_excess(mz->memcg) ||
617             !css_tryget(&mz->memcg->css))
618                 goto retry;
619 done:
620         return mz;
621 }
622
623 static struct mem_cgroup_per_node *
624 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
625 {
626         struct mem_cgroup_per_node *mz;
627
628         spin_lock_irq(&mctz->lock);
629         mz = __mem_cgroup_largest_soft_limit_node(mctz);
630         spin_unlock_irq(&mctz->lock);
631         return mz;
632 }
633
634 /**
635  * __mod_memcg_state - update cgroup memory statistics
636  * @memcg: the memory cgroup
637  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
638  * @val: delta to add to the counter, can be negative
639  */
640 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
641 {
642         if (mem_cgroup_disabled())
643                 return;
644
645         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
646         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
647 }
648
649 /* idx can be of type enum memcg_stat_item or node_stat_item. */
650 static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
651 {
652         long x = READ_ONCE(memcg->vmstats.state[idx]);
653 #ifdef CONFIG_SMP
654         if (x < 0)
655                 x = 0;
656 #endif
657         return x;
658 }
659
660 /* idx can be of type enum memcg_stat_item or node_stat_item. */
661 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
662 {
663         long x = 0;
664         int cpu;
665
666         for_each_possible_cpu(cpu)
667                 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
668 #ifdef CONFIG_SMP
669         if (x < 0)
670                 x = 0;
671 #endif
672         return x;
673 }
674
675 static struct mem_cgroup_per_node *
676 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
677 {
678         struct mem_cgroup *parent;
679
680         parent = parent_mem_cgroup(pn->memcg);
681         if (!parent)
682                 return NULL;
683         return parent->nodeinfo[nid];
684 }
685
686 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
687                               int val)
688 {
689         struct mem_cgroup_per_node *pn;
690         struct mem_cgroup *memcg;
691         long x, threshold = MEMCG_CHARGE_BATCH;
692
693         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
694         memcg = pn->memcg;
695
696         /* Update memcg */
697         __mod_memcg_state(memcg, idx, val);
698
699         /* Update lruvec */
700         __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
701
702         if (vmstat_item_in_bytes(idx))
703                 threshold <<= PAGE_SHIFT;
704
705         x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
706         if (unlikely(abs(x) > threshold)) {
707                 pg_data_t *pgdat = lruvec_pgdat(lruvec);
708                 struct mem_cgroup_per_node *pi;
709
710                 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
711                         atomic_long_add(x, &pi->lruvec_stat[idx]);
712                 x = 0;
713         }
714         __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
715 }
716
717 /**
718  * __mod_lruvec_state - update lruvec memory statistics
719  * @lruvec: the lruvec
720  * @idx: the stat item
721  * @val: delta to add to the counter, can be negative
722  *
723  * The lruvec is the intersection of the NUMA node and a cgroup. This
724  * function updates the all three counters that are affected by a
725  * change of state at this level: per-node, per-cgroup, per-lruvec.
726  */
727 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
728                         int val)
729 {
730         /* Update node */
731         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
732
733         /* Update memcg and lruvec */
734         if (!mem_cgroup_disabled())
735                 __mod_memcg_lruvec_state(lruvec, idx, val);
736 }
737
738 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
739                              int val)
740 {
741         struct page *head = compound_head(page); /* rmap on tail pages */
742         struct mem_cgroup *memcg;
743         pg_data_t *pgdat = page_pgdat(page);
744         struct lruvec *lruvec;
745
746         rcu_read_lock();
747         memcg = page_memcg(head);
748         /* Untracked pages have no memcg, no lruvec. Update only the node */
749         if (!memcg) {
750                 rcu_read_unlock();
751                 __mod_node_page_state(pgdat, idx, val);
752                 return;
753         }
754
755         lruvec = mem_cgroup_lruvec(memcg, pgdat);
756         __mod_lruvec_state(lruvec, idx, val);
757         rcu_read_unlock();
758 }
759 EXPORT_SYMBOL(__mod_lruvec_page_state);
760
761 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
762 {
763         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
764         struct mem_cgroup *memcg;
765         struct lruvec *lruvec;
766
767         rcu_read_lock();
768         memcg = mem_cgroup_from_obj(p);
769
770         /*
771          * Untracked pages have no memcg, no lruvec. Update only the
772          * node. If we reparent the slab objects to the root memcg,
773          * when we free the slab object, we need to update the per-memcg
774          * vmstats to keep it correct for the root memcg.
775          */
776         if (!memcg) {
777                 __mod_node_page_state(pgdat, idx, val);
778         } else {
779                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
780                 __mod_lruvec_state(lruvec, idx, val);
781         }
782         rcu_read_unlock();
783 }
784
785 /**
786  * __count_memcg_events - account VM events in a cgroup
787  * @memcg: the memory cgroup
788  * @idx: the event item
789  * @count: the number of events that occurred
790  */
791 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
792                           unsigned long count)
793 {
794         if (mem_cgroup_disabled())
795                 return;
796
797         __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
798         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
799 }
800
801 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
802 {
803         return READ_ONCE(memcg->vmstats.events[event]);
804 }
805
806 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
807 {
808         long x = 0;
809         int cpu;
810
811         for_each_possible_cpu(cpu)
812                 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
813         return x;
814 }
815
816 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
817                                          struct page *page,
818                                          int nr_pages)
819 {
820         /* pagein of a big page is an event. So, ignore page size */
821         if (nr_pages > 0)
822                 __count_memcg_events(memcg, PGPGIN, 1);
823         else {
824                 __count_memcg_events(memcg, PGPGOUT, 1);
825                 nr_pages = -nr_pages; /* for event */
826         }
827
828         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
829 }
830
831 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
832                                        enum mem_cgroup_events_target target)
833 {
834         unsigned long val, next;
835
836         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
837         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
838         /* from time_after() in jiffies.h */
839         if ((long)(next - val) < 0) {
840                 switch (target) {
841                 case MEM_CGROUP_TARGET_THRESH:
842                         next = val + THRESHOLDS_EVENTS_TARGET;
843                         break;
844                 case MEM_CGROUP_TARGET_SOFTLIMIT:
845                         next = val + SOFTLIMIT_EVENTS_TARGET;
846                         break;
847                 default:
848                         break;
849                 }
850                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
851                 return true;
852         }
853         return false;
854 }
855
856 /*
857  * Check events in order.
858  *
859  */
860 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
861 {
862         /* threshold event is triggered in finer grain than soft limit */
863         if (unlikely(mem_cgroup_event_ratelimit(memcg,
864                                                 MEM_CGROUP_TARGET_THRESH))) {
865                 bool do_softlimit;
866
867                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
868                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
869                 mem_cgroup_threshold(memcg);
870                 if (unlikely(do_softlimit))
871                         mem_cgroup_update_tree(memcg, page);
872         }
873 }
874
875 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
876 {
877         /*
878          * mm_update_next_owner() may clear mm->owner to NULL
879          * if it races with swapoff, page migration, etc.
880          * So this can be called with p == NULL.
881          */
882         if (unlikely(!p))
883                 return NULL;
884
885         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
886 }
887 EXPORT_SYMBOL(mem_cgroup_from_task);
888
889 /**
890  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
891  * @mm: mm from which memcg should be extracted. It can be NULL.
892  *
893  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
894  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
895  * returned.
896  */
897 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
898 {
899         struct mem_cgroup *memcg;
900
901         if (mem_cgroup_disabled())
902                 return NULL;
903
904         rcu_read_lock();
905         do {
906                 /*
907                  * Page cache insertions can happen without an
908                  * actual mm context, e.g. during disk probing
909                  * on boot, loopback IO, acct() writes etc.
910                  */
911                 if (unlikely(!mm))
912                         memcg = root_mem_cgroup;
913                 else {
914                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
915                         if (unlikely(!memcg))
916                                 memcg = root_mem_cgroup;
917                 }
918         } while (!css_tryget(&memcg->css));
919         rcu_read_unlock();
920         return memcg;
921 }
922 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
923
924 static __always_inline struct mem_cgroup *active_memcg(void)
925 {
926         if (in_interrupt())
927                 return this_cpu_read(int_active_memcg);
928         else
929                 return current->active_memcg;
930 }
931
932 static __always_inline bool memcg_kmem_bypass(void)
933 {
934         /* Allow remote memcg charging from any context. */
935         if (unlikely(active_memcg()))
936                 return false;
937
938         /* Memcg to charge can't be determined. */
939         if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
940                 return true;
941
942         return false;
943 }
944
945 /**
946  * mem_cgroup_iter - iterate over memory cgroup hierarchy
947  * @root: hierarchy root
948  * @prev: previously returned memcg, NULL on first invocation
949  * @reclaim: cookie for shared reclaim walks, NULL for full walks
950  *
951  * Returns references to children of the hierarchy below @root, or
952  * @root itself, or %NULL after a full round-trip.
953  *
954  * Caller must pass the return value in @prev on subsequent
955  * invocations for reference counting, or use mem_cgroup_iter_break()
956  * to cancel a hierarchy walk before the round-trip is complete.
957  *
958  * Reclaimers can specify a node in @reclaim to divide up the memcgs
959  * in the hierarchy among all concurrent reclaimers operating on the
960  * same node.
961  */
962 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
963                                    struct mem_cgroup *prev,
964                                    struct mem_cgroup_reclaim_cookie *reclaim)
965 {
966         struct mem_cgroup_reclaim_iter *iter;
967         struct cgroup_subsys_state *css = NULL;
968         struct mem_cgroup *memcg = NULL;
969         struct mem_cgroup *pos = NULL;
970
971         if (mem_cgroup_disabled())
972                 return NULL;
973
974         if (!root)
975                 root = root_mem_cgroup;
976
977         if (prev && !reclaim)
978                 pos = prev;
979
980         rcu_read_lock();
981
982         if (reclaim) {
983                 struct mem_cgroup_per_node *mz;
984
985                 mz = root->nodeinfo[reclaim->pgdat->node_id];
986                 iter = &mz->iter;
987
988                 if (prev && reclaim->generation != iter->generation)
989                         goto out_unlock;
990
991                 while (1) {
992                         pos = READ_ONCE(iter->position);
993                         if (!pos || css_tryget(&pos->css))
994                                 break;
995                         /*
996                          * css reference reached zero, so iter->position will
997                          * be cleared by ->css_released. However, we should not
998                          * rely on this happening soon, because ->css_released
999                          * is called from a work queue, and by busy-waiting we
1000                          * might block it. So we clear iter->position right
1001                          * away.
1002                          */
1003                         (void)cmpxchg(&iter->position, pos, NULL);
1004                 }
1005         }
1006
1007         if (pos)
1008                 css = &pos->css;
1009
1010         for (;;) {
1011                 css = css_next_descendant_pre(css, &root->css);
1012                 if (!css) {
1013                         /*
1014                          * Reclaimers share the hierarchy walk, and a
1015                          * new one might jump in right at the end of
1016                          * the hierarchy - make sure they see at least
1017                          * one group and restart from the beginning.
1018                          */
1019                         if (!prev)
1020                                 continue;
1021                         break;
1022                 }
1023
1024                 /*
1025                  * Verify the css and acquire a reference.  The root
1026                  * is provided by the caller, so we know it's alive
1027                  * and kicking, and don't take an extra reference.
1028                  */
1029                 memcg = mem_cgroup_from_css(css);
1030
1031                 if (css == &root->css)
1032                         break;
1033
1034                 if (css_tryget(css))
1035                         break;
1036
1037                 memcg = NULL;
1038         }
1039
1040         if (reclaim) {
1041                 /*
1042                  * The position could have already been updated by a competing
1043                  * thread, so check that the value hasn't changed since we read
1044                  * it to avoid reclaiming from the same cgroup twice.
1045                  */
1046                 (void)cmpxchg(&iter->position, pos, memcg);
1047
1048                 if (pos)
1049                         css_put(&pos->css);
1050
1051                 if (!memcg)
1052                         iter->generation++;
1053                 else if (!prev)
1054                         reclaim->generation = iter->generation;
1055         }
1056
1057 out_unlock:
1058         rcu_read_unlock();
1059         if (prev && prev != root)
1060                 css_put(&prev->css);
1061
1062         return memcg;
1063 }
1064
1065 /**
1066  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1067  * @root: hierarchy root
1068  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1069  */
1070 void mem_cgroup_iter_break(struct mem_cgroup *root,
1071                            struct mem_cgroup *prev)
1072 {
1073         if (!root)
1074                 root = root_mem_cgroup;
1075         if (prev && prev != root)
1076                 css_put(&prev->css);
1077 }
1078
1079 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1080                                         struct mem_cgroup *dead_memcg)
1081 {
1082         struct mem_cgroup_reclaim_iter *iter;
1083         struct mem_cgroup_per_node *mz;
1084         int nid;
1085
1086         for_each_node(nid) {
1087                 mz = from->nodeinfo[nid];
1088                 iter = &mz->iter;
1089                 cmpxchg(&iter->position, dead_memcg, NULL);
1090         }
1091 }
1092
1093 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1094 {
1095         struct mem_cgroup *memcg = dead_memcg;
1096         struct mem_cgroup *last;
1097
1098         do {
1099                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1100                 last = memcg;
1101         } while ((memcg = parent_mem_cgroup(memcg)));
1102
1103         /*
1104          * When cgruop1 non-hierarchy mode is used,
1105          * parent_mem_cgroup() does not walk all the way up to the
1106          * cgroup root (root_mem_cgroup). So we have to handle
1107          * dead_memcg from cgroup root separately.
1108          */
1109         if (last != root_mem_cgroup)
1110                 __invalidate_reclaim_iterators(root_mem_cgroup,
1111                                                 dead_memcg);
1112 }
1113
1114 /**
1115  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1116  * @memcg: hierarchy root
1117  * @fn: function to call for each task
1118  * @arg: argument passed to @fn
1119  *
1120  * This function iterates over tasks attached to @memcg or to any of its
1121  * descendants and calls @fn for each task. If @fn returns a non-zero
1122  * value, the function breaks the iteration loop and returns the value.
1123  * Otherwise, it will iterate over all tasks and return 0.
1124  *
1125  * This function must not be called for the root memory cgroup.
1126  */
1127 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1128                           int (*fn)(struct task_struct *, void *), void *arg)
1129 {
1130         struct mem_cgroup *iter;
1131         int ret = 0;
1132
1133         BUG_ON(memcg == root_mem_cgroup);
1134
1135         for_each_mem_cgroup_tree(iter, memcg) {
1136                 struct css_task_iter it;
1137                 struct task_struct *task;
1138
1139                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1140                 while (!ret && (task = css_task_iter_next(&it)))
1141                         ret = fn(task, arg);
1142                 css_task_iter_end(&it);
1143                 if (ret) {
1144                         mem_cgroup_iter_break(memcg, iter);
1145                         break;
1146                 }
1147         }
1148         return ret;
1149 }
1150
1151 #ifdef CONFIG_DEBUG_VM
1152 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1153 {
1154         struct mem_cgroup *memcg;
1155
1156         if (mem_cgroup_disabled())
1157                 return;
1158
1159         memcg = page_memcg(page);
1160
1161         if (!memcg)
1162                 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1163         else
1164                 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1165 }
1166 #endif
1167
1168 /**
1169  * lock_page_lruvec - lock and return lruvec for a given page.
1170  * @page: the page
1171  *
1172  * These functions are safe to use under any of the following conditions:
1173  * - page locked
1174  * - PageLRU cleared
1175  * - lock_page_memcg()
1176  * - page->_refcount is zero
1177  */
1178 struct lruvec *lock_page_lruvec(struct page *page)
1179 {
1180         struct lruvec *lruvec;
1181         struct pglist_data *pgdat = page_pgdat(page);
1182
1183         lruvec = mem_cgroup_page_lruvec(page, pgdat);
1184         spin_lock(&lruvec->lru_lock);
1185
1186         lruvec_memcg_debug(lruvec, page);
1187
1188         return lruvec;
1189 }
1190
1191 struct lruvec *lock_page_lruvec_irq(struct page *page)
1192 {
1193         struct lruvec *lruvec;
1194         struct pglist_data *pgdat = page_pgdat(page);
1195
1196         lruvec = mem_cgroup_page_lruvec(page, pgdat);
1197         spin_lock_irq(&lruvec->lru_lock);
1198
1199         lruvec_memcg_debug(lruvec, page);
1200
1201         return lruvec;
1202 }
1203
1204 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1205 {
1206         struct lruvec *lruvec;
1207         struct pglist_data *pgdat = page_pgdat(page);
1208
1209         lruvec = mem_cgroup_page_lruvec(page, pgdat);
1210         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1211
1212         lruvec_memcg_debug(lruvec, page);
1213
1214         return lruvec;
1215 }
1216
1217 /**
1218  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1219  * @lruvec: mem_cgroup per zone lru vector
1220  * @lru: index of lru list the page is sitting on
1221  * @zid: zone id of the accounted pages
1222  * @nr_pages: positive when adding or negative when removing
1223  *
1224  * This function must be called under lru_lock, just before a page is added
1225  * to or just after a page is removed from an lru list (that ordering being
1226  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1227  */
1228 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1229                                 int zid, int nr_pages)
1230 {
1231         struct mem_cgroup_per_node *mz;
1232         unsigned long *lru_size;
1233         long size;
1234
1235         if (mem_cgroup_disabled())
1236                 return;
1237
1238         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1239         lru_size = &mz->lru_zone_size[zid][lru];
1240
1241         if (nr_pages < 0)
1242                 *lru_size += nr_pages;
1243
1244         size = *lru_size;
1245         if (WARN_ONCE(size < 0,
1246                 "%s(%p, %d, %d): lru_size %ld\n",
1247                 __func__, lruvec, lru, nr_pages, size)) {
1248                 VM_BUG_ON(1);
1249                 *lru_size = 0;
1250         }
1251
1252         if (nr_pages > 0)
1253                 *lru_size += nr_pages;
1254 }
1255
1256 /**
1257  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1258  * @memcg: the memory cgroup
1259  *
1260  * Returns the maximum amount of memory @mem can be charged with, in
1261  * pages.
1262  */
1263 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1264 {
1265         unsigned long margin = 0;
1266         unsigned long count;
1267         unsigned long limit;
1268
1269         count = page_counter_read(&memcg->memory);
1270         limit = READ_ONCE(memcg->memory.max);
1271         if (count < limit)
1272                 margin = limit - count;
1273
1274         if (do_memsw_account()) {
1275                 count = page_counter_read(&memcg->memsw);
1276                 limit = READ_ONCE(memcg->memsw.max);
1277                 if (count < limit)
1278                         margin = min(margin, limit - count);
1279                 else
1280                         margin = 0;
1281         }
1282
1283         return margin;
1284 }
1285
1286 /*
1287  * A routine for checking "mem" is under move_account() or not.
1288  *
1289  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1290  * moving cgroups. This is for waiting at high-memory pressure
1291  * caused by "move".
1292  */
1293 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1294 {
1295         struct mem_cgroup *from;
1296         struct mem_cgroup *to;
1297         bool ret = false;
1298         /*
1299          * Unlike task_move routines, we access mc.to, mc.from not under
1300          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1301          */
1302         spin_lock(&mc.lock);
1303         from = mc.from;
1304         to = mc.to;
1305         if (!from)
1306                 goto unlock;
1307
1308         ret = mem_cgroup_is_descendant(from, memcg) ||
1309                 mem_cgroup_is_descendant(to, memcg);
1310 unlock:
1311         spin_unlock(&mc.lock);
1312         return ret;
1313 }
1314
1315 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1316 {
1317         if (mc.moving_task && current != mc.moving_task) {
1318                 if (mem_cgroup_under_move(memcg)) {
1319                         DEFINE_WAIT(wait);
1320                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1321                         /* moving charge context might have finished. */
1322                         if (mc.moving_task)
1323                                 schedule();
1324                         finish_wait(&mc.waitq, &wait);
1325                         return true;
1326                 }
1327         }
1328         return false;
1329 }
1330
1331 struct memory_stat {
1332         const char *name;
1333         unsigned int idx;
1334 };
1335
1336 static const struct memory_stat memory_stats[] = {
1337         { "anon",                       NR_ANON_MAPPED                  },
1338         { "file",                       NR_FILE_PAGES                   },
1339         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1340         { "pagetables",                 NR_PAGETABLE                    },
1341         { "percpu",                     MEMCG_PERCPU_B                  },
1342         { "sock",                       MEMCG_SOCK                      },
1343         { "shmem",                      NR_SHMEM                        },
1344         { "file_mapped",                NR_FILE_MAPPED                  },
1345         { "file_dirty",                 NR_FILE_DIRTY                   },
1346         { "file_writeback",             NR_WRITEBACK                    },
1347 #ifdef CONFIG_SWAP
1348         { "swapcached",                 NR_SWAPCACHE                    },
1349 #endif
1350 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1351         { "anon_thp",                   NR_ANON_THPS                    },
1352         { "file_thp",                   NR_FILE_THPS                    },
1353         { "shmem_thp",                  NR_SHMEM_THPS                   },
1354 #endif
1355         { "inactive_anon",              NR_INACTIVE_ANON                },
1356         { "active_anon",                NR_ACTIVE_ANON                  },
1357         { "inactive_file",              NR_INACTIVE_FILE                },
1358         { "active_file",                NR_ACTIVE_FILE                  },
1359         { "unevictable",                NR_UNEVICTABLE                  },
1360         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1361         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1362
1363         /* The memory events */
1364         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1365         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1366         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1367         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1368         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1369         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1370         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1371 };
1372
1373 /* Translate stat items to the correct unit for memory.stat output */
1374 static int memcg_page_state_unit(int item)
1375 {
1376         switch (item) {
1377         case MEMCG_PERCPU_B:
1378         case NR_SLAB_RECLAIMABLE_B:
1379         case NR_SLAB_UNRECLAIMABLE_B:
1380         case WORKINGSET_REFAULT_ANON:
1381         case WORKINGSET_REFAULT_FILE:
1382         case WORKINGSET_ACTIVATE_ANON:
1383         case WORKINGSET_ACTIVATE_FILE:
1384         case WORKINGSET_RESTORE_ANON:
1385         case WORKINGSET_RESTORE_FILE:
1386         case WORKINGSET_NODERECLAIM:
1387                 return 1;
1388         case NR_KERNEL_STACK_KB:
1389                 return SZ_1K;
1390         default:
1391                 return PAGE_SIZE;
1392         }
1393 }
1394
1395 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1396                                                     int item)
1397 {
1398         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1399 }
1400
1401 static char *memory_stat_format(struct mem_cgroup *memcg)
1402 {
1403         struct seq_buf s;
1404         int i;
1405
1406         seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1407         if (!s.buffer)
1408                 return NULL;
1409
1410         /*
1411          * Provide statistics on the state of the memory subsystem as
1412          * well as cumulative event counters that show past behavior.
1413          *
1414          * This list is ordered following a combination of these gradients:
1415          * 1) generic big picture -> specifics and details
1416          * 2) reflecting userspace activity -> reflecting kernel heuristics
1417          *
1418          * Current memory state:
1419          */
1420         cgroup_rstat_flush(memcg->css.cgroup);
1421
1422         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1423                 u64 size;
1424
1425                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1426                 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1427
1428                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1429                         size += memcg_page_state_output(memcg,
1430                                                         NR_SLAB_RECLAIMABLE_B);
1431                         seq_buf_printf(&s, "slab %llu\n", size);
1432                 }
1433         }
1434
1435         /* Accumulated memory events */
1436
1437         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1438                        memcg_events(memcg, PGFAULT));
1439         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1440                        memcg_events(memcg, PGMAJFAULT));
1441         seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1442                        memcg_events(memcg, PGREFILL));
1443         seq_buf_printf(&s, "pgscan %lu\n",
1444                        memcg_events(memcg, PGSCAN_KSWAPD) +
1445                        memcg_events(memcg, PGSCAN_DIRECT));
1446         seq_buf_printf(&s, "pgsteal %lu\n",
1447                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1448                        memcg_events(memcg, PGSTEAL_DIRECT));
1449         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1450                        memcg_events(memcg, PGACTIVATE));
1451         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1452                        memcg_events(memcg, PGDEACTIVATE));
1453         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1454                        memcg_events(memcg, PGLAZYFREE));
1455         seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1456                        memcg_events(memcg, PGLAZYFREED));
1457
1458 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1459         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1460                        memcg_events(memcg, THP_FAULT_ALLOC));
1461         seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1462                        memcg_events(memcg, THP_COLLAPSE_ALLOC));
1463 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1464
1465         /* The above should easily fit into one page */
1466         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1467
1468         return s.buffer;
1469 }
1470
1471 #define K(x) ((x) << (PAGE_SHIFT-10))
1472 /**
1473  * mem_cgroup_print_oom_context: Print OOM information relevant to
1474  * memory controller.
1475  * @memcg: The memory cgroup that went over limit
1476  * @p: Task that is going to be killed
1477  *
1478  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1479  * enabled
1480  */
1481 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1482 {
1483         rcu_read_lock();
1484
1485         if (memcg) {
1486                 pr_cont(",oom_memcg=");
1487                 pr_cont_cgroup_path(memcg->css.cgroup);
1488         } else
1489                 pr_cont(",global_oom");
1490         if (p) {
1491                 pr_cont(",task_memcg=");
1492                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1493         }
1494         rcu_read_unlock();
1495 }
1496
1497 /**
1498  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1499  * memory controller.
1500  * @memcg: The memory cgroup that went over limit
1501  */
1502 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1503 {
1504         char *buf;
1505
1506         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1507                 K((u64)page_counter_read(&memcg->memory)),
1508                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1509         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1510                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1511                         K((u64)page_counter_read(&memcg->swap)),
1512                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1513         else {
1514                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1515                         K((u64)page_counter_read(&memcg->memsw)),
1516                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1517                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1518                         K((u64)page_counter_read(&memcg->kmem)),
1519                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1520         }
1521
1522         pr_info("Memory cgroup stats for ");
1523         pr_cont_cgroup_path(memcg->css.cgroup);
1524         pr_cont(":");
1525         buf = memory_stat_format(memcg);
1526         if (!buf)
1527                 return;
1528         pr_info("%s", buf);
1529         kfree(buf);
1530 }
1531
1532 /*
1533  * Return the memory (and swap, if configured) limit for a memcg.
1534  */
1535 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1536 {
1537         unsigned long max = READ_ONCE(memcg->memory.max);
1538
1539         if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1540                 if (mem_cgroup_swappiness(memcg))
1541                         max += min(READ_ONCE(memcg->swap.max),
1542                                    (unsigned long)total_swap_pages);
1543         } else { /* v1 */
1544                 if (mem_cgroup_swappiness(memcg)) {
1545                         /* Calculate swap excess capacity from memsw limit */
1546                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1547
1548                         max += min(swap, (unsigned long)total_swap_pages);
1549                 }
1550         }
1551         return max;
1552 }
1553
1554 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1555 {
1556         return page_counter_read(&memcg->memory);
1557 }
1558
1559 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1560                                      int order)
1561 {
1562         struct oom_control oc = {
1563                 .zonelist = NULL,
1564                 .nodemask = NULL,
1565                 .memcg = memcg,
1566                 .gfp_mask = gfp_mask,
1567                 .order = order,
1568         };
1569         bool ret = true;
1570
1571         if (mutex_lock_killable(&oom_lock))
1572                 return true;
1573
1574         if (mem_cgroup_margin(memcg) >= (1 << order))
1575                 goto unlock;
1576
1577         /*
1578          * A few threads which were not waiting at mutex_lock_killable() can
1579          * fail to bail out. Therefore, check again after holding oom_lock.
1580          */
1581         ret = should_force_charge() || out_of_memory(&oc);
1582
1583 unlock:
1584         mutex_unlock(&oom_lock);
1585         return ret;
1586 }
1587
1588 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1589                                    pg_data_t *pgdat,
1590                                    gfp_t gfp_mask,
1591                                    unsigned long *total_scanned)
1592 {
1593         struct mem_cgroup *victim = NULL;
1594         int total = 0;
1595         int loop = 0;
1596         unsigned long excess;
1597         unsigned long nr_scanned;
1598         struct mem_cgroup_reclaim_cookie reclaim = {
1599                 .pgdat = pgdat,
1600         };
1601
1602         excess = soft_limit_excess(root_memcg);
1603
1604         while (1) {
1605                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1606                 if (!victim) {
1607                         loop++;
1608                         if (loop >= 2) {
1609                                 /*
1610                                  * If we have not been able to reclaim
1611                                  * anything, it might because there are
1612                                  * no reclaimable pages under this hierarchy
1613                                  */
1614                                 if (!total)
1615                                         break;
1616                                 /*
1617                                  * We want to do more targeted reclaim.
1618                                  * excess >> 2 is not to excessive so as to
1619                                  * reclaim too much, nor too less that we keep
1620                                  * coming back to reclaim from this cgroup
1621                                  */
1622                                 if (total >= (excess >> 2) ||
1623                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1624                                         break;
1625                         }
1626                         continue;
1627                 }
1628                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1629                                         pgdat, &nr_scanned);
1630                 *total_scanned += nr_scanned;
1631                 if (!soft_limit_excess(root_memcg))
1632                         break;
1633         }
1634         mem_cgroup_iter_break(root_memcg, victim);
1635         return total;
1636 }
1637
1638 #ifdef CONFIG_LOCKDEP
1639 static struct lockdep_map memcg_oom_lock_dep_map = {
1640         .name = "memcg_oom_lock",
1641 };
1642 #endif
1643
1644 static DEFINE_SPINLOCK(memcg_oom_lock);
1645
1646 /*
1647  * Check OOM-Killer is already running under our hierarchy.
1648  * If someone is running, return false.
1649  */
1650 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1651 {
1652         struct mem_cgroup *iter, *failed = NULL;
1653
1654         spin_lock(&memcg_oom_lock);
1655
1656         for_each_mem_cgroup_tree(iter, memcg) {
1657                 if (iter->oom_lock) {
1658                         /*
1659                          * this subtree of our hierarchy is already locked
1660                          * so we cannot give a lock.
1661                          */
1662                         failed = iter;
1663                         mem_cgroup_iter_break(memcg, iter);
1664                         break;
1665                 } else
1666                         iter->oom_lock = true;
1667         }
1668
1669         if (failed) {
1670                 /*
1671                  * OK, we failed to lock the whole subtree so we have
1672                  * to clean up what we set up to the failing subtree
1673                  */
1674                 for_each_mem_cgroup_tree(iter, memcg) {
1675                         if (iter == failed) {
1676                                 mem_cgroup_iter_break(memcg, iter);
1677                                 break;
1678                         }
1679                         iter->oom_lock = false;
1680                 }
1681         } else
1682                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1683
1684         spin_unlock(&memcg_oom_lock);
1685
1686         return !failed;
1687 }
1688
1689 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1690 {
1691         struct mem_cgroup *iter;
1692
1693         spin_lock(&memcg_oom_lock);
1694         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1695         for_each_mem_cgroup_tree(iter, memcg)
1696                 iter->oom_lock = false;
1697         spin_unlock(&memcg_oom_lock);
1698 }
1699
1700 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1701 {
1702         struct mem_cgroup *iter;
1703
1704         spin_lock(&memcg_oom_lock);
1705         for_each_mem_cgroup_tree(iter, memcg)
1706                 iter->under_oom++;
1707         spin_unlock(&memcg_oom_lock);
1708 }
1709
1710 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1711 {
1712         struct mem_cgroup *iter;
1713
1714         /*
1715          * Be careful about under_oom underflows because a child memcg
1716          * could have been added after mem_cgroup_mark_under_oom.
1717          */
1718         spin_lock(&memcg_oom_lock);
1719         for_each_mem_cgroup_tree(iter, memcg)
1720                 if (iter->under_oom > 0)
1721                         iter->under_oom--;
1722         spin_unlock(&memcg_oom_lock);
1723 }
1724
1725 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1726
1727 struct oom_wait_info {
1728         struct mem_cgroup *memcg;
1729         wait_queue_entry_t      wait;
1730 };
1731
1732 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1733         unsigned mode, int sync, void *arg)
1734 {
1735         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1736         struct mem_cgroup *oom_wait_memcg;
1737         struct oom_wait_info *oom_wait_info;
1738
1739         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1740         oom_wait_memcg = oom_wait_info->memcg;
1741
1742         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1743             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1744                 return 0;
1745         return autoremove_wake_function(wait, mode, sync, arg);
1746 }
1747
1748 static void memcg_oom_recover(struct mem_cgroup *memcg)
1749 {
1750         /*
1751          * For the following lockless ->under_oom test, the only required
1752          * guarantee is that it must see the state asserted by an OOM when
1753          * this function is called as a result of userland actions
1754          * triggered by the notification of the OOM.  This is trivially
1755          * achieved by invoking mem_cgroup_mark_under_oom() before
1756          * triggering notification.
1757          */
1758         if (memcg && memcg->under_oom)
1759                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1760 }
1761
1762 enum oom_status {
1763         OOM_SUCCESS,
1764         OOM_FAILED,
1765         OOM_ASYNC,
1766         OOM_SKIPPED
1767 };
1768
1769 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1770 {
1771         enum oom_status ret;
1772         bool locked;
1773
1774         if (order > PAGE_ALLOC_COSTLY_ORDER)
1775                 return OOM_SKIPPED;
1776
1777         memcg_memory_event(memcg, MEMCG_OOM);
1778
1779         /*
1780          * We are in the middle of the charge context here, so we
1781          * don't want to block when potentially sitting on a callstack
1782          * that holds all kinds of filesystem and mm locks.
1783          *
1784          * cgroup1 allows disabling the OOM killer and waiting for outside
1785          * handling until the charge can succeed; remember the context and put
1786          * the task to sleep at the end of the page fault when all locks are
1787          * released.
1788          *
1789          * On the other hand, in-kernel OOM killer allows for an async victim
1790          * memory reclaim (oom_reaper) and that means that we are not solely
1791          * relying on the oom victim to make a forward progress and we can
1792          * invoke the oom killer here.
1793          *
1794          * Please note that mem_cgroup_out_of_memory might fail to find a
1795          * victim and then we have to bail out from the charge path.
1796          */
1797         if (memcg->oom_kill_disable) {
1798                 if (!current->in_user_fault)
1799                         return OOM_SKIPPED;
1800                 css_get(&memcg->css);
1801                 current->memcg_in_oom = memcg;
1802                 current->memcg_oom_gfp_mask = mask;
1803                 current->memcg_oom_order = order;
1804
1805                 return OOM_ASYNC;
1806         }
1807
1808         mem_cgroup_mark_under_oom(memcg);
1809
1810         locked = mem_cgroup_oom_trylock(memcg);
1811
1812         if (locked)
1813                 mem_cgroup_oom_notify(memcg);
1814
1815         mem_cgroup_unmark_under_oom(memcg);
1816         if (mem_cgroup_out_of_memory(memcg, mask, order))
1817                 ret = OOM_SUCCESS;
1818         else
1819                 ret = OOM_FAILED;
1820
1821         if (locked)
1822                 mem_cgroup_oom_unlock(memcg);
1823
1824         return ret;
1825 }
1826
1827 /**
1828  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1829  * @handle: actually kill/wait or just clean up the OOM state
1830  *
1831  * This has to be called at the end of a page fault if the memcg OOM
1832  * handler was enabled.
1833  *
1834  * Memcg supports userspace OOM handling where failed allocations must
1835  * sleep on a waitqueue until the userspace task resolves the
1836  * situation.  Sleeping directly in the charge context with all kinds
1837  * of locks held is not a good idea, instead we remember an OOM state
1838  * in the task and mem_cgroup_oom_synchronize() has to be called at
1839  * the end of the page fault to complete the OOM handling.
1840  *
1841  * Returns %true if an ongoing memcg OOM situation was detected and
1842  * completed, %false otherwise.
1843  */
1844 bool mem_cgroup_oom_synchronize(bool handle)
1845 {
1846         struct mem_cgroup *memcg = current->memcg_in_oom;
1847         struct oom_wait_info owait;
1848         bool locked;
1849
1850         /* OOM is global, do not handle */
1851         if (!memcg)
1852                 return false;
1853
1854         if (!handle)
1855                 goto cleanup;
1856
1857         owait.memcg = memcg;
1858         owait.wait.flags = 0;
1859         owait.wait.func = memcg_oom_wake_function;
1860         owait.wait.private = current;
1861         INIT_LIST_HEAD(&owait.wait.entry);
1862
1863         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1864         mem_cgroup_mark_under_oom(memcg);
1865
1866         locked = mem_cgroup_oom_trylock(memcg);
1867
1868         if (locked)
1869                 mem_cgroup_oom_notify(memcg);
1870
1871         if (locked && !memcg->oom_kill_disable) {
1872                 mem_cgroup_unmark_under_oom(memcg);
1873                 finish_wait(&memcg_oom_waitq, &owait.wait);
1874                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1875                                          current->memcg_oom_order);
1876         } else {
1877                 schedule();
1878                 mem_cgroup_unmark_under_oom(memcg);
1879                 finish_wait(&memcg_oom_waitq, &owait.wait);
1880         }
1881
1882         if (locked) {
1883                 mem_cgroup_oom_unlock(memcg);
1884                 /*
1885                  * There is no guarantee that an OOM-lock contender
1886                  * sees the wakeups triggered by the OOM kill
1887                  * uncharges.  Wake any sleepers explicitly.
1888                  */
1889                 memcg_oom_recover(memcg);
1890         }
1891 cleanup:
1892         current->memcg_in_oom = NULL;
1893         css_put(&memcg->css);
1894         return true;
1895 }
1896
1897 /**
1898  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1899  * @victim: task to be killed by the OOM killer
1900  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1901  *
1902  * Returns a pointer to a memory cgroup, which has to be cleaned up
1903  * by killing all belonging OOM-killable tasks.
1904  *
1905  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1906  */
1907 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1908                                             struct mem_cgroup *oom_domain)
1909 {
1910         struct mem_cgroup *oom_group = NULL;
1911         struct mem_cgroup *memcg;
1912
1913         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1914                 return NULL;
1915
1916         if (!oom_domain)
1917                 oom_domain = root_mem_cgroup;
1918
1919         rcu_read_lock();
1920
1921         memcg = mem_cgroup_from_task(victim);
1922         if (memcg == root_mem_cgroup)
1923                 goto out;
1924
1925         /*
1926          * If the victim task has been asynchronously moved to a different
1927          * memory cgroup, we might end up killing tasks outside oom_domain.
1928          * In this case it's better to ignore memory.group.oom.
1929          */
1930         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1931                 goto out;
1932
1933         /*
1934          * Traverse the memory cgroup hierarchy from the victim task's
1935          * cgroup up to the OOMing cgroup (or root) to find the
1936          * highest-level memory cgroup with oom.group set.
1937          */
1938         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1939                 if (memcg->oom_group)
1940                         oom_group = memcg;
1941
1942                 if (memcg == oom_domain)
1943                         break;
1944         }
1945
1946         if (oom_group)
1947                 css_get(&oom_group->css);
1948 out:
1949         rcu_read_unlock();
1950
1951         return oom_group;
1952 }
1953
1954 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1955 {
1956         pr_info("Tasks in ");
1957         pr_cont_cgroup_path(memcg->css.cgroup);
1958         pr_cont(" are going to be killed due to memory.oom.group set\n");
1959 }
1960
1961 /**
1962  * lock_page_memcg - lock a page and memcg binding
1963  * @page: the page
1964  *
1965  * This function protects unlocked LRU pages from being moved to
1966  * another cgroup.
1967  *
1968  * It ensures lifetime of the locked memcg. Caller is responsible
1969  * for the lifetime of the page.
1970  */
1971 void lock_page_memcg(struct page *page)
1972 {
1973         struct page *head = compound_head(page); /* rmap on tail pages */
1974         struct mem_cgroup *memcg;
1975         unsigned long flags;
1976
1977         /*
1978          * The RCU lock is held throughout the transaction.  The fast
1979          * path can get away without acquiring the memcg->move_lock
1980          * because page moving starts with an RCU grace period.
1981          */
1982         rcu_read_lock();
1983
1984         if (mem_cgroup_disabled())
1985                 return;
1986 again:
1987         memcg = page_memcg(head);
1988         if (unlikely(!memcg))
1989                 return;
1990
1991 #ifdef CONFIG_PROVE_LOCKING
1992         local_irq_save(flags);
1993         might_lock(&memcg->move_lock);
1994         local_irq_restore(flags);
1995 #endif
1996
1997         if (atomic_read(&memcg->moving_account) <= 0)
1998                 return;
1999
2000         spin_lock_irqsave(&memcg->move_lock, flags);
2001         if (memcg != page_memcg(head)) {
2002                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2003                 goto again;
2004         }
2005
2006         /*
2007          * When charge migration first begins, we can have multiple
2008          * critical sections holding the fast-path RCU lock and one
2009          * holding the slowpath move_lock. Track the task who has the
2010          * move_lock for unlock_page_memcg().
2011          */
2012         memcg->move_lock_task = current;
2013         memcg->move_lock_flags = flags;
2014 }
2015 EXPORT_SYMBOL(lock_page_memcg);
2016
2017 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2018 {
2019         if (memcg && memcg->move_lock_task == current) {
2020                 unsigned long flags = memcg->move_lock_flags;
2021
2022                 memcg->move_lock_task = NULL;
2023                 memcg->move_lock_flags = 0;
2024
2025                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2026         }
2027
2028         rcu_read_unlock();
2029 }
2030
2031 /**
2032  * unlock_page_memcg - unlock a page and memcg binding
2033  * @page: the page
2034  */
2035 void unlock_page_memcg(struct page *page)
2036 {
2037         struct page *head = compound_head(page);
2038
2039         __unlock_page_memcg(page_memcg(head));
2040 }
2041 EXPORT_SYMBOL(unlock_page_memcg);
2042
2043 struct memcg_stock_pcp {
2044         struct mem_cgroup *cached; /* this never be root cgroup */
2045         unsigned int nr_pages;
2046
2047 #ifdef CONFIG_MEMCG_KMEM
2048         struct obj_cgroup *cached_objcg;
2049         unsigned int nr_bytes;
2050 #endif
2051
2052         struct work_struct work;
2053         unsigned long flags;
2054 #define FLUSHING_CACHED_CHARGE  0
2055 };
2056 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2057 static DEFINE_MUTEX(percpu_charge_mutex);
2058
2059 #ifdef CONFIG_MEMCG_KMEM
2060 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2061 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2062                                      struct mem_cgroup *root_memcg);
2063
2064 #else
2065 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2066 {
2067 }
2068 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2069                                      struct mem_cgroup *root_memcg)
2070 {
2071         return false;
2072 }
2073 #endif
2074
2075 /**
2076  * consume_stock: Try to consume stocked charge on this cpu.
2077  * @memcg: memcg to consume from.
2078  * @nr_pages: how many pages to charge.
2079  *
2080  * The charges will only happen if @memcg matches the current cpu's memcg
2081  * stock, and at least @nr_pages are available in that stock.  Failure to
2082  * service an allocation will refill the stock.
2083  *
2084  * returns true if successful, false otherwise.
2085  */
2086 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2087 {
2088         struct memcg_stock_pcp *stock;
2089         unsigned long flags;
2090         bool ret = false;
2091
2092         if (nr_pages > MEMCG_CHARGE_BATCH)
2093                 return ret;
2094
2095         local_irq_save(flags);
2096
2097         stock = this_cpu_ptr(&memcg_stock);
2098         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2099                 stock->nr_pages -= nr_pages;
2100                 ret = true;
2101         }
2102
2103         local_irq_restore(flags);
2104
2105         return ret;
2106 }
2107
2108 /*
2109  * Returns stocks cached in percpu and reset cached information.
2110  */
2111 static void drain_stock(struct memcg_stock_pcp *stock)
2112 {
2113         struct mem_cgroup *old = stock->cached;
2114
2115         if (!old)
2116                 return;
2117
2118         if (stock->nr_pages) {
2119                 page_counter_uncharge(&old->memory, stock->nr_pages);
2120                 if (do_memsw_account())
2121                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2122                 stock->nr_pages = 0;
2123         }
2124
2125         css_put(&old->css);
2126         stock->cached = NULL;
2127 }
2128
2129 static void drain_local_stock(struct work_struct *dummy)
2130 {
2131         struct memcg_stock_pcp *stock;
2132         unsigned long flags;
2133
2134         /*
2135          * The only protection from memory hotplug vs. drain_stock races is
2136          * that we always operate on local CPU stock here with IRQ disabled
2137          */
2138         local_irq_save(flags);
2139
2140         stock = this_cpu_ptr(&memcg_stock);
2141         drain_obj_stock(stock);
2142         drain_stock(stock);
2143         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2144
2145         local_irq_restore(flags);
2146 }
2147
2148 /*
2149  * Cache charges(val) to local per_cpu area.
2150  * This will be consumed by consume_stock() function, later.
2151  */
2152 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2153 {
2154         struct memcg_stock_pcp *stock;
2155         unsigned long flags;
2156
2157         local_irq_save(flags);
2158
2159         stock = this_cpu_ptr(&memcg_stock);
2160         if (stock->cached != memcg) { /* reset if necessary */
2161                 drain_stock(stock);
2162                 css_get(&memcg->css);
2163                 stock->cached = memcg;
2164         }
2165         stock->nr_pages += nr_pages;
2166
2167         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2168                 drain_stock(stock);
2169
2170         local_irq_restore(flags);
2171 }
2172
2173 /*
2174  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2175  * of the hierarchy under it.
2176  */
2177 static void drain_all_stock(struct mem_cgroup *root_memcg)
2178 {
2179         int cpu, curcpu;
2180
2181         /* If someone's already draining, avoid adding running more workers. */
2182         if (!mutex_trylock(&percpu_charge_mutex))
2183                 return;
2184         /*
2185          * Notify other cpus that system-wide "drain" is running
2186          * We do not care about races with the cpu hotplug because cpu down
2187          * as well as workers from this path always operate on the local
2188          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2189          */
2190         curcpu = get_cpu();
2191         for_each_online_cpu(cpu) {
2192                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2193                 struct mem_cgroup *memcg;
2194                 bool flush = false;
2195
2196                 rcu_read_lock();
2197                 memcg = stock->cached;
2198                 if (memcg && stock->nr_pages &&
2199                     mem_cgroup_is_descendant(memcg, root_memcg))
2200                         flush = true;
2201                 if (obj_stock_flush_required(stock, root_memcg))
2202                         flush = true;
2203                 rcu_read_unlock();
2204
2205                 if (flush &&
2206                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2207                         if (cpu == curcpu)
2208                                 drain_local_stock(&stock->work);
2209                         else
2210                                 schedule_work_on(cpu, &stock->work);
2211                 }
2212         }
2213         put_cpu();
2214         mutex_unlock(&percpu_charge_mutex);
2215 }
2216
2217 static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2218 {
2219         int nid;
2220
2221         for_each_node(nid) {
2222                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2223                 unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2224                 struct batched_lruvec_stat *lstatc;
2225                 int i;
2226
2227                 lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2228                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2229                         stat[i] = lstatc->count[i];
2230                         lstatc->count[i] = 0;
2231                 }
2232
2233                 do {
2234                         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2235                                 atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2236                 } while ((pn = parent_nodeinfo(pn, nid)));
2237         }
2238 }
2239
2240 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2241 {
2242         struct memcg_stock_pcp *stock;
2243         struct mem_cgroup *memcg;
2244
2245         stock = &per_cpu(memcg_stock, cpu);
2246         drain_stock(stock);
2247
2248         for_each_mem_cgroup(memcg)
2249                 memcg_flush_lruvec_page_state(memcg, cpu);
2250
2251         return 0;
2252 }
2253
2254 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2255                                   unsigned int nr_pages,
2256                                   gfp_t gfp_mask)
2257 {
2258         unsigned long nr_reclaimed = 0;
2259
2260         do {
2261                 unsigned long pflags;
2262
2263                 if (page_counter_read(&memcg->memory) <=
2264                     READ_ONCE(memcg->memory.high))
2265                         continue;
2266
2267                 memcg_memory_event(memcg, MEMCG_HIGH);
2268
2269                 psi_memstall_enter(&pflags);
2270                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2271                                                              gfp_mask, true);
2272                 psi_memstall_leave(&pflags);
2273         } while ((memcg = parent_mem_cgroup(memcg)) &&
2274                  !mem_cgroup_is_root(memcg));
2275
2276         return nr_reclaimed;
2277 }
2278
2279 static void high_work_func(struct work_struct *work)
2280 {
2281         struct mem_cgroup *memcg;
2282
2283         memcg = container_of(work, struct mem_cgroup, high_work);
2284         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2285 }
2286
2287 /*
2288  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2289  * enough to still cause a significant slowdown in most cases, while still
2290  * allowing diagnostics and tracing to proceed without becoming stuck.
2291  */
2292 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2293
2294 /*
2295  * When calculating the delay, we use these either side of the exponentiation to
2296  * maintain precision and scale to a reasonable number of jiffies (see the table
2297  * below.
2298  *
2299  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2300  *   overage ratio to a delay.
2301  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2302  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2303  *   to produce a reasonable delay curve.
2304  *
2305  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2306  * reasonable delay curve compared to precision-adjusted overage, not
2307  * penalising heavily at first, but still making sure that growth beyond the
2308  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2309  * example, with a high of 100 megabytes:
2310  *
2311  *  +-------+------------------------+
2312  *  | usage | time to allocate in ms |
2313  *  +-------+------------------------+
2314  *  | 100M  |                      0 |
2315  *  | 101M  |                      6 |
2316  *  | 102M  |                     25 |
2317  *  | 103M  |                     57 |
2318  *  | 104M  |                    102 |
2319  *  | 105M  |                    159 |
2320  *  | 106M  |                    230 |
2321  *  | 107M  |                    313 |
2322  *  | 108M  |                    409 |
2323  *  | 109M  |                    518 |
2324  *  | 110M  |                    639 |
2325  *  | 111M  |                    774 |
2326  *  | 112M  |                    921 |
2327  *  | 113M  |                   1081 |
2328  *  | 114M  |                   1254 |
2329  *  | 115M  |                   1439 |
2330  *  | 116M  |                   1638 |
2331  *  | 117M  |                   1849 |
2332  *  | 118M  |                   2000 |
2333  *  | 119M  |                   2000 |
2334  *  | 120M  |                   2000 |
2335  *  +-------+------------------------+
2336  */
2337  #define MEMCG_DELAY_PRECISION_SHIFT 20
2338  #define MEMCG_DELAY_SCALING_SHIFT 14
2339
2340 static u64 calculate_overage(unsigned long usage, unsigned long high)
2341 {
2342         u64 overage;
2343
2344         if (usage <= high)
2345                 return 0;
2346
2347         /*
2348          * Prevent division by 0 in overage calculation by acting as if
2349          * it was a threshold of 1 page
2350          */
2351         high = max(high, 1UL);
2352
2353         overage = usage - high;
2354         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2355         return div64_u64(overage, high);
2356 }
2357
2358 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2359 {
2360         u64 overage, max_overage = 0;
2361
2362         do {
2363                 overage = calculate_overage(page_counter_read(&memcg->memory),
2364                                             READ_ONCE(memcg->memory.high));
2365                 max_overage = max(overage, max_overage);
2366         } while ((memcg = parent_mem_cgroup(memcg)) &&
2367                  !mem_cgroup_is_root(memcg));
2368
2369         return max_overage;
2370 }
2371
2372 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2373 {
2374         u64 overage, max_overage = 0;
2375
2376         do {
2377                 overage = calculate_overage(page_counter_read(&memcg->swap),
2378                                             READ_ONCE(memcg->swap.high));
2379                 if (overage)
2380                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2381                 max_overage = max(overage, max_overage);
2382         } while ((memcg = parent_mem_cgroup(memcg)) &&
2383                  !mem_cgroup_is_root(memcg));
2384
2385         return max_overage;
2386 }
2387
2388 /*
2389  * Get the number of jiffies that we should penalise a mischievous cgroup which
2390  * is exceeding its memory.high by checking both it and its ancestors.
2391  */
2392 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2393                                           unsigned int nr_pages,
2394                                           u64 max_overage)
2395 {
2396         unsigned long penalty_jiffies;
2397
2398         if (!max_overage)
2399                 return 0;
2400
2401         /*
2402          * We use overage compared to memory.high to calculate the number of
2403          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2404          * fairly lenient on small overages, and increasingly harsh when the
2405          * memcg in question makes it clear that it has no intention of stopping
2406          * its crazy behaviour, so we exponentially increase the delay based on
2407          * overage amount.
2408          */
2409         penalty_jiffies = max_overage * max_overage * HZ;
2410         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2411         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2412
2413         /*
2414          * Factor in the task's own contribution to the overage, such that four
2415          * N-sized allocations are throttled approximately the same as one
2416          * 4N-sized allocation.
2417          *
2418          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2419          * larger the current charge patch is than that.
2420          */
2421         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2422 }
2423
2424 /*
2425  * Scheduled by try_charge() to be executed from the userland return path
2426  * and reclaims memory over the high limit.
2427  */
2428 void mem_cgroup_handle_over_high(void)
2429 {
2430         unsigned long penalty_jiffies;
2431         unsigned long pflags;
2432         unsigned long nr_reclaimed;
2433         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2434         int nr_retries = MAX_RECLAIM_RETRIES;
2435         struct mem_cgroup *memcg;
2436         bool in_retry = false;
2437
2438         if (likely(!nr_pages))
2439                 return;
2440
2441         memcg = get_mem_cgroup_from_mm(current->mm);
2442         current->memcg_nr_pages_over_high = 0;
2443
2444 retry_reclaim:
2445         /*
2446          * The allocating task should reclaim at least the batch size, but for
2447          * subsequent retries we only want to do what's necessary to prevent oom
2448          * or breaching resource isolation.
2449          *
2450          * This is distinct from memory.max or page allocator behaviour because
2451          * memory.high is currently batched, whereas memory.max and the page
2452          * allocator run every time an allocation is made.
2453          */
2454         nr_reclaimed = reclaim_high(memcg,
2455                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2456                                     GFP_KERNEL);
2457
2458         /*
2459          * memory.high is breached and reclaim is unable to keep up. Throttle
2460          * allocators proactively to slow down excessive growth.
2461          */
2462         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2463                                                mem_find_max_overage(memcg));
2464
2465         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2466                                                 swap_find_max_overage(memcg));
2467
2468         /*
2469          * Clamp the max delay per usermode return so as to still keep the
2470          * application moving forwards and also permit diagnostics, albeit
2471          * extremely slowly.
2472          */
2473         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2474
2475         /*
2476          * Don't sleep if the amount of jiffies this memcg owes us is so low
2477          * that it's not even worth doing, in an attempt to be nice to those who
2478          * go only a small amount over their memory.high value and maybe haven't
2479          * been aggressively reclaimed enough yet.
2480          */
2481         if (penalty_jiffies <= HZ / 100)
2482                 goto out;
2483
2484         /*
2485          * If reclaim is making forward progress but we're still over
2486          * memory.high, we want to encourage that rather than doing allocator
2487          * throttling.
2488          */
2489         if (nr_reclaimed || nr_retries--) {
2490                 in_retry = true;
2491                 goto retry_reclaim;
2492         }
2493
2494         /*
2495          * If we exit early, we're guaranteed to die (since
2496          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2497          * need to account for any ill-begotten jiffies to pay them off later.
2498          */
2499         psi_memstall_enter(&pflags);
2500         schedule_timeout_killable(penalty_jiffies);
2501         psi_memstall_leave(&pflags);
2502
2503 out:
2504         css_put(&memcg->css);
2505 }
2506
2507 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2508                       unsigned int nr_pages)
2509 {
2510         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2511         int nr_retries = MAX_RECLAIM_RETRIES;
2512         struct mem_cgroup *mem_over_limit;
2513         struct page_counter *counter;
2514         enum oom_status oom_status;
2515         unsigned long nr_reclaimed;
2516         bool may_swap = true;
2517         bool drained = false;
2518         unsigned long pflags;
2519
2520         if (mem_cgroup_is_root(memcg))
2521                 return 0;
2522 retry:
2523         if (consume_stock(memcg, nr_pages))
2524                 return 0;
2525
2526         if (!do_memsw_account() ||
2527             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2528                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2529                         goto done_restock;
2530                 if (do_memsw_account())
2531                         page_counter_uncharge(&memcg->memsw, batch);
2532                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2533         } else {
2534                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2535                 may_swap = false;
2536         }
2537
2538         if (batch > nr_pages) {
2539                 batch = nr_pages;
2540                 goto retry;
2541         }
2542
2543         /*
2544          * Memcg doesn't have a dedicated reserve for atomic
2545          * allocations. But like the global atomic pool, we need to
2546          * put the burden of reclaim on regular allocation requests
2547          * and let these go through as privileged allocations.
2548          */
2549         if (gfp_mask & __GFP_ATOMIC)
2550                 goto force;
2551
2552         /*
2553          * Unlike in global OOM situations, memcg is not in a physical
2554          * memory shortage.  Allow dying and OOM-killed tasks to
2555          * bypass the last charges so that they can exit quickly and
2556          * free their memory.
2557          */
2558         if (unlikely(should_force_charge()))
2559                 goto force;
2560
2561         /*
2562          * Prevent unbounded recursion when reclaim operations need to
2563          * allocate memory. This might exceed the limits temporarily,
2564          * but we prefer facilitating memory reclaim and getting back
2565          * under the limit over triggering OOM kills in these cases.
2566          */
2567         if (unlikely(current->flags & PF_MEMALLOC))
2568                 goto force;
2569
2570         if (unlikely(task_in_memcg_oom(current)))
2571                 goto nomem;
2572
2573         if (!gfpflags_allow_blocking(gfp_mask))
2574                 goto nomem;
2575
2576         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2577
2578         psi_memstall_enter(&pflags);
2579         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2580                                                     gfp_mask, may_swap);
2581         psi_memstall_leave(&pflags);
2582
2583         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2584                 goto retry;
2585
2586         if (!drained) {
2587                 drain_all_stock(mem_over_limit);
2588                 drained = true;
2589                 goto retry;
2590         }
2591
2592         if (gfp_mask & __GFP_NORETRY)
2593                 goto nomem;
2594         /*
2595          * Even though the limit is exceeded at this point, reclaim
2596          * may have been able to free some pages.  Retry the charge
2597          * before killing the task.
2598          *
2599          * Only for regular pages, though: huge pages are rather
2600          * unlikely to succeed so close to the limit, and we fall back
2601          * to regular pages anyway in case of failure.
2602          */
2603         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2604                 goto retry;
2605         /*
2606          * At task move, charge accounts can be doubly counted. So, it's
2607          * better to wait until the end of task_move if something is going on.
2608          */
2609         if (mem_cgroup_wait_acct_move(mem_over_limit))
2610                 goto retry;
2611
2612         if (nr_retries--)
2613                 goto retry;
2614
2615         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2616                 goto nomem;
2617
2618         if (fatal_signal_pending(current))
2619                 goto force;
2620
2621         /*
2622          * keep retrying as long as the memcg oom killer is able to make
2623          * a forward progress or bypass the charge if the oom killer
2624          * couldn't make any progress.
2625          */
2626         oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2627                        get_order(nr_pages * PAGE_SIZE));
2628         switch (oom_status) {
2629         case OOM_SUCCESS:
2630                 nr_retries = MAX_RECLAIM_RETRIES;
2631                 goto retry;
2632         case OOM_FAILED:
2633                 goto force;
2634         default:
2635                 goto nomem;
2636         }
2637 nomem:
2638         if (!(gfp_mask & __GFP_NOFAIL))
2639                 return -ENOMEM;
2640 force:
2641         /*
2642          * The allocation either can't fail or will lead to more memory
2643          * being freed very soon.  Allow memory usage go over the limit
2644          * temporarily by force charging it.
2645          */
2646         page_counter_charge(&memcg->memory, nr_pages);
2647         if (do_memsw_account())
2648                 page_counter_charge(&memcg->memsw, nr_pages);
2649
2650         return 0;
2651
2652 done_restock:
2653         if (batch > nr_pages)
2654                 refill_stock(memcg, batch - nr_pages);
2655
2656         /*
2657          * If the hierarchy is above the normal consumption range, schedule
2658          * reclaim on returning to userland.  We can perform reclaim here
2659          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2660          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2661          * not recorded as it most likely matches current's and won't
2662          * change in the meantime.  As high limit is checked again before
2663          * reclaim, the cost of mismatch is negligible.
2664          */
2665         do {
2666                 bool mem_high, swap_high;
2667
2668                 mem_high = page_counter_read(&memcg->memory) >
2669                         READ_ONCE(memcg->memory.high);
2670                 swap_high = page_counter_read(&memcg->swap) >
2671                         READ_ONCE(memcg->swap.high);
2672
2673                 /* Don't bother a random interrupted task */
2674                 if (in_interrupt()) {
2675                         if (mem_high) {
2676                                 schedule_work(&memcg->high_work);
2677                                 break;
2678                         }
2679                         continue;
2680                 }
2681
2682                 if (mem_high || swap_high) {
2683                         /*
2684                          * The allocating tasks in this cgroup will need to do
2685                          * reclaim or be throttled to prevent further growth
2686                          * of the memory or swap footprints.
2687                          *
2688                          * Target some best-effort fairness between the tasks,
2689                          * and distribute reclaim work and delay penalties
2690                          * based on how much each task is actually allocating.
2691                          */
2692                         current->memcg_nr_pages_over_high += batch;
2693                         set_notify_resume(current);
2694                         break;
2695                 }
2696         } while ((memcg = parent_mem_cgroup(memcg)));
2697
2698         return 0;
2699 }
2700
2701 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2702 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2703 {
2704         if (mem_cgroup_is_root(memcg))
2705                 return;
2706
2707         page_counter_uncharge(&memcg->memory, nr_pages);
2708         if (do_memsw_account())
2709                 page_counter_uncharge(&memcg->memsw, nr_pages);
2710 }
2711 #endif
2712
2713 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2714 {
2715         VM_BUG_ON_PAGE(page_memcg(page), page);
2716         /*
2717          * Any of the following ensures page's memcg stability:
2718          *
2719          * - the page lock
2720          * - LRU isolation
2721          * - lock_page_memcg()
2722          * - exclusive reference
2723          */
2724         page->memcg_data = (unsigned long)memcg;
2725 }
2726
2727 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2728 {
2729         struct mem_cgroup *memcg;
2730
2731         rcu_read_lock();
2732 retry:
2733         memcg = obj_cgroup_memcg(objcg);
2734         if (unlikely(!css_tryget(&memcg->css)))
2735                 goto retry;
2736         rcu_read_unlock();
2737
2738         return memcg;
2739 }
2740
2741 #ifdef CONFIG_MEMCG_KMEM
2742 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2743                                  gfp_t gfp, bool new_page)
2744 {
2745         unsigned int objects = objs_per_slab_page(s, page);
2746         unsigned long memcg_data;
2747         void *vec;
2748
2749         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2750                            page_to_nid(page));
2751         if (!vec)
2752                 return -ENOMEM;
2753
2754         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2755         if (new_page) {
2756                 /*
2757                  * If the slab page is brand new and nobody can yet access
2758                  * it's memcg_data, no synchronization is required and
2759                  * memcg_data can be simply assigned.
2760                  */
2761                 page->memcg_data = memcg_data;
2762         } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2763                 /*
2764                  * If the slab page is already in use, somebody can allocate
2765                  * and assign obj_cgroups in parallel. In this case the existing
2766                  * objcg vector should be reused.
2767                  */
2768                 kfree(vec);
2769                 return 0;
2770         }
2771
2772         kmemleak_not_leak(vec);
2773         return 0;
2774 }
2775
2776 /*
2777  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2778  *
2779  * A passed kernel object can be a slab object or a generic kernel page, so
2780  * different mechanisms for getting the memory cgroup pointer should be used.
2781  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2782  * can not know for sure how the kernel object is implemented.
2783  * mem_cgroup_from_obj() can be safely used in such cases.
2784  *
2785  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2786  * cgroup_mutex, etc.
2787  */
2788 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2789 {
2790         struct page *page;
2791
2792         if (mem_cgroup_disabled())
2793                 return NULL;
2794
2795         page = virt_to_head_page(p);
2796
2797         /*
2798          * Slab objects are accounted individually, not per-page.
2799          * Memcg membership data for each individual object is saved in
2800          * the page->obj_cgroups.
2801          */
2802         if (page_objcgs_check(page)) {
2803                 struct obj_cgroup *objcg;
2804                 unsigned int off;
2805
2806                 off = obj_to_index(page->slab_cache, page, p);
2807                 objcg = page_objcgs(page)[off];
2808                 if (objcg)
2809                         return obj_cgroup_memcg(objcg);
2810
2811                 return NULL;
2812         }
2813
2814         /*
2815          * page_memcg_check() is used here, because page_has_obj_cgroups()
2816          * check above could fail because the object cgroups vector wasn't set
2817          * at that moment, but it can be set concurrently.
2818          * page_memcg_check(page) will guarantee that a proper memory
2819          * cgroup pointer or NULL will be returned.
2820          */
2821         return page_memcg_check(page);
2822 }
2823
2824 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2825 {
2826         struct obj_cgroup *objcg = NULL;
2827         struct mem_cgroup *memcg;
2828
2829         if (memcg_kmem_bypass())
2830                 return NULL;
2831
2832         rcu_read_lock();
2833         if (unlikely(active_memcg()))
2834                 memcg = active_memcg();
2835         else
2836                 memcg = mem_cgroup_from_task(current);
2837
2838         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2839                 objcg = rcu_dereference(memcg->objcg);
2840                 if (objcg && obj_cgroup_tryget(objcg))
2841                         break;
2842                 objcg = NULL;
2843         }
2844         rcu_read_unlock();
2845
2846         return objcg;
2847 }
2848
2849 static int memcg_alloc_cache_id(void)
2850 {
2851         int id, size;
2852         int err;
2853
2854         id = ida_simple_get(&memcg_cache_ida,
2855                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2856         if (id < 0)
2857                 return id;
2858
2859         if (id < memcg_nr_cache_ids)
2860                 return id;
2861
2862         /*
2863          * There's no space for the new id in memcg_caches arrays,
2864          * so we have to grow them.
2865          */
2866         down_write(&memcg_cache_ids_sem);
2867
2868         size = 2 * (id + 1);
2869         if (size < MEMCG_CACHES_MIN_SIZE)
2870                 size = MEMCG_CACHES_MIN_SIZE;
2871         else if (size > MEMCG_CACHES_MAX_SIZE)
2872                 size = MEMCG_CACHES_MAX_SIZE;
2873
2874         err = memcg_update_all_list_lrus(size);
2875         if (!err)
2876                 memcg_nr_cache_ids = size;
2877
2878         up_write(&memcg_cache_ids_sem);
2879
2880         if (err) {
2881                 ida_simple_remove(&memcg_cache_ida, id);
2882                 return err;
2883         }
2884         return id;
2885 }
2886
2887 static void memcg_free_cache_id(int id)
2888 {
2889         ida_simple_remove(&memcg_cache_ida, id);
2890 }
2891
2892 /*
2893  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2894  * @objcg: object cgroup to uncharge
2895  * @nr_pages: number of pages to uncharge
2896  */
2897 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2898                                       unsigned int nr_pages)
2899 {
2900         struct mem_cgroup *memcg;
2901
2902         memcg = get_mem_cgroup_from_objcg(objcg);
2903
2904         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2905                 page_counter_uncharge(&memcg->kmem, nr_pages);
2906         refill_stock(memcg, nr_pages);
2907
2908         css_put(&memcg->css);
2909 }
2910
2911 /*
2912  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2913  * @objcg: object cgroup to charge
2914  * @gfp: reclaim mode
2915  * @nr_pages: number of pages to charge
2916  *
2917  * Returns 0 on success, an error code on failure.
2918  */
2919 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2920                                    unsigned int nr_pages)
2921 {
2922         struct page_counter *counter;
2923         struct mem_cgroup *memcg;
2924         int ret;
2925
2926         memcg = get_mem_cgroup_from_objcg(objcg);
2927
2928         ret = try_charge(memcg, gfp, nr_pages);
2929         if (ret)
2930                 goto out;
2931
2932         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2933             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2934
2935                 /*
2936                  * Enforce __GFP_NOFAIL allocation because callers are not
2937                  * prepared to see failures and likely do not have any failure
2938                  * handling code.
2939                  */
2940                 if (gfp & __GFP_NOFAIL) {
2941                         page_counter_charge(&memcg->kmem, nr_pages);
2942                         goto out;
2943                 }
2944                 cancel_charge(memcg, nr_pages);
2945                 ret = -ENOMEM;
2946         }
2947 out:
2948         css_put(&memcg->css);
2949
2950         return ret;
2951 }
2952
2953 /**
2954  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2955  * @page: page to charge
2956  * @gfp: reclaim mode
2957  * @order: allocation order
2958  *
2959  * Returns 0 on success, an error code on failure.
2960  */
2961 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2962 {
2963         struct obj_cgroup *objcg;
2964         int ret = 0;
2965
2966         objcg = get_obj_cgroup_from_current();
2967         if (objcg) {
2968                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2969                 if (!ret) {
2970                         page->memcg_data = (unsigned long)objcg |
2971                                 MEMCG_DATA_KMEM;
2972                         return 0;
2973                 }
2974                 obj_cgroup_put(objcg);
2975         }
2976         return ret;
2977 }
2978
2979 /**
2980  * __memcg_kmem_uncharge_page: uncharge a kmem page
2981  * @page: page to uncharge
2982  * @order: allocation order
2983  */
2984 void __memcg_kmem_uncharge_page(struct page *page, int order)
2985 {
2986         struct obj_cgroup *objcg;
2987         unsigned int nr_pages = 1 << order;
2988
2989         if (!PageMemcgKmem(page))
2990                 return;
2991
2992         objcg = __page_objcg(page);
2993         obj_cgroup_uncharge_pages(objcg, nr_pages);
2994         page->memcg_data = 0;
2995         obj_cgroup_put(objcg);
2996 }
2997
2998 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2999 {
3000         struct memcg_stock_pcp *stock;
3001         unsigned long flags;
3002         bool ret = false;
3003
3004         local_irq_save(flags);
3005
3006         stock = this_cpu_ptr(&memcg_stock);
3007         if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3008                 stock->nr_bytes -= nr_bytes;
3009                 ret = true;
3010         }
3011
3012         local_irq_restore(flags);
3013
3014         return ret;
3015 }
3016
3017 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3018 {
3019         struct obj_cgroup *old = stock->cached_objcg;
3020
3021         if (!old)
3022                 return;
3023
3024         if (stock->nr_bytes) {
3025                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3026                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3027
3028                 if (nr_pages)
3029                         obj_cgroup_uncharge_pages(old, nr_pages);
3030
3031                 /*
3032                  * The leftover is flushed to the centralized per-memcg value.
3033                  * On the next attempt to refill obj stock it will be moved
3034                  * to a per-cpu stock (probably, on an other CPU), see
3035                  * refill_obj_stock().
3036                  *
3037                  * How often it's flushed is a trade-off between the memory
3038                  * limit enforcement accuracy and potential CPU contention,
3039                  * so it might be changed in the future.
3040                  */
3041                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3042                 stock->nr_bytes = 0;
3043         }
3044
3045         obj_cgroup_put(old);
3046         stock->cached_objcg = NULL;
3047 }
3048
3049 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3050                                      struct mem_cgroup *root_memcg)
3051 {
3052         struct mem_cgroup *memcg;
3053
3054         if (stock->cached_objcg) {
3055                 memcg = obj_cgroup_memcg(stock->cached_objcg);
3056                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3057                         return true;
3058         }
3059
3060         return false;
3061 }
3062
3063 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3064 {
3065         struct memcg_stock_pcp *stock;
3066         unsigned long flags;
3067
3068         local_irq_save(flags);
3069
3070         stock = this_cpu_ptr(&memcg_stock);
3071         if (stock->cached_objcg != objcg) { /* reset if necessary */
3072                 drain_obj_stock(stock);
3073                 obj_cgroup_get(objcg);
3074                 stock->cached_objcg = objcg;
3075                 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3076         }
3077         stock->nr_bytes += nr_bytes;
3078
3079         if (stock->nr_bytes > PAGE_SIZE)
3080                 drain_obj_stock(stock);
3081
3082         local_irq_restore(flags);
3083 }
3084
3085 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3086 {
3087         unsigned int nr_pages, nr_bytes;
3088         int ret;
3089
3090         if (consume_obj_stock(objcg, size))
3091                 return 0;
3092
3093         /*
3094          * In theory, memcg->nr_charged_bytes can have enough
3095          * pre-charged bytes to satisfy the allocation. However,
3096          * flushing memcg->nr_charged_bytes requires two atomic
3097          * operations, and memcg->nr_charged_bytes can't be big,
3098          * so it's better to ignore it and try grab some new pages.
3099          * memcg->nr_charged_bytes will be flushed in
3100          * refill_obj_stock(), called from this function or
3101          * independently later.
3102          */
3103         nr_pages = size >> PAGE_SHIFT;
3104         nr_bytes = size & (PAGE_SIZE - 1);
3105
3106         if (nr_bytes)
3107                 nr_pages += 1;
3108
3109         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3110         if (!ret && nr_bytes)
3111                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3112
3113         return ret;
3114 }
3115
3116 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3117 {
3118         refill_obj_stock(objcg, size);
3119 }
3120
3121 #endif /* CONFIG_MEMCG_KMEM */
3122
3123 /*
3124  * Because page_memcg(head) is not set on tails, set it now.
3125  */
3126 void split_page_memcg(struct page *head, unsigned int nr)
3127 {
3128         struct mem_cgroup *memcg = page_memcg(head);
3129         int i;
3130
3131         if (mem_cgroup_disabled() || !memcg)
3132                 return;
3133
3134         for (i = 1; i < nr; i++)
3135                 head[i].memcg_data = head->memcg_data;
3136
3137         if (PageMemcgKmem(head))
3138                 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3139         else
3140                 css_get_many(&memcg->css, nr - 1);
3141 }
3142
3143 #ifdef CONFIG_MEMCG_SWAP
3144 /**
3145  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3146  * @entry: swap entry to be moved
3147  * @from:  mem_cgroup which the entry is moved from
3148  * @to:  mem_cgroup which the entry is moved to
3149  *
3150  * It succeeds only when the swap_cgroup's record for this entry is the same
3151  * as the mem_cgroup's id of @from.
3152  *
3153  * Returns 0 on success, -EINVAL on failure.
3154  *
3155  * The caller must have charged to @to, IOW, called page_counter_charge() about
3156  * both res and memsw, and called css_get().
3157  */
3158 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3159                                 struct mem_cgroup *from, struct mem_cgroup *to)
3160 {
3161         unsigned short old_id, new_id;
3162
3163         old_id = mem_cgroup_id(from);
3164         new_id = mem_cgroup_id(to);
3165
3166         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3167                 mod_memcg_state(from, MEMCG_SWAP, -1);
3168                 mod_memcg_state(to, MEMCG_SWAP, 1);
3169                 return 0;
3170         }
3171         return -EINVAL;
3172 }
3173 #else
3174 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3175                                 struct mem_cgroup *from, struct mem_cgroup *to)
3176 {
3177         return -EINVAL;
3178 }
3179 #endif
3180
3181 static DEFINE_MUTEX(memcg_max_mutex);
3182
3183 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3184                                  unsigned long max, bool memsw)
3185 {
3186         bool enlarge = false;
3187         bool drained = false;
3188         int ret;
3189         bool limits_invariant;
3190         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3191
3192         do {
3193                 if (signal_pending(current)) {
3194                         ret = -EINTR;
3195                         break;
3196                 }
3197
3198                 mutex_lock(&memcg_max_mutex);
3199                 /*
3200                  * Make sure that the new limit (memsw or memory limit) doesn't
3201                  * break our basic invariant rule memory.max <= memsw.max.
3202                  */
3203                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3204                                            max <= memcg->memsw.max;
3205                 if (!limits_invariant) {
3206                         mutex_unlock(&memcg_max_mutex);
3207                         ret = -EINVAL;
3208                         break;
3209                 }
3210                 if (max > counter->max)
3211                         enlarge = true;
3212                 ret = page_counter_set_max(counter, max);
3213                 mutex_unlock(&memcg_max_mutex);
3214
3215                 if (!ret)
3216                         break;
3217
3218                 if (!drained) {
3219                         drain_all_stock(memcg);
3220                         drained = true;
3221                         continue;
3222                 }
3223
3224                 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3225                                         GFP_KERNEL, !memsw)) {
3226                         ret = -EBUSY;
3227                         break;
3228                 }
3229         } while (true);
3230
3231         if (!ret && enlarge)
3232                 memcg_oom_recover(memcg);
3233
3234         return ret;
3235 }
3236
3237 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3238                                             gfp_t gfp_mask,
3239                                             unsigned long *total_scanned)
3240 {
3241         unsigned long nr_reclaimed = 0;
3242         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3243         unsigned long reclaimed;
3244         int loop = 0;
3245         struct mem_cgroup_tree_per_node *mctz;
3246         unsigned long excess;
3247         unsigned long nr_scanned;
3248
3249         if (order > 0)
3250                 return 0;
3251
3252         mctz = soft_limit_tree_node(pgdat->node_id);
3253
3254         /*
3255          * Do not even bother to check the largest node if the root
3256          * is empty. Do it lockless to prevent lock bouncing. Races
3257          * are acceptable as soft limit is best effort anyway.
3258          */
3259         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3260                 return 0;
3261
3262         /*
3263          * This loop can run a while, specially if mem_cgroup's continuously
3264          * keep exceeding their soft limit and putting the system under
3265          * pressure
3266          */
3267         do {
3268                 if (next_mz)
3269                         mz = next_mz;
3270                 else
3271                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3272                 if (!mz)
3273                         break;
3274
3275                 nr_scanned = 0;
3276                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3277                                                     gfp_mask, &nr_scanned);
3278                 nr_reclaimed += reclaimed;
3279                 *total_scanned += nr_scanned;
3280                 spin_lock_irq(&mctz->lock);
3281                 __mem_cgroup_remove_exceeded(mz, mctz);
3282
3283                 /*
3284                  * If we failed to reclaim anything from this memory cgroup
3285                  * it is time to move on to the next cgroup
3286                  */
3287                 next_mz = NULL;
3288                 if (!reclaimed)
3289                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3290
3291                 excess = soft_limit_excess(mz->memcg);
3292                 /*
3293                  * One school of thought says that we should not add
3294                  * back the node to the tree if reclaim returns 0.
3295                  * But our reclaim could return 0, simply because due
3296                  * to priority we are exposing a smaller subset of
3297                  * memory to reclaim from. Consider this as a longer
3298                  * term TODO.
3299                  */
3300                 /* If excess == 0, no tree ops */
3301                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3302                 spin_unlock_irq(&mctz->lock);
3303                 css_put(&mz->memcg->css);
3304                 loop++;
3305                 /*
3306                  * Could not reclaim anything and there are no more
3307                  * mem cgroups to try or we seem to be looping without
3308                  * reclaiming anything.
3309                  */
3310                 if (!nr_reclaimed &&
3311                         (next_mz == NULL ||
3312                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3313                         break;
3314         } while (!nr_reclaimed);
3315         if (next_mz)
3316                 css_put(&next_mz->memcg->css);
3317         return nr_reclaimed;
3318 }
3319
3320 /*
3321  * Reclaims as many pages from the given memcg as possible.
3322  *
3323  * Caller is responsible for holding css reference for memcg.
3324  */
3325 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3326 {
3327         int nr_retries = MAX_RECLAIM_RETRIES;
3328
3329         /* we call try-to-free pages for make this cgroup empty */
3330         lru_add_drain_all();
3331
3332         drain_all_stock(memcg);
3333
3334         /* try to free all pages in this cgroup */
3335         while (nr_retries && page_counter_read(&memcg->memory)) {
3336                 int progress;
3337
3338                 if (signal_pending(current))
3339                         return -EINTR;
3340
3341                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3342                                                         GFP_KERNEL, true);
3343                 if (!progress) {
3344                         nr_retries--;
3345                         /* maybe some writeback is necessary */
3346                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3347                 }
3348
3349         }
3350
3351         return 0;
3352 }
3353
3354 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3355                                             char *buf, size_t nbytes,
3356                                             loff_t off)
3357 {
3358         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3359
3360         if (mem_cgroup_is_root(memcg))
3361                 return -EINVAL;
3362         return mem_cgroup_force_empty(memcg) ?: nbytes;
3363 }
3364
3365 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3366                                      struct cftype *cft)
3367 {
3368         return 1;
3369 }
3370
3371 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3372                                       struct cftype *cft, u64 val)
3373 {
3374         if (val == 1)
3375                 return 0;
3376
3377         pr_warn_once("Non-hierarchical mode is deprecated. "
3378                      "Please report your usecase to linux-mm@kvack.org if you "
3379                      "depend on this functionality.\n");
3380
3381         return -EINVAL;
3382 }
3383
3384 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3385 {
3386         unsigned long val;
3387
3388         if (mem_cgroup_is_root(memcg)) {
3389                 cgroup_rstat_flush(memcg->css.cgroup);
3390                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3391                         memcg_page_state(memcg, NR_ANON_MAPPED);
3392                 if (swap)
3393                         val += memcg_page_state(memcg, MEMCG_SWAP);
3394         } else {
3395                 if (!swap)
3396                         val = page_counter_read(&memcg->memory);
3397                 else
3398                         val = page_counter_read(&memcg->memsw);
3399         }
3400         return val;
3401 }
3402
3403 enum {
3404         RES_USAGE,
3405         RES_LIMIT,
3406         RES_MAX_USAGE,
3407         RES_FAILCNT,
3408         RES_SOFT_LIMIT,
3409 };
3410
3411 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3412                                struct cftype *cft)
3413 {
3414         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3415         struct page_counter *counter;
3416
3417         switch (MEMFILE_TYPE(cft->private)) {
3418         case _MEM:
3419                 counter = &memcg->memory;
3420                 break;
3421         case _MEMSWAP:
3422                 counter = &memcg->memsw;
3423                 break;
3424         case _KMEM:
3425                 counter = &memcg->kmem;
3426                 break;
3427         case _TCP:
3428                 counter = &memcg->tcpmem;
3429                 break;
3430         default:
3431                 BUG();
3432         }
3433
3434         switch (MEMFILE_ATTR(cft->private)) {
3435         case RES_USAGE:
3436                 if (counter == &memcg->memory)
3437                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3438                 if (counter == &memcg->memsw)
3439                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3440                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3441         case RES_LIMIT:
3442                 return (u64)counter->max * PAGE_SIZE;
3443         case RES_MAX_USAGE:
3444                 return (u64)counter->watermark * PAGE_SIZE;
3445         case RES_FAILCNT:
3446                 return counter->failcnt;
3447         case RES_SOFT_LIMIT:
3448                 return (u64)memcg->soft_limit * PAGE_SIZE;
3449         default:
3450                 BUG();
3451         }
3452 }
3453
3454 #ifdef CONFIG_MEMCG_KMEM
3455 static int memcg_online_kmem(struct mem_cgroup *memcg)
3456 {
3457         struct obj_cgroup *objcg;
3458         int memcg_id;
3459
3460         if (cgroup_memory_nokmem)
3461                 return 0;
3462
3463         BUG_ON(memcg->kmemcg_id >= 0);
3464         BUG_ON(memcg->kmem_state);
3465
3466         memcg_id = memcg_alloc_cache_id();
3467         if (memcg_id < 0)
3468                 return memcg_id;
3469
3470         objcg = obj_cgroup_alloc();
3471         if (!objcg) {
3472                 memcg_free_cache_id(memcg_id);
3473                 return -ENOMEM;
3474         }
3475         objcg->memcg = memcg;
3476         rcu_assign_pointer(memcg->objcg, objcg);
3477
3478         static_branch_enable(&memcg_kmem_enabled_key);
3479
3480         memcg->kmemcg_id = memcg_id;
3481         memcg->kmem_state = KMEM_ONLINE;
3482
3483         return 0;
3484 }
3485
3486 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3487 {
3488         struct cgroup_subsys_state *css;
3489         struct mem_cgroup *parent, *child;
3490         int kmemcg_id;
3491
3492         if (memcg->kmem_state != KMEM_ONLINE)
3493                 return;
3494
3495         memcg->kmem_state = KMEM_ALLOCATED;
3496
3497         parent = parent_mem_cgroup(memcg);
3498         if (!parent)
3499                 parent = root_mem_cgroup;
3500
3501         memcg_reparent_objcgs(memcg, parent);
3502
3503         kmemcg_id = memcg->kmemcg_id;
3504         BUG_ON(kmemcg_id < 0);
3505
3506         /*
3507          * Change kmemcg_id of this cgroup and all its descendants to the
3508          * parent's id, and then move all entries from this cgroup's list_lrus
3509          * to ones of the parent. After we have finished, all list_lrus
3510          * corresponding to this cgroup are guaranteed to remain empty. The
3511          * ordering is imposed by list_lru_node->lock taken by
3512          * memcg_drain_all_list_lrus().
3513          */
3514         rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3515         css_for_each_descendant_pre(css, &memcg->css) {
3516                 child = mem_cgroup_from_css(css);
3517                 BUG_ON(child->kmemcg_id != kmemcg_id);
3518                 child->kmemcg_id = parent->kmemcg_id;
3519         }
3520         rcu_read_unlock();
3521
3522         memcg_drain_all_list_lrus(kmemcg_id, parent);
3523
3524         memcg_free_cache_id(kmemcg_id);
3525 }
3526
3527 static void memcg_free_kmem(struct mem_cgroup *memcg)
3528 {
3529         /* css_alloc() failed, offlining didn't happen */
3530         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3531                 memcg_offline_kmem(memcg);
3532 }
3533 #else
3534 static int memcg_online_kmem(struct mem_cgroup *memcg)
3535 {
3536         return 0;
3537 }
3538 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3539 {
3540 }
3541 static void memcg_free_kmem(struct mem_cgroup *memcg)
3542 {
3543 }
3544 #endif /* CONFIG_MEMCG_KMEM */
3545
3546 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3547                                  unsigned long max)
3548 {
3549         int ret;
3550
3551         mutex_lock(&memcg_max_mutex);
3552         ret = page_counter_set_max(&memcg->kmem, max);
3553         mutex_unlock(&memcg_max_mutex);
3554         return ret;
3555 }
3556
3557 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3558 {
3559         int ret;
3560
3561         mutex_lock(&memcg_max_mutex);
3562
3563         ret = page_counter_set_max(&memcg->tcpmem, max);
3564         if (ret)
3565                 goto out;
3566
3567         if (!memcg->tcpmem_active) {
3568                 /*
3569                  * The active flag needs to be written after the static_key
3570                  * update. This is what guarantees that the socket activation
3571                  * function is the last one to run. See mem_cgroup_sk_alloc()
3572                  * for details, and note that we don't mark any socket as
3573                  * belonging to this memcg until that flag is up.
3574                  *
3575                  * We need to do this, because static_keys will span multiple
3576                  * sites, but we can't control their order. If we mark a socket
3577                  * as accounted, but the accounting functions are not patched in
3578                  * yet, we'll lose accounting.
3579                  *
3580                  * We never race with the readers in mem_cgroup_sk_alloc(),
3581                  * because when this value change, the code to process it is not
3582                  * patched in yet.
3583                  */
3584                 static_branch_inc(&memcg_sockets_enabled_key);
3585                 memcg->tcpmem_active = true;
3586         }
3587 out:
3588         mutex_unlock(&memcg_max_mutex);
3589         return ret;
3590 }
3591
3592 /*
3593  * The user of this function is...
3594  * RES_LIMIT.
3595  */
3596 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3597                                 char *buf, size_t nbytes, loff_t off)
3598 {
3599         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3600         unsigned long nr_pages;
3601         int ret;
3602
3603         buf = strstrip(buf);
3604         ret = page_counter_memparse(buf, "-1", &nr_pages);
3605         if (ret)
3606                 return ret;
3607
3608         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3609         case RES_LIMIT:
3610                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3611                         ret = -EINVAL;
3612                         break;
3613                 }
3614                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3615                 case _MEM:
3616                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3617                         break;
3618                 case _MEMSWAP:
3619                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3620                         break;
3621                 case _KMEM:
3622                         pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3623                                      "Please report your usecase to linux-mm@kvack.org if you "
3624                                      "depend on this functionality.\n");
3625                         ret = memcg_update_kmem_max(memcg, nr_pages);
3626                         break;
3627                 case _TCP:
3628                         ret = memcg_update_tcp_max(memcg, nr_pages);
3629                         break;
3630                 }
3631                 break;
3632         case RES_SOFT_LIMIT:
3633                 memcg->soft_limit = nr_pages;
3634                 ret = 0;
3635                 break;
3636         }
3637         return ret ?: nbytes;
3638 }
3639
3640 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3641                                 size_t nbytes, loff_t off)
3642 {
3643         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3644         struct page_counter *counter;
3645
3646         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3647         case _MEM:
3648                 counter = &memcg->memory;
3649                 break;
3650         case _MEMSWAP:
3651                 counter = &memcg->memsw;
3652                 break;
3653         case _KMEM:
3654                 counter = &memcg->kmem;
3655                 break;
3656         case _TCP:
3657                 counter = &memcg->tcpmem;
3658                 break;
3659         default:
3660                 BUG();
3661         }
3662
3663         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3664         case RES_MAX_USAGE:
3665                 page_counter_reset_watermark(counter);
3666                 break;
3667         case RES_FAILCNT:
3668                 counter->failcnt = 0;
3669                 break;
3670         default:
3671                 BUG();
3672         }
3673
3674         return nbytes;
3675 }
3676
3677 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3678                                         struct cftype *cft)
3679 {
3680         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3681 }
3682
3683 #ifdef CONFIG_MMU
3684 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3685                                         struct cftype *cft, u64 val)
3686 {
3687         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3688
3689         if (val & ~MOVE_MASK)
3690                 return -EINVAL;
3691
3692         /*
3693          * No kind of locking is needed in here, because ->can_attach() will
3694          * check this value once in the beginning of the process, and then carry
3695          * on with stale data. This means that changes to this value will only
3696          * affect task migrations starting after the change.
3697          */
3698         memcg->move_charge_at_immigrate = val;
3699         return 0;
3700 }
3701 #else
3702 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3703                                         struct cftype *cft, u64 val)
3704 {
3705         return -ENOSYS;
3706 }
3707 #endif
3708
3709 #ifdef CONFIG_NUMA
3710
3711 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3712 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3713 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3714
3715 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3716                                 int nid, unsigned int lru_mask, bool tree)
3717 {
3718         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3719         unsigned long nr = 0;
3720         enum lru_list lru;
3721
3722         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3723
3724         for_each_lru(lru) {
3725                 if (!(BIT(lru) & lru_mask))
3726                         continue;
3727                 if (tree)
3728                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3729                 else
3730                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3731         }
3732         return nr;
3733 }
3734
3735 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3736                                              unsigned int lru_mask,
3737                                              bool tree)
3738 {
3739         unsigned long nr = 0;
3740         enum lru_list lru;
3741
3742         for_each_lru(lru) {
3743                 if (!(BIT(lru) & lru_mask))
3744                         continue;
3745                 if (tree)
3746                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3747                 else
3748                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3749         }
3750         return nr;
3751 }
3752
3753 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3754 {
3755         struct numa_stat {
3756                 const char *name;
3757                 unsigned int lru_mask;
3758         };
3759
3760         static const struct numa_stat stats[] = {
3761                 { "total", LRU_ALL },
3762                 { "file", LRU_ALL_FILE },
3763                 { "anon", LRU_ALL_ANON },
3764                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3765         };
3766         const struct numa_stat *stat;
3767         int nid;
3768         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3769
3770         cgroup_rstat_flush(memcg->css.cgroup);
3771
3772         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3773                 seq_printf(m, "%s=%lu", stat->name,
3774                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3775                                                    false));
3776                 for_each_node_state(nid, N_MEMORY)
3777                         seq_printf(m, " N%d=%lu", nid,
3778                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3779                                                         stat->lru_mask, false));
3780                 seq_putc(m, '\n');
3781         }
3782
3783         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3784
3785                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3786                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3787                                                    true));
3788                 for_each_node_state(nid, N_MEMORY)
3789                         seq_printf(m, " N%d=%lu", nid,
3790                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3791                                                         stat->lru_mask, true));
3792                 seq_putc(m, '\n');
3793         }
3794
3795         return 0;
3796 }
3797 #endif /* CONFIG_NUMA */
3798
3799 static const unsigned int memcg1_stats[] = {
3800         NR_FILE_PAGES,
3801         NR_ANON_MAPPED,
3802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3803         NR_ANON_THPS,
3804 #endif
3805         NR_SHMEM,
3806         NR_FILE_MAPPED,
3807         NR_FILE_DIRTY,
3808         NR_WRITEBACK,
3809         MEMCG_SWAP,
3810 };
3811
3812 static const char *const memcg1_stat_names[] = {
3813         "cache",
3814         "rss",
3815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3816         "rss_huge",
3817 #endif
3818         "shmem",
3819         "mapped_file",
3820         "dirty",
3821         "writeback",
3822         "swap",
3823 };
3824
3825 /* Universal VM events cgroup1 shows, original sort order */
3826 static const unsigned int memcg1_events[] = {
3827         PGPGIN,
3828         PGPGOUT,
3829         PGFAULT,
3830         PGMAJFAULT,
3831 };
3832
3833 static int memcg_stat_show(struct seq_file *m, void *v)
3834 {
3835         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3836         unsigned long memory, memsw;
3837         struct mem_cgroup *mi;
3838         unsigned int i;
3839
3840         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3841
3842         cgroup_rstat_flush(memcg->css.cgroup);
3843
3844         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3845                 unsigned long nr;
3846
3847                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3848                         continue;
3849                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3850                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3851         }
3852
3853         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3854                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3855                            memcg_events_local(memcg, memcg1_events[i]));
3856
3857         for (i = 0; i < NR_LRU_LISTS; i++)
3858                 seq_printf(m, "%s %lu\n", lru_list_name(i),
3859                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3860                            PAGE_SIZE);
3861
3862         /* Hierarchical information */
3863         memory = memsw = PAGE_COUNTER_MAX;
3864         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3865                 memory = min(memory, READ_ONCE(mi->memory.max));
3866                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
3867         }
3868         seq_printf(m, "hierarchical_memory_limit %llu\n",
3869                    (u64)memory * PAGE_SIZE);
3870         if (do_memsw_account())
3871                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3872                            (u64)memsw * PAGE_SIZE);
3873
3874         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3875                 unsigned long nr;
3876
3877                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3878                         continue;
3879                 nr = memcg_page_state(memcg, memcg1_stats[i]);
3880                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3881                                                 (u64)nr * PAGE_SIZE);
3882         }
3883
3884         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3885                 seq_printf(m, "total_%s %llu\n",
3886                            vm_event_name(memcg1_events[i]),
3887                            (u64)memcg_events(memcg, memcg1_events[i]));
3888
3889         for (i = 0; i < NR_LRU_LISTS; i++)
3890                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3891                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3892                            PAGE_SIZE);
3893
3894 #ifdef CONFIG_DEBUG_VM
3895         {
3896                 pg_data_t *pgdat;
3897                 struct mem_cgroup_per_node *mz;
3898                 unsigned long anon_cost = 0;
3899                 unsigned long file_cost = 0;
3900
3901                 for_each_online_pgdat(pgdat) {
3902                         mz = memcg->nodeinfo[pgdat->node_id];
3903
3904                         anon_cost += mz->lruvec.anon_cost;
3905                         file_cost += mz->lruvec.file_cost;
3906                 }
3907                 seq_printf(m, "anon_cost %lu\n", anon_cost);
3908                 seq_printf(m, "file_cost %lu\n", file_cost);
3909         }
3910 #endif
3911
3912         return 0;
3913 }
3914
3915 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3916                                       struct cftype *cft)
3917 {
3918         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3919
3920         return mem_cgroup_swappiness(memcg);
3921 }
3922
3923 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3924                                        struct cftype *cft, u64 val)
3925 {
3926         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3927
3928         if (val > 100)
3929                 return -EINVAL;
3930
3931         if (!mem_cgroup_is_root(memcg))
3932                 memcg->swappiness = val;
3933         else
3934                 vm_swappiness = val;
3935
3936         return 0;
3937 }
3938
3939 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3940 {
3941         struct mem_cgroup_threshold_ary *t;
3942         unsigned long usage;
3943         int i;
3944
3945         rcu_read_lock();
3946         if (!swap)
3947                 t = rcu_dereference(memcg->thresholds.primary);
3948         else
3949                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3950
3951         if (!t)
3952                 goto unlock;
3953
3954         usage = mem_cgroup_usage(memcg, swap);
3955
3956         /*
3957          * current_threshold points to threshold just below or equal to usage.
3958          * If it's not true, a threshold was crossed after last
3959          * call of __mem_cgroup_threshold().
3960          */
3961         i = t->current_threshold;
3962
3963         /*
3964          * Iterate backward over array of thresholds starting from
3965          * current_threshold and check if a threshold is crossed.
3966          * If none of thresholds below usage is crossed, we read
3967          * only one element of the array here.
3968          */
3969         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3970                 eventfd_signal(t->entries[i].eventfd, 1);
3971
3972         /* i = current_threshold + 1 */
3973         i++;
3974
3975         /*
3976          * Iterate forward over array of thresholds starting from
3977          * current_threshold+1 and check if a threshold is crossed.
3978          * If none of thresholds above usage is crossed, we read
3979          * only one element of the array here.
3980          */
3981         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3982                 eventfd_signal(t->entries[i].eventfd, 1);
3983
3984         /* Update current_threshold */
3985         t->current_threshold = i - 1;
3986 unlock:
3987         rcu_read_unlock();
3988 }
3989
3990 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3991 {
3992         while (memcg) {
3993                 __mem_cgroup_threshold(memcg, false);
3994                 if (do_memsw_account())
3995                         __mem_cgroup_threshold(memcg, true);
3996
3997                 memcg = parent_mem_cgroup(memcg);
3998         }
3999 }
4000
4001 static int compare_thresholds(const void *a, const void *b)
4002 {
4003         const struct mem_cgroup_threshold *_a = a;
4004         const struct mem_cgroup_threshold *_b = b;
4005
4006         if (_a->threshold > _b->threshold)
4007                 return 1;
4008
4009         if (_a->threshold < _b->threshold)
4010                 return -1;
4011
4012         return 0;
4013 }
4014
4015 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4016 {
4017         struct mem_cgroup_eventfd_list *ev;
4018
4019         spin_lock(&memcg_oom_lock);
4020
4021         list_for_each_entry(ev, &memcg->oom_notify, list)
4022                 eventfd_signal(ev->eventfd, 1);
4023
4024         spin_unlock(&memcg_oom_lock);
4025         return 0;
4026 }
4027
4028 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4029 {
4030         struct mem_cgroup *iter;
4031
4032         for_each_mem_cgroup_tree(iter, memcg)
4033                 mem_cgroup_oom_notify_cb(iter);
4034 }
4035
4036 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4037         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4038 {
4039         struct mem_cgroup_thresholds *thresholds;
4040         struct mem_cgroup_threshold_ary *new;
4041         unsigned long threshold;
4042         unsigned long usage;
4043         int i, size, ret;
4044
4045         ret = page_counter_memparse(args, "-1", &threshold);
4046         if (ret)
4047                 return ret;
4048
4049         mutex_lock(&memcg->thresholds_lock);
4050
4051         if (type == _MEM) {
4052                 thresholds = &memcg->thresholds;
4053                 usage = mem_cgroup_usage(memcg, false);
4054         } else if (type == _MEMSWAP) {
4055                 thresholds = &memcg->memsw_thresholds;
4056                 usage = mem_cgroup_usage(memcg, true);
4057         } else
4058                 BUG();
4059
4060         /* Check if a threshold crossed before adding a new one */
4061         if (thresholds->primary)
4062                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4063
4064         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4065
4066         /* Allocate memory for new array of thresholds */
4067         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4068         if (!new) {
4069                 ret = -ENOMEM;
4070                 goto unlock;
4071         }
4072         new->size = size;
4073
4074         /* Copy thresholds (if any) to new array */
4075         if (thresholds->primary)
4076                 memcpy(new->entries, thresholds->primary->entries,
4077                        flex_array_size(new, entries, size - 1));
4078
4079         /* Add new threshold */
4080         new->entries[size - 1].eventfd = eventfd;
4081         new->entries[size - 1].threshold = threshold;
4082
4083         /* Sort thresholds. Registering of new threshold isn't time-critical */
4084         sort(new->entries, size, sizeof(*new->entries),
4085                         compare_thresholds, NULL);
4086
4087         /* Find current threshold */
4088         new->current_threshold = -1;
4089         for (i = 0; i < size; i++) {
4090                 if (new->entries[i].threshold <= usage) {
4091                         /*
4092                          * new->current_threshold will not be used until
4093                          * rcu_assign_pointer(), so it's safe to increment
4094                          * it here.
4095                          */
4096                         ++new->current_threshold;
4097                 } else
4098                         break;
4099         }
4100
4101         /* Free old spare buffer and save old primary buffer as spare */
4102         kfree(thresholds->spare);
4103         thresholds->spare = thresholds->primary;
4104
4105         rcu_assign_pointer(thresholds->primary, new);
4106
4107         /* To be sure that nobody uses thresholds */
4108         synchronize_rcu();
4109
4110 unlock:
4111         mutex_unlock(&memcg->thresholds_lock);
4112
4113         return ret;
4114 }
4115
4116 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4117         struct eventfd_ctx *eventfd, const char *args)
4118 {
4119         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4120 }
4121
4122 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4123         struct eventfd_ctx *eventfd, const char *args)
4124 {
4125         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4126 }
4127
4128 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4129         struct eventfd_ctx *eventfd, enum res_type type)
4130 {
4131         struct mem_cgroup_thresholds *thresholds;
4132         struct mem_cgroup_threshold_ary *new;
4133         unsigned long usage;
4134         int i, j, size, entries;
4135
4136         mutex_lock(&memcg->thresholds_lock);
4137
4138         if (type == _MEM) {
4139                 thresholds = &memcg->thresholds;
4140                 usage = mem_cgroup_usage(memcg, false);
4141         } else if (type == _MEMSWAP) {
4142                 thresholds = &memcg->memsw_thresholds;
4143                 usage = mem_cgroup_usage(memcg, true);
4144         } else
4145                 BUG();
4146
4147         if (!thresholds->primary)
4148                 goto unlock;
4149
4150         /* Check if a threshold crossed before removing */
4151         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4152
4153         /* Calculate new number of threshold */
4154         size = entries = 0;
4155         for (i = 0; i < thresholds->primary->size; i++) {
4156                 if (thresholds->primary->entries[i].eventfd != eventfd)
4157                         size++;
4158                 else
4159                         entries++;
4160         }
4161
4162         new = thresholds->spare;
4163
4164         /* If no items related to eventfd have been cleared, nothing to do */
4165         if (!entries)
4166                 goto unlock;
4167
4168         /* Set thresholds array to NULL if we don't have thresholds */
4169         if (!size) {
4170                 kfree(new);
4171                 new = NULL;
4172                 goto swap_buffers;
4173         }
4174
4175         new->size = size;
4176
4177         /* Copy thresholds and find current threshold */
4178         new->current_threshold = -1;
4179         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4180                 if (thresholds->primary->entries[i].eventfd == eventfd)
4181                         continue;
4182
4183                 new->entries[j] = thresholds->primary->entries[i];
4184                 if (new->entries[j].threshold <= usage) {
4185                         /*
4186                          * new->current_threshold will not be used
4187                          * until rcu_assign_pointer(), so it's safe to increment
4188                          * it here.
4189                          */
4190                         ++new->current_threshold;
4191                 }
4192                 j++;
4193         }
4194
4195 swap_buffers:
4196         /* Swap primary and spare array */
4197         thresholds->spare = thresholds->primary;
4198
4199         rcu_assign_pointer(thresholds->primary, new);
4200
4201         /* To be sure that nobody uses thresholds */
4202         synchronize_rcu();
4203
4204         /* If all events are unregistered, free the spare array */
4205         if (!new) {
4206                 kfree(thresholds->spare);
4207                 thresholds->spare = NULL;
4208         }
4209 unlock:
4210         mutex_unlock(&memcg->thresholds_lock);
4211 }
4212
4213 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4214         struct eventfd_ctx *eventfd)
4215 {
4216         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4217 }
4218
4219 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4220         struct eventfd_ctx *eventfd)
4221 {
4222         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4223 }
4224
4225 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4226         struct eventfd_ctx *eventfd, const char *args)
4227 {
4228         struct mem_cgroup_eventfd_list *event;
4229
4230         event = kmalloc(sizeof(*event), GFP_KERNEL);
4231         if (!event)
4232                 return -ENOMEM;
4233
4234         spin_lock(&memcg_oom_lock);
4235
4236         event->eventfd = eventfd;
4237         list_add(&event->list, &memcg->oom_notify);
4238
4239         /* already in OOM ? */
4240         if (memcg->under_oom)
4241                 eventfd_signal(eventfd, 1);
4242         spin_unlock(&memcg_oom_lock);
4243
4244         return 0;
4245 }
4246
4247 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4248         struct eventfd_ctx *eventfd)
4249 {
4250         struct mem_cgroup_eventfd_list *ev, *tmp;
4251
4252         spin_lock(&memcg_oom_lock);
4253
4254         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4255                 if (ev->eventfd == eventfd) {
4256                         list_del(&ev->list);
4257                         kfree(ev);
4258                 }
4259         }
4260
4261         spin_unlock(&memcg_oom_lock);
4262 }
4263
4264 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4265 {
4266         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4267
4268         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4269         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4270         seq_printf(sf, "oom_kill %lu\n",
4271                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4272         return 0;
4273 }
4274
4275 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4276         struct cftype *cft, u64 val)
4277 {
4278         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4279
4280         /* cannot set to root cgroup and only 0 and 1 are allowed */
4281         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4282                 return -EINVAL;
4283
4284         memcg->oom_kill_disable = val;
4285         if (!val)
4286                 memcg_oom_recover(memcg);
4287
4288         return 0;
4289 }
4290
4291 #ifdef CONFIG_CGROUP_WRITEBACK
4292
4293 #include <trace/events/writeback.h>
4294
4295 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4296 {
4297         return wb_domain_init(&memcg->cgwb_domain, gfp);
4298 }
4299
4300 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4301 {
4302         wb_domain_exit(&memcg->cgwb_domain);
4303 }
4304
4305 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4306 {
4307         wb_domain_size_changed(&memcg->cgwb_domain);
4308 }
4309
4310 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4311 {
4312         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4313
4314         if (!memcg->css.parent)
4315                 return NULL;
4316
4317         return &memcg->cgwb_domain;
4318 }
4319
4320 /**
4321  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4322  * @wb: bdi_writeback in question
4323  * @pfilepages: out parameter for number of file pages
4324  * @pheadroom: out parameter for number of allocatable pages according to memcg
4325  * @pdirty: out parameter for number of dirty pages
4326  * @pwriteback: out parameter for number of pages under writeback
4327  *
4328  * Determine the numbers of file, headroom, dirty, and writeback pages in
4329  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4330  * is a bit more involved.
4331  *
4332  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4333  * headroom is calculated as the lowest headroom of itself and the
4334  * ancestors.  Note that this doesn't consider the actual amount of
4335  * available memory in the system.  The caller should further cap
4336  * *@pheadroom accordingly.
4337  */
4338 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4339                          unsigned long *pheadroom, unsigned long *pdirty,
4340                          unsigned long *pwriteback)
4341 {
4342         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4343         struct mem_cgroup *parent;
4344
4345         cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4346
4347         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4348         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4349         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4350                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4351
4352         *pheadroom = PAGE_COUNTER_MAX;
4353         while ((parent = parent_mem_cgroup(memcg))) {
4354                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4355                                             READ_ONCE(memcg->memory.high));
4356                 unsigned long used = page_counter_read(&memcg->memory);
4357
4358                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4359                 memcg = parent;
4360         }
4361 }
4362
4363 /*
4364  * Foreign dirty flushing
4365  *
4366  * There's an inherent mismatch between memcg and writeback.  The former
4367  * tracks ownership per-page while the latter per-inode.  This was a
4368  * deliberate design decision because honoring per-page ownership in the
4369  * writeback path is complicated, may lead to higher CPU and IO overheads
4370  * and deemed unnecessary given that write-sharing an inode across
4371  * different cgroups isn't a common use-case.
4372  *
4373  * Combined with inode majority-writer ownership switching, this works well
4374  * enough in most cases but there are some pathological cases.  For
4375  * example, let's say there are two cgroups A and B which keep writing to
4376  * different but confined parts of the same inode.  B owns the inode and
4377  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4378  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4379  * triggering background writeback.  A will be slowed down without a way to
4380  * make writeback of the dirty pages happen.
4381  *
4382  * Conditions like the above can lead to a cgroup getting repeatedly and
4383  * severely throttled after making some progress after each
4384  * dirty_expire_interval while the underlying IO device is almost
4385  * completely idle.
4386  *
4387  * Solving this problem completely requires matching the ownership tracking
4388  * granularities between memcg and writeback in either direction.  However,
4389  * the more egregious behaviors can be avoided by simply remembering the
4390  * most recent foreign dirtying events and initiating remote flushes on
4391  * them when local writeback isn't enough to keep the memory clean enough.
4392  *
4393  * The following two functions implement such mechanism.  When a foreign
4394  * page - a page whose memcg and writeback ownerships don't match - is
4395  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4396  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4397  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4398  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4399  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4400  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4401  * limited to MEMCG_CGWB_FRN_CNT.
4402  *
4403  * The mechanism only remembers IDs and doesn't hold any object references.
4404  * As being wrong occasionally doesn't matter, updates and accesses to the
4405  * records are lockless and racy.
4406  */
4407 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4408                                              struct bdi_writeback *wb)
4409 {
4410         struct mem_cgroup *memcg = page_memcg(page);
4411         struct memcg_cgwb_frn *frn;
4412         u64 now = get_jiffies_64();
4413         u64 oldest_at = now;
4414         int oldest = -1;
4415         int i;
4416
4417         trace_track_foreign_dirty(page, wb);
4418
4419         /*
4420          * Pick the slot to use.  If there is already a slot for @wb, keep
4421          * using it.  If not replace the oldest one which isn't being
4422          * written out.
4423          */
4424         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4425                 frn = &memcg->cgwb_frn[i];
4426                 if (frn->bdi_id == wb->bdi->id &&
4427                     frn->memcg_id == wb->memcg_css->id)
4428                         break;
4429                 if (time_before64(frn->at, oldest_at) &&
4430                     atomic_read(&frn->done.cnt) == 1) {
4431                         oldest = i;
4432                         oldest_at = frn->at;
4433                 }
4434         }
4435
4436         if (i < MEMCG_CGWB_FRN_CNT) {
4437                 /*
4438                  * Re-using an existing one.  Update timestamp lazily to
4439                  * avoid making the cacheline hot.  We want them to be
4440                  * reasonably up-to-date and significantly shorter than
4441                  * dirty_expire_interval as that's what expires the record.
4442                  * Use the shorter of 1s and dirty_expire_interval / 8.
4443                  */
4444                 unsigned long update_intv =
4445                         min_t(unsigned long, HZ,
4446                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4447
4448                 if (time_before64(frn->at, now - update_intv))
4449                         frn->at = now;
4450         } else if (oldest >= 0) {
4451                 /* replace the oldest free one */
4452                 frn = &memcg->cgwb_frn[oldest];
4453                 frn->bdi_id = wb->bdi->id;
4454                 frn->memcg_id = wb->memcg_css->id;
4455                 frn->at = now;
4456         }
4457 }
4458
4459 /* issue foreign writeback flushes for recorded foreign dirtying events */
4460 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4461 {
4462         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4463         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4464         u64 now = jiffies_64;
4465         int i;
4466
4467         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4468                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4469
4470                 /*
4471                  * If the record is older than dirty_expire_interval,
4472                  * writeback on it has already started.  No need to kick it
4473                  * off again.  Also, don't start a new one if there's
4474                  * already one in flight.
4475                  */
4476                 if (time_after64(frn->at, now - intv) &&
4477                     atomic_read(&frn->done.cnt) == 1) {
4478                         frn->at = 0;
4479                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4480                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4481                                                WB_REASON_FOREIGN_FLUSH,
4482                                                &frn->done);
4483                 }
4484         }
4485 }
4486
4487 #else   /* CONFIG_CGROUP_WRITEBACK */
4488
4489 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4490 {
4491         return 0;
4492 }
4493
4494 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4495 {
4496 }
4497
4498 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4499 {
4500 }
4501
4502 #endif  /* CONFIG_CGROUP_WRITEBACK */
4503
4504 /*
4505  * DO NOT USE IN NEW FILES.
4506  *
4507  * "cgroup.event_control" implementation.
4508  *
4509  * This is way over-engineered.  It tries to support fully configurable
4510  * events for each user.  Such level of flexibility is completely
4511  * unnecessary especially in the light of the planned unified hierarchy.
4512  *
4513  * Please deprecate this and replace with something simpler if at all
4514  * possible.
4515  */
4516
4517 /*
4518  * Unregister event and free resources.
4519  *
4520  * Gets called from workqueue.
4521  */
4522 static void memcg_event_remove(struct work_struct *work)
4523 {
4524         struct mem_cgroup_event *event =
4525                 container_of(work, struct mem_cgroup_event, remove);
4526         struct mem_cgroup *memcg = event->memcg;
4527
4528         remove_wait_queue(event->wqh, &event->wait);
4529
4530         event->unregister_event(memcg, event->eventfd);
4531
4532         /* Notify userspace the event is going away. */
4533         eventfd_signal(event->eventfd, 1);
4534
4535         eventfd_ctx_put(event->eventfd);
4536         kfree(event);
4537         css_put(&memcg->css);
4538 }
4539
4540 /*
4541  * Gets called on EPOLLHUP on eventfd when user closes it.
4542  *
4543  * Called with wqh->lock held and interrupts disabled.
4544  */
4545 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4546                             int sync, void *key)
4547 {
4548         struct mem_cgroup_event *event =
4549                 container_of(wait, struct mem_cgroup_event, wait);
4550         struct mem_cgroup *memcg = event->memcg;
4551         __poll_t flags = key_to_poll(key);
4552
4553         if (flags & EPOLLHUP) {
4554                 /*
4555                  * If the event has been detached at cgroup removal, we
4556                  * can simply return knowing the other side will cleanup
4557                  * for us.
4558                  *
4559                  * We can't race against event freeing since the other
4560                  * side will require wqh->lock via remove_wait_queue(),
4561                  * which we hold.
4562                  */
4563                 spin_lock(&memcg->event_list_lock);
4564                 if (!list_empty(&event->list)) {
4565                         list_del_init(&event->list);
4566                         /*
4567                          * We are in atomic context, but cgroup_event_remove()
4568                          * may sleep, so we have to call it in workqueue.
4569                          */
4570                         schedule_work(&event->remove);
4571                 }
4572                 spin_unlock(&memcg->event_list_lock);
4573         }
4574
4575         return 0;
4576 }
4577
4578 static void memcg_event_ptable_queue_proc(struct file *file,
4579                 wait_queue_head_t *wqh, poll_table *pt)
4580 {
4581         struct mem_cgroup_event *event =
4582                 container_of(pt, struct mem_cgroup_event, pt);
4583
4584         event->wqh = wqh;
4585         add_wait_queue(wqh, &event->wait);
4586 }
4587
4588 /*
4589  * DO NOT USE IN NEW FILES.
4590  *
4591  * Parse input and register new cgroup event handler.
4592  *
4593  * Input must be in format '<event_fd> <control_fd> <args>'.
4594  * Interpretation of args is defined by control file implementation.
4595  */
4596 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4597                                          char *buf, size_t nbytes, loff_t off)
4598 {
4599         struct cgroup_subsys_state *css = of_css(of);
4600         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4601         struct mem_cgroup_event *event;
4602         struct cgroup_subsys_state *cfile_css;
4603         unsigned int efd, cfd;
4604         struct fd efile;
4605         struct fd cfile;
4606         const char *name;
4607         char *endp;
4608         int ret;
4609
4610         buf = strstrip(buf);
4611
4612         efd = simple_strtoul(buf, &endp, 10);
4613         if (*endp != ' ')
4614                 return -EINVAL;
4615         buf = endp + 1;
4616
4617         cfd = simple_strtoul(buf, &endp, 10);
4618         if ((*endp != ' ') && (*endp != '\0'))
4619                 return -EINVAL;
4620         buf = endp + 1;
4621
4622         event = kzalloc(sizeof(*event), GFP_KERNEL);
4623         if (!event)
4624                 return -ENOMEM;
4625
4626         event->memcg = memcg;
4627         INIT_LIST_HEAD(&event->list);
4628         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4629         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4630         INIT_WORK(&event->remove, memcg_event_remove);
4631
4632         efile = fdget(efd);
4633         if (!efile.file) {
4634                 ret = -EBADF;
4635                 goto out_kfree;
4636         }
4637
4638         event->eventfd = eventfd_ctx_fileget(efile.file);
4639         if (IS_ERR(event->eventfd)) {
4640                 ret = PTR_ERR(event->eventfd);
4641                 goto out_put_efile;
4642         }
4643
4644         cfile = fdget(cfd);
4645         if (!cfile.file) {
4646                 ret = -EBADF;
4647                 goto out_put_eventfd;
4648         }
4649
4650         /* the process need read permission on control file */
4651         /* AV: shouldn't we check that it's been opened for read instead? */
4652         ret = file_permission(cfile.file, MAY_READ);
4653         if (ret < 0)
4654                 goto out_put_cfile;
4655
4656         /*
4657          * Determine the event callbacks and set them in @event.  This used
4658          * to be done via struct cftype but cgroup core no longer knows
4659          * about these events.  The following is crude but the whole thing
4660          * is for compatibility anyway.
4661          *
4662          * DO NOT ADD NEW FILES.
4663          */
4664         name = cfile.file->f_path.dentry->d_name.name;
4665
4666         if (!strcmp(name, "memory.usage_in_bytes")) {
4667                 event->register_event = mem_cgroup_usage_register_event;
4668                 event->unregister_event = mem_cgroup_usage_unregister_event;
4669         } else if (!strcmp(name, "memory.oom_control")) {
4670                 event->register_event = mem_cgroup_oom_register_event;
4671                 event->unregister_event = mem_cgroup_oom_unregister_event;
4672         } else if (!strcmp(name, "memory.pressure_level")) {
4673                 event->register_event = vmpressure_register_event;
4674                 event->unregister_event = vmpressure_unregister_event;
4675         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4676                 event->register_event = memsw_cgroup_usage_register_event;
4677                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4678         } else {
4679                 ret = -EINVAL;
4680                 goto out_put_cfile;
4681         }
4682
4683         /*
4684          * Verify @cfile should belong to @css.  Also, remaining events are
4685          * automatically removed on cgroup destruction but the removal is
4686          * asynchronous, so take an extra ref on @css.
4687          */
4688         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4689                                                &memory_cgrp_subsys);
4690         ret = -EINVAL;
4691         if (IS_ERR(cfile_css))
4692                 goto out_put_cfile;
4693         if (cfile_css != css) {
4694                 css_put(cfile_css);
4695                 goto out_put_cfile;
4696         }
4697
4698         ret = event->register_event(memcg, event->eventfd, buf);
4699         if (ret)
4700                 goto out_put_css;
4701
4702         vfs_poll(efile.file, &event->pt);
4703
4704         spin_lock(&memcg->event_list_lock);
4705         list_add(&event->list, &memcg->event_list);
4706         spin_unlock(&memcg->event_list_lock);
4707
4708         fdput(cfile);
4709         fdput(efile);
4710
4711         return nbytes;
4712
4713 out_put_css:
4714         css_put(css);
4715 out_put_cfile:
4716         fdput(cfile);
4717 out_put_eventfd:
4718         eventfd_ctx_put(event->eventfd);
4719 out_put_efile:
4720         fdput(efile);
4721 out_kfree:
4722         kfree(event);
4723
4724         return ret;
4725 }
4726
4727 static struct cftype mem_cgroup_legacy_files[] = {
4728         {
4729                 .name = "usage_in_bytes",
4730                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4731                 .read_u64 = mem_cgroup_read_u64,
4732         },
4733         {
4734                 .name = "max_usage_in_bytes",
4735                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4736                 .write = mem_cgroup_reset,
4737                 .read_u64 = mem_cgroup_read_u64,
4738         },
4739         {
4740                 .name = "limit_in_bytes",
4741                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4742                 .write = mem_cgroup_write,
4743                 .read_u64 = mem_cgroup_read_u64,
4744         },
4745         {
4746                 .name = "soft_limit_in_bytes",
4747                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4748                 .write = mem_cgroup_write,
4749                 .read_u64 = mem_cgroup_read_u64,
4750         },
4751         {
4752                 .name = "failcnt",
4753                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4754                 .write = mem_cgroup_reset,
4755                 .read_u64 = mem_cgroup_read_u64,
4756         },
4757         {
4758                 .name = "stat",
4759                 .seq_show = memcg_stat_show,
4760         },
4761         {
4762                 .name = "force_empty",
4763                 .write = mem_cgroup_force_empty_write,
4764         },
4765         {
4766                 .name = "use_hierarchy",
4767                 .write_u64 = mem_cgroup_hierarchy_write,
4768                 .read_u64 = mem_cgroup_hierarchy_read,
4769         },
4770         {
4771                 .name = "cgroup.event_control",         /* XXX: for compat */
4772                 .write = memcg_write_event_control,
4773                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4774         },
4775         {
4776                 .name = "swappiness",
4777                 .read_u64 = mem_cgroup_swappiness_read,
4778                 .write_u64 = mem_cgroup_swappiness_write,
4779         },
4780         {
4781                 .name = "move_charge_at_immigrate",
4782                 .read_u64 = mem_cgroup_move_charge_read,
4783                 .write_u64 = mem_cgroup_move_charge_write,
4784         },
4785         {
4786                 .name = "oom_control",
4787                 .seq_show = mem_cgroup_oom_control_read,
4788                 .write_u64 = mem_cgroup_oom_control_write,
4789                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4790         },
4791         {
4792                 .name = "pressure_level",
4793         },
4794 #ifdef CONFIG_NUMA
4795         {
4796                 .name = "numa_stat",
4797                 .seq_show = memcg_numa_stat_show,
4798         },
4799 #endif
4800         {
4801                 .name = "kmem.limit_in_bytes",
4802                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4803                 .write = mem_cgroup_write,
4804                 .read_u64 = mem_cgroup_read_u64,
4805         },
4806         {
4807                 .name = "kmem.usage_in_bytes",
4808                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4809                 .read_u64 = mem_cgroup_read_u64,
4810         },
4811         {
4812                 .name = "kmem.failcnt",
4813                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4814                 .write = mem_cgroup_reset,
4815                 .read_u64 = mem_cgroup_read_u64,
4816         },
4817         {
4818                 .name = "kmem.max_usage_in_bytes",
4819                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4820                 .write = mem_cgroup_reset,
4821                 .read_u64 = mem_cgroup_read_u64,
4822         },
4823 #if defined(CONFIG_MEMCG_KMEM) && \
4824         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4825         {
4826                 .name = "kmem.slabinfo",
4827                 .seq_show = memcg_slab_show,
4828         },
4829 #endif
4830         {
4831                 .name = "kmem.tcp.limit_in_bytes",
4832                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4833                 .write = mem_cgroup_write,
4834                 .read_u64 = mem_cgroup_read_u64,
4835         },
4836         {
4837                 .name = "kmem.tcp.usage_in_bytes",
4838                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4839                 .read_u64 = mem_cgroup_read_u64,
4840         },
4841         {
4842                 .name = "kmem.tcp.failcnt",
4843                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4844                 .write = mem_cgroup_reset,
4845                 .read_u64 = mem_cgroup_read_u64,
4846         },
4847         {
4848                 .name = "kmem.tcp.max_usage_in_bytes",
4849                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4850                 .write = mem_cgroup_reset,
4851                 .read_u64 = mem_cgroup_read_u64,
4852         },
4853         { },    /* terminate */
4854 };
4855
4856 /*
4857  * Private memory cgroup IDR
4858  *
4859  * Swap-out records and page cache shadow entries need to store memcg
4860  * references in constrained space, so we maintain an ID space that is
4861  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4862  * memory-controlled cgroups to 64k.
4863  *
4864  * However, there usually are many references to the offline CSS after
4865  * the cgroup has been destroyed, such as page cache or reclaimable
4866  * slab objects, that don't need to hang on to the ID. We want to keep
4867  * those dead CSS from occupying IDs, or we might quickly exhaust the
4868  * relatively small ID space and prevent the creation of new cgroups
4869  * even when there are much fewer than 64k cgroups - possibly none.
4870  *
4871  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4872  * be freed and recycled when it's no longer needed, which is usually
4873  * when the CSS is offlined.
4874  *
4875  * The only exception to that are records of swapped out tmpfs/shmem
4876  * pages that need to be attributed to live ancestors on swapin. But
4877  * those references are manageable from userspace.
4878  */
4879
4880 static DEFINE_IDR(mem_cgroup_idr);
4881
4882 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4883 {
4884         if (memcg->id.id > 0) {
4885                 idr_remove(&mem_cgroup_idr, memcg->id.id);
4886                 memcg->id.id = 0;
4887         }
4888 }
4889
4890 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4891                                                   unsigned int n)
4892 {
4893         refcount_add(n, &memcg->id.ref);
4894 }
4895
4896 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4897 {
4898         if (refcount_sub_and_test(n, &memcg->id.ref)) {
4899                 mem_cgroup_id_remove(memcg);
4900
4901                 /* Memcg ID pins CSS */
4902                 css_put(&memcg->css);
4903         }
4904 }
4905
4906 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4907 {
4908         mem_cgroup_id_put_many(memcg, 1);
4909 }
4910
4911 /**
4912  * mem_cgroup_from_id - look up a memcg from a memcg id
4913  * @id: the memcg id to look up
4914  *
4915  * Caller must hold rcu_read_lock().
4916  */
4917 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4918 {
4919         WARN_ON_ONCE(!rcu_read_lock_held());
4920         return idr_find(&mem_cgroup_idr, id);
4921 }
4922
4923 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4924 {
4925         struct mem_cgroup_per_node *pn;
4926         int tmp = node;
4927         /*
4928          * This routine is called against possible nodes.
4929          * But it's BUG to call kmalloc() against offline node.
4930          *
4931          * TODO: this routine can waste much memory for nodes which will
4932          *       never be onlined. It's better to use memory hotplug callback
4933          *       function.
4934          */
4935         if (!node_state(node, N_NORMAL_MEMORY))
4936                 tmp = -1;
4937         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4938         if (!pn)
4939                 return 1;
4940
4941         pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
4942                                                  GFP_KERNEL_ACCOUNT);
4943         if (!pn->lruvec_stat_local) {
4944                 kfree(pn);
4945                 return 1;
4946         }
4947
4948         pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
4949                                                GFP_KERNEL_ACCOUNT);
4950         if (!pn->lruvec_stat_cpu) {
4951                 free_percpu(pn->lruvec_stat_local);
4952                 kfree(pn);
4953                 return 1;
4954         }
4955
4956         lruvec_init(&pn->lruvec);
4957         pn->usage_in_excess = 0;
4958         pn->on_tree = false;
4959         pn->memcg = memcg;
4960
4961         memcg->nodeinfo[node] = pn;
4962         return 0;
4963 }
4964
4965 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4966 {
4967         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4968
4969         if (!pn)
4970                 return;
4971
4972         free_percpu(pn->lruvec_stat_cpu);
4973         free_percpu(pn->lruvec_stat_local);
4974         kfree(pn);
4975 }
4976
4977 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4978 {
4979         int node;
4980
4981         for_each_node(node)
4982                 free_mem_cgroup_per_node_info(memcg, node);
4983         free_percpu(memcg->vmstats_percpu);
4984         kfree(memcg);
4985 }
4986
4987 static void mem_cgroup_free(struct mem_cgroup *memcg)
4988 {
4989         int cpu;
4990
4991         memcg_wb_domain_exit(memcg);
4992         /*
4993          * Flush percpu lruvec stats to guarantee the value
4994          * correctness on parent's and all ancestor levels.
4995          */
4996         for_each_online_cpu(cpu)
4997                 memcg_flush_lruvec_page_state(memcg, cpu);
4998         __mem_cgroup_free(memcg);
4999 }
5000
5001 static struct mem_cgroup *mem_cgroup_alloc(void)
5002 {
5003         struct mem_cgroup *memcg;
5004         unsigned int size;
5005         int node;
5006         int __maybe_unused i;
5007         long error = -ENOMEM;
5008
5009         size = sizeof(struct mem_cgroup);
5010         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5011
5012         memcg = kzalloc(size, GFP_KERNEL);
5013         if (!memcg)
5014                 return ERR_PTR(error);
5015
5016         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5017                                  1, MEM_CGROUP_ID_MAX,
5018                                  GFP_KERNEL);
5019         if (memcg->id.id < 0) {
5020                 error = memcg->id.id;
5021                 goto fail;
5022         }
5023
5024         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5025                                                  GFP_KERNEL_ACCOUNT);
5026         if (!memcg->vmstats_percpu)
5027                 goto fail;
5028
5029         for_each_node(node)
5030                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5031                         goto fail;
5032
5033         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5034                 goto fail;
5035
5036         INIT_WORK(&memcg->high_work, high_work_func);
5037         INIT_LIST_HEAD(&memcg->oom_notify);
5038         mutex_init(&memcg->thresholds_lock);
5039         spin_lock_init(&memcg->move_lock);
5040         vmpressure_init(&memcg->vmpressure);
5041         INIT_LIST_HEAD(&memcg->event_list);
5042         spin_lock_init(&memcg->event_list_lock);
5043         memcg->socket_pressure = jiffies;
5044 #ifdef CONFIG_MEMCG_KMEM
5045         memcg->kmemcg_id = -1;
5046         INIT_LIST_HEAD(&memcg->objcg_list);
5047 #endif
5048 #ifdef CONFIG_CGROUP_WRITEBACK
5049         INIT_LIST_HEAD(&memcg->cgwb_list);
5050         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5051                 memcg->cgwb_frn[i].done =
5052                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5053 #endif
5054 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5055         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5056         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5057         memcg->deferred_split_queue.split_queue_len = 0;
5058 #endif
5059         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5060         return memcg;
5061 fail:
5062         mem_cgroup_id_remove(memcg);
5063         __mem_cgroup_free(memcg);
5064         return ERR_PTR(error);
5065 }
5066
5067 static struct cgroup_subsys_state * __ref
5068 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5069 {
5070         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5071         struct mem_cgroup *memcg, *old_memcg;
5072         long error = -ENOMEM;
5073
5074         old_memcg = set_active_memcg(parent);
5075         memcg = mem_cgroup_alloc();
5076         set_active_memcg(old_memcg);
5077         if (IS_ERR(memcg))
5078                 return ERR_CAST(memcg);
5079
5080         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5081         memcg->soft_limit = PAGE_COUNTER_MAX;
5082         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5083         if (parent) {
5084                 memcg->swappiness = mem_cgroup_swappiness(parent);
5085                 memcg->oom_kill_disable = parent->oom_kill_disable;
5086
5087                 page_counter_init(&memcg->memory, &parent->memory);
5088                 page_counter_init(&memcg->swap, &parent->swap);
5089                 page_counter_init(&memcg->kmem, &parent->kmem);
5090                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5091         } else {
5092                 page_counter_init(&memcg->memory, NULL);
5093                 page_counter_init(&memcg->swap, NULL);
5094                 page_counter_init(&memcg->kmem, NULL);
5095                 page_counter_init(&memcg->tcpmem, NULL);
5096
5097                 root_mem_cgroup = memcg;
5098                 return &memcg->css;
5099         }
5100
5101         /* The following stuff does not apply to the root */
5102         error = memcg_online_kmem(memcg);
5103         if (error)
5104                 goto fail;
5105
5106         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5107                 static_branch_inc(&memcg_sockets_enabled_key);
5108
5109         return &memcg->css;
5110 fail:
5111         mem_cgroup_id_remove(memcg);
5112         mem_cgroup_free(memcg);
5113         return ERR_PTR(error);
5114 }
5115
5116 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5117 {
5118         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5119
5120         /*
5121          * A memcg must be visible for expand_shrinker_info()
5122          * by the time the maps are allocated. So, we allocate maps
5123          * here, when for_each_mem_cgroup() can't skip it.
5124          */
5125         if (alloc_shrinker_info(memcg)) {
5126                 mem_cgroup_id_remove(memcg);
5127                 return -ENOMEM;
5128         }
5129
5130         /* Online state pins memcg ID, memcg ID pins CSS */
5131         refcount_set(&memcg->id.ref, 1);
5132         css_get(css);
5133         return 0;
5134 }
5135
5136 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5137 {
5138         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5139         struct mem_cgroup_event *event, *tmp;
5140
5141         /*
5142          * Unregister events and notify userspace.
5143          * Notify userspace about cgroup removing only after rmdir of cgroup
5144          * directory to avoid race between userspace and kernelspace.
5145          */
5146         spin_lock(&memcg->event_list_lock);
5147         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5148                 list_del_init(&event->list);
5149                 schedule_work(&event->remove);
5150         }
5151         spin_unlock(&memcg->event_list_lock);
5152
5153         page_counter_set_min(&memcg->memory, 0);
5154         page_counter_set_low(&memcg->memory, 0);
5155
5156         memcg_offline_kmem(memcg);
5157         reparent_shrinker_deferred(memcg);
5158         wb_memcg_offline(memcg);
5159
5160         drain_all_stock(memcg);
5161
5162         mem_cgroup_id_put(memcg);
5163 }
5164
5165 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5166 {
5167         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5168
5169         invalidate_reclaim_iterators(memcg);
5170 }
5171
5172 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5173 {
5174         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5175         int __maybe_unused i;
5176
5177 #ifdef CONFIG_CGROUP_WRITEBACK
5178         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5179                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5180 #endif
5181         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5182                 static_branch_dec(&memcg_sockets_enabled_key);
5183
5184         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5185                 static_branch_dec(&memcg_sockets_enabled_key);
5186
5187         vmpressure_cleanup(&memcg->vmpressure);
5188         cancel_work_sync(&memcg->high_work);
5189         mem_cgroup_remove_from_trees(memcg);
5190         free_shrinker_info(memcg);
5191         memcg_free_kmem(memcg);
5192         mem_cgroup_free(memcg);
5193 }
5194
5195 /**
5196  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5197  * @css: the target css
5198  *
5199  * Reset the states of the mem_cgroup associated with @css.  This is
5200  * invoked when the userland requests disabling on the default hierarchy
5201  * but the memcg is pinned through dependency.  The memcg should stop
5202  * applying policies and should revert to the vanilla state as it may be
5203  * made visible again.
5204  *
5205  * The current implementation only resets the essential configurations.
5206  * This needs to be expanded to cover all the visible parts.
5207  */
5208 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5209 {
5210         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5211
5212         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5213         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5214         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5215         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5216         page_counter_set_min(&memcg->memory, 0);
5217         page_counter_set_low(&memcg->memory, 0);
5218         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5219         memcg->soft_limit = PAGE_COUNTER_MAX;
5220         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5221         memcg_wb_domain_size_changed(memcg);
5222 }
5223
5224 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5225 {
5226         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5227         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5228         struct memcg_vmstats_percpu *statc;
5229         long delta, v;
5230         int i;
5231
5232         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5233
5234         for (i = 0; i < MEMCG_NR_STAT; i++) {
5235                 /*
5236                  * Collect the aggregated propagation counts of groups
5237                  * below us. We're in a per-cpu loop here and this is
5238                  * a global counter, so the first cycle will get them.
5239                  */
5240                 delta = memcg->vmstats.state_pending[i];
5241                 if (delta)
5242                         memcg->vmstats.state_pending[i] = 0;
5243
5244                 /* Add CPU changes on this level since the last flush */
5245                 v = READ_ONCE(statc->state[i]);
5246                 if (v != statc->state_prev[i]) {
5247                         delta += v - statc->state_prev[i];
5248                         statc->state_prev[i] = v;
5249                 }
5250
5251                 if (!delta)
5252                         continue;
5253
5254                 /* Aggregate counts on this level and propagate upwards */
5255                 memcg->vmstats.state[i] += delta;
5256                 if (parent)
5257                         parent->vmstats.state_pending[i] += delta;
5258         }
5259
5260         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5261                 delta = memcg->vmstats.events_pending[i];
5262                 if (delta)
5263                         memcg->vmstats.events_pending[i] = 0;
5264
5265                 v = READ_ONCE(statc->events[i]);
5266                 if (v != statc->events_prev[i]) {
5267                         delta += v - statc->events_prev[i];
5268                         statc->events_prev[i] = v;
5269                 }
5270
5271                 if (!delta)
5272                         continue;
5273
5274                 memcg->vmstats.events[i] += delta;
5275                 if (parent)
5276                         parent->vmstats.events_pending[i] += delta;
5277         }
5278 }
5279
5280 #ifdef CONFIG_MMU
5281 /* Handlers for move charge at task migration. */
5282 static int mem_cgroup_do_precharge(unsigned long count)
5283 {
5284         int ret;
5285
5286         /* Try a single bulk charge without reclaim first, kswapd may wake */
5287         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5288         if (!ret) {
5289                 mc.precharge += count;
5290                 return ret;
5291         }
5292
5293         /* Try charges one by one with reclaim, but do not retry */
5294         while (count--) {
5295                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5296                 if (ret)
5297                         return ret;
5298                 mc.precharge++;
5299                 cond_resched();
5300         }
5301         return 0;
5302 }
5303
5304 union mc_target {
5305         struct page     *page;
5306         swp_entry_t     ent;
5307 };
5308
5309 enum mc_target_type {
5310         MC_TARGET_NONE = 0,
5311         MC_TARGET_PAGE,
5312         MC_TARGET_SWAP,
5313         MC_TARGET_DEVICE,
5314 };
5315
5316 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5317                                                 unsigned long addr, pte_t ptent)
5318 {
5319         struct page *page = vm_normal_page(vma, addr, ptent);
5320
5321         if (!page || !page_mapped(page))
5322                 return NULL;
5323         if (PageAnon(page)) {
5324                 if (!(mc.flags & MOVE_ANON))
5325                         return NULL;
5326         } else {
5327                 if (!(mc.flags & MOVE_FILE))
5328                         return NULL;
5329         }
5330         if (!get_page_unless_zero(page))
5331                 return NULL;
5332
5333         return page;
5334 }
5335
5336 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5337 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5338                         pte_t ptent, swp_entry_t *entry)
5339 {
5340         struct page *page = NULL;
5341         swp_entry_t ent = pte_to_swp_entry(ptent);
5342
5343         if (!(mc.flags & MOVE_ANON))
5344                 return NULL;
5345
5346         /*
5347          * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5348          * a device and because they are not accessible by CPU they are store
5349          * as special swap entry in the CPU page table.
5350          */
5351         if (is_device_private_entry(ent)) {
5352                 page = device_private_entry_to_page(ent);
5353                 /*
5354                  * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5355                  * a refcount of 1 when free (unlike normal page)
5356                  */
5357                 if (!page_ref_add_unless(page, 1, 1))
5358                         return NULL;
5359                 return page;
5360         }
5361
5362         if (non_swap_entry(ent))
5363                 return NULL;
5364
5365         /*
5366          * Because lookup_swap_cache() updates some statistics counter,
5367          * we call find_get_page() with swapper_space directly.
5368          */
5369         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5370         entry->val = ent.val;
5371
5372         return page;
5373 }
5374 #else
5375 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5376                         pte_t ptent, swp_entry_t *entry)
5377 {
5378         return NULL;
5379 }
5380 #endif
5381
5382 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5383                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5384 {
5385         if (!vma->vm_file) /* anonymous vma */
5386                 return NULL;
5387         if (!(mc.flags & MOVE_FILE))
5388                 return NULL;
5389
5390         /* page is moved even if it's not RSS of this task(page-faulted). */
5391         /* shmem/tmpfs may report page out on swap: account for that too. */
5392         return find_get_incore_page(vma->vm_file->f_mapping,
5393                         linear_page_index(vma, addr));
5394 }
5395
5396 /**
5397  * mem_cgroup_move_account - move account of the page
5398  * @page: the page
5399  * @compound: charge the page as compound or small page
5400  * @from: mem_cgroup which the page is moved from.
5401  * @to: mem_cgroup which the page is moved to. @from != @to.
5402  *
5403  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5404  *
5405  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5406  * from old cgroup.
5407  */
5408 static int mem_cgroup_move_account(struct page *page,
5409                                    bool compound,
5410                                    struct mem_cgroup *from,
5411                                    struct mem_cgroup *to)
5412 {
5413         struct lruvec *from_vec, *to_vec;
5414         struct pglist_data *pgdat;
5415         unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5416         int ret;
5417
5418         VM_BUG_ON(from == to);
5419         VM_BUG_ON_PAGE(PageLRU(page), page);
5420         VM_BUG_ON(compound && !PageTransHuge(page));
5421
5422         /*
5423          * Prevent mem_cgroup_migrate() from looking at
5424          * page's memory cgroup of its source page while we change it.
5425          */
5426         ret = -EBUSY;
5427         if (!trylock_page(page))
5428                 goto out;
5429
5430         ret = -EINVAL;
5431         if (page_memcg(page) != from)
5432                 goto out_unlock;
5433
5434         pgdat = page_pgdat(page);
5435         from_vec = mem_cgroup_lruvec(from, pgdat);
5436         to_vec = mem_cgroup_lruvec(to, pgdat);
5437
5438         lock_page_memcg(page);
5439
5440         if (PageAnon(page)) {
5441                 if (page_mapped(page)) {
5442                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5443                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5444                         if (PageTransHuge(page)) {
5445                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5446                                                    -nr_pages);
5447                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5448                                                    nr_pages);
5449                         }
5450                 }
5451         } else {
5452                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5453                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5454
5455                 if (PageSwapBacked(page)) {
5456                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5457                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5458                 }
5459
5460                 if (page_mapped(page)) {
5461                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5462                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5463                 }
5464
5465                 if (PageDirty(page)) {
5466                         struct address_space *mapping = page_mapping(page);
5467
5468                         if (mapping_can_writeback(mapping)) {
5469                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5470                                                    -nr_pages);
5471                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5472                                                    nr_pages);
5473                         }
5474                 }
5475         }
5476
5477         if (PageWriteback(page)) {
5478                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5479                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5480         }
5481
5482         /*
5483          * All state has been migrated, let's switch to the new memcg.
5484          *
5485          * It is safe to change page's memcg here because the page
5486          * is referenced, charged, isolated, and locked: we can't race
5487          * with (un)charging, migration, LRU putback, or anything else
5488          * that would rely on a stable page's memory cgroup.
5489          *
5490          * Note that lock_page_memcg is a memcg lock, not a page lock,
5491          * to save space. As soon as we switch page's memory cgroup to a
5492          * new memcg that isn't locked, the above state can change
5493          * concurrently again. Make sure we're truly done with it.
5494          */
5495         smp_mb();
5496
5497         css_get(&to->css);
5498         css_put(&from->css);
5499
5500         page->memcg_data = (unsigned long)to;
5501
5502         __unlock_page_memcg(from);
5503
5504         ret = 0;
5505
5506         local_irq_disable();
5507         mem_cgroup_charge_statistics(to, page, nr_pages);
5508         memcg_check_events(to, page);
5509         mem_cgroup_charge_statistics(from, page, -nr_pages);
5510         memcg_check_events(from, page);
5511         local_irq_enable();
5512 out_unlock:
5513         unlock_page(page);
5514 out:
5515         return ret;
5516 }
5517
5518 /**
5519  * get_mctgt_type - get target type of moving charge
5520  * @vma: the vma the pte to be checked belongs
5521  * @addr: the address corresponding to the pte to be checked
5522  * @ptent: the pte to be checked
5523  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5524  *
5525  * Returns
5526  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5527  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5528  *     move charge. if @target is not NULL, the page is stored in target->page
5529  *     with extra refcnt got(Callers should handle it).
5530  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5531  *     target for charge migration. if @target is not NULL, the entry is stored
5532  *     in target->ent.
5533  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5534  *     (so ZONE_DEVICE page and thus not on the lru).
5535  *     For now we such page is charge like a regular page would be as for all
5536  *     intent and purposes it is just special memory taking the place of a
5537  *     regular page.
5538  *
5539  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5540  *
5541  * Called with pte lock held.
5542  */
5543
5544 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5545                 unsigned long addr, pte_t ptent, union mc_target *target)
5546 {
5547         struct page *page = NULL;
5548         enum mc_target_type ret = MC_TARGET_NONE;
5549         swp_entry_t ent = { .val = 0 };
5550
5551         if (pte_present(ptent))
5552                 page = mc_handle_present_pte(vma, addr, ptent);
5553         else if (is_swap_pte(ptent))
5554                 page = mc_handle_swap_pte(vma, ptent, &ent);
5555         else if (pte_none(ptent))
5556                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5557
5558         if (!page && !ent.val)
5559                 return ret;
5560         if (page) {
5561                 /*
5562                  * Do only loose check w/o serialization.
5563                  * mem_cgroup_move_account() checks the page is valid or
5564                  * not under LRU exclusion.
5565                  */
5566                 if (page_memcg(page) == mc.from) {
5567                         ret = MC_TARGET_PAGE;
5568                         if (is_device_private_page(page))
5569                                 ret = MC_TARGET_DEVICE;
5570                         if (target)
5571                                 target->page = page;
5572                 }
5573                 if (!ret || !target)
5574                         put_page(page);
5575         }
5576         /*
5577          * There is a swap entry and a page doesn't exist or isn't charged.
5578          * But we cannot move a tail-page in a THP.
5579          */
5580         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5581             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5582                 ret = MC_TARGET_SWAP;
5583                 if (target)
5584                         target->ent = ent;
5585         }
5586         return ret;
5587 }
5588
5589 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5590 /*
5591  * We don't consider PMD mapped swapping or file mapped pages because THP does
5592  * not support them for now.
5593  * Caller should make sure that pmd_trans_huge(pmd) is true.
5594  */
5595 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5596                 unsigned long addr, pmd_t pmd, union mc_target *target)
5597 {
5598         struct page *page = NULL;
5599         enum mc_target_type ret = MC_TARGET_NONE;
5600
5601         if (unlikely(is_swap_pmd(pmd))) {
5602                 VM_BUG_ON(thp_migration_supported() &&
5603                                   !is_pmd_migration_entry(pmd));
5604                 return ret;
5605         }
5606         page = pmd_page(pmd);
5607         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5608         if (!(mc.flags & MOVE_ANON))
5609                 return ret;
5610         if (page_memcg(page) == mc.from) {
5611                 ret = MC_TARGET_PAGE;
5612                 if (target) {
5613                         get_page(page);
5614                         target->page = page;
5615                 }
5616         }
5617         return ret;
5618 }
5619 #else
5620 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5621                 unsigned long addr, pmd_t pmd, union mc_target *target)
5622 {
5623         return MC_TARGET_NONE;
5624 }
5625 #endif
5626
5627 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5628                                         unsigned long addr, unsigned long end,
5629                                         struct mm_walk *walk)
5630 {
5631         struct vm_area_struct *vma = walk->vma;
5632         pte_t *pte;
5633         spinlock_t *ptl;
5634
5635         ptl = pmd_trans_huge_lock(pmd, vma);
5636         if (ptl) {
5637                 /*
5638                  * Note their can not be MC_TARGET_DEVICE for now as we do not
5639                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5640                  * this might change.
5641                  */
5642                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5643                         mc.precharge += HPAGE_PMD_NR;
5644                 spin_unlock(ptl);
5645                 return 0;
5646         }
5647
5648         if (pmd_trans_unstable(pmd))
5649                 return 0;
5650         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5651         for (; addr != end; pte++, addr += PAGE_SIZE)
5652                 if (get_mctgt_type(vma, addr, *pte, NULL))
5653                         mc.precharge++; /* increment precharge temporarily */
5654         pte_unmap_unlock(pte - 1, ptl);
5655         cond_resched();
5656
5657         return 0;
5658 }
5659
5660 static const struct mm_walk_ops precharge_walk_ops = {
5661         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
5662 };
5663
5664 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5665 {
5666         unsigned long precharge;
5667
5668         mmap_read_lock(mm);
5669         walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5670         mmap_read_unlock(mm);
5671
5672         precharge = mc.precharge;
5673         mc.precharge = 0;
5674
5675         return precharge;
5676 }
5677
5678 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5679 {
5680         unsigned long precharge = mem_cgroup_count_precharge(mm);
5681
5682         VM_BUG_ON(mc.moving_task);
5683         mc.moving_task = current;
5684         return mem_cgroup_do_precharge(precharge);
5685 }
5686
5687 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5688 static void __mem_cgroup_clear_mc(void)
5689 {
5690         struct mem_cgroup *from = mc.from;
5691         struct mem_cgroup *to = mc.to;
5692
5693         /* we must uncharge all the leftover precharges from mc.to */
5694         if (mc.precharge) {
5695                 cancel_charge(mc.to, mc.precharge);
5696                 mc.precharge = 0;
5697         }
5698         /*
5699          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5700          * we must uncharge here.
5701          */
5702         if (mc.moved_charge) {
5703                 cancel_charge(mc.from, mc.moved_charge);
5704                 mc.moved_charge = 0;
5705         }
5706         /* we must fixup refcnts and charges */
5707         if (mc.moved_swap) {
5708                 /* uncharge swap account from the old cgroup */
5709                 if (!mem_cgroup_is_root(mc.from))
5710                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5711
5712                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5713
5714                 /*
5715                  * we charged both to->memory and to->memsw, so we
5716                  * should uncharge to->memory.
5717                  */
5718                 if (!mem_cgroup_is_root(mc.to))
5719                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5720
5721                 mc.moved_swap = 0;
5722         }
5723         memcg_oom_recover(from);
5724         memcg_oom_recover(to);
5725         wake_up_all(&mc.waitq);
5726 }
5727
5728 static void mem_cgroup_clear_mc(void)
5729 {
5730         struct mm_struct *mm = mc.mm;
5731
5732         /*
5733          * we must clear moving_task before waking up waiters at the end of
5734          * task migration.
5735          */
5736         mc.moving_task = NULL;
5737         __mem_cgroup_clear_mc();
5738         spin_lock(&mc.lock);
5739         mc.from = NULL;
5740         mc.to = NULL;
5741         mc.mm = NULL;
5742         spin_unlock(&mc.lock);
5743
5744         mmput(mm);
5745 }
5746
5747 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5748 {
5749         struct cgroup_subsys_state *css;
5750         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5751         struct mem_cgroup *from;
5752         struct task_struct *leader, *p;
5753         struct mm_struct *mm;
5754         unsigned long move_flags;
5755         int ret = 0;
5756
5757         /* charge immigration isn't supported on the default hierarchy */
5758         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5759                 return 0;
5760
5761         /*
5762          * Multi-process migrations only happen on the default hierarchy
5763          * where charge immigration is not used.  Perform charge
5764          * immigration if @tset contains a leader and whine if there are
5765          * multiple.
5766          */
5767         p = NULL;
5768         cgroup_taskset_for_each_leader(leader, css, tset) {
5769                 WARN_ON_ONCE(p);
5770                 p = leader;
5771                 memcg = mem_cgroup_from_css(css);
5772         }
5773         if (!p)
5774                 return 0;
5775
5776         /*
5777          * We are now committed to this value whatever it is. Changes in this
5778          * tunable will only affect upcoming migrations, not the current one.
5779          * So we need to save it, and keep it going.
5780          */
5781         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5782         if (!move_flags)
5783                 return 0;
5784
5785         from = mem_cgroup_from_task(p);
5786
5787         VM_BUG_ON(from == memcg);
5788
5789         mm = get_task_mm(p);
5790         if (!mm)
5791                 return 0;
5792         /* We move charges only when we move a owner of the mm */
5793         if (mm->owner == p) {
5794                 VM_BUG_ON(mc.from);
5795                 VM_BUG_ON(mc.to);
5796                 VM_BUG_ON(mc.precharge);
5797                 VM_BUG_ON(mc.moved_charge);
5798                 VM_BUG_ON(mc.moved_swap);
5799
5800                 spin_lock(&mc.lock);
5801                 mc.mm = mm;
5802                 mc.from = from;
5803                 mc.to = memcg;
5804                 mc.flags = move_flags;
5805                 spin_unlock(&mc.lock);
5806                 /* We set mc.moving_task later */
5807
5808                 ret = mem_cgroup_precharge_mc(mm);
5809                 if (ret)
5810                         mem_cgroup_clear_mc();
5811         } else {
5812                 mmput(mm);
5813         }
5814         return ret;
5815 }
5816
5817 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5818 {
5819         if (mc.to)
5820                 mem_cgroup_clear_mc();
5821 }
5822
5823 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5824                                 unsigned long addr, unsigned long end,
5825                                 struct mm_walk *walk)
5826 {
5827         int ret = 0;
5828         struct vm_area_struct *vma = walk->vma;
5829         pte_t *pte;
5830         spinlock_t *ptl;
5831         enum mc_target_type target_type;
5832         union mc_target target;
5833         struct page *page;
5834
5835         ptl = pmd_trans_huge_lock(pmd, vma);
5836         if (ptl) {
5837                 if (mc.precharge < HPAGE_PMD_NR) {
5838                         spin_unlock(ptl);
5839                         return 0;
5840                 }
5841                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5842                 if (target_type == MC_TARGET_PAGE) {
5843                         page = target.page;
5844                         if (!isolate_lru_page(page)) {
5845                                 if (!mem_cgroup_move_account(page, true,
5846                                                              mc.from, mc.to)) {
5847                                         mc.precharge -= HPAGE_PMD_NR;
5848                                         mc.moved_charge += HPAGE_PMD_NR;
5849                                 }
5850                                 putback_lru_page(page);
5851                         }
5852                         put_page(page);
5853                 } else if (target_type == MC_TARGET_DEVICE) {
5854                         page = target.page;
5855                         if (!mem_cgroup_move_account(page, true,
5856                                                      mc.from, mc.to)) {
5857                                 mc.precharge -= HPAGE_PMD_NR;
5858                                 mc.moved_charge += HPAGE_PMD_NR;
5859                         }
5860                         put_page(page);
5861                 }
5862                 spin_unlock(ptl);
5863                 return 0;
5864         }
5865
5866         if (pmd_trans_unstable(pmd))
5867                 return 0;
5868 retry:
5869         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5870         for (; addr != end; addr += PAGE_SIZE) {
5871                 pte_t ptent = *(pte++);
5872                 bool device = false;
5873                 swp_entry_t ent;
5874
5875                 if (!mc.precharge)
5876                         break;
5877
5878                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5879                 case MC_TARGET_DEVICE:
5880                         device = true;
5881                         fallthrough;
5882                 case MC_TARGET_PAGE:
5883                         page = target.page;
5884                         /*
5885                          * We can have a part of the split pmd here. Moving it
5886                          * can be done but it would be too convoluted so simply
5887                          * ignore such a partial THP and keep it in original
5888                          * memcg. There should be somebody mapping the head.
5889                          */
5890                         if (PageTransCompound(page))
5891                                 goto put;
5892                         if (!device && isolate_lru_page(page))
5893                                 goto put;
5894                         if (!mem_cgroup_move_account(page, false,
5895                                                 mc.from, mc.to)) {
5896                                 mc.precharge--;
5897                                 /* we uncharge from mc.from later. */
5898                                 mc.moved_charge++;
5899                         }
5900                         if (!device)
5901                                 putback_lru_page(page);
5902 put:                    /* get_mctgt_type() gets the page */
5903                         put_page(page);
5904                         break;
5905                 case MC_TARGET_SWAP:
5906                         ent = target.ent;
5907                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5908                                 mc.precharge--;
5909                                 mem_cgroup_id_get_many(mc.to, 1);
5910                                 /* we fixup other refcnts and charges later. */
5911                                 mc.moved_swap++;
5912                         }
5913                         break;
5914                 default:
5915                         break;
5916                 }
5917         }
5918         pte_unmap_unlock(pte - 1, ptl);
5919         cond_resched();
5920
5921         if (addr != end) {
5922                 /*
5923                  * We have consumed all precharges we got in can_attach().
5924                  * We try charge one by one, but don't do any additional
5925                  * charges to mc.to if we have failed in charge once in attach()
5926                  * phase.
5927                  */
5928                 ret = mem_cgroup_do_precharge(1);
5929                 if (!ret)
5930                         goto retry;
5931         }
5932
5933         return ret;
5934 }
5935
5936 static const struct mm_walk_ops charge_walk_ops = {
5937         .pmd_entry      = mem_cgroup_move_charge_pte_range,
5938 };
5939
5940 static void mem_cgroup_move_charge(void)
5941 {
5942         lru_add_drain_all();
5943         /*
5944          * Signal lock_page_memcg() to take the memcg's move_lock
5945          * while we're moving its pages to another memcg. Then wait
5946          * for already started RCU-only updates to finish.
5947          */
5948         atomic_inc(&mc.from->moving_account);
5949         synchronize_rcu();
5950 retry:
5951         if (unlikely(!mmap_read_trylock(mc.mm))) {
5952                 /*
5953                  * Someone who are holding the mmap_lock might be waiting in
5954                  * waitq. So we cancel all extra charges, wake up all waiters,
5955                  * and retry. Because we cancel precharges, we might not be able
5956                  * to move enough charges, but moving charge is a best-effort
5957                  * feature anyway, so it wouldn't be a big problem.
5958                  */
5959                 __mem_cgroup_clear_mc();
5960                 cond_resched();
5961                 goto retry;
5962         }
5963         /*
5964          * When we have consumed all precharges and failed in doing
5965          * additional charge, the page walk just aborts.
5966          */
5967         walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5968                         NULL);
5969
5970         mmap_read_unlock(mc.mm);
5971         atomic_dec(&mc.from->moving_account);
5972 }
5973
5974 static void mem_cgroup_move_task(void)
5975 {
5976         if (mc.to) {
5977                 mem_cgroup_move_charge();
5978                 mem_cgroup_clear_mc();
5979         }
5980 }
5981 #else   /* !CONFIG_MMU */
5982 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5983 {
5984         return 0;
5985 }
5986 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5987 {
5988 }
5989 static void mem_cgroup_move_task(void)
5990 {
5991 }
5992 #endif
5993
5994 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5995 {
5996         if (value == PAGE_COUNTER_MAX)
5997                 seq_puts(m, "max\n");
5998         else
5999                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6000
6001         return 0;
6002 }
6003
6004 static u64 memory_current_read(struct cgroup_subsys_state *css,
6005                                struct cftype *cft)
6006 {
6007         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6008
6009         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6010 }
6011
6012 static int memory_min_show(struct seq_file *m, void *v)
6013 {
6014         return seq_puts_memcg_tunable(m,
6015                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6016 }
6017
6018 static ssize_t memory_min_write(struct kernfs_open_file *of,
6019                                 char *buf, size_t nbytes, loff_t off)
6020 {
6021         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6022         unsigned long min;
6023         int err;
6024
6025         buf = strstrip(buf);
6026         err = page_counter_memparse(buf, "max", &min);
6027         if (err)
6028                 return err;
6029
6030         page_counter_set_min(&memcg->memory, min);
6031
6032         return nbytes;
6033 }
6034
6035 static int memory_low_show(struct seq_file *m, void *v)
6036 {
6037         return seq_puts_memcg_tunable(m,
6038                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6039 }
6040
6041 static ssize_t memory_low_write(struct kernfs_open_file *of,
6042                                 char *buf, size_t nbytes, loff_t off)
6043 {
6044         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6045         unsigned long low;
6046         int err;
6047
6048         buf = strstrip(buf);
6049         err = page_counter_memparse(buf, "max", &low);
6050         if (err)
6051                 return err;
6052
6053         page_counter_set_low(&memcg->memory, low);
6054
6055         return nbytes;
6056 }
6057
6058 static int memory_high_show(struct seq_file *m, void *v)
6059 {
6060         return seq_puts_memcg_tunable(m,
6061                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6062 }
6063
6064 static ssize_t memory_high_write(struct kernfs_open_file *of,
6065                                  char *buf, size_t nbytes, loff_t off)
6066 {
6067         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6068         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6069         bool drained = false;
6070         unsigned long high;
6071         int err;
6072
6073         buf = strstrip(buf);
6074         err = page_counter_memparse(buf, "max", &high);
6075         if (err)
6076                 return err;
6077
6078         page_counter_set_high(&memcg->memory, high);
6079
6080         for (;;) {
6081                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6082                 unsigned long reclaimed;
6083
6084                 if (nr_pages <= high)
6085                         break;
6086
6087                 if (signal_pending(current))
6088                         break;
6089
6090                 if (!drained) {
6091                         drain_all_stock(memcg);
6092                         drained = true;
6093                         continue;
6094                 }
6095
6096                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6097                                                          GFP_KERNEL, true);
6098
6099                 if (!reclaimed && !nr_retries--)
6100                         break;
6101         }
6102
6103         memcg_wb_domain_size_changed(memcg);
6104         return nbytes;
6105 }
6106
6107 static int memory_max_show(struct seq_file *m, void *v)
6108 {
6109         return seq_puts_memcg_tunable(m,
6110                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6111 }
6112
6113 static ssize_t memory_max_write(struct kernfs_open_file *of,
6114                                 char *buf, size_t nbytes, loff_t off)
6115 {
6116         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6117         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6118         bool drained = false;
6119         unsigned long max;
6120         int err;
6121
6122         buf = strstrip(buf);
6123         err = page_counter_memparse(buf, "max", &max);
6124         if (err)
6125                 return err;
6126
6127         xchg(&memcg->memory.max, max);
6128
6129         for (;;) {
6130                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6131
6132                 if (nr_pages <= max)
6133                         break;
6134
6135                 if (signal_pending(current))
6136                         break;
6137
6138                 if (!drained) {
6139                         drain_all_stock(memcg);
6140                         drained = true;
6141                         continue;
6142                 }
6143
6144                 if (nr_reclaims) {
6145                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6146                                                           GFP_KERNEL, true))
6147                                 nr_reclaims--;
6148                         continue;
6149                 }
6150
6151                 memcg_memory_event(memcg, MEMCG_OOM);
6152                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6153                         break;
6154         }
6155
6156         memcg_wb_domain_size_changed(memcg);
6157         return nbytes;
6158 }
6159
6160 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6161 {
6162         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6163         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6164         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6165         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6166         seq_printf(m, "oom_kill %lu\n",
6167                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6168 }
6169
6170 static int memory_events_show(struct seq_file *m, void *v)
6171 {
6172         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6173
6174         __memory_events_show(m, memcg->memory_events);
6175         return 0;
6176 }
6177
6178 static int memory_events_local_show(struct seq_file *m, void *v)
6179 {
6180         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6181
6182         __memory_events_show(m, memcg->memory_events_local);
6183         return 0;
6184 }
6185
6186 static int memory_stat_show(struct seq_file *m, void *v)
6187 {
6188         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6189         char *buf;
6190
6191         buf = memory_stat_format(memcg);
6192         if (!buf)
6193                 return -ENOMEM;
6194         seq_puts(m, buf);
6195         kfree(buf);
6196         return 0;
6197 }
6198
6199 #ifdef CONFIG_NUMA
6200 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6201                                                      int item)
6202 {
6203         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6204 }
6205
6206 static int memory_numa_stat_show(struct seq_file *m, void *v)
6207 {
6208         int i;
6209         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6210
6211         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6212                 int nid;
6213
6214                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6215                         continue;
6216
6217                 seq_printf(m, "%s", memory_stats[i].name);
6218                 for_each_node_state(nid, N_MEMORY) {
6219                         u64 size;
6220                         struct lruvec *lruvec;
6221
6222                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6223                         size = lruvec_page_state_output(lruvec,
6224                                                         memory_stats[i].idx);
6225                         seq_printf(m, " N%d=%llu", nid, size);
6226                 }
6227                 seq_putc(m, '\n');
6228         }
6229
6230         return 0;
6231 }
6232 #endif
6233
6234 static int memory_oom_group_show(struct seq_file *m, void *v)
6235 {
6236         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6237
6238         seq_printf(m, "%d\n", memcg->oom_group);
6239
6240         return 0;
6241 }
6242
6243 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6244                                       char *buf, size_t nbytes, loff_t off)
6245 {
6246         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6247         int ret, oom_group;
6248
6249         buf = strstrip(buf);
6250         if (!buf)
6251                 return -EINVAL;
6252
6253         ret = kstrtoint(buf, 0, &oom_group);
6254         if (ret)
6255                 return ret;
6256
6257         if (oom_group != 0 && oom_group != 1)
6258                 return -EINVAL;
6259
6260         memcg->oom_group = oom_group;
6261
6262         return nbytes;
6263 }
6264
6265 static struct cftype memory_files[] = {
6266         {
6267                 .name = "current",
6268                 .flags = CFTYPE_NOT_ON_ROOT,
6269                 .read_u64 = memory_current_read,
6270         },
6271         {
6272                 .name = "min",
6273                 .flags = CFTYPE_NOT_ON_ROOT,
6274                 .seq_show = memory_min_show,
6275                 .write = memory_min_write,
6276         },
6277         {
6278                 .name = "low",
6279                 .flags = CFTYPE_NOT_ON_ROOT,
6280                 .seq_show = memory_low_show,
6281                 .write = memory_low_write,
6282         },
6283         {
6284                 .name = "high",
6285                 .flags = CFTYPE_NOT_ON_ROOT,
6286                 .seq_show = memory_high_show,
6287                 .write = memory_high_write,
6288         },
6289         {
6290                 .name = "max",
6291                 .flags = CFTYPE_NOT_ON_ROOT,
6292                 .seq_show = memory_max_show,
6293                 .write = memory_max_write,
6294         },
6295         {
6296                 .name = "events",
6297                 .flags = CFTYPE_NOT_ON_ROOT,
6298                 .file_offset = offsetof(struct mem_cgroup, events_file),
6299                 .seq_show = memory_events_show,
6300         },
6301         {
6302                 .name = "events.local",
6303                 .flags = CFTYPE_NOT_ON_ROOT,
6304                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6305                 .seq_show = memory_events_local_show,
6306         },
6307         {
6308                 .name = "stat",
6309                 .seq_show = memory_stat_show,
6310         },
6311 #ifdef CONFIG_NUMA
6312         {
6313                 .name = "numa_stat",
6314                 .seq_show = memory_numa_stat_show,
6315         },
6316 #endif
6317         {
6318                 .name = "oom.group",
6319                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6320                 .seq_show = memory_oom_group_show,
6321                 .write = memory_oom_group_write,
6322         },
6323         { }     /* terminate */
6324 };
6325
6326 struct cgroup_subsys memory_cgrp_subsys = {
6327         .css_alloc = mem_cgroup_css_alloc,
6328         .css_online = mem_cgroup_css_online,
6329         .css_offline = mem_cgroup_css_offline,
6330         .css_released = mem_cgroup_css_released,
6331         .css_free = mem_cgroup_css_free,
6332         .css_reset = mem_cgroup_css_reset,
6333         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6334         .can_attach = mem_cgroup_can_attach,
6335         .cancel_attach = mem_cgroup_cancel_attach,
6336         .post_attach = mem_cgroup_move_task,
6337         .dfl_cftypes = memory_files,
6338         .legacy_cftypes = mem_cgroup_legacy_files,
6339         .early_init = 0,
6340 };
6341
6342 /*
6343  * This function calculates an individual cgroup's effective
6344  * protection which is derived from its own memory.min/low, its
6345  * parent's and siblings' settings, as well as the actual memory
6346  * distribution in the tree.
6347  *
6348  * The following rules apply to the effective protection values:
6349  *
6350  * 1. At the first level of reclaim, effective protection is equal to
6351  *    the declared protection in memory.min and memory.low.
6352  *
6353  * 2. To enable safe delegation of the protection configuration, at
6354  *    subsequent levels the effective protection is capped to the
6355  *    parent's effective protection.
6356  *
6357  * 3. To make complex and dynamic subtrees easier to configure, the
6358  *    user is allowed to overcommit the declared protection at a given
6359  *    level. If that is the case, the parent's effective protection is
6360  *    distributed to the children in proportion to how much protection
6361  *    they have declared and how much of it they are utilizing.
6362  *
6363  *    This makes distribution proportional, but also work-conserving:
6364  *    if one cgroup claims much more protection than it uses memory,
6365  *    the unused remainder is available to its siblings.
6366  *
6367  * 4. Conversely, when the declared protection is undercommitted at a
6368  *    given level, the distribution of the larger parental protection
6369  *    budget is NOT proportional. A cgroup's protection from a sibling
6370  *    is capped to its own memory.min/low setting.
6371  *
6372  * 5. However, to allow protecting recursive subtrees from each other
6373  *    without having to declare each individual cgroup's fixed share
6374  *    of the ancestor's claim to protection, any unutilized -
6375  *    "floating" - protection from up the tree is distributed in
6376  *    proportion to each cgroup's *usage*. This makes the protection
6377  *    neutral wrt sibling cgroups and lets them compete freely over
6378  *    the shared parental protection budget, but it protects the
6379  *    subtree as a whole from neighboring subtrees.
6380  *
6381  * Note that 4. and 5. are not in conflict: 4. is about protecting
6382  * against immediate siblings whereas 5. is about protecting against
6383  * neighboring subtrees.
6384  */
6385 static unsigned long effective_protection(unsigned long usage,
6386                                           unsigned long parent_usage,
6387                                           unsigned long setting,
6388                                           unsigned long parent_effective,
6389                                           unsigned long siblings_protected)
6390 {
6391         unsigned long protected;
6392         unsigned long ep;
6393
6394         protected = min(usage, setting);
6395         /*
6396          * If all cgroups at this level combined claim and use more
6397          * protection then what the parent affords them, distribute
6398          * shares in proportion to utilization.
6399          *
6400          * We are using actual utilization rather than the statically
6401          * claimed protection in order to be work-conserving: claimed
6402          * but unused protection is available to siblings that would
6403          * otherwise get a smaller chunk than what they claimed.
6404          */
6405         if (siblings_protected > parent_effective)
6406                 return protected * parent_effective / siblings_protected;
6407
6408         /*
6409          * Ok, utilized protection of all children is within what the
6410          * parent affords them, so we know whatever this child claims
6411          * and utilizes is effectively protected.
6412          *
6413          * If there is unprotected usage beyond this value, reclaim
6414          * will apply pressure in proportion to that amount.
6415          *
6416          * If there is unutilized protection, the cgroup will be fully
6417          * shielded from reclaim, but we do return a smaller value for
6418          * protection than what the group could enjoy in theory. This
6419          * is okay. With the overcommit distribution above, effective
6420          * protection is always dependent on how memory is actually
6421          * consumed among the siblings anyway.
6422          */
6423         ep = protected;
6424
6425         /*
6426          * If the children aren't claiming (all of) the protection
6427          * afforded to them by the parent, distribute the remainder in
6428          * proportion to the (unprotected) memory of each cgroup. That
6429          * way, cgroups that aren't explicitly prioritized wrt each
6430          * other compete freely over the allowance, but they are
6431          * collectively protected from neighboring trees.
6432          *
6433          * We're using unprotected memory for the weight so that if
6434          * some cgroups DO claim explicit protection, we don't protect
6435          * the same bytes twice.
6436          *
6437          * Check both usage and parent_usage against the respective
6438          * protected values. One should imply the other, but they
6439          * aren't read atomically - make sure the division is sane.
6440          */
6441         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6442                 return ep;
6443         if (parent_effective > siblings_protected &&
6444             parent_usage > siblings_protected &&
6445             usage > protected) {
6446                 unsigned long unclaimed;
6447
6448                 unclaimed = parent_effective - siblings_protected;
6449                 unclaimed *= usage - protected;
6450                 unclaimed /= parent_usage - siblings_protected;
6451
6452                 ep += unclaimed;
6453         }
6454
6455         return ep;
6456 }
6457
6458 /**
6459  * mem_cgroup_protected - check if memory consumption is in the normal range
6460  * @root: the top ancestor of the sub-tree being checked
6461  * @memcg: the memory cgroup to check
6462  *
6463  * WARNING: This function is not stateless! It can only be used as part
6464  *          of a top-down tree iteration, not for isolated queries.
6465  */
6466 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6467                                      struct mem_cgroup *memcg)
6468 {
6469         unsigned long usage, parent_usage;
6470         struct mem_cgroup *parent;
6471
6472         if (mem_cgroup_disabled())
6473                 return;
6474
6475         if (!root)
6476                 root = root_mem_cgroup;
6477
6478         /*
6479          * Effective values of the reclaim targets are ignored so they
6480          * can be stale. Have a look at mem_cgroup_protection for more
6481          * details.
6482          * TODO: calculation should be more robust so that we do not need
6483          * that special casing.
6484          */
6485         if (memcg == root)
6486                 return;
6487
6488         usage = page_counter_read(&memcg->memory);
6489         if (!usage)
6490                 return;
6491
6492         parent = parent_mem_cgroup(memcg);
6493         /* No parent means a non-hierarchical mode on v1 memcg */
6494         if (!parent)
6495                 return;
6496
6497         if (parent == root) {
6498                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6499                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6500                 return;
6501         }
6502
6503         parent_usage = page_counter_read(&parent->memory);
6504
6505         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6506                         READ_ONCE(memcg->memory.min),
6507                         READ_ONCE(parent->memory.emin),
6508                         atomic_long_read(&parent->memory.children_min_usage)));
6509
6510         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6511                         READ_ONCE(memcg->memory.low),
6512                         READ_ONCE(parent->memory.elow),
6513                         atomic_long_read(&parent->memory.children_low_usage)));
6514 }
6515
6516 static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6517                                gfp_t gfp)
6518 {
6519         unsigned int nr_pages = thp_nr_pages(page);
6520         int ret;
6521
6522         ret = try_charge(memcg, gfp, nr_pages);
6523         if (ret)
6524                 goto out;
6525
6526         css_get(&memcg->css);
6527         commit_charge(page, memcg);
6528
6529         local_irq_disable();
6530         mem_cgroup_charge_statistics(memcg, page, nr_pages);
6531         memcg_check_events(memcg, page);
6532         local_irq_enable();
6533 out:
6534         return ret;
6535 }
6536
6537 /**
6538  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6539  * @page: page to charge
6540  * @mm: mm context of the victim
6541  * @gfp_mask: reclaim mode
6542  *
6543  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6544  * pages according to @gfp_mask if necessary.
6545  *
6546  * Do not use this for pages allocated for swapin.
6547  *
6548  * Returns 0 on success. Otherwise, an error code is returned.
6549  */
6550 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6551 {
6552         struct mem_cgroup *memcg;
6553         int ret;
6554
6555         if (mem_cgroup_disabled())
6556                 return 0;
6557
6558         memcg = get_mem_cgroup_from_mm(mm);
6559         ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6560         css_put(&memcg->css);
6561
6562         return ret;
6563 }
6564
6565 /**
6566  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6567  * @page: page to charge
6568  * @mm: mm context of the victim
6569  * @gfp: reclaim mode
6570  * @entry: swap entry for which the page is allocated
6571  *
6572  * This function charges a page allocated for swapin. Please call this before
6573  * adding the page to the swapcache.
6574  *
6575  * Returns 0 on success. Otherwise, an error code is returned.
6576  */
6577 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6578                                   gfp_t gfp, swp_entry_t entry)
6579 {
6580         struct mem_cgroup *memcg;
6581         unsigned short id;
6582         int ret;
6583
6584         if (mem_cgroup_disabled())
6585                 return 0;
6586
6587         id = lookup_swap_cgroup_id(entry);
6588         rcu_read_lock();
6589         memcg = mem_cgroup_from_id(id);
6590         if (!memcg || !css_tryget_online(&memcg->css))
6591                 memcg = get_mem_cgroup_from_mm(mm);
6592         rcu_read_unlock();
6593
6594         ret = __mem_cgroup_charge(page, memcg, gfp);
6595
6596         css_put(&memcg->css);
6597         return ret;
6598 }
6599
6600 /*
6601  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6602  * @entry: swap entry for which the page is charged
6603  *
6604  * Call this function after successfully adding the charged page to swapcache.
6605  *
6606  * Note: This function assumes the page for which swap slot is being uncharged
6607  * is order 0 page.
6608  */
6609 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6610 {
6611         /*
6612          * Cgroup1's unified memory+swap counter has been charged with the
6613          * new swapcache page, finish the transfer by uncharging the swap
6614          * slot. The swap slot would also get uncharged when it dies, but
6615          * it can stick around indefinitely and we'd count the page twice
6616          * the entire time.
6617          *
6618          * Cgroup2 has separate resource counters for memory and swap,
6619          * so this is a non-issue here. Memory and swap charge lifetimes
6620          * correspond 1:1 to page and swap slot lifetimes: we charge the
6621          * page to memory here, and uncharge swap when the slot is freed.
6622          */
6623         if (!mem_cgroup_disabled() && do_memsw_account()) {
6624                 /*
6625                  * The swap entry might not get freed for a long time,
6626                  * let's not wait for it.  The page already received a
6627                  * memory+swap charge, drop the swap entry duplicate.
6628                  */
6629                 mem_cgroup_uncharge_swap(entry, 1);
6630         }
6631 }
6632
6633 struct uncharge_gather {
6634         struct mem_cgroup *memcg;
6635         unsigned long nr_memory;
6636         unsigned long pgpgout;
6637         unsigned long nr_kmem;
6638         struct page *dummy_page;
6639 };
6640
6641 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6642 {
6643         memset(ug, 0, sizeof(*ug));
6644 }
6645
6646 static void uncharge_batch(const struct uncharge_gather *ug)
6647 {
6648         unsigned long flags;
6649
6650         if (ug->nr_memory) {
6651                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6652                 if (do_memsw_account())
6653                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6654                 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6655                         page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6656                 memcg_oom_recover(ug->memcg);
6657         }
6658
6659         local_irq_save(flags);
6660         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6661         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6662         memcg_check_events(ug->memcg, ug->dummy_page);
6663         local_irq_restore(flags);
6664
6665         /* drop reference from uncharge_page */
6666         css_put(&ug->memcg->css);
6667 }
6668
6669 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6670 {
6671         unsigned long nr_pages;
6672         struct mem_cgroup *memcg;
6673         struct obj_cgroup *objcg;
6674
6675         VM_BUG_ON_PAGE(PageLRU(page), page);
6676
6677         /*
6678          * Nobody should be changing or seriously looking at
6679          * page memcg or objcg at this point, we have fully
6680          * exclusive access to the page.
6681          */
6682         if (PageMemcgKmem(page)) {
6683                 objcg = __page_objcg(page);
6684                 /*
6685                  * This get matches the put at the end of the function and
6686                  * kmem pages do not hold memcg references anymore.
6687                  */
6688                 memcg = get_mem_cgroup_from_objcg(objcg);
6689         } else {
6690                 memcg = __page_memcg(page);
6691         }
6692
6693         if (!memcg)
6694                 return;
6695
6696         if (ug->memcg != memcg) {
6697                 if (ug->memcg) {
6698                         uncharge_batch(ug);
6699                         uncharge_gather_clear(ug);
6700                 }
6701                 ug->memcg = memcg;
6702                 ug->dummy_page = page;
6703
6704                 /* pairs with css_put in uncharge_batch */
6705                 css_get(&memcg->css);
6706         }
6707
6708         nr_pages = compound_nr(page);
6709
6710         if (PageMemcgKmem(page)) {
6711                 ug->nr_memory += nr_pages;
6712                 ug->nr_kmem += nr_pages;
6713
6714                 page->memcg_data = 0;
6715                 obj_cgroup_put(objcg);
6716         } else {
6717                 /* LRU pages aren't accounted at the root level */
6718                 if (!mem_cgroup_is_root(memcg))
6719                         ug->nr_memory += nr_pages;
6720                 ug->pgpgout++;
6721
6722                 page->memcg_data = 0;
6723         }
6724
6725         css_put(&memcg->css);
6726 }
6727
6728 /**
6729  * mem_cgroup_uncharge - uncharge a page
6730  * @page: page to uncharge
6731  *
6732  * Uncharge a page previously charged with mem_cgroup_charge().
6733  */
6734 void mem_cgroup_uncharge(struct page *page)
6735 {
6736         struct uncharge_gather ug;
6737
6738         if (mem_cgroup_disabled())
6739                 return;
6740
6741         /* Don't touch page->lru of any random page, pre-check: */
6742         if (!page_memcg(page))
6743                 return;
6744
6745         uncharge_gather_clear(&ug);
6746         uncharge_page(page, &ug);
6747         uncharge_batch(&ug);
6748 }
6749
6750 /**
6751  * mem_cgroup_uncharge_list - uncharge a list of page
6752  * @page_list: list of pages to uncharge
6753  *
6754  * Uncharge a list of pages previously charged with
6755  * mem_cgroup_charge().
6756  */
6757 void mem_cgroup_uncharge_list(struct list_head *page_list)
6758 {
6759         struct uncharge_gather ug;
6760         struct page *page;
6761
6762         if (mem_cgroup_disabled())
6763                 return;
6764
6765         uncharge_gather_clear(&ug);
6766         list_for_each_entry(page, page_list, lru)
6767                 uncharge_page(page, &ug);
6768         if (ug.memcg)
6769                 uncharge_batch(&ug);
6770 }
6771
6772 /**
6773  * mem_cgroup_migrate - charge a page's replacement
6774  * @oldpage: currently circulating page
6775  * @newpage: replacement page
6776  *
6777  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6778  * be uncharged upon free.
6779  *
6780  * Both pages must be locked, @newpage->mapping must be set up.
6781  */
6782 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6783 {
6784         struct mem_cgroup *memcg;
6785         unsigned int nr_pages;
6786         unsigned long flags;
6787
6788         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6789         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6790         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6791         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6792                        newpage);
6793
6794         if (mem_cgroup_disabled())
6795                 return;
6796
6797         /* Page cache replacement: new page already charged? */
6798         if (page_memcg(newpage))
6799                 return;
6800
6801         memcg = page_memcg(oldpage);
6802         VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6803         if (!memcg)
6804                 return;
6805
6806         /* Force-charge the new page. The old one will be freed soon */
6807         nr_pages = thp_nr_pages(newpage);
6808
6809         page_counter_charge(&memcg->memory, nr_pages);
6810         if (do_memsw_account())
6811                 page_counter_charge(&memcg->memsw, nr_pages);
6812
6813         css_get(&memcg->css);
6814         commit_charge(newpage, memcg);
6815
6816         local_irq_save(flags);
6817         mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6818         memcg_check_events(memcg, newpage);
6819         local_irq_restore(flags);
6820 }
6821
6822 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6823 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6824
6825 void mem_cgroup_sk_alloc(struct sock *sk)
6826 {
6827         struct mem_cgroup *memcg;
6828
6829         if (!mem_cgroup_sockets_enabled)
6830                 return;
6831
6832         /* Do not associate the sock with unrelated interrupted task's memcg. */
6833         if (in_interrupt())
6834                 return;
6835
6836         rcu_read_lock();
6837         memcg = mem_cgroup_from_task(current);
6838         if (memcg == root_mem_cgroup)
6839                 goto out;
6840         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6841                 goto out;
6842         if (css_tryget(&memcg->css))
6843                 sk->sk_memcg = memcg;
6844 out:
6845         rcu_read_unlock();
6846 }
6847
6848 void mem_cgroup_sk_free(struct sock *sk)
6849 {
6850         if (sk->sk_memcg)
6851                 css_put(&sk->sk_memcg->css);
6852 }
6853
6854 /**
6855  * mem_cgroup_charge_skmem - charge socket memory
6856  * @memcg: memcg to charge
6857  * @nr_pages: number of pages to charge
6858  *
6859  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6860  * @memcg's configured limit, %false if the charge had to be forced.
6861  */
6862 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6863 {
6864         gfp_t gfp_mask = GFP_KERNEL;
6865
6866         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6867                 struct page_counter *fail;
6868
6869                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6870                         memcg->tcpmem_pressure = 0;
6871                         return true;
6872                 }
6873                 page_counter_charge(&memcg->tcpmem, nr_pages);
6874                 memcg->tcpmem_pressure = 1;
6875                 return false;
6876         }
6877
6878         /* Don't block in the packet receive path */
6879         if (in_softirq())
6880                 gfp_mask = GFP_NOWAIT;
6881
6882         mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6883
6884         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6885                 return true;
6886
6887         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6888         return false;
6889 }
6890
6891 /**
6892  * mem_cgroup_uncharge_skmem - uncharge socket memory
6893  * @memcg: memcg to uncharge
6894  * @nr_pages: number of pages to uncharge
6895  */
6896 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6897 {
6898         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6899                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6900                 return;
6901         }
6902
6903         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6904
6905         refill_stock(memcg, nr_pages);
6906 }
6907
6908 static int __init cgroup_memory(char *s)
6909 {
6910         char *token;
6911
6912         while ((token = strsep(&s, ",")) != NULL) {
6913                 if (!*token)
6914                         continue;
6915                 if (!strcmp(token, "nosocket"))
6916                         cgroup_memory_nosocket = true;
6917                 if (!strcmp(token, "nokmem"))
6918                         cgroup_memory_nokmem = true;
6919         }
6920         return 0;
6921 }
6922 __setup("cgroup.memory=", cgroup_memory);
6923
6924 /*
6925  * subsys_initcall() for memory controller.
6926  *
6927  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6928  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6929  * basically everything that doesn't depend on a specific mem_cgroup structure
6930  * should be initialized from here.
6931  */
6932 static int __init mem_cgroup_init(void)
6933 {
6934         int cpu, node;
6935
6936         /*
6937          * Currently s32 type (can refer to struct batched_lruvec_stat) is
6938          * used for per-memcg-per-cpu caching of per-node statistics. In order
6939          * to work fine, we should make sure that the overfill threshold can't
6940          * exceed S32_MAX / PAGE_SIZE.
6941          */
6942         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
6943
6944         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6945                                   memcg_hotplug_cpu_dead);
6946
6947         for_each_possible_cpu(cpu)
6948                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6949                           drain_local_stock);
6950
6951         for_each_node(node) {
6952                 struct mem_cgroup_tree_per_node *rtpn;
6953
6954                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6955                                     node_online(node) ? node : NUMA_NO_NODE);
6956
6957                 rtpn->rb_root = RB_ROOT;
6958                 rtpn->rb_rightmost = NULL;
6959                 spin_lock_init(&rtpn->lock);
6960                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6961         }
6962
6963         return 0;
6964 }
6965 subsys_initcall(mem_cgroup_init);
6966
6967 #ifdef CONFIG_MEMCG_SWAP
6968 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6969 {
6970         while (!refcount_inc_not_zero(&memcg->id.ref)) {
6971                 /*
6972                  * The root cgroup cannot be destroyed, so it's refcount must
6973                  * always be >= 1.
6974                  */
6975                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6976                         VM_BUG_ON(1);
6977                         break;
6978                 }
6979                 memcg = parent_mem_cgroup(memcg);
6980                 if (!memcg)
6981                         memcg = root_mem_cgroup;
6982         }
6983         return memcg;
6984 }
6985
6986 /**
6987  * mem_cgroup_swapout - transfer a memsw charge to swap
6988  * @page: page whose memsw charge to transfer
6989  * @entry: swap entry to move the charge to
6990  *
6991  * Transfer the memsw charge of @page to @entry.
6992  */
6993 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6994 {
6995         struct mem_cgroup *memcg, *swap_memcg;
6996         unsigned int nr_entries;
6997         unsigned short oldid;
6998
6999         VM_BUG_ON_PAGE(PageLRU(page), page);
7000         VM_BUG_ON_PAGE(page_count(page), page);
7001
7002         if (mem_cgroup_disabled())
7003                 return;
7004
7005         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7006                 return;
7007
7008         memcg = page_memcg(page);
7009
7010         VM_WARN_ON_ONCE_PAGE(!memcg, page);
7011         if (!memcg)
7012                 return;
7013
7014         /*
7015          * In case the memcg owning these pages has been offlined and doesn't
7016          * have an ID allocated to it anymore, charge the closest online
7017          * ancestor for the swap instead and transfer the memory+swap charge.
7018          */
7019         swap_memcg = mem_cgroup_id_get_online(memcg);
7020         nr_entries = thp_nr_pages(page);
7021         /* Get references for the tail pages, too */
7022         if (nr_entries > 1)
7023                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7024         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7025                                    nr_entries);
7026         VM_BUG_ON_PAGE(oldid, page);
7027         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7028
7029         page->memcg_data = 0;
7030
7031         if (!mem_cgroup_is_root(memcg))
7032                 page_counter_uncharge(&memcg->memory, nr_entries);
7033
7034         if (!cgroup_memory_noswap && memcg != swap_memcg) {
7035                 if (!mem_cgroup_is_root(swap_memcg))
7036                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7037                 page_counter_uncharge(&memcg->memsw, nr_entries);
7038         }
7039
7040         /*
7041          * Interrupts should be disabled here because the caller holds the
7042          * i_pages lock which is taken with interrupts-off. It is
7043          * important here to have the interrupts disabled because it is the
7044          * only synchronisation we have for updating the per-CPU variables.
7045          */
7046         VM_BUG_ON(!irqs_disabled());
7047         mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7048         memcg_check_events(memcg, page);
7049
7050         css_put(&memcg->css);
7051 }
7052
7053 /**
7054  * mem_cgroup_try_charge_swap - try charging swap space for a page
7055  * @page: page being added to swap
7056  * @entry: swap entry to charge
7057  *
7058  * Try to charge @page's memcg for the swap space at @entry.
7059  *
7060  * Returns 0 on success, -ENOMEM on failure.
7061  */
7062 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7063 {
7064         unsigned int nr_pages = thp_nr_pages(page);
7065         struct page_counter *counter;
7066         struct mem_cgroup *memcg;
7067         unsigned short oldid;
7068
7069         if (mem_cgroup_disabled())
7070                 return 0;
7071
7072         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7073                 return 0;
7074
7075         memcg = page_memcg(page);
7076
7077         VM_WARN_ON_ONCE_PAGE(!memcg, page);
7078         if (!memcg)
7079                 return 0;
7080
7081         if (!entry.val) {
7082                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7083                 return 0;
7084         }
7085
7086         memcg = mem_cgroup_id_get_online(memcg);
7087
7088         if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7089             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7090                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7091                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7092                 mem_cgroup_id_put(memcg);
7093                 return -ENOMEM;
7094         }
7095
7096         /* Get references for the tail pages, too */
7097         if (nr_pages > 1)
7098                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7099         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7100         VM_BUG_ON_PAGE(oldid, page);
7101         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7102
7103         return 0;
7104 }
7105
7106 /**
7107  * mem_cgroup_uncharge_swap - uncharge swap space
7108  * @entry: swap entry to uncharge
7109  * @nr_pages: the amount of swap space to uncharge
7110  */
7111 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7112 {
7113         struct mem_cgroup *memcg;
7114         unsigned short id;
7115
7116         id = swap_cgroup_record(entry, 0, nr_pages);
7117         rcu_read_lock();
7118         memcg = mem_cgroup_from_id(id);
7119         if (memcg) {
7120                 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7121                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7122                                 page_counter_uncharge(&memcg->swap, nr_pages);
7123                         else
7124                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7125                 }
7126                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7127                 mem_cgroup_id_put_many(memcg, nr_pages);
7128         }
7129         rcu_read_unlock();
7130 }
7131
7132 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7133 {
7134         long nr_swap_pages = get_nr_swap_pages();
7135
7136         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7137                 return nr_swap_pages;
7138         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7139                 nr_swap_pages = min_t(long, nr_swap_pages,
7140                                       READ_ONCE(memcg->swap.max) -
7141                                       page_counter_read(&memcg->swap));
7142         return nr_swap_pages;
7143 }
7144
7145 bool mem_cgroup_swap_full(struct page *page)
7146 {
7147         struct mem_cgroup *memcg;
7148
7149         VM_BUG_ON_PAGE(!PageLocked(page), page);
7150
7151         if (vm_swap_full())
7152                 return true;
7153         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7154                 return false;
7155
7156         memcg = page_memcg(page);
7157         if (!memcg)
7158                 return false;
7159
7160         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7161                 unsigned long usage = page_counter_read(&memcg->swap);
7162
7163                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7164                     usage * 2 >= READ_ONCE(memcg->swap.max))
7165                         return true;
7166         }
7167
7168         return false;
7169 }
7170
7171 static int __init setup_swap_account(char *s)
7172 {
7173         if (!strcmp(s, "1"))
7174                 cgroup_memory_noswap = false;
7175         else if (!strcmp(s, "0"))
7176                 cgroup_memory_noswap = true;
7177         return 1;
7178 }
7179 __setup("swapaccount=", setup_swap_account);
7180
7181 static u64 swap_current_read(struct cgroup_subsys_state *css,
7182                              struct cftype *cft)
7183 {
7184         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7185
7186         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7187 }
7188
7189 static int swap_high_show(struct seq_file *m, void *v)
7190 {
7191         return seq_puts_memcg_tunable(m,
7192                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7193 }
7194
7195 static ssize_t swap_high_write(struct kernfs_open_file *of,
7196                                char *buf, size_t nbytes, loff_t off)
7197 {
7198         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7199         unsigned long high;
7200         int err;
7201
7202         buf = strstrip(buf);
7203         err = page_counter_memparse(buf, "max", &high);
7204         if (err)
7205                 return err;
7206
7207         page_counter_set_high(&memcg->swap, high);
7208
7209         return nbytes;
7210 }
7211
7212 static int swap_max_show(struct seq_file *m, void *v)
7213 {
7214         return seq_puts_memcg_tunable(m,
7215                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7216 }
7217
7218 static ssize_t swap_max_write(struct kernfs_open_file *of,
7219                               char *buf, size_t nbytes, loff_t off)
7220 {
7221         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7222         unsigned long max;
7223         int err;
7224
7225         buf = strstrip(buf);
7226         err = page_counter_memparse(buf, "max", &max);
7227         if (err)
7228                 return err;
7229
7230         xchg(&memcg->swap.max, max);
7231
7232         return nbytes;
7233 }
7234
7235 static int swap_events_show(struct seq_file *m, void *v)
7236 {
7237         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7238
7239         seq_printf(m, "high %lu\n",
7240                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7241         seq_printf(m, "max %lu\n",
7242                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7243         seq_printf(m, "fail %lu\n",
7244                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7245
7246         return 0;
7247 }
7248
7249 static struct cftype swap_files[] = {
7250         {
7251                 .name = "swap.current",
7252                 .flags = CFTYPE_NOT_ON_ROOT,
7253                 .read_u64 = swap_current_read,
7254         },
7255         {
7256                 .name = "swap.high",
7257                 .flags = CFTYPE_NOT_ON_ROOT,
7258                 .seq_show = swap_high_show,
7259                 .write = swap_high_write,
7260         },
7261         {
7262                 .name = "swap.max",
7263                 .flags = CFTYPE_NOT_ON_ROOT,
7264                 .seq_show = swap_max_show,
7265                 .write = swap_max_write,
7266         },
7267         {
7268                 .name = "swap.events",
7269                 .flags = CFTYPE_NOT_ON_ROOT,
7270                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7271                 .seq_show = swap_events_show,
7272         },
7273         { }     /* terminate */
7274 };
7275
7276 static struct cftype memsw_files[] = {
7277         {
7278                 .name = "memsw.usage_in_bytes",
7279                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7280                 .read_u64 = mem_cgroup_read_u64,
7281         },
7282         {
7283                 .name = "memsw.max_usage_in_bytes",
7284                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7285                 .write = mem_cgroup_reset,
7286                 .read_u64 = mem_cgroup_read_u64,
7287         },
7288         {
7289                 .name = "memsw.limit_in_bytes",
7290                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7291                 .write = mem_cgroup_write,
7292                 .read_u64 = mem_cgroup_read_u64,
7293         },
7294         {
7295                 .name = "memsw.failcnt",
7296                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7297                 .write = mem_cgroup_reset,
7298                 .read_u64 = mem_cgroup_read_u64,
7299         },
7300         { },    /* terminate */
7301 };
7302
7303 /*
7304  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7305  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7306  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7307  * boot parameter. This may result in premature OOPS inside
7308  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7309  */
7310 static int __init mem_cgroup_swap_init(void)
7311 {
7312         /* No memory control -> no swap control */
7313         if (mem_cgroup_disabled())
7314                 cgroup_memory_noswap = true;
7315
7316         if (cgroup_memory_noswap)
7317                 return 0;
7318
7319         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7320         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7321
7322         return 0;
7323 }
7324 core_initcall(mem_cgroup_swap_init);
7325
7326 #endif /* CONFIG_MEMCG_SWAP */