Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / mm / kfence / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/irq_work.h>
14 #include <linux/kcsan-checks.h>
15 #include <linux/kfence.h>
16 #include <linux/kmemleak.h>
17 #include <linux/list.h>
18 #include <linux/lockdep.h>
19 #include <linux/memblock.h>
20 #include <linux/moduleparam.h>
21 #include <linux/random.h>
22 #include <linux/rcupdate.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/seq_file.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/string.h>
28
29 #include <asm/kfence.h>
30
31 #include "kfence.h"
32
33 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
34 #define KFENCE_WARN_ON(cond)                                                   \
35         ({                                                                     \
36                 const bool __cond = WARN_ON(cond);                             \
37                 if (unlikely(__cond))                                          \
38                         WRITE_ONCE(kfence_enabled, false);                     \
39                 __cond;                                                        \
40         })
41
42 /* === Data ================================================================= */
43
44 static bool kfence_enabled __read_mostly;
45
46 static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
47
48 #ifdef MODULE_PARAM_PREFIX
49 #undef MODULE_PARAM_PREFIX
50 #endif
51 #define MODULE_PARAM_PREFIX "kfence."
52
53 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
54 {
55         unsigned long num;
56         int ret = kstrtoul(val, 0, &num);
57
58         if (ret < 0)
59                 return ret;
60
61         if (!num) /* Using 0 to indicate KFENCE is disabled. */
62                 WRITE_ONCE(kfence_enabled, false);
63         else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
64                 return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */
65
66         *((unsigned long *)kp->arg) = num;
67         return 0;
68 }
69
70 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
71 {
72         if (!READ_ONCE(kfence_enabled))
73                 return sprintf(buffer, "0\n");
74
75         return param_get_ulong(buffer, kp);
76 }
77
78 static const struct kernel_param_ops sample_interval_param_ops = {
79         .set = param_set_sample_interval,
80         .get = param_get_sample_interval,
81 };
82 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
83
84 /* The pool of pages used for guard pages and objects. */
85 char *__kfence_pool __ro_after_init;
86 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
87
88 /*
89  * Per-object metadata, with one-to-one mapping of object metadata to
90  * backing pages (in __kfence_pool).
91  */
92 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
93 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
94
95 /* Freelist with available objects. */
96 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
97 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
98
99 #ifdef CONFIG_KFENCE_STATIC_KEYS
100 /* The static key to set up a KFENCE allocation. */
101 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
102 #endif
103
104 /* Gates the allocation, ensuring only one succeeds in a given period. */
105 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
106
107 /* Statistics counters for debugfs. */
108 enum kfence_counter_id {
109         KFENCE_COUNTER_ALLOCATED,
110         KFENCE_COUNTER_ALLOCS,
111         KFENCE_COUNTER_FREES,
112         KFENCE_COUNTER_ZOMBIES,
113         KFENCE_COUNTER_BUGS,
114         KFENCE_COUNTER_COUNT,
115 };
116 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
117 static const char *const counter_names[] = {
118         [KFENCE_COUNTER_ALLOCATED]      = "currently allocated",
119         [KFENCE_COUNTER_ALLOCS]         = "total allocations",
120         [KFENCE_COUNTER_FREES]          = "total frees",
121         [KFENCE_COUNTER_ZOMBIES]        = "zombie allocations",
122         [KFENCE_COUNTER_BUGS]           = "total bugs",
123 };
124 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
125
126 /* === Internals ============================================================ */
127
128 static bool kfence_protect(unsigned long addr)
129 {
130         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
131 }
132
133 static bool kfence_unprotect(unsigned long addr)
134 {
135         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
136 }
137
138 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr)
139 {
140         long index;
141
142         /* The checks do not affect performance; only called from slow-paths. */
143
144         if (!is_kfence_address((void *)addr))
145                 return NULL;
146
147         /*
148          * May be an invalid index if called with an address at the edge of
149          * __kfence_pool, in which case we would report an "invalid access"
150          * error.
151          */
152         index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1;
153         if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS)
154                 return NULL;
155
156         return &kfence_metadata[index];
157 }
158
159 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
160 {
161         unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
162         unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
163
164         /* The checks do not affect performance; only called from slow-paths. */
165
166         /* Only call with a pointer into kfence_metadata. */
167         if (KFENCE_WARN_ON(meta < kfence_metadata ||
168                            meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
169                 return 0;
170
171         /*
172          * This metadata object only ever maps to 1 page; verify that the stored
173          * address is in the expected range.
174          */
175         if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
176                 return 0;
177
178         return pageaddr;
179 }
180
181 /*
182  * Update the object's metadata state, including updating the alloc/free stacks
183  * depending on the state transition.
184  */
185 static noinline void metadata_update_state(struct kfence_metadata *meta,
186                                            enum kfence_object_state next)
187 {
188         struct kfence_track *track =
189                 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
190
191         lockdep_assert_held(&meta->lock);
192
193         /*
194          * Skip over 1 (this) functions; noinline ensures we do not accidentally
195          * skip over the caller by never inlining.
196          */
197         track->num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
198         track->pid = task_pid_nr(current);
199
200         /*
201          * Pairs with READ_ONCE() in
202          *      kfence_shutdown_cache(),
203          *      kfence_handle_page_fault().
204          */
205         WRITE_ONCE(meta->state, next);
206 }
207
208 /* Write canary byte to @addr. */
209 static inline bool set_canary_byte(u8 *addr)
210 {
211         *addr = KFENCE_CANARY_PATTERN(addr);
212         return true;
213 }
214
215 /* Check canary byte at @addr. */
216 static inline bool check_canary_byte(u8 *addr)
217 {
218         if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
219                 return true;
220
221         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
222         kfence_report_error((unsigned long)addr, false, NULL, addr_to_metadata((unsigned long)addr),
223                             KFENCE_ERROR_CORRUPTION);
224         return false;
225 }
226
227 /* __always_inline this to ensure we won't do an indirect call to fn. */
228 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
229 {
230         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
231         unsigned long addr;
232
233         lockdep_assert_held(&meta->lock);
234
235         /*
236          * We'll iterate over each canary byte per-side until fn() returns
237          * false. However, we'll still iterate over the canary bytes to the
238          * right of the object even if there was an error in the canary bytes to
239          * the left of the object. Specifically, if check_canary_byte()
240          * generates an error, showing both sides might give more clues as to
241          * what the error is about when displaying which bytes were corrupted.
242          */
243
244         /* Apply to left of object. */
245         for (addr = pageaddr; addr < meta->addr; addr++) {
246                 if (!fn((u8 *)addr))
247                         break;
248         }
249
250         /* Apply to right of object. */
251         for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
252                 if (!fn((u8 *)addr))
253                         break;
254         }
255 }
256
257 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp)
258 {
259         struct kfence_metadata *meta = NULL;
260         unsigned long flags;
261         struct page *page;
262         void *addr;
263
264         /* Try to obtain a free object. */
265         raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
266         if (!list_empty(&kfence_freelist)) {
267                 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
268                 list_del_init(&meta->list);
269         }
270         raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
271         if (!meta)
272                 return NULL;
273
274         if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
275                 /*
276                  * This is extremely unlikely -- we are reporting on a
277                  * use-after-free, which locked meta->lock, and the reporting
278                  * code via printk calls kmalloc() which ends up in
279                  * kfence_alloc() and tries to grab the same object that we're
280                  * reporting on. While it has never been observed, lockdep does
281                  * report that there is a possibility of deadlock. Fix it by
282                  * using trylock and bailing out gracefully.
283                  */
284                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
285                 /* Put the object back on the freelist. */
286                 list_add_tail(&meta->list, &kfence_freelist);
287                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
288
289                 return NULL;
290         }
291
292         meta->addr = metadata_to_pageaddr(meta);
293         /* Unprotect if we're reusing this page. */
294         if (meta->state == KFENCE_OBJECT_FREED)
295                 kfence_unprotect(meta->addr);
296
297         /*
298          * Note: for allocations made before RNG initialization, will always
299          * return zero. We still benefit from enabling KFENCE as early as
300          * possible, even when the RNG is not yet available, as this will allow
301          * KFENCE to detect bugs due to earlier allocations. The only downside
302          * is that the out-of-bounds accesses detected are deterministic for
303          * such allocations.
304          */
305         if (prandom_u32_max(2)) {
306                 /* Allocate on the "right" side, re-calculate address. */
307                 meta->addr += PAGE_SIZE - size;
308                 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
309         }
310
311         addr = (void *)meta->addr;
312
313         /* Update remaining metadata. */
314         metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED);
315         /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
316         WRITE_ONCE(meta->cache, cache);
317         meta->size = size;
318         for_each_canary(meta, set_canary_byte);
319
320         /* Set required struct page fields. */
321         page = virt_to_page(meta->addr);
322         page->slab_cache = cache;
323         if (IS_ENABLED(CONFIG_SLUB))
324                 page->objects = 1;
325         if (IS_ENABLED(CONFIG_SLAB))
326                 page->s_mem = addr;
327
328         raw_spin_unlock_irqrestore(&meta->lock, flags);
329
330         /* Memory initialization. */
331
332         /*
333          * We check slab_want_init_on_alloc() ourselves, rather than letting
334          * SL*B do the initialization, as otherwise we might overwrite KFENCE's
335          * redzone.
336          */
337         if (unlikely(slab_want_init_on_alloc(gfp, cache)))
338                 memzero_explicit(addr, size);
339         if (cache->ctor)
340                 cache->ctor(addr);
341
342         if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
343                 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
344
345         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
346         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
347
348         return addr;
349 }
350
351 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
352 {
353         struct kcsan_scoped_access assert_page_exclusive;
354         unsigned long flags;
355
356         raw_spin_lock_irqsave(&meta->lock, flags);
357
358         if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
359                 /* Invalid or double-free, bail out. */
360                 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
361                 kfence_report_error((unsigned long)addr, false, NULL, meta,
362                                     KFENCE_ERROR_INVALID_FREE);
363                 raw_spin_unlock_irqrestore(&meta->lock, flags);
364                 return;
365         }
366
367         /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
368         kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
369                                   KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
370                                   &assert_page_exclusive);
371
372         if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
373                 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
374
375         /* Restore page protection if there was an OOB access. */
376         if (meta->unprotected_page) {
377                 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
378                 kfence_protect(meta->unprotected_page);
379                 meta->unprotected_page = 0;
380         }
381
382         /* Check canary bytes for memory corruption. */
383         for_each_canary(meta, check_canary_byte);
384
385         /*
386          * Clear memory if init-on-free is set. While we protect the page, the
387          * data is still there, and after a use-after-free is detected, we
388          * unprotect the page, so the data is still accessible.
389          */
390         if (!zombie && unlikely(slab_want_init_on_free(meta->cache)))
391                 memzero_explicit(addr, meta->size);
392
393         /* Mark the object as freed. */
394         metadata_update_state(meta, KFENCE_OBJECT_FREED);
395
396         raw_spin_unlock_irqrestore(&meta->lock, flags);
397
398         /* Protect to detect use-after-frees. */
399         kfence_protect((unsigned long)addr);
400
401         kcsan_end_scoped_access(&assert_page_exclusive);
402         if (!zombie) {
403                 /* Add it to the tail of the freelist for reuse. */
404                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
405                 KFENCE_WARN_ON(!list_empty(&meta->list));
406                 list_add_tail(&meta->list, &kfence_freelist);
407                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
408
409                 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
410                 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
411         } else {
412                 /* See kfence_shutdown_cache(). */
413                 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
414         }
415 }
416
417 static void rcu_guarded_free(struct rcu_head *h)
418 {
419         struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
420
421         kfence_guarded_free((void *)meta->addr, meta, false);
422 }
423
424 static bool __init kfence_init_pool(void)
425 {
426         unsigned long addr = (unsigned long)__kfence_pool;
427         struct page *pages;
428         int i;
429
430         if (!__kfence_pool)
431                 return false;
432
433         if (!arch_kfence_init_pool())
434                 goto err;
435
436         pages = virt_to_page(addr);
437
438         /*
439          * Set up object pages: they must have PG_slab set, to avoid freeing
440          * these as real pages.
441          *
442          * We also want to avoid inserting kfence_free() in the kfree()
443          * fast-path in SLUB, and therefore need to ensure kfree() correctly
444          * enters __slab_free() slow-path.
445          */
446         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
447                 if (!i || (i % 2))
448                         continue;
449
450                 /* Verify we do not have a compound head page. */
451                 if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
452                         goto err;
453
454                 __SetPageSlab(&pages[i]);
455         }
456
457         /*
458          * Protect the first 2 pages. The first page is mostly unnecessary, and
459          * merely serves as an extended guard page. However, adding one
460          * additional page in the beginning gives us an even number of pages,
461          * which simplifies the mapping of address to metadata index.
462          */
463         for (i = 0; i < 2; i++) {
464                 if (unlikely(!kfence_protect(addr)))
465                         goto err;
466
467                 addr += PAGE_SIZE;
468         }
469
470         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
471                 struct kfence_metadata *meta = &kfence_metadata[i];
472
473                 /* Initialize metadata. */
474                 INIT_LIST_HEAD(&meta->list);
475                 raw_spin_lock_init(&meta->lock);
476                 meta->state = KFENCE_OBJECT_UNUSED;
477                 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
478                 list_add_tail(&meta->list, &kfence_freelist);
479
480                 /* Protect the right redzone. */
481                 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
482                         goto err;
483
484                 addr += 2 * PAGE_SIZE;
485         }
486
487         /*
488          * The pool is live and will never be deallocated from this point on.
489          * Remove the pool object from the kmemleak object tree, as it would
490          * otherwise overlap with allocations returned by kfence_alloc(), which
491          * are registered with kmemleak through the slab post-alloc hook.
492          */
493         kmemleak_free(__kfence_pool);
494
495         return true;
496
497 err:
498         /*
499          * Only release unprotected pages, and do not try to go back and change
500          * page attributes due to risk of failing to do so as well. If changing
501          * page attributes for some pages fails, it is very likely that it also
502          * fails for the first page, and therefore expect addr==__kfence_pool in
503          * most failure cases.
504          */
505         memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
506         __kfence_pool = NULL;
507         return false;
508 }
509
510 /* === DebugFS Interface ==================================================== */
511
512 static int stats_show(struct seq_file *seq, void *v)
513 {
514         int i;
515
516         seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
517         for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
518                 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
519
520         return 0;
521 }
522 DEFINE_SHOW_ATTRIBUTE(stats);
523
524 /*
525  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
526  * start_object() and next_object() return the object index + 1, because NULL is used
527  * to stop iteration.
528  */
529 static void *start_object(struct seq_file *seq, loff_t *pos)
530 {
531         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
532                 return (void *)((long)*pos + 1);
533         return NULL;
534 }
535
536 static void stop_object(struct seq_file *seq, void *v)
537 {
538 }
539
540 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
541 {
542         ++*pos;
543         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
544                 return (void *)((long)*pos + 1);
545         return NULL;
546 }
547
548 static int show_object(struct seq_file *seq, void *v)
549 {
550         struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
551         unsigned long flags;
552
553         raw_spin_lock_irqsave(&meta->lock, flags);
554         kfence_print_object(seq, meta);
555         raw_spin_unlock_irqrestore(&meta->lock, flags);
556         seq_puts(seq, "---------------------------------\n");
557
558         return 0;
559 }
560
561 static const struct seq_operations object_seqops = {
562         .start = start_object,
563         .next = next_object,
564         .stop = stop_object,
565         .show = show_object,
566 };
567
568 static int open_objects(struct inode *inode, struct file *file)
569 {
570         return seq_open(file, &object_seqops);
571 }
572
573 static const struct file_operations objects_fops = {
574         .open = open_objects,
575         .read = seq_read,
576         .llseek = seq_lseek,
577 };
578
579 static int __init kfence_debugfs_init(void)
580 {
581         struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
582
583         debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
584         debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
585         return 0;
586 }
587
588 late_initcall(kfence_debugfs_init);
589
590 /* === Allocation Gate Timer ================================================ */
591
592 #ifdef CONFIG_KFENCE_STATIC_KEYS
593 /* Wait queue to wake up allocation-gate timer task. */
594 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
595
596 static void wake_up_kfence_timer(struct irq_work *work)
597 {
598         wake_up(&allocation_wait);
599 }
600 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
601 #endif
602
603 /*
604  * Set up delayed work, which will enable and disable the static key. We need to
605  * use a work queue (rather than a simple timer), since enabling and disabling a
606  * static key cannot be done from an interrupt.
607  *
608  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
609  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
610  * more aggressive sampling intervals), we could get away with a variant that
611  * avoids IPIs, at the cost of not immediately capturing allocations if the
612  * instructions remain cached.
613  */
614 static struct delayed_work kfence_timer;
615 static void toggle_allocation_gate(struct work_struct *work)
616 {
617         if (!READ_ONCE(kfence_enabled))
618                 return;
619
620         atomic_set(&kfence_allocation_gate, 0);
621 #ifdef CONFIG_KFENCE_STATIC_KEYS
622         /* Enable static key, and await allocation to happen. */
623         static_branch_enable(&kfence_allocation_key);
624
625         if (sysctl_hung_task_timeout_secs) {
626                 /*
627                  * During low activity with no allocations we might wait a
628                  * while; let's avoid the hung task warning.
629                  */
630                 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
631                                         sysctl_hung_task_timeout_secs * HZ / 2);
632         } else {
633                 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
634         }
635
636         /* Disable static key and reset timer. */
637         static_branch_disable(&kfence_allocation_key);
638 #endif
639         queue_delayed_work(system_power_efficient_wq, &kfence_timer,
640                            msecs_to_jiffies(kfence_sample_interval));
641 }
642 static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate);
643
644 /* === Public interface ===================================================== */
645
646 void __init kfence_alloc_pool(void)
647 {
648         if (!kfence_sample_interval)
649                 return;
650
651         __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
652
653         if (!__kfence_pool)
654                 pr_err("failed to allocate pool\n");
655 }
656
657 void __init kfence_init(void)
658 {
659         /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
660         if (!kfence_sample_interval)
661                 return;
662
663         if (!kfence_init_pool()) {
664                 pr_err("%s failed\n", __func__);
665                 return;
666         }
667
668         WRITE_ONCE(kfence_enabled, true);
669         queue_delayed_work(system_power_efficient_wq, &kfence_timer, 0);
670         pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
671                 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
672                 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
673 }
674
675 void kfence_shutdown_cache(struct kmem_cache *s)
676 {
677         unsigned long flags;
678         struct kfence_metadata *meta;
679         int i;
680
681         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
682                 bool in_use;
683
684                 meta = &kfence_metadata[i];
685
686                 /*
687                  * If we observe some inconsistent cache and state pair where we
688                  * should have returned false here, cache destruction is racing
689                  * with either kmem_cache_alloc() or kmem_cache_free(). Taking
690                  * the lock will not help, as different critical section
691                  * serialization will have the same outcome.
692                  */
693                 if (READ_ONCE(meta->cache) != s ||
694                     READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
695                         continue;
696
697                 raw_spin_lock_irqsave(&meta->lock, flags);
698                 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
699                 raw_spin_unlock_irqrestore(&meta->lock, flags);
700
701                 if (in_use) {
702                         /*
703                          * This cache still has allocations, and we should not
704                          * release them back into the freelist so they can still
705                          * safely be used and retain the kernel's default
706                          * behaviour of keeping the allocations alive (leak the
707                          * cache); however, they effectively become "zombie
708                          * allocations" as the KFENCE objects are the only ones
709                          * still in use and the owning cache is being destroyed.
710                          *
711                          * We mark them freed, so that any subsequent use shows
712                          * more useful error messages that will include stack
713                          * traces of the user of the object, the original
714                          * allocation, and caller to shutdown_cache().
715                          */
716                         kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
717                 }
718         }
719
720         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
721                 meta = &kfence_metadata[i];
722
723                 /* See above. */
724                 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
725                         continue;
726
727                 raw_spin_lock_irqsave(&meta->lock, flags);
728                 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
729                         meta->cache = NULL;
730                 raw_spin_unlock_irqrestore(&meta->lock, flags);
731         }
732 }
733
734 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
735 {
736         /*
737          * allocation_gate only needs to become non-zero, so it doesn't make
738          * sense to continue writing to it and pay the associated contention
739          * cost, in case we have a large number of concurrent allocations.
740          */
741         if (atomic_read(&kfence_allocation_gate) || atomic_inc_return(&kfence_allocation_gate) > 1)
742                 return NULL;
743 #ifdef CONFIG_KFENCE_STATIC_KEYS
744         /*
745          * waitqueue_active() is fully ordered after the update of
746          * kfence_allocation_gate per atomic_inc_return().
747          */
748         if (waitqueue_active(&allocation_wait)) {
749                 /*
750                  * Calling wake_up() here may deadlock when allocations happen
751                  * from within timer code. Use an irq_work to defer it.
752                  */
753                 irq_work_queue(&wake_up_kfence_timer_work);
754         }
755 #endif
756
757         if (!READ_ONCE(kfence_enabled))
758                 return NULL;
759
760         if (size > PAGE_SIZE)
761                 return NULL;
762
763         return kfence_guarded_alloc(s, size, flags);
764 }
765
766 size_t kfence_ksize(const void *addr)
767 {
768         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
769
770         /*
771          * Read locklessly -- if there is a race with __kfence_alloc(), this is
772          * either a use-after-free or invalid access.
773          */
774         return meta ? meta->size : 0;
775 }
776
777 void *kfence_object_start(const void *addr)
778 {
779         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
780
781         /*
782          * Read locklessly -- if there is a race with __kfence_alloc(), this is
783          * either a use-after-free or invalid access.
784          */
785         return meta ? (void *)meta->addr : NULL;
786 }
787
788 void __kfence_free(void *addr)
789 {
790         struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
791
792         /*
793          * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
794          * the object, as the object page may be recycled for other-typed
795          * objects once it has been freed. meta->cache may be NULL if the cache
796          * was destroyed.
797          */
798         if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
799                 call_rcu(&meta->rcu_head, rcu_guarded_free);
800         else
801                 kfence_guarded_free(addr, meta, false);
802 }
803
804 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
805 {
806         const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
807         struct kfence_metadata *to_report = NULL;
808         enum kfence_error_type error_type;
809         unsigned long flags;
810
811         if (!is_kfence_address((void *)addr))
812                 return false;
813
814         if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
815                 return kfence_unprotect(addr); /* ... unprotect and proceed. */
816
817         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
818
819         if (page_index % 2) {
820                 /* This is a redzone, report a buffer overflow. */
821                 struct kfence_metadata *meta;
822                 int distance = 0;
823
824                 meta = addr_to_metadata(addr - PAGE_SIZE);
825                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
826                         to_report = meta;
827                         /* Data race ok; distance calculation approximate. */
828                         distance = addr - data_race(meta->addr + meta->size);
829                 }
830
831                 meta = addr_to_metadata(addr + PAGE_SIZE);
832                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
833                         /* Data race ok; distance calculation approximate. */
834                         if (!to_report || distance > data_race(meta->addr) - addr)
835                                 to_report = meta;
836                 }
837
838                 if (!to_report)
839                         goto out;
840
841                 raw_spin_lock_irqsave(&to_report->lock, flags);
842                 to_report->unprotected_page = addr;
843                 error_type = KFENCE_ERROR_OOB;
844
845                 /*
846                  * If the object was freed before we took the look we can still
847                  * report this as an OOB -- the report will simply show the
848                  * stacktrace of the free as well.
849                  */
850         } else {
851                 to_report = addr_to_metadata(addr);
852                 if (!to_report)
853                         goto out;
854
855                 raw_spin_lock_irqsave(&to_report->lock, flags);
856                 error_type = KFENCE_ERROR_UAF;
857                 /*
858                  * We may race with __kfence_alloc(), and it is possible that a
859                  * freed object may be reallocated. We simply report this as a
860                  * use-after-free, with the stack trace showing the place where
861                  * the object was re-allocated.
862                  */
863         }
864
865 out:
866         if (to_report) {
867                 kfence_report_error(addr, is_write, regs, to_report, error_type);
868                 raw_spin_unlock_irqrestore(&to_report->lock, flags);
869         } else {
870                 /* This may be a UAF or OOB access, but we can't be sure. */
871                 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
872         }
873
874         return kfence_unprotect(addr); /* Unprotect and let access proceed. */
875 }