Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27         SCAN_FAIL,
28         SCAN_SUCCEED,
29         SCAN_PMD_NULL,
30         SCAN_EXCEED_NONE_PTE,
31         SCAN_EXCEED_SWAP_PTE,
32         SCAN_EXCEED_SHARED_PTE,
33         SCAN_PTE_NON_PRESENT,
34         SCAN_PTE_UFFD_WP,
35         SCAN_PAGE_RO,
36         SCAN_LACK_REFERENCED_PAGE,
37         SCAN_PAGE_NULL,
38         SCAN_SCAN_ABORT,
39         SCAN_PAGE_COUNT,
40         SCAN_PAGE_LRU,
41         SCAN_PAGE_LOCK,
42         SCAN_PAGE_ANON,
43         SCAN_PAGE_COMPOUND,
44         SCAN_ANY_PROCESS,
45         SCAN_VMA_NULL,
46         SCAN_VMA_CHECK,
47         SCAN_ADDRESS_RANGE,
48         SCAN_SWAP_CACHE_PAGE,
49         SCAN_DEL_PAGE_LRU,
50         SCAN_ALLOC_HUGE_PAGE_FAIL,
51         SCAN_CGROUP_CHARGE_FAIL,
52         SCAN_TRUNCATED,
53         SCAN_PAGE_HAS_PRIVATE,
54 };
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
61
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
72 /*
73  * default collapse hugepages if there is at least one pte mapped like
74  * it would have happened if the vma was large enough during page
75  * fault.
76  */
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
80
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
83
84 static struct kmem_cache *mm_slot_cache __read_mostly;
85
86 #define MAX_PTE_MAPPED_THP 8
87
88 /**
89  * struct mm_slot - hash lookup from mm to mm_slot
90  * @hash: hash collision list
91  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92  * @mm: the mm that this information is valid for
93  * @nr_pte_mapped_thp: number of pte mapped THP
94  * @pte_mapped_thp: address array corresponding pte mapped THP
95  */
96 struct mm_slot {
97         struct hlist_node hash;
98         struct list_head mm_node;
99         struct mm_struct *mm;
100
101         /* pte-mapped THP in this mm */
102         int nr_pte_mapped_thp;
103         unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
104 };
105
106 /**
107  * struct khugepaged_scan - cursor for scanning
108  * @mm_head: the head of the mm list to scan
109  * @mm_slot: the current mm_slot we are scanning
110  * @address: the next address inside that to be scanned
111  *
112  * There is only the one khugepaged_scan instance of this cursor structure.
113  */
114 struct khugepaged_scan {
115         struct list_head mm_head;
116         struct mm_slot *mm_slot;
117         unsigned long address;
118 };
119
120 static struct khugepaged_scan khugepaged_scan = {
121         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
122 };
123
124 #ifdef CONFIG_SYSFS
125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126                                          struct kobj_attribute *attr,
127                                          char *buf)
128 {
129         return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
130 }
131
132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133                                           struct kobj_attribute *attr,
134                                           const char *buf, size_t count)
135 {
136         unsigned int msecs;
137         int err;
138
139         err = kstrtouint(buf, 10, &msecs);
140         if (err)
141                 return -EINVAL;
142
143         khugepaged_scan_sleep_millisecs = msecs;
144         khugepaged_sleep_expire = 0;
145         wake_up_interruptible(&khugepaged_wait);
146
147         return count;
148 }
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
151                scan_sleep_millisecs_store);
152
153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
154                                           struct kobj_attribute *attr,
155                                           char *buf)
156 {
157         return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
158 }
159
160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
161                                            struct kobj_attribute *attr,
162                                            const char *buf, size_t count)
163 {
164         unsigned int msecs;
165         int err;
166
167         err = kstrtouint(buf, 10, &msecs);
168         if (err)
169                 return -EINVAL;
170
171         khugepaged_alloc_sleep_millisecs = msecs;
172         khugepaged_sleep_expire = 0;
173         wake_up_interruptible(&khugepaged_wait);
174
175         return count;
176 }
177 static struct kobj_attribute alloc_sleep_millisecs_attr =
178         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
179                alloc_sleep_millisecs_store);
180
181 static ssize_t pages_to_scan_show(struct kobject *kobj,
182                                   struct kobj_attribute *attr,
183                                   char *buf)
184 {
185         return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
186 }
187 static ssize_t pages_to_scan_store(struct kobject *kobj,
188                                    struct kobj_attribute *attr,
189                                    const char *buf, size_t count)
190 {
191         unsigned int pages;
192         int err;
193
194         err = kstrtouint(buf, 10, &pages);
195         if (err || !pages)
196                 return -EINVAL;
197
198         khugepaged_pages_to_scan = pages;
199
200         return count;
201 }
202 static struct kobj_attribute pages_to_scan_attr =
203         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
204                pages_to_scan_store);
205
206 static ssize_t pages_collapsed_show(struct kobject *kobj,
207                                     struct kobj_attribute *attr,
208                                     char *buf)
209 {
210         return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
211 }
212 static struct kobj_attribute pages_collapsed_attr =
213         __ATTR_RO(pages_collapsed);
214
215 static ssize_t full_scans_show(struct kobject *kobj,
216                                struct kobj_attribute *attr,
217                                char *buf)
218 {
219         return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
220 }
221 static struct kobj_attribute full_scans_attr =
222         __ATTR_RO(full_scans);
223
224 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
225                                       struct kobj_attribute *attr, char *buf)
226 {
227         return single_hugepage_flag_show(kobj, attr, buf,
228                                          TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
229 }
230 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
231                                        struct kobj_attribute *attr,
232                                        const char *buf, size_t count)
233 {
234         return single_hugepage_flag_store(kobj, attr, buf, count,
235                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
236 }
237 static struct kobj_attribute khugepaged_defrag_attr =
238         __ATTR(defrag, 0644, khugepaged_defrag_show,
239                khugepaged_defrag_store);
240
241 /*
242  * max_ptes_none controls if khugepaged should collapse hugepages over
243  * any unmapped ptes in turn potentially increasing the memory
244  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
245  * reduce the available free memory in the system as it
246  * runs. Increasing max_ptes_none will instead potentially reduce the
247  * free memory in the system during the khugepaged scan.
248  */
249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
250                                              struct kobj_attribute *attr,
251                                              char *buf)
252 {
253         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
254 }
255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
256                                               struct kobj_attribute *attr,
257                                               const char *buf, size_t count)
258 {
259         int err;
260         unsigned long max_ptes_none;
261
262         err = kstrtoul(buf, 10, &max_ptes_none);
263         if (err || max_ptes_none > HPAGE_PMD_NR-1)
264                 return -EINVAL;
265
266         khugepaged_max_ptes_none = max_ptes_none;
267
268         return count;
269 }
270 static struct kobj_attribute khugepaged_max_ptes_none_attr =
271         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
272                khugepaged_max_ptes_none_store);
273
274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
275                                              struct kobj_attribute *attr,
276                                              char *buf)
277 {
278         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
279 }
280
281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
282                                               struct kobj_attribute *attr,
283                                               const char *buf, size_t count)
284 {
285         int err;
286         unsigned long max_ptes_swap;
287
288         err  = kstrtoul(buf, 10, &max_ptes_swap);
289         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
290                 return -EINVAL;
291
292         khugepaged_max_ptes_swap = max_ptes_swap;
293
294         return count;
295 }
296
297 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
298         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
299                khugepaged_max_ptes_swap_store);
300
301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
302                                                struct kobj_attribute *attr,
303                                                char *buf)
304 {
305         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
306 }
307
308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
309                                               struct kobj_attribute *attr,
310                                               const char *buf, size_t count)
311 {
312         int err;
313         unsigned long max_ptes_shared;
314
315         err  = kstrtoul(buf, 10, &max_ptes_shared);
316         if (err || max_ptes_shared > HPAGE_PMD_NR-1)
317                 return -EINVAL;
318
319         khugepaged_max_ptes_shared = max_ptes_shared;
320
321         return count;
322 }
323
324 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
325         __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
326                khugepaged_max_ptes_shared_store);
327
328 static struct attribute *khugepaged_attr[] = {
329         &khugepaged_defrag_attr.attr,
330         &khugepaged_max_ptes_none_attr.attr,
331         &khugepaged_max_ptes_swap_attr.attr,
332         &khugepaged_max_ptes_shared_attr.attr,
333         &pages_to_scan_attr.attr,
334         &pages_collapsed_attr.attr,
335         &full_scans_attr.attr,
336         &scan_sleep_millisecs_attr.attr,
337         &alloc_sleep_millisecs_attr.attr,
338         NULL,
339 };
340
341 struct attribute_group khugepaged_attr_group = {
342         .attrs = khugepaged_attr,
343         .name = "khugepaged",
344 };
345 #endif /* CONFIG_SYSFS */
346
347 int hugepage_madvise(struct vm_area_struct *vma,
348                      unsigned long *vm_flags, int advice)
349 {
350         switch (advice) {
351         case MADV_HUGEPAGE:
352 #ifdef CONFIG_S390
353                 /*
354                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
355                  * can't handle this properly after s390_enable_sie, so we simply
356                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
357                  */
358                 if (mm_has_pgste(vma->vm_mm))
359                         return 0;
360 #endif
361                 *vm_flags &= ~VM_NOHUGEPAGE;
362                 *vm_flags |= VM_HUGEPAGE;
363                 /*
364                  * If the vma become good for khugepaged to scan,
365                  * register it here without waiting a page fault that
366                  * may not happen any time soon.
367                  */
368                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
369                                 khugepaged_enter_vma_merge(vma, *vm_flags))
370                         return -ENOMEM;
371                 break;
372         case MADV_NOHUGEPAGE:
373                 *vm_flags &= ~VM_HUGEPAGE;
374                 *vm_flags |= VM_NOHUGEPAGE;
375                 /*
376                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377                  * this vma even if we leave the mm registered in khugepaged if
378                  * it got registered before VM_NOHUGEPAGE was set.
379                  */
380                 break;
381         }
382
383         return 0;
384 }
385
386 int __init khugepaged_init(void)
387 {
388         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389                                           sizeof(struct mm_slot),
390                                           __alignof__(struct mm_slot), 0, NULL);
391         if (!mm_slot_cache)
392                 return -ENOMEM;
393
394         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397         khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
398
399         return 0;
400 }
401
402 void __init khugepaged_destroy(void)
403 {
404         kmem_cache_destroy(mm_slot_cache);
405 }
406
407 static inline struct mm_slot *alloc_mm_slot(void)
408 {
409         if (!mm_slot_cache)     /* initialization failed */
410                 return NULL;
411         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
412 }
413
414 static inline void free_mm_slot(struct mm_slot *mm_slot)
415 {
416         kmem_cache_free(mm_slot_cache, mm_slot);
417 }
418
419 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
420 {
421         struct mm_slot *mm_slot;
422
423         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
424                 if (mm == mm_slot->mm)
425                         return mm_slot;
426
427         return NULL;
428 }
429
430 static void insert_to_mm_slots_hash(struct mm_struct *mm,
431                                     struct mm_slot *mm_slot)
432 {
433         mm_slot->mm = mm;
434         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
435 }
436
437 static inline int khugepaged_test_exit(struct mm_struct *mm)
438 {
439         return atomic_read(&mm->mm_users) == 0;
440 }
441
442 static bool hugepage_vma_check(struct vm_area_struct *vma,
443                                unsigned long vm_flags)
444 {
445         if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
446             (vm_flags & VM_NOHUGEPAGE) ||
447             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
448                 return false;
449
450         if (shmem_file(vma->vm_file) ||
451             (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
452              vma->vm_file &&
453              (vm_flags & VM_DENYWRITE))) {
454                 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
455                                 HPAGE_PMD_NR);
456         }
457         if (!vma->anon_vma || vma->vm_ops)
458                 return false;
459         if (vma_is_temporary_stack(vma))
460                 return false;
461         return !(vm_flags & VM_NO_KHUGEPAGED);
462 }
463
464 int __khugepaged_enter(struct mm_struct *mm)
465 {
466         struct mm_slot *mm_slot;
467         int wakeup;
468
469         mm_slot = alloc_mm_slot();
470         if (!mm_slot)
471                 return -ENOMEM;
472
473         /* __khugepaged_exit() must not run from under us */
474         VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
475         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
476                 free_mm_slot(mm_slot);
477                 return 0;
478         }
479
480         spin_lock(&khugepaged_mm_lock);
481         insert_to_mm_slots_hash(mm, mm_slot);
482         /*
483          * Insert just behind the scanning cursor, to let the area settle
484          * down a little.
485          */
486         wakeup = list_empty(&khugepaged_scan.mm_head);
487         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
488         spin_unlock(&khugepaged_mm_lock);
489
490         mmgrab(mm);
491         if (wakeup)
492                 wake_up_interruptible(&khugepaged_wait);
493
494         return 0;
495 }
496
497 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
498                                unsigned long vm_flags)
499 {
500         unsigned long hstart, hend;
501
502         /*
503          * khugepaged only supports read-only files for non-shmem files.
504          * khugepaged does not yet work on special mappings. And
505          * file-private shmem THP is not supported.
506          */
507         if (!hugepage_vma_check(vma, vm_flags))
508                 return 0;
509
510         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
511         hend = vma->vm_end & HPAGE_PMD_MASK;
512         if (hstart < hend)
513                 return khugepaged_enter(vma, vm_flags);
514         return 0;
515 }
516
517 void __khugepaged_exit(struct mm_struct *mm)
518 {
519         struct mm_slot *mm_slot;
520         int free = 0;
521
522         spin_lock(&khugepaged_mm_lock);
523         mm_slot = get_mm_slot(mm);
524         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
525                 hash_del(&mm_slot->hash);
526                 list_del(&mm_slot->mm_node);
527                 free = 1;
528         }
529         spin_unlock(&khugepaged_mm_lock);
530
531         if (free) {
532                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
533                 free_mm_slot(mm_slot);
534                 mmdrop(mm);
535         } else if (mm_slot) {
536                 /*
537                  * This is required to serialize against
538                  * khugepaged_test_exit() (which is guaranteed to run
539                  * under mmap sem read mode). Stop here (after we
540                  * return all pagetables will be destroyed) until
541                  * khugepaged has finished working on the pagetables
542                  * under the mmap_lock.
543                  */
544                 mmap_write_lock(mm);
545                 mmap_write_unlock(mm);
546         }
547 }
548
549 static void release_pte_page(struct page *page)
550 {
551         mod_node_page_state(page_pgdat(page),
552                         NR_ISOLATED_ANON + page_is_file_lru(page),
553                         -compound_nr(page));
554         unlock_page(page);
555         putback_lru_page(page);
556 }
557
558 static void release_pte_pages(pte_t *pte, pte_t *_pte,
559                 struct list_head *compound_pagelist)
560 {
561         struct page *page, *tmp;
562
563         while (--_pte >= pte) {
564                 pte_t pteval = *_pte;
565
566                 page = pte_page(pteval);
567                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
568                                 !PageCompound(page))
569                         release_pte_page(page);
570         }
571
572         list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
573                 list_del(&page->lru);
574                 release_pte_page(page);
575         }
576 }
577
578 static bool is_refcount_suitable(struct page *page)
579 {
580         int expected_refcount;
581
582         expected_refcount = total_mapcount(page);
583         if (PageSwapCache(page))
584                 expected_refcount += compound_nr(page);
585
586         return page_count(page) == expected_refcount;
587 }
588
589 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
590                                         unsigned long address,
591                                         pte_t *pte,
592                                         struct list_head *compound_pagelist)
593 {
594         struct page *page = NULL;
595         pte_t *_pte;
596         int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
597         bool writable = false;
598
599         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
600              _pte++, address += PAGE_SIZE) {
601                 pte_t pteval = *_pte;
602                 if (pte_none(pteval) || (pte_present(pteval) &&
603                                 is_zero_pfn(pte_pfn(pteval)))) {
604                         if (!userfaultfd_armed(vma) &&
605                             ++none_or_zero <= khugepaged_max_ptes_none) {
606                                 continue;
607                         } else {
608                                 result = SCAN_EXCEED_NONE_PTE;
609                                 goto out;
610                         }
611                 }
612                 if (!pte_present(pteval)) {
613                         result = SCAN_PTE_NON_PRESENT;
614                         goto out;
615                 }
616                 page = vm_normal_page(vma, address, pteval);
617                 if (unlikely(!page)) {
618                         result = SCAN_PAGE_NULL;
619                         goto out;
620                 }
621
622                 VM_BUG_ON_PAGE(!PageAnon(page), page);
623
624                 if (page_mapcount(page) > 1 &&
625                                 ++shared > khugepaged_max_ptes_shared) {
626                         result = SCAN_EXCEED_SHARED_PTE;
627                         goto out;
628                 }
629
630                 if (PageCompound(page)) {
631                         struct page *p;
632                         page = compound_head(page);
633
634                         /*
635                          * Check if we have dealt with the compound page
636                          * already
637                          */
638                         list_for_each_entry(p, compound_pagelist, lru) {
639                                 if (page == p)
640                                         goto next;
641                         }
642                 }
643
644                 /*
645                  * We can do it before isolate_lru_page because the
646                  * page can't be freed from under us. NOTE: PG_lock
647                  * is needed to serialize against split_huge_page
648                  * when invoked from the VM.
649                  */
650                 if (!trylock_page(page)) {
651                         result = SCAN_PAGE_LOCK;
652                         goto out;
653                 }
654
655                 /*
656                  * Check if the page has any GUP (or other external) pins.
657                  *
658                  * The page table that maps the page has been already unlinked
659                  * from the page table tree and this process cannot get
660                  * an additinal pin on the page.
661                  *
662                  * New pins can come later if the page is shared across fork,
663                  * but not from this process. The other process cannot write to
664                  * the page, only trigger CoW.
665                  */
666                 if (!is_refcount_suitable(page)) {
667                         unlock_page(page);
668                         result = SCAN_PAGE_COUNT;
669                         goto out;
670                 }
671                 if (!pte_write(pteval) && PageSwapCache(page) &&
672                                 !reuse_swap_page(page, NULL)) {
673                         /*
674                          * Page is in the swap cache and cannot be re-used.
675                          * It cannot be collapsed into a THP.
676                          */
677                         unlock_page(page);
678                         result = SCAN_SWAP_CACHE_PAGE;
679                         goto out;
680                 }
681
682                 /*
683                  * Isolate the page to avoid collapsing an hugepage
684                  * currently in use by the VM.
685                  */
686                 if (isolate_lru_page(page)) {
687                         unlock_page(page);
688                         result = SCAN_DEL_PAGE_LRU;
689                         goto out;
690                 }
691                 mod_node_page_state(page_pgdat(page),
692                                 NR_ISOLATED_ANON + page_is_file_lru(page),
693                                 compound_nr(page));
694                 VM_BUG_ON_PAGE(!PageLocked(page), page);
695                 VM_BUG_ON_PAGE(PageLRU(page), page);
696
697                 if (PageCompound(page))
698                         list_add_tail(&page->lru, compound_pagelist);
699 next:
700                 /* There should be enough young pte to collapse the page */
701                 if (pte_young(pteval) ||
702                     page_is_young(page) || PageReferenced(page) ||
703                     mmu_notifier_test_young(vma->vm_mm, address))
704                         referenced++;
705
706                 if (pte_write(pteval))
707                         writable = true;
708         }
709         if (likely(writable)) {
710                 if (likely(referenced)) {
711                         result = SCAN_SUCCEED;
712                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
713                                                             referenced, writable, result);
714                         return 1;
715                 }
716         } else {
717                 result = SCAN_PAGE_RO;
718         }
719
720 out:
721         release_pte_pages(pte, _pte, compound_pagelist);
722         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
723                                             referenced, writable, result);
724         return 0;
725 }
726
727 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
728                                       struct vm_area_struct *vma,
729                                       unsigned long address,
730                                       spinlock_t *ptl,
731                                       struct list_head *compound_pagelist)
732 {
733         struct page *src_page, *tmp;
734         pte_t *_pte;
735         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
736                                 _pte++, page++, address += PAGE_SIZE) {
737                 pte_t pteval = *_pte;
738
739                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
740                         clear_user_highpage(page, address);
741                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
742                         if (is_zero_pfn(pte_pfn(pteval))) {
743                                 /*
744                                  * ptl mostly unnecessary.
745                                  */
746                                 spin_lock(ptl);
747                                 /*
748                                  * paravirt calls inside pte_clear here are
749                                  * superfluous.
750                                  */
751                                 pte_clear(vma->vm_mm, address, _pte);
752                                 spin_unlock(ptl);
753                         }
754                 } else {
755                         src_page = pte_page(pteval);
756                         copy_user_highpage(page, src_page, address, vma);
757                         if (!PageCompound(src_page))
758                                 release_pte_page(src_page);
759                         /*
760                          * ptl mostly unnecessary, but preempt has to
761                          * be disabled to update the per-cpu stats
762                          * inside page_remove_rmap().
763                          */
764                         spin_lock(ptl);
765                         /*
766                          * paravirt calls inside pte_clear here are
767                          * superfluous.
768                          */
769                         pte_clear(vma->vm_mm, address, _pte);
770                         page_remove_rmap(src_page, false);
771                         spin_unlock(ptl);
772                         free_page_and_swap_cache(src_page);
773                 }
774         }
775
776         list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
777                 list_del(&src_page->lru);
778                 release_pte_page(src_page);
779         }
780 }
781
782 static void khugepaged_alloc_sleep(void)
783 {
784         DEFINE_WAIT(wait);
785
786         add_wait_queue(&khugepaged_wait, &wait);
787         freezable_schedule_timeout_interruptible(
788                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
789         remove_wait_queue(&khugepaged_wait, &wait);
790 }
791
792 static int khugepaged_node_load[MAX_NUMNODES];
793
794 static bool khugepaged_scan_abort(int nid)
795 {
796         int i;
797
798         /*
799          * If node_reclaim_mode is disabled, then no extra effort is made to
800          * allocate memory locally.
801          */
802         if (!node_reclaim_mode)
803                 return false;
804
805         /* If there is a count for this node already, it must be acceptable */
806         if (khugepaged_node_load[nid])
807                 return false;
808
809         for (i = 0; i < MAX_NUMNODES; i++) {
810                 if (!khugepaged_node_load[i])
811                         continue;
812                 if (node_distance(nid, i) > node_reclaim_distance)
813                         return true;
814         }
815         return false;
816 }
817
818 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
819 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
820 {
821         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
822 }
823
824 #ifdef CONFIG_NUMA
825 static int khugepaged_find_target_node(void)
826 {
827         static int last_khugepaged_target_node = NUMA_NO_NODE;
828         int nid, target_node = 0, max_value = 0;
829
830         /* find first node with max normal pages hit */
831         for (nid = 0; nid < MAX_NUMNODES; nid++)
832                 if (khugepaged_node_load[nid] > max_value) {
833                         max_value = khugepaged_node_load[nid];
834                         target_node = nid;
835                 }
836
837         /* do some balance if several nodes have the same hit record */
838         if (target_node <= last_khugepaged_target_node)
839                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
840                                 nid++)
841                         if (max_value == khugepaged_node_load[nid]) {
842                                 target_node = nid;
843                                 break;
844                         }
845
846         last_khugepaged_target_node = target_node;
847         return target_node;
848 }
849
850 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
851 {
852         if (IS_ERR(*hpage)) {
853                 if (!*wait)
854                         return false;
855
856                 *wait = false;
857                 *hpage = NULL;
858                 khugepaged_alloc_sleep();
859         } else if (*hpage) {
860                 put_page(*hpage);
861                 *hpage = NULL;
862         }
863
864         return true;
865 }
866
867 static struct page *
868 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
869 {
870         VM_BUG_ON_PAGE(*hpage, *hpage);
871
872         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
873         if (unlikely(!*hpage)) {
874                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
875                 *hpage = ERR_PTR(-ENOMEM);
876                 return NULL;
877         }
878
879         prep_transhuge_page(*hpage);
880         count_vm_event(THP_COLLAPSE_ALLOC);
881         return *hpage;
882 }
883 #else
884 static int khugepaged_find_target_node(void)
885 {
886         return 0;
887 }
888
889 static inline struct page *alloc_khugepaged_hugepage(void)
890 {
891         struct page *page;
892
893         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
894                            HPAGE_PMD_ORDER);
895         if (page)
896                 prep_transhuge_page(page);
897         return page;
898 }
899
900 static struct page *khugepaged_alloc_hugepage(bool *wait)
901 {
902         struct page *hpage;
903
904         do {
905                 hpage = alloc_khugepaged_hugepage();
906                 if (!hpage) {
907                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
908                         if (!*wait)
909                                 return NULL;
910
911                         *wait = false;
912                         khugepaged_alloc_sleep();
913                 } else
914                         count_vm_event(THP_COLLAPSE_ALLOC);
915         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
916
917         return hpage;
918 }
919
920 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
921 {
922         /*
923          * If the hpage allocated earlier was briefly exposed in page cache
924          * before collapse_file() failed, it is possible that racing lookups
925          * have not yet completed, and would then be unpleasantly surprised by
926          * finding the hpage reused for the same mapping at a different offset.
927          * Just release the previous allocation if there is any danger of that.
928          */
929         if (*hpage && page_count(*hpage) > 1) {
930                 put_page(*hpage);
931                 *hpage = NULL;
932         }
933
934         if (!*hpage)
935                 *hpage = khugepaged_alloc_hugepage(wait);
936
937         if (unlikely(!*hpage))
938                 return false;
939
940         return true;
941 }
942
943 static struct page *
944 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
945 {
946         VM_BUG_ON(!*hpage);
947
948         return  *hpage;
949 }
950 #endif
951
952 /*
953  * If mmap_lock temporarily dropped, revalidate vma
954  * before taking mmap_lock.
955  * Return 0 if succeeds, otherwise return none-zero
956  * value (scan code).
957  */
958
959 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
960                 struct vm_area_struct **vmap)
961 {
962         struct vm_area_struct *vma;
963         unsigned long hstart, hend;
964
965         if (unlikely(khugepaged_test_exit(mm)))
966                 return SCAN_ANY_PROCESS;
967
968         *vmap = vma = find_vma(mm, address);
969         if (!vma)
970                 return SCAN_VMA_NULL;
971
972         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
973         hend = vma->vm_end & HPAGE_PMD_MASK;
974         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
975                 return SCAN_ADDRESS_RANGE;
976         if (!hugepage_vma_check(vma, vma->vm_flags))
977                 return SCAN_VMA_CHECK;
978         /* Anon VMA expected */
979         if (!vma->anon_vma || vma->vm_ops)
980                 return SCAN_VMA_CHECK;
981         return 0;
982 }
983
984 /*
985  * Bring missing pages in from swap, to complete THP collapse.
986  * Only done if khugepaged_scan_pmd believes it is worthwhile.
987  *
988  * Called and returns without pte mapped or spinlocks held,
989  * but with mmap_lock held to protect against vma changes.
990  */
991
992 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
993                                         struct vm_area_struct *vma,
994                                         unsigned long address, pmd_t *pmd,
995                                         int referenced)
996 {
997         int swapped_in = 0;
998         vm_fault_t ret = 0;
999         struct vm_fault vmf = {
1000                 .vma = vma,
1001                 .address = address,
1002                 .flags = FAULT_FLAG_ALLOW_RETRY,
1003                 .pmd = pmd,
1004                 .pgoff = linear_page_index(vma, address),
1005         };
1006
1007         vmf.pte = pte_offset_map(pmd, address);
1008         for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
1009                         vmf.pte++, vmf.address += PAGE_SIZE) {
1010                 vmf.orig_pte = *vmf.pte;
1011                 if (!is_swap_pte(vmf.orig_pte))
1012                         continue;
1013                 swapped_in++;
1014                 ret = do_swap_page(&vmf);
1015
1016                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1017                 if (ret & VM_FAULT_RETRY) {
1018                         mmap_read_lock(mm);
1019                         if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
1020                                 /* vma is no longer available, don't continue to swapin */
1021                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1022                                 return false;
1023                         }
1024                         /* check if the pmd is still valid */
1025                         if (mm_find_pmd(mm, address) != pmd) {
1026                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1027                                 return false;
1028                         }
1029                 }
1030                 if (ret & VM_FAULT_ERROR) {
1031                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1032                         return false;
1033                 }
1034                 /* pte is unmapped now, we need to map it */
1035                 vmf.pte = pte_offset_map(pmd, vmf.address);
1036         }
1037         vmf.pte--;
1038         pte_unmap(vmf.pte);
1039
1040         /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1041         if (swapped_in)
1042                 lru_add_drain();
1043
1044         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1045         return true;
1046 }
1047
1048 static void collapse_huge_page(struct mm_struct *mm,
1049                                    unsigned long address,
1050                                    struct page **hpage,
1051                                    int node, int referenced, int unmapped)
1052 {
1053         LIST_HEAD(compound_pagelist);
1054         pmd_t *pmd, _pmd;
1055         pte_t *pte;
1056         pgtable_t pgtable;
1057         struct page *new_page;
1058         spinlock_t *pmd_ptl, *pte_ptl;
1059         int isolated = 0, result = 0;
1060         struct vm_area_struct *vma;
1061         struct mmu_notifier_range range;
1062         gfp_t gfp;
1063
1064         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1065
1066         /* Only allocate from the target node */
1067         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1068
1069         /*
1070          * Before allocating the hugepage, release the mmap_lock read lock.
1071          * The allocation can take potentially a long time if it involves
1072          * sync compaction, and we do not need to hold the mmap_lock during
1073          * that. We will recheck the vma after taking it again in write mode.
1074          */
1075         mmap_read_unlock(mm);
1076         new_page = khugepaged_alloc_page(hpage, gfp, node);
1077         if (!new_page) {
1078                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1079                 goto out_nolock;
1080         }
1081
1082         if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1083                 result = SCAN_CGROUP_CHARGE_FAIL;
1084                 goto out_nolock;
1085         }
1086         count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1087
1088         mmap_read_lock(mm);
1089         result = hugepage_vma_revalidate(mm, address, &vma);
1090         if (result) {
1091                 mmap_read_unlock(mm);
1092                 goto out_nolock;
1093         }
1094
1095         pmd = mm_find_pmd(mm, address);
1096         if (!pmd) {
1097                 result = SCAN_PMD_NULL;
1098                 mmap_read_unlock(mm);
1099                 goto out_nolock;
1100         }
1101
1102         /*
1103          * __collapse_huge_page_swapin always returns with mmap_lock locked.
1104          * If it fails, we release mmap_lock and jump out_nolock.
1105          * Continuing to collapse causes inconsistency.
1106          */
1107         if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1108                                                      pmd, referenced)) {
1109                 mmap_read_unlock(mm);
1110                 goto out_nolock;
1111         }
1112
1113         mmap_read_unlock(mm);
1114         /*
1115          * Prevent all access to pagetables with the exception of
1116          * gup_fast later handled by the ptep_clear_flush and the VM
1117          * handled by the anon_vma lock + PG_lock.
1118          */
1119         mmap_write_lock(mm);
1120         result = hugepage_vma_revalidate(mm, address, &vma);
1121         if (result)
1122                 goto out;
1123         /* check if the pmd is still valid */
1124         if (mm_find_pmd(mm, address) != pmd)
1125                 goto out;
1126
1127         anon_vma_lock_write(vma->anon_vma);
1128
1129         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1130                                 address, address + HPAGE_PMD_SIZE);
1131         mmu_notifier_invalidate_range_start(&range);
1132
1133         pte = pte_offset_map(pmd, address);
1134         pte_ptl = pte_lockptr(mm, pmd);
1135
1136         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1137         /*
1138          * After this gup_fast can't run anymore. This also removes
1139          * any huge TLB entry from the CPU so we won't allow
1140          * huge and small TLB entries for the same virtual address
1141          * to avoid the risk of CPU bugs in that area.
1142          */
1143         _pmd = pmdp_collapse_flush(vma, address, pmd);
1144         spin_unlock(pmd_ptl);
1145         mmu_notifier_invalidate_range_end(&range);
1146
1147         spin_lock(pte_ptl);
1148         isolated = __collapse_huge_page_isolate(vma, address, pte,
1149                         &compound_pagelist);
1150         spin_unlock(pte_ptl);
1151
1152         if (unlikely(!isolated)) {
1153                 pte_unmap(pte);
1154                 spin_lock(pmd_ptl);
1155                 BUG_ON(!pmd_none(*pmd));
1156                 /*
1157                  * We can only use set_pmd_at when establishing
1158                  * hugepmds and never for establishing regular pmds that
1159                  * points to regular pagetables. Use pmd_populate for that
1160                  */
1161                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1162                 spin_unlock(pmd_ptl);
1163                 anon_vma_unlock_write(vma->anon_vma);
1164                 result = SCAN_FAIL;
1165                 goto out;
1166         }
1167
1168         /*
1169          * All pages are isolated and locked so anon_vma rmap
1170          * can't run anymore.
1171          */
1172         anon_vma_unlock_write(vma->anon_vma);
1173
1174         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1175                         &compound_pagelist);
1176         pte_unmap(pte);
1177         __SetPageUptodate(new_page);
1178         pgtable = pmd_pgtable(_pmd);
1179
1180         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1181         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1182
1183         /*
1184          * spin_lock() below is not the equivalent of smp_wmb(), so
1185          * this is needed to avoid the copy_huge_page writes to become
1186          * visible after the set_pmd_at() write.
1187          */
1188         smp_wmb();
1189
1190         spin_lock(pmd_ptl);
1191         BUG_ON(!pmd_none(*pmd));
1192         page_add_new_anon_rmap(new_page, vma, address, true);
1193         lru_cache_add_inactive_or_unevictable(new_page, vma);
1194         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1195         set_pmd_at(mm, address, pmd, _pmd);
1196         update_mmu_cache_pmd(vma, address, pmd);
1197         spin_unlock(pmd_ptl);
1198
1199         *hpage = NULL;
1200
1201         khugepaged_pages_collapsed++;
1202         result = SCAN_SUCCEED;
1203 out_up_write:
1204         mmap_write_unlock(mm);
1205 out_nolock:
1206         if (!IS_ERR_OR_NULL(*hpage))
1207                 mem_cgroup_uncharge(*hpage);
1208         trace_mm_collapse_huge_page(mm, isolated, result);
1209         return;
1210 out:
1211         goto out_up_write;
1212 }
1213
1214 static int khugepaged_scan_pmd(struct mm_struct *mm,
1215                                struct vm_area_struct *vma,
1216                                unsigned long address,
1217                                struct page **hpage)
1218 {
1219         pmd_t *pmd;
1220         pte_t *pte, *_pte;
1221         int ret = 0, result = 0, referenced = 0;
1222         int none_or_zero = 0, shared = 0;
1223         struct page *page = NULL;
1224         unsigned long _address;
1225         spinlock_t *ptl;
1226         int node = NUMA_NO_NODE, unmapped = 0;
1227         bool writable = false;
1228
1229         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1230
1231         pmd = mm_find_pmd(mm, address);
1232         if (!pmd) {
1233                 result = SCAN_PMD_NULL;
1234                 goto out;
1235         }
1236
1237         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1238         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1239         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1240              _pte++, _address += PAGE_SIZE) {
1241                 pte_t pteval = *_pte;
1242                 if (is_swap_pte(pteval)) {
1243                         if (++unmapped <= khugepaged_max_ptes_swap) {
1244                                 /*
1245                                  * Always be strict with uffd-wp
1246                                  * enabled swap entries.  Please see
1247                                  * comment below for pte_uffd_wp().
1248                                  */
1249                                 if (pte_swp_uffd_wp(pteval)) {
1250                                         result = SCAN_PTE_UFFD_WP;
1251                                         goto out_unmap;
1252                                 }
1253                                 continue;
1254                         } else {
1255                                 result = SCAN_EXCEED_SWAP_PTE;
1256                                 goto out_unmap;
1257                         }
1258                 }
1259                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1260                         if (!userfaultfd_armed(vma) &&
1261                             ++none_or_zero <= khugepaged_max_ptes_none) {
1262                                 continue;
1263                         } else {
1264                                 result = SCAN_EXCEED_NONE_PTE;
1265                                 goto out_unmap;
1266                         }
1267                 }
1268                 if (!pte_present(pteval)) {
1269                         result = SCAN_PTE_NON_PRESENT;
1270                         goto out_unmap;
1271                 }
1272                 if (pte_uffd_wp(pteval)) {
1273                         /*
1274                          * Don't collapse the page if any of the small
1275                          * PTEs are armed with uffd write protection.
1276                          * Here we can also mark the new huge pmd as
1277                          * write protected if any of the small ones is
1278                          * marked but that could bring unknown
1279                          * userfault messages that falls outside of
1280                          * the registered range.  So, just be simple.
1281                          */
1282                         result = SCAN_PTE_UFFD_WP;
1283                         goto out_unmap;
1284                 }
1285                 if (pte_write(pteval))
1286                         writable = true;
1287
1288                 page = vm_normal_page(vma, _address, pteval);
1289                 if (unlikely(!page)) {
1290                         result = SCAN_PAGE_NULL;
1291                         goto out_unmap;
1292                 }
1293
1294                 if (page_mapcount(page) > 1 &&
1295                                 ++shared > khugepaged_max_ptes_shared) {
1296                         result = SCAN_EXCEED_SHARED_PTE;
1297                         goto out_unmap;
1298                 }
1299
1300                 page = compound_head(page);
1301
1302                 /*
1303                  * Record which node the original page is from and save this
1304                  * information to khugepaged_node_load[].
1305                  * Khupaged will allocate hugepage from the node has the max
1306                  * hit record.
1307                  */
1308                 node = page_to_nid(page);
1309                 if (khugepaged_scan_abort(node)) {
1310                         result = SCAN_SCAN_ABORT;
1311                         goto out_unmap;
1312                 }
1313                 khugepaged_node_load[node]++;
1314                 if (!PageLRU(page)) {
1315                         result = SCAN_PAGE_LRU;
1316                         goto out_unmap;
1317                 }
1318                 if (PageLocked(page)) {
1319                         result = SCAN_PAGE_LOCK;
1320                         goto out_unmap;
1321                 }
1322                 if (!PageAnon(page)) {
1323                         result = SCAN_PAGE_ANON;
1324                         goto out_unmap;
1325                 }
1326
1327                 /*
1328                  * Check if the page has any GUP (or other external) pins.
1329                  *
1330                  * Here the check is racy it may see totmal_mapcount > refcount
1331                  * in some cases.
1332                  * For example, one process with one forked child process.
1333                  * The parent has the PMD split due to MADV_DONTNEED, then
1334                  * the child is trying unmap the whole PMD, but khugepaged
1335                  * may be scanning the parent between the child has
1336                  * PageDoubleMap flag cleared and dec the mapcount.  So
1337                  * khugepaged may see total_mapcount > refcount.
1338                  *
1339                  * But such case is ephemeral we could always retry collapse
1340                  * later.  However it may report false positive if the page
1341                  * has excessive GUP pins (i.e. 512).  Anyway the same check
1342                  * will be done again later the risk seems low.
1343                  */
1344                 if (!is_refcount_suitable(page)) {
1345                         result = SCAN_PAGE_COUNT;
1346                         goto out_unmap;
1347                 }
1348                 if (pte_young(pteval) ||
1349                     page_is_young(page) || PageReferenced(page) ||
1350                     mmu_notifier_test_young(vma->vm_mm, address))
1351                         referenced++;
1352         }
1353         if (!writable) {
1354                 result = SCAN_PAGE_RO;
1355         } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1356                 result = SCAN_LACK_REFERENCED_PAGE;
1357         } else {
1358                 result = SCAN_SUCCEED;
1359                 ret = 1;
1360         }
1361 out_unmap:
1362         pte_unmap_unlock(pte, ptl);
1363         if (ret) {
1364                 node = khugepaged_find_target_node();
1365                 /* collapse_huge_page will return with the mmap_lock released */
1366                 collapse_huge_page(mm, address, hpage, node,
1367                                 referenced, unmapped);
1368         }
1369 out:
1370         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1371                                      none_or_zero, result, unmapped);
1372         return ret;
1373 }
1374
1375 static void collect_mm_slot(struct mm_slot *mm_slot)
1376 {
1377         struct mm_struct *mm = mm_slot->mm;
1378
1379         lockdep_assert_held(&khugepaged_mm_lock);
1380
1381         if (khugepaged_test_exit(mm)) {
1382                 /* free mm_slot */
1383                 hash_del(&mm_slot->hash);
1384                 list_del(&mm_slot->mm_node);
1385
1386                 /*
1387                  * Not strictly needed because the mm exited already.
1388                  *
1389                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1390                  */
1391
1392                 /* khugepaged_mm_lock actually not necessary for the below */
1393                 free_mm_slot(mm_slot);
1394                 mmdrop(mm);
1395         }
1396 }
1397
1398 #ifdef CONFIG_SHMEM
1399 /*
1400  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1401  * khugepaged should try to collapse the page table.
1402  */
1403 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1404                                          unsigned long addr)
1405 {
1406         struct mm_slot *mm_slot;
1407
1408         VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1409
1410         spin_lock(&khugepaged_mm_lock);
1411         mm_slot = get_mm_slot(mm);
1412         if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1413                 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1414         spin_unlock(&khugepaged_mm_lock);
1415         return 0;
1416 }
1417
1418 /**
1419  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1420  * address haddr.
1421  *
1422  * @mm: process address space where collapse happens
1423  * @addr: THP collapse address
1424  *
1425  * This function checks whether all the PTEs in the PMD are pointing to the
1426  * right THP. If so, retract the page table so the THP can refault in with
1427  * as pmd-mapped.
1428  */
1429 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1430 {
1431         unsigned long haddr = addr & HPAGE_PMD_MASK;
1432         struct vm_area_struct *vma = find_vma(mm, haddr);
1433         struct page *hpage;
1434         pte_t *start_pte, *pte;
1435         pmd_t *pmd, _pmd;
1436         spinlock_t *ptl;
1437         int count = 0;
1438         int i;
1439
1440         if (!vma || !vma->vm_file ||
1441             vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1442                 return;
1443
1444         /*
1445          * This vm_flags may not have VM_HUGEPAGE if the page was not
1446          * collapsed by this mm. But we can still collapse if the page is
1447          * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1448          * will not fail the vma for missing VM_HUGEPAGE
1449          */
1450         if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1451                 return;
1452
1453         hpage = find_lock_page(vma->vm_file->f_mapping,
1454                                linear_page_index(vma, haddr));
1455         if (!hpage)
1456                 return;
1457
1458         if (!PageHead(hpage))
1459                 goto drop_hpage;
1460
1461         pmd = mm_find_pmd(mm, haddr);
1462         if (!pmd)
1463                 goto drop_hpage;
1464
1465         start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1466
1467         /* step 1: check all mapped PTEs are to the right huge page */
1468         for (i = 0, addr = haddr, pte = start_pte;
1469              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1470                 struct page *page;
1471
1472                 /* empty pte, skip */
1473                 if (pte_none(*pte))
1474                         continue;
1475
1476                 /* page swapped out, abort */
1477                 if (!pte_present(*pte))
1478                         goto abort;
1479
1480                 page = vm_normal_page(vma, addr, *pte);
1481
1482                 /*
1483                  * Note that uprobe, debugger, or MAP_PRIVATE may change the
1484                  * page table, but the new page will not be a subpage of hpage.
1485                  */
1486                 if (hpage + i != page)
1487                         goto abort;
1488                 count++;
1489         }
1490
1491         /* step 2: adjust rmap */
1492         for (i = 0, addr = haddr, pte = start_pte;
1493              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1494                 struct page *page;
1495
1496                 if (pte_none(*pte))
1497                         continue;
1498                 page = vm_normal_page(vma, addr, *pte);
1499                 page_remove_rmap(page, false);
1500         }
1501
1502         pte_unmap_unlock(start_pte, ptl);
1503
1504         /* step 3: set proper refcount and mm_counters. */
1505         if (count) {
1506                 page_ref_sub(hpage, count);
1507                 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1508         }
1509
1510         /* step 4: collapse pmd */
1511         ptl = pmd_lock(vma->vm_mm, pmd);
1512         _pmd = pmdp_collapse_flush(vma, haddr, pmd);
1513         spin_unlock(ptl);
1514         mm_dec_nr_ptes(mm);
1515         pte_free(mm, pmd_pgtable(_pmd));
1516
1517 drop_hpage:
1518         unlock_page(hpage);
1519         put_page(hpage);
1520         return;
1521
1522 abort:
1523         pte_unmap_unlock(start_pte, ptl);
1524         goto drop_hpage;
1525 }
1526
1527 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1528 {
1529         struct mm_struct *mm = mm_slot->mm;
1530         int i;
1531
1532         if (likely(mm_slot->nr_pte_mapped_thp == 0))
1533                 return 0;
1534
1535         if (!mmap_write_trylock(mm))
1536                 return -EBUSY;
1537
1538         if (unlikely(khugepaged_test_exit(mm)))
1539                 goto out;
1540
1541         for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1542                 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1543
1544 out:
1545         mm_slot->nr_pte_mapped_thp = 0;
1546         mmap_write_unlock(mm);
1547         return 0;
1548 }
1549
1550 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1551 {
1552         struct vm_area_struct *vma;
1553         struct mm_struct *mm;
1554         unsigned long addr;
1555         pmd_t *pmd, _pmd;
1556
1557         i_mmap_lock_write(mapping);
1558         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1559                 /*
1560                  * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1561                  * got written to. These VMAs are likely not worth investing
1562                  * mmap_write_lock(mm) as PMD-mapping is likely to be split
1563                  * later.
1564                  *
1565                  * Not that vma->anon_vma check is racy: it can be set up after
1566                  * the check but before we took mmap_lock by the fault path.
1567                  * But page lock would prevent establishing any new ptes of the
1568                  * page, so we are safe.
1569                  *
1570                  * An alternative would be drop the check, but check that page
1571                  * table is clear before calling pmdp_collapse_flush() under
1572                  * ptl. It has higher chance to recover THP for the VMA, but
1573                  * has higher cost too.
1574                  */
1575                 if (vma->anon_vma)
1576                         continue;
1577                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1578                 if (addr & ~HPAGE_PMD_MASK)
1579                         continue;
1580                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1581                         continue;
1582                 mm = vma->vm_mm;
1583                 pmd = mm_find_pmd(mm, addr);
1584                 if (!pmd)
1585                         continue;
1586                 /*
1587                  * We need exclusive mmap_lock to retract page table.
1588                  *
1589                  * We use trylock due to lock inversion: we need to acquire
1590                  * mmap_lock while holding page lock. Fault path does it in
1591                  * reverse order. Trylock is a way to avoid deadlock.
1592                  */
1593                 if (mmap_write_trylock(mm)) {
1594                         if (!khugepaged_test_exit(mm)) {
1595                                 spinlock_t *ptl = pmd_lock(mm, pmd);
1596                                 /* assume page table is clear */
1597                                 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1598                                 spin_unlock(ptl);
1599                                 mm_dec_nr_ptes(mm);
1600                                 pte_free(mm, pmd_pgtable(_pmd));
1601                         }
1602                         mmap_write_unlock(mm);
1603                 } else {
1604                         /* Try again later */
1605                         khugepaged_add_pte_mapped_thp(mm, addr);
1606                 }
1607         }
1608         i_mmap_unlock_write(mapping);
1609 }
1610
1611 /**
1612  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1613  *
1614  * @mm: process address space where collapse happens
1615  * @file: file that collapse on
1616  * @start: collapse start address
1617  * @hpage: new allocated huge page for collapse
1618  * @node: appointed node the new huge page allocate from
1619  *
1620  * Basic scheme is simple, details are more complex:
1621  *  - allocate and lock a new huge page;
1622  *  - scan page cache replacing old pages with the new one
1623  *    + swap/gup in pages if necessary;
1624  *    + fill in gaps;
1625  *    + keep old pages around in case rollback is required;
1626  *  - if replacing succeeds:
1627  *    + copy data over;
1628  *    + free old pages;
1629  *    + unlock huge page;
1630  *  - if replacing failed;
1631  *    + put all pages back and unfreeze them;
1632  *    + restore gaps in the page cache;
1633  *    + unlock and free huge page;
1634  */
1635 static void collapse_file(struct mm_struct *mm,
1636                 struct file *file, pgoff_t start,
1637                 struct page **hpage, int node)
1638 {
1639         struct address_space *mapping = file->f_mapping;
1640         gfp_t gfp;
1641         struct page *new_page;
1642         pgoff_t index, end = start + HPAGE_PMD_NR;
1643         LIST_HEAD(pagelist);
1644         XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1645         int nr_none = 0, result = SCAN_SUCCEED;
1646         bool is_shmem = shmem_file(file);
1647
1648         VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1649         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1650
1651         /* Only allocate from the target node */
1652         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1653
1654         new_page = khugepaged_alloc_page(hpage, gfp, node);
1655         if (!new_page) {
1656                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1657                 goto out;
1658         }
1659
1660         if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1661                 result = SCAN_CGROUP_CHARGE_FAIL;
1662                 goto out;
1663         }
1664         count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1665
1666         /* This will be less messy when we use multi-index entries */
1667         do {
1668                 xas_lock_irq(&xas);
1669                 xas_create_range(&xas);
1670                 if (!xas_error(&xas))
1671                         break;
1672                 xas_unlock_irq(&xas);
1673                 if (!xas_nomem(&xas, GFP_KERNEL)) {
1674                         result = SCAN_FAIL;
1675                         goto out;
1676                 }
1677         } while (1);
1678
1679         __SetPageLocked(new_page);
1680         if (is_shmem)
1681                 __SetPageSwapBacked(new_page);
1682         new_page->index = start;
1683         new_page->mapping = mapping;
1684
1685         /*
1686          * At this point the new_page is locked and not up-to-date.
1687          * It's safe to insert it into the page cache, because nobody would
1688          * be able to map it or use it in another way until we unlock it.
1689          */
1690
1691         xas_set(&xas, start);
1692         for (index = start; index < end; index++) {
1693                 struct page *page = xas_next(&xas);
1694
1695                 VM_BUG_ON(index != xas.xa_index);
1696                 if (is_shmem) {
1697                         if (!page) {
1698                                 /*
1699                                  * Stop if extent has been truncated or
1700                                  * hole-punched, and is now completely
1701                                  * empty.
1702                                  */
1703                                 if (index == start) {
1704                                         if (!xas_next_entry(&xas, end - 1)) {
1705                                                 result = SCAN_TRUNCATED;
1706                                                 goto xa_locked;
1707                                         }
1708                                         xas_set(&xas, index);
1709                                 }
1710                                 if (!shmem_charge(mapping->host, 1)) {
1711                                         result = SCAN_FAIL;
1712                                         goto xa_locked;
1713                                 }
1714                                 xas_store(&xas, new_page);
1715                                 nr_none++;
1716                                 continue;
1717                         }
1718
1719                         if (xa_is_value(page) || !PageUptodate(page)) {
1720                                 xas_unlock_irq(&xas);
1721                                 /* swap in or instantiate fallocated page */
1722                                 if (shmem_getpage(mapping->host, index, &page,
1723                                                   SGP_NOHUGE)) {
1724                                         result = SCAN_FAIL;
1725                                         goto xa_unlocked;
1726                                 }
1727                         } else if (trylock_page(page)) {
1728                                 get_page(page);
1729                                 xas_unlock_irq(&xas);
1730                         } else {
1731                                 result = SCAN_PAGE_LOCK;
1732                                 goto xa_locked;
1733                         }
1734                 } else {        /* !is_shmem */
1735                         if (!page || xa_is_value(page)) {
1736                                 xas_unlock_irq(&xas);
1737                                 page_cache_sync_readahead(mapping, &file->f_ra,
1738                                                           file, index,
1739                                                           end - index);
1740                                 /* drain pagevecs to help isolate_lru_page() */
1741                                 lru_add_drain();
1742                                 page = find_lock_page(mapping, index);
1743                                 if (unlikely(page == NULL)) {
1744                                         result = SCAN_FAIL;
1745                                         goto xa_unlocked;
1746                                 }
1747                         } else if (PageDirty(page)) {
1748                                 /*
1749                                  * khugepaged only works on read-only fd,
1750                                  * so this page is dirty because it hasn't
1751                                  * been flushed since first write. There
1752                                  * won't be new dirty pages.
1753                                  *
1754                                  * Trigger async flush here and hope the
1755                                  * writeback is done when khugepaged
1756                                  * revisits this page.
1757                                  *
1758                                  * This is a one-off situation. We are not
1759                                  * forcing writeback in loop.
1760                                  */
1761                                 xas_unlock_irq(&xas);
1762                                 filemap_flush(mapping);
1763                                 result = SCAN_FAIL;
1764                                 goto xa_unlocked;
1765                         } else if (trylock_page(page)) {
1766                                 get_page(page);
1767                                 xas_unlock_irq(&xas);
1768                         } else {
1769                                 result = SCAN_PAGE_LOCK;
1770                                 goto xa_locked;
1771                         }
1772                 }
1773
1774                 /*
1775                  * The page must be locked, so we can drop the i_pages lock
1776                  * without racing with truncate.
1777                  */
1778                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1779
1780                 /* make sure the page is up to date */
1781                 if (unlikely(!PageUptodate(page))) {
1782                         result = SCAN_FAIL;
1783                         goto out_unlock;
1784                 }
1785
1786                 /*
1787                  * If file was truncated then extended, or hole-punched, before
1788                  * we locked the first page, then a THP might be there already.
1789                  */
1790                 if (PageTransCompound(page)) {
1791                         result = SCAN_PAGE_COMPOUND;
1792                         goto out_unlock;
1793                 }
1794
1795                 if (page_mapping(page) != mapping) {
1796                         result = SCAN_TRUNCATED;
1797                         goto out_unlock;
1798                 }
1799
1800                 if (!is_shmem && PageDirty(page)) {
1801                         /*
1802                          * khugepaged only works on read-only fd, so this
1803                          * page is dirty because it hasn't been flushed
1804                          * since first write.
1805                          */
1806                         result = SCAN_FAIL;
1807                         goto out_unlock;
1808                 }
1809
1810                 if (isolate_lru_page(page)) {
1811                         result = SCAN_DEL_PAGE_LRU;
1812                         goto out_unlock;
1813                 }
1814
1815                 if (page_has_private(page) &&
1816                     !try_to_release_page(page, GFP_KERNEL)) {
1817                         result = SCAN_PAGE_HAS_PRIVATE;
1818                         putback_lru_page(page);
1819                         goto out_unlock;
1820                 }
1821
1822                 if (page_mapped(page))
1823                         unmap_mapping_pages(mapping, index, 1, false);
1824
1825                 xas_lock_irq(&xas);
1826                 xas_set(&xas, index);
1827
1828                 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1829                 VM_BUG_ON_PAGE(page_mapped(page), page);
1830
1831                 /*
1832                  * The page is expected to have page_count() == 3:
1833                  *  - we hold a pin on it;
1834                  *  - one reference from page cache;
1835                  *  - one from isolate_lru_page;
1836                  */
1837                 if (!page_ref_freeze(page, 3)) {
1838                         result = SCAN_PAGE_COUNT;
1839                         xas_unlock_irq(&xas);
1840                         putback_lru_page(page);
1841                         goto out_unlock;
1842                 }
1843
1844                 /*
1845                  * Add the page to the list to be able to undo the collapse if
1846                  * something go wrong.
1847                  */
1848                 list_add_tail(&page->lru, &pagelist);
1849
1850                 /* Finally, replace with the new page. */
1851                 xas_store(&xas, new_page);
1852                 continue;
1853 out_unlock:
1854                 unlock_page(page);
1855                 put_page(page);
1856                 goto xa_unlocked;
1857         }
1858
1859         if (is_shmem)
1860                 __inc_lruvec_page_state(new_page, NR_SHMEM_THPS);
1861         else {
1862                 __inc_lruvec_page_state(new_page, NR_FILE_THPS);
1863                 filemap_nr_thps_inc(mapping);
1864         }
1865
1866         if (nr_none) {
1867                 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1868                 if (is_shmem)
1869                         __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1870         }
1871
1872 xa_locked:
1873         xas_unlock_irq(&xas);
1874 xa_unlocked:
1875
1876         if (result == SCAN_SUCCEED) {
1877                 struct page *page, *tmp;
1878
1879                 /*
1880                  * Replacing old pages with new one has succeeded, now we
1881                  * need to copy the content and free the old pages.
1882                  */
1883                 index = start;
1884                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1885                         while (index < page->index) {
1886                                 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1887                                 index++;
1888                         }
1889                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1890                                         page);
1891                         list_del(&page->lru);
1892                         page->mapping = NULL;
1893                         page_ref_unfreeze(page, 1);
1894                         ClearPageActive(page);
1895                         ClearPageUnevictable(page);
1896                         unlock_page(page);
1897                         put_page(page);
1898                         index++;
1899                 }
1900                 while (index < end) {
1901                         clear_highpage(new_page + (index % HPAGE_PMD_NR));
1902                         index++;
1903                 }
1904
1905                 SetPageUptodate(new_page);
1906                 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1907                 if (is_shmem)
1908                         set_page_dirty(new_page);
1909                 lru_cache_add(new_page);
1910
1911                 /*
1912                  * Remove pte page tables, so we can re-fault the page as huge.
1913                  */
1914                 retract_page_tables(mapping, start);
1915                 *hpage = NULL;
1916
1917                 khugepaged_pages_collapsed++;
1918         } else {
1919                 struct page *page;
1920
1921                 /* Something went wrong: roll back page cache changes */
1922                 xas_lock_irq(&xas);
1923                 mapping->nrpages -= nr_none;
1924
1925                 if (is_shmem)
1926                         shmem_uncharge(mapping->host, nr_none);
1927
1928                 xas_set(&xas, start);
1929                 xas_for_each(&xas, page, end - 1) {
1930                         page = list_first_entry_or_null(&pagelist,
1931                                         struct page, lru);
1932                         if (!page || xas.xa_index < page->index) {
1933                                 if (!nr_none)
1934                                         break;
1935                                 nr_none--;
1936                                 /* Put holes back where they were */
1937                                 xas_store(&xas, NULL);
1938                                 continue;
1939                         }
1940
1941                         VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1942
1943                         /* Unfreeze the page. */
1944                         list_del(&page->lru);
1945                         page_ref_unfreeze(page, 2);
1946                         xas_store(&xas, page);
1947                         xas_pause(&xas);
1948                         xas_unlock_irq(&xas);
1949                         unlock_page(page);
1950                         putback_lru_page(page);
1951                         xas_lock_irq(&xas);
1952                 }
1953                 VM_BUG_ON(nr_none);
1954                 xas_unlock_irq(&xas);
1955
1956                 new_page->mapping = NULL;
1957         }
1958
1959         unlock_page(new_page);
1960 out:
1961         VM_BUG_ON(!list_empty(&pagelist));
1962         if (!IS_ERR_OR_NULL(*hpage))
1963                 mem_cgroup_uncharge(*hpage);
1964         /* TODO: tracepoints */
1965 }
1966
1967 static void khugepaged_scan_file(struct mm_struct *mm,
1968                 struct file *file, pgoff_t start, struct page **hpage)
1969 {
1970         struct page *page = NULL;
1971         struct address_space *mapping = file->f_mapping;
1972         XA_STATE(xas, &mapping->i_pages, start);
1973         int present, swap;
1974         int node = NUMA_NO_NODE;
1975         int result = SCAN_SUCCEED;
1976
1977         present = 0;
1978         swap = 0;
1979         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1980         rcu_read_lock();
1981         xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1982                 if (xas_retry(&xas, page))
1983                         continue;
1984
1985                 if (xa_is_value(page)) {
1986                         if (++swap > khugepaged_max_ptes_swap) {
1987                                 result = SCAN_EXCEED_SWAP_PTE;
1988                                 break;
1989                         }
1990                         continue;
1991                 }
1992
1993                 if (PageTransCompound(page)) {
1994                         result = SCAN_PAGE_COMPOUND;
1995                         break;
1996                 }
1997
1998                 node = page_to_nid(page);
1999                 if (khugepaged_scan_abort(node)) {
2000                         result = SCAN_SCAN_ABORT;
2001                         break;
2002                 }
2003                 khugepaged_node_load[node]++;
2004
2005                 if (!PageLRU(page)) {
2006                         result = SCAN_PAGE_LRU;
2007                         break;
2008                 }
2009
2010                 if (page_count(page) !=
2011                     1 + page_mapcount(page) + page_has_private(page)) {
2012                         result = SCAN_PAGE_COUNT;
2013                         break;
2014                 }
2015
2016                 /*
2017                  * We probably should check if the page is referenced here, but
2018                  * nobody would transfer pte_young() to PageReferenced() for us.
2019                  * And rmap walk here is just too costly...
2020                  */
2021
2022                 present++;
2023
2024                 if (need_resched()) {
2025                         xas_pause(&xas);
2026                         cond_resched_rcu();
2027                 }
2028         }
2029         rcu_read_unlock();
2030
2031         if (result == SCAN_SUCCEED) {
2032                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2033                         result = SCAN_EXCEED_NONE_PTE;
2034                 } else {
2035                         node = khugepaged_find_target_node();
2036                         collapse_file(mm, file, start, hpage, node);
2037                 }
2038         }
2039
2040         /* TODO: tracepoints */
2041 }
2042 #else
2043 static void khugepaged_scan_file(struct mm_struct *mm,
2044                 struct file *file, pgoff_t start, struct page **hpage)
2045 {
2046         BUILD_BUG();
2047 }
2048
2049 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2050 {
2051         return 0;
2052 }
2053 #endif
2054
2055 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2056                                             struct page **hpage)
2057         __releases(&khugepaged_mm_lock)
2058         __acquires(&khugepaged_mm_lock)
2059 {
2060         struct mm_slot *mm_slot;
2061         struct mm_struct *mm;
2062         struct vm_area_struct *vma;
2063         int progress = 0;
2064
2065         VM_BUG_ON(!pages);
2066         lockdep_assert_held(&khugepaged_mm_lock);
2067
2068         if (khugepaged_scan.mm_slot)
2069                 mm_slot = khugepaged_scan.mm_slot;
2070         else {
2071                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2072                                      struct mm_slot, mm_node);
2073                 khugepaged_scan.address = 0;
2074                 khugepaged_scan.mm_slot = mm_slot;
2075         }
2076         spin_unlock(&khugepaged_mm_lock);
2077         khugepaged_collapse_pte_mapped_thps(mm_slot);
2078
2079         mm = mm_slot->mm;
2080         /*
2081          * Don't wait for semaphore (to avoid long wait times).  Just move to
2082          * the next mm on the list.
2083          */
2084         vma = NULL;
2085         if (unlikely(!mmap_read_trylock(mm)))
2086                 goto breakouterloop_mmap_lock;
2087         if (likely(!khugepaged_test_exit(mm)))
2088                 vma = find_vma(mm, khugepaged_scan.address);
2089
2090         progress++;
2091         for (; vma; vma = vma->vm_next) {
2092                 unsigned long hstart, hend;
2093
2094                 cond_resched();
2095                 if (unlikely(khugepaged_test_exit(mm))) {
2096                         progress++;
2097                         break;
2098                 }
2099                 if (!hugepage_vma_check(vma, vma->vm_flags)) {
2100 skip:
2101                         progress++;
2102                         continue;
2103                 }
2104                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2105                 hend = vma->vm_end & HPAGE_PMD_MASK;
2106                 if (hstart >= hend)
2107                         goto skip;
2108                 if (khugepaged_scan.address > hend)
2109                         goto skip;
2110                 if (khugepaged_scan.address < hstart)
2111                         khugepaged_scan.address = hstart;
2112                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2113                 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2114                         goto skip;
2115
2116                 while (khugepaged_scan.address < hend) {
2117                         int ret;
2118                         cond_resched();
2119                         if (unlikely(khugepaged_test_exit(mm)))
2120                                 goto breakouterloop;
2121
2122                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2123                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2124                                   hend);
2125                         if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2126                                 struct file *file = get_file(vma->vm_file);
2127                                 pgoff_t pgoff = linear_page_index(vma,
2128                                                 khugepaged_scan.address);
2129
2130                                 mmap_read_unlock(mm);
2131                                 ret = 1;
2132                                 khugepaged_scan_file(mm, file, pgoff, hpage);
2133                                 fput(file);
2134                         } else {
2135                                 ret = khugepaged_scan_pmd(mm, vma,
2136                                                 khugepaged_scan.address,
2137                                                 hpage);
2138                         }
2139                         /* move to next address */
2140                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2141                         progress += HPAGE_PMD_NR;
2142                         if (ret)
2143                                 /* we released mmap_lock so break loop */
2144                                 goto breakouterloop_mmap_lock;
2145                         if (progress >= pages)
2146                                 goto breakouterloop;
2147                 }
2148         }
2149 breakouterloop:
2150         mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2151 breakouterloop_mmap_lock:
2152
2153         spin_lock(&khugepaged_mm_lock);
2154         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2155         /*
2156          * Release the current mm_slot if this mm is about to die, or
2157          * if we scanned all vmas of this mm.
2158          */
2159         if (khugepaged_test_exit(mm) || !vma) {
2160                 /*
2161                  * Make sure that if mm_users is reaching zero while
2162                  * khugepaged runs here, khugepaged_exit will find
2163                  * mm_slot not pointing to the exiting mm.
2164                  */
2165                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2166                         khugepaged_scan.mm_slot = list_entry(
2167                                 mm_slot->mm_node.next,
2168                                 struct mm_slot, mm_node);
2169                         khugepaged_scan.address = 0;
2170                 } else {
2171                         khugepaged_scan.mm_slot = NULL;
2172                         khugepaged_full_scans++;
2173                 }
2174
2175                 collect_mm_slot(mm_slot);
2176         }
2177
2178         return progress;
2179 }
2180
2181 static int khugepaged_has_work(void)
2182 {
2183         return !list_empty(&khugepaged_scan.mm_head) &&
2184                 khugepaged_enabled();
2185 }
2186
2187 static int khugepaged_wait_event(void)
2188 {
2189         return !list_empty(&khugepaged_scan.mm_head) ||
2190                 kthread_should_stop();
2191 }
2192
2193 static void khugepaged_do_scan(void)
2194 {
2195         struct page *hpage = NULL;
2196         unsigned int progress = 0, pass_through_head = 0;
2197         unsigned int pages = khugepaged_pages_to_scan;
2198         bool wait = true;
2199
2200         barrier(); /* write khugepaged_pages_to_scan to local stack */
2201
2202         lru_add_drain_all();
2203
2204         while (progress < pages) {
2205                 if (!khugepaged_prealloc_page(&hpage, &wait))
2206                         break;
2207
2208                 cond_resched();
2209
2210                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2211                         break;
2212
2213                 spin_lock(&khugepaged_mm_lock);
2214                 if (!khugepaged_scan.mm_slot)
2215                         pass_through_head++;
2216                 if (khugepaged_has_work() &&
2217                     pass_through_head < 2)
2218                         progress += khugepaged_scan_mm_slot(pages - progress,
2219                                                             &hpage);
2220                 else
2221                         progress = pages;
2222                 spin_unlock(&khugepaged_mm_lock);
2223         }
2224
2225         if (!IS_ERR_OR_NULL(hpage))
2226                 put_page(hpage);
2227 }
2228
2229 static bool khugepaged_should_wakeup(void)
2230 {
2231         return kthread_should_stop() ||
2232                time_after_eq(jiffies, khugepaged_sleep_expire);
2233 }
2234
2235 static void khugepaged_wait_work(void)
2236 {
2237         if (khugepaged_has_work()) {
2238                 const unsigned long scan_sleep_jiffies =
2239                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2240
2241                 if (!scan_sleep_jiffies)
2242                         return;
2243
2244                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2245                 wait_event_freezable_timeout(khugepaged_wait,
2246                                              khugepaged_should_wakeup(),
2247                                              scan_sleep_jiffies);
2248                 return;
2249         }
2250
2251         if (khugepaged_enabled())
2252                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2253 }
2254
2255 static int khugepaged(void *none)
2256 {
2257         struct mm_slot *mm_slot;
2258
2259         set_freezable();
2260         set_user_nice(current, MAX_NICE);
2261
2262         while (!kthread_should_stop()) {
2263                 khugepaged_do_scan();
2264                 khugepaged_wait_work();
2265         }
2266
2267         spin_lock(&khugepaged_mm_lock);
2268         mm_slot = khugepaged_scan.mm_slot;
2269         khugepaged_scan.mm_slot = NULL;
2270         if (mm_slot)
2271                 collect_mm_slot(mm_slot);
2272         spin_unlock(&khugepaged_mm_lock);
2273         return 0;
2274 }
2275
2276 static void set_recommended_min_free_kbytes(void)
2277 {
2278         struct zone *zone;
2279         int nr_zones = 0;
2280         unsigned long recommended_min;
2281
2282         for_each_populated_zone(zone) {
2283                 /*
2284                  * We don't need to worry about fragmentation of
2285                  * ZONE_MOVABLE since it only has movable pages.
2286                  */
2287                 if (zone_idx(zone) > gfp_zone(GFP_USER))
2288                         continue;
2289
2290                 nr_zones++;
2291         }
2292
2293         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2294         recommended_min = pageblock_nr_pages * nr_zones * 2;
2295
2296         /*
2297          * Make sure that on average at least two pageblocks are almost free
2298          * of another type, one for a migratetype to fall back to and a
2299          * second to avoid subsequent fallbacks of other types There are 3
2300          * MIGRATE_TYPES we care about.
2301          */
2302         recommended_min += pageblock_nr_pages * nr_zones *
2303                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2304
2305         /* don't ever allow to reserve more than 5% of the lowmem */
2306         recommended_min = min(recommended_min,
2307                               (unsigned long) nr_free_buffer_pages() / 20);
2308         recommended_min <<= (PAGE_SHIFT-10);
2309
2310         if (recommended_min > min_free_kbytes) {
2311                 if (user_min_free_kbytes >= 0)
2312                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2313                                 min_free_kbytes, recommended_min);
2314
2315                 min_free_kbytes = recommended_min;
2316         }
2317         setup_per_zone_wmarks();
2318 }
2319
2320 int start_stop_khugepaged(void)
2321 {
2322         int err = 0;
2323
2324         mutex_lock(&khugepaged_mutex);
2325         if (khugepaged_enabled()) {
2326                 if (!khugepaged_thread)
2327                         khugepaged_thread = kthread_run(khugepaged, NULL,
2328                                                         "khugepaged");
2329                 if (IS_ERR(khugepaged_thread)) {
2330                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2331                         err = PTR_ERR(khugepaged_thread);
2332                         khugepaged_thread = NULL;
2333                         goto fail;
2334                 }
2335
2336                 if (!list_empty(&khugepaged_scan.mm_head))
2337                         wake_up_interruptible(&khugepaged_wait);
2338
2339                 set_recommended_min_free_kbytes();
2340         } else if (khugepaged_thread) {
2341                 kthread_stop(khugepaged_thread);
2342                 khugepaged_thread = NULL;
2343         }
2344 fail:
2345         mutex_unlock(&khugepaged_mutex);
2346         return err;
2347 }
2348
2349 void khugepaged_min_free_kbytes_update(void)
2350 {
2351         mutex_lock(&khugepaged_mutex);
2352         if (khugepaged_enabled() && khugepaged_thread)
2353                 set_recommended_min_free_kbytes();
2354         mutex_unlock(&khugepaged_mutex);
2355 }