tools headers UAPI: Sync drm/i915_drm.h with the kernel sources
[linux-2.6-microblaze.git] / mm / frontswap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Frontswap frontend
4  *
5  * This code provides the generic "frontend" layer to call a matching
6  * "backend" driver implementation of frontswap.  See
7  * Documentation/vm/frontswap.rst for more information.
8  *
9  * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
10  * Author: Dan Magenheimer
11  */
12
13 #include <linux/mman.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/security.h>
17 #include <linux/module.h>
18 #include <linux/debugfs.h>
19 #include <linux/frontswap.h>
20 #include <linux/swapfile.h>
21
22 DEFINE_STATIC_KEY_FALSE(frontswap_enabled_key);
23
24 /*
25  * frontswap_ops are added by frontswap_register_ops, and provide the
26  * frontswap "backend" implementation functions.  Multiple implementations
27  * may be registered, but implementations can never deregister.  This
28  * is a simple singly-linked list of all registered implementations.
29  */
30 static struct frontswap_ops *frontswap_ops __read_mostly;
31
32 #define for_each_frontswap_ops(ops)             \
33         for ((ops) = frontswap_ops; (ops); (ops) = (ops)->next)
34
35 /*
36  * If enabled, frontswap_store will return failure even on success.  As
37  * a result, the swap subsystem will always write the page to swap, in
38  * effect converting frontswap into a writethrough cache.  In this mode,
39  * there is no direct reduction in swap writes, but a frontswap backend
40  * can unilaterally "reclaim" any pages in use with no data loss, thus
41  * providing increases control over maximum memory usage due to frontswap.
42  */
43 static bool frontswap_writethrough_enabled __read_mostly;
44
45 /*
46  * If enabled, the underlying tmem implementation is capable of doing
47  * exclusive gets, so frontswap_load, on a successful tmem_get must
48  * mark the page as no longer in frontswap AND mark it dirty.
49  */
50 static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
51
52 #ifdef CONFIG_DEBUG_FS
53 /*
54  * Counters available via /sys/kernel/debug/frontswap (if debugfs is
55  * properly configured).  These are for information only so are not protected
56  * against increment races.
57  */
58 static u64 frontswap_loads;
59 static u64 frontswap_succ_stores;
60 static u64 frontswap_failed_stores;
61 static u64 frontswap_invalidates;
62
63 static inline void inc_frontswap_loads(void) {
64         data_race(frontswap_loads++);
65 }
66 static inline void inc_frontswap_succ_stores(void) {
67         data_race(frontswap_succ_stores++);
68 }
69 static inline void inc_frontswap_failed_stores(void) {
70         data_race(frontswap_failed_stores++);
71 }
72 static inline void inc_frontswap_invalidates(void) {
73         data_race(frontswap_invalidates++);
74 }
75 #else
76 static inline void inc_frontswap_loads(void) { }
77 static inline void inc_frontswap_succ_stores(void) { }
78 static inline void inc_frontswap_failed_stores(void) { }
79 static inline void inc_frontswap_invalidates(void) { }
80 #endif
81
82 /*
83  * Due to the asynchronous nature of the backends loading potentially
84  * _after_ the swap system has been activated, we have chokepoints
85  * on all frontswap functions to not call the backend until the backend
86  * has registered.
87  *
88  * This would not guards us against the user deciding to call swapoff right as
89  * we are calling the backend to initialize (so swapon is in action).
90  * Fortunately for us, the swapon_mutex has been taken by the callee so we are
91  * OK. The other scenario where calls to frontswap_store (called via
92  * swap_writepage) is racing with frontswap_invalidate_area (called via
93  * swapoff) is again guarded by the swap subsystem.
94  *
95  * While no backend is registered all calls to frontswap_[store|load|
96  * invalidate_area|invalidate_page] are ignored or fail.
97  *
98  * The time between the backend being registered and the swap file system
99  * calling the backend (via the frontswap_* functions) is indeterminate as
100  * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
101  * That is OK as we are comfortable missing some of these calls to the newly
102  * registered backend.
103  *
104  * Obviously the opposite (unloading the backend) must be done after all
105  * the frontswap_[store|load|invalidate_area|invalidate_page] start
106  * ignoring or failing the requests.  However, there is currently no way
107  * to unload a backend once it is registered.
108  */
109
110 /*
111  * Register operations for frontswap
112  */
113 void frontswap_register_ops(struct frontswap_ops *ops)
114 {
115         DECLARE_BITMAP(a, MAX_SWAPFILES);
116         DECLARE_BITMAP(b, MAX_SWAPFILES);
117         struct swap_info_struct *si;
118         unsigned int i;
119
120         bitmap_zero(a, MAX_SWAPFILES);
121         bitmap_zero(b, MAX_SWAPFILES);
122
123         spin_lock(&swap_lock);
124         plist_for_each_entry(si, &swap_active_head, list) {
125                 if (!WARN_ON(!si->frontswap_map))
126                         set_bit(si->type, a);
127         }
128         spin_unlock(&swap_lock);
129
130         /* the new ops needs to know the currently active swap devices */
131         for_each_set_bit(i, a, MAX_SWAPFILES)
132                 ops->init(i);
133
134         /*
135          * Setting frontswap_ops must happen after the ops->init() calls
136          * above; cmpxchg implies smp_mb() which will ensure the init is
137          * complete at this point.
138          */
139         do {
140                 ops->next = frontswap_ops;
141         } while (cmpxchg(&frontswap_ops, ops->next, ops) != ops->next);
142
143         static_branch_inc(&frontswap_enabled_key);
144
145         spin_lock(&swap_lock);
146         plist_for_each_entry(si, &swap_active_head, list) {
147                 if (si->frontswap_map)
148                         set_bit(si->type, b);
149         }
150         spin_unlock(&swap_lock);
151
152         /*
153          * On the very unlikely chance that a swap device was added or
154          * removed between setting the "a" list bits and the ops init
155          * calls, we re-check and do init or invalidate for any changed
156          * bits.
157          */
158         if (unlikely(!bitmap_equal(a, b, MAX_SWAPFILES))) {
159                 for (i = 0; i < MAX_SWAPFILES; i++) {
160                         if (!test_bit(i, a) && test_bit(i, b))
161                                 ops->init(i);
162                         else if (test_bit(i, a) && !test_bit(i, b))
163                                 ops->invalidate_area(i);
164                 }
165         }
166 }
167 EXPORT_SYMBOL(frontswap_register_ops);
168
169 /*
170  * Enable/disable frontswap writethrough (see above).
171  */
172 void frontswap_writethrough(bool enable)
173 {
174         frontswap_writethrough_enabled = enable;
175 }
176 EXPORT_SYMBOL(frontswap_writethrough);
177
178 /*
179  * Enable/disable frontswap exclusive gets (see above).
180  */
181 void frontswap_tmem_exclusive_gets(bool enable)
182 {
183         frontswap_tmem_exclusive_gets_enabled = enable;
184 }
185 EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
186
187 /*
188  * Called when a swap device is swapon'd.
189  */
190 void __frontswap_init(unsigned type, unsigned long *map)
191 {
192         struct swap_info_struct *sis = swap_info[type];
193         struct frontswap_ops *ops;
194
195         VM_BUG_ON(sis == NULL);
196
197         /*
198          * p->frontswap is a bitmap that we MUST have to figure out which page
199          * has gone in frontswap. Without it there is no point of continuing.
200          */
201         if (WARN_ON(!map))
202                 return;
203         /*
204          * Irregardless of whether the frontswap backend has been loaded
205          * before this function or it will be later, we _MUST_ have the
206          * p->frontswap set to something valid to work properly.
207          */
208         frontswap_map_set(sis, map);
209
210         for_each_frontswap_ops(ops)
211                 ops->init(type);
212 }
213 EXPORT_SYMBOL(__frontswap_init);
214
215 bool __frontswap_test(struct swap_info_struct *sis,
216                                 pgoff_t offset)
217 {
218         if (sis->frontswap_map)
219                 return test_bit(offset, sis->frontswap_map);
220         return false;
221 }
222 EXPORT_SYMBOL(__frontswap_test);
223
224 static inline void __frontswap_set(struct swap_info_struct *sis,
225                                    pgoff_t offset)
226 {
227         set_bit(offset, sis->frontswap_map);
228         atomic_inc(&sis->frontswap_pages);
229 }
230
231 static inline void __frontswap_clear(struct swap_info_struct *sis,
232                                      pgoff_t offset)
233 {
234         clear_bit(offset, sis->frontswap_map);
235         atomic_dec(&sis->frontswap_pages);
236 }
237
238 /*
239  * "Store" data from a page to frontswap and associate it with the page's
240  * swaptype and offset.  Page must be locked and in the swap cache.
241  * If frontswap already contains a page with matching swaptype and
242  * offset, the frontswap implementation may either overwrite the data and
243  * return success or invalidate the page from frontswap and return failure.
244  */
245 int __frontswap_store(struct page *page)
246 {
247         int ret = -1;
248         swp_entry_t entry = { .val = page_private(page), };
249         int type = swp_type(entry);
250         struct swap_info_struct *sis = swap_info[type];
251         pgoff_t offset = swp_offset(entry);
252         struct frontswap_ops *ops;
253
254         VM_BUG_ON(!frontswap_ops);
255         VM_BUG_ON(!PageLocked(page));
256         VM_BUG_ON(sis == NULL);
257
258         /*
259          * If a dup, we must remove the old page first; we can't leave the
260          * old page no matter if the store of the new page succeeds or fails,
261          * and we can't rely on the new page replacing the old page as we may
262          * not store to the same implementation that contains the old page.
263          */
264         if (__frontswap_test(sis, offset)) {
265                 __frontswap_clear(sis, offset);
266                 for_each_frontswap_ops(ops)
267                         ops->invalidate_page(type, offset);
268         }
269
270         /* Try to store in each implementation, until one succeeds. */
271         for_each_frontswap_ops(ops) {
272                 ret = ops->store(type, offset, page);
273                 if (!ret) /* successful store */
274                         break;
275         }
276         if (ret == 0) {
277                 __frontswap_set(sis, offset);
278                 inc_frontswap_succ_stores();
279         } else {
280                 inc_frontswap_failed_stores();
281         }
282         if (frontswap_writethrough_enabled)
283                 /* report failure so swap also writes to swap device */
284                 ret = -1;
285         return ret;
286 }
287 EXPORT_SYMBOL(__frontswap_store);
288
289 /*
290  * "Get" data from frontswap associated with swaptype and offset that were
291  * specified when the data was put to frontswap and use it to fill the
292  * specified page with data. Page must be locked and in the swap cache.
293  */
294 int __frontswap_load(struct page *page)
295 {
296         int ret = -1;
297         swp_entry_t entry = { .val = page_private(page), };
298         int type = swp_type(entry);
299         struct swap_info_struct *sis = swap_info[type];
300         pgoff_t offset = swp_offset(entry);
301         struct frontswap_ops *ops;
302
303         VM_BUG_ON(!frontswap_ops);
304         VM_BUG_ON(!PageLocked(page));
305         VM_BUG_ON(sis == NULL);
306
307         if (!__frontswap_test(sis, offset))
308                 return -1;
309
310         /* Try loading from each implementation, until one succeeds. */
311         for_each_frontswap_ops(ops) {
312                 ret = ops->load(type, offset, page);
313                 if (!ret) /* successful load */
314                         break;
315         }
316         if (ret == 0) {
317                 inc_frontswap_loads();
318                 if (frontswap_tmem_exclusive_gets_enabled) {
319                         SetPageDirty(page);
320                         __frontswap_clear(sis, offset);
321                 }
322         }
323         return ret;
324 }
325 EXPORT_SYMBOL(__frontswap_load);
326
327 /*
328  * Invalidate any data from frontswap associated with the specified swaptype
329  * and offset so that a subsequent "get" will fail.
330  */
331 void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
332 {
333         struct swap_info_struct *sis = swap_info[type];
334         struct frontswap_ops *ops;
335
336         VM_BUG_ON(!frontswap_ops);
337         VM_BUG_ON(sis == NULL);
338
339         if (!__frontswap_test(sis, offset))
340                 return;
341
342         for_each_frontswap_ops(ops)
343                 ops->invalidate_page(type, offset);
344         __frontswap_clear(sis, offset);
345         inc_frontswap_invalidates();
346 }
347 EXPORT_SYMBOL(__frontswap_invalidate_page);
348
349 /*
350  * Invalidate all data from frontswap associated with all offsets for the
351  * specified swaptype.
352  */
353 void __frontswap_invalidate_area(unsigned type)
354 {
355         struct swap_info_struct *sis = swap_info[type];
356         struct frontswap_ops *ops;
357
358         VM_BUG_ON(!frontswap_ops);
359         VM_BUG_ON(sis == NULL);
360
361         if (sis->frontswap_map == NULL)
362                 return;
363
364         for_each_frontswap_ops(ops)
365                 ops->invalidate_area(type);
366         atomic_set(&sis->frontswap_pages, 0);
367         bitmap_zero(sis->frontswap_map, sis->max);
368 }
369 EXPORT_SYMBOL(__frontswap_invalidate_area);
370
371 static unsigned long __frontswap_curr_pages(void)
372 {
373         unsigned long totalpages = 0;
374         struct swap_info_struct *si = NULL;
375
376         assert_spin_locked(&swap_lock);
377         plist_for_each_entry(si, &swap_active_head, list)
378                 totalpages += atomic_read(&si->frontswap_pages);
379         return totalpages;
380 }
381
382 static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
383                                         int *swapid)
384 {
385         int ret = -EINVAL;
386         struct swap_info_struct *si = NULL;
387         int si_frontswap_pages;
388         unsigned long total_pages_to_unuse = total;
389         unsigned long pages = 0, pages_to_unuse = 0;
390
391         assert_spin_locked(&swap_lock);
392         plist_for_each_entry(si, &swap_active_head, list) {
393                 si_frontswap_pages = atomic_read(&si->frontswap_pages);
394                 if (total_pages_to_unuse < si_frontswap_pages) {
395                         pages = pages_to_unuse = total_pages_to_unuse;
396                 } else {
397                         pages = si_frontswap_pages;
398                         pages_to_unuse = 0; /* unuse all */
399                 }
400                 /* ensure there is enough RAM to fetch pages from frontswap */
401                 if (security_vm_enough_memory_mm(current->mm, pages)) {
402                         ret = -ENOMEM;
403                         continue;
404                 }
405                 vm_unacct_memory(pages);
406                 *unused = pages_to_unuse;
407                 *swapid = si->type;
408                 ret = 0;
409                 break;
410         }
411
412         return ret;
413 }
414
415 /*
416  * Used to check if it's necessary and feasible to unuse pages.
417  * Return 1 when nothing to do, 0 when need to shrink pages,
418  * error code when there is an error.
419  */
420 static int __frontswap_shrink(unsigned long target_pages,
421                                 unsigned long *pages_to_unuse,
422                                 int *type)
423 {
424         unsigned long total_pages = 0, total_pages_to_unuse;
425
426         assert_spin_locked(&swap_lock);
427
428         total_pages = __frontswap_curr_pages();
429         if (total_pages <= target_pages) {
430                 /* Nothing to do */
431                 *pages_to_unuse = 0;
432                 return 1;
433         }
434         total_pages_to_unuse = total_pages - target_pages;
435         return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
436 }
437
438 /*
439  * Frontswap, like a true swap device, may unnecessarily retain pages
440  * under certain circumstances; "shrink" frontswap is essentially a
441  * "partial swapoff" and works by calling try_to_unuse to attempt to
442  * unuse enough frontswap pages to attempt to -- subject to memory
443  * constraints -- reduce the number of pages in frontswap to the
444  * number given in the parameter target_pages.
445  */
446 void frontswap_shrink(unsigned long target_pages)
447 {
448         unsigned long pages_to_unuse = 0;
449         int type, ret;
450
451         /*
452          * we don't want to hold swap_lock while doing a very
453          * lengthy try_to_unuse, but swap_list may change
454          * so restart scan from swap_active_head each time
455          */
456         spin_lock(&swap_lock);
457         ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
458         spin_unlock(&swap_lock);
459         if (ret == 0)
460                 try_to_unuse(type, true, pages_to_unuse);
461         return;
462 }
463 EXPORT_SYMBOL(frontswap_shrink);
464
465 /*
466  * Count and return the number of frontswap pages across all
467  * swap devices.  This is exported so that backend drivers can
468  * determine current usage without reading debugfs.
469  */
470 unsigned long frontswap_curr_pages(void)
471 {
472         unsigned long totalpages = 0;
473
474         spin_lock(&swap_lock);
475         totalpages = __frontswap_curr_pages();
476         spin_unlock(&swap_lock);
477
478         return totalpages;
479 }
480 EXPORT_SYMBOL(frontswap_curr_pages);
481
482 static int __init init_frontswap(void)
483 {
484 #ifdef CONFIG_DEBUG_FS
485         struct dentry *root = debugfs_create_dir("frontswap", NULL);
486         if (root == NULL)
487                 return -ENXIO;
488         debugfs_create_u64("loads", 0444, root, &frontswap_loads);
489         debugfs_create_u64("succ_stores", 0444, root, &frontswap_succ_stores);
490         debugfs_create_u64("failed_stores", 0444, root,
491                            &frontswap_failed_stores);
492         debugfs_create_u64("invalidates", 0444, root, &frontswap_invalidates);
493 #endif
494         return 0;
495 }
496
497 module_init(init_frontswap);