Merge tag 'pci-v5.11-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[linux-2.6-microblaze.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31         count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36         count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
52
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73         struct page *page, *next;
74         unsigned long high_pfn = 0;
75
76         list_for_each_entry_safe(page, next, freelist, lru) {
77                 unsigned long pfn = page_to_pfn(page);
78                 list_del(&page->lru);
79                 __free_page(page);
80                 if (pfn > high_pfn)
81                         high_pfn = pfn;
82         }
83
84         return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89         unsigned int i, order, nr_pages;
90         struct page *page, *next;
91         LIST_HEAD(tmp_list);
92
93         list_for_each_entry_safe(page, next, list, lru) {
94                 list_del(&page->lru);
95
96                 order = page_private(page);
97                 nr_pages = 1 << order;
98
99                 post_alloc_hook(page, order, __GFP_MOVABLE);
100                 if (order)
101                         split_page(page, order);
102
103                 for (i = 0; i < nr_pages; i++) {
104                         list_add(&page->lru, &tmp_list);
105                         page++;
106                 }
107         }
108
109         list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
114 int PageMovable(struct page *page)
115 {
116         struct address_space *mapping;
117
118         VM_BUG_ON_PAGE(!PageLocked(page), page);
119         if (!__PageMovable(page))
120                 return 0;
121
122         mapping = page_mapping(page);
123         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124                 return 1;
125
126         return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132         VM_BUG_ON_PAGE(!PageLocked(page), page);
133         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
138 void __ClearPageMovable(struct page *page)
139 {
140         VM_BUG_ON_PAGE(!PageLocked(page), page);
141         VM_BUG_ON_PAGE(!PageMovable(page), page);
142         /*
143          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
144          * flag so that VM can catch up released page by driver after isolation.
145          * With it, VM migration doesn't try to put it back.
146          */
147         page->mapping = (void *)((unsigned long)page->mapping &
148                                 PAGE_MAPPING_MOVABLE);
149 }
150 EXPORT_SYMBOL(__ClearPageMovable);
151
152 /* Do not skip compaction more than 64 times */
153 #define COMPACT_MAX_DEFER_SHIFT 6
154
155 /*
156  * Compaction is deferred when compaction fails to result in a page
157  * allocation success. 1 << compact_defer_shift, compactions are skipped up
158  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
159  */
160 static void defer_compaction(struct zone *zone, int order)
161 {
162         zone->compact_considered = 0;
163         zone->compact_defer_shift++;
164
165         if (order < zone->compact_order_failed)
166                 zone->compact_order_failed = order;
167
168         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
169                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
170
171         trace_mm_compaction_defer_compaction(zone, order);
172 }
173
174 /* Returns true if compaction should be skipped this time */
175 static bool compaction_deferred(struct zone *zone, int order)
176 {
177         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
178
179         if (order < zone->compact_order_failed)
180                 return false;
181
182         /* Avoid possible overflow */
183         if (++zone->compact_considered >= defer_limit) {
184                 zone->compact_considered = defer_limit;
185                 return false;
186         }
187
188         trace_mm_compaction_deferred(zone, order);
189
190         return true;
191 }
192
193 /*
194  * Update defer tracking counters after successful compaction of given order,
195  * which means an allocation either succeeded (alloc_success == true) or is
196  * expected to succeed.
197  */
198 void compaction_defer_reset(struct zone *zone, int order,
199                 bool alloc_success)
200 {
201         if (alloc_success) {
202                 zone->compact_considered = 0;
203                 zone->compact_defer_shift = 0;
204         }
205         if (order >= zone->compact_order_failed)
206                 zone->compact_order_failed = order + 1;
207
208         trace_mm_compaction_defer_reset(zone, order);
209 }
210
211 /* Returns true if restarting compaction after many failures */
212 static bool compaction_restarting(struct zone *zone, int order)
213 {
214         if (order < zone->compact_order_failed)
215                 return false;
216
217         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
218                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
219 }
220
221 /* Returns true if the pageblock should be scanned for pages to isolate. */
222 static inline bool isolation_suitable(struct compact_control *cc,
223                                         struct page *page)
224 {
225         if (cc->ignore_skip_hint)
226                 return true;
227
228         return !get_pageblock_skip(page);
229 }
230
231 static void reset_cached_positions(struct zone *zone)
232 {
233         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
234         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
235         zone->compact_cached_free_pfn =
236                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
237 }
238
239 /*
240  * Compound pages of >= pageblock_order should consistently be skipped until
241  * released. It is always pointless to compact pages of such order (if they are
242  * migratable), and the pageblocks they occupy cannot contain any free pages.
243  */
244 static bool pageblock_skip_persistent(struct page *page)
245 {
246         if (!PageCompound(page))
247                 return false;
248
249         page = compound_head(page);
250
251         if (compound_order(page) >= pageblock_order)
252                 return true;
253
254         return false;
255 }
256
257 static bool
258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
259                                                         bool check_target)
260 {
261         struct page *page = pfn_to_online_page(pfn);
262         struct page *block_page;
263         struct page *end_page;
264         unsigned long block_pfn;
265
266         if (!page)
267                 return false;
268         if (zone != page_zone(page))
269                 return false;
270         if (pageblock_skip_persistent(page))
271                 return false;
272
273         /*
274          * If skip is already cleared do no further checking once the
275          * restart points have been set.
276          */
277         if (check_source && check_target && !get_pageblock_skip(page))
278                 return true;
279
280         /*
281          * If clearing skip for the target scanner, do not select a
282          * non-movable pageblock as the starting point.
283          */
284         if (!check_source && check_target &&
285             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
286                 return false;
287
288         /* Ensure the start of the pageblock or zone is online and valid */
289         block_pfn = pageblock_start_pfn(pfn);
290         block_pfn = max(block_pfn, zone->zone_start_pfn);
291         block_page = pfn_to_online_page(block_pfn);
292         if (block_page) {
293                 page = block_page;
294                 pfn = block_pfn;
295         }
296
297         /* Ensure the end of the pageblock or zone is online and valid */
298         block_pfn = pageblock_end_pfn(pfn) - 1;
299         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
300         end_page = pfn_to_online_page(block_pfn);
301         if (!end_page)
302                 return false;
303
304         /*
305          * Only clear the hint if a sample indicates there is either a
306          * free page or an LRU page in the block. One or other condition
307          * is necessary for the block to be a migration source/target.
308          */
309         do {
310                 if (pfn_valid_within(pfn)) {
311                         if (check_source && PageLRU(page)) {
312                                 clear_pageblock_skip(page);
313                                 return true;
314                         }
315
316                         if (check_target && PageBuddy(page)) {
317                                 clear_pageblock_skip(page);
318                                 return true;
319                         }
320                 }
321
322                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
323                 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
324         } while (page <= end_page);
325
326         return false;
327 }
328
329 /*
330  * This function is called to clear all cached information on pageblocks that
331  * should be skipped for page isolation when the migrate and free page scanner
332  * meet.
333  */
334 static void __reset_isolation_suitable(struct zone *zone)
335 {
336         unsigned long migrate_pfn = zone->zone_start_pfn;
337         unsigned long free_pfn = zone_end_pfn(zone) - 1;
338         unsigned long reset_migrate = free_pfn;
339         unsigned long reset_free = migrate_pfn;
340         bool source_set = false;
341         bool free_set = false;
342
343         if (!zone->compact_blockskip_flush)
344                 return;
345
346         zone->compact_blockskip_flush = false;
347
348         /*
349          * Walk the zone and update pageblock skip information. Source looks
350          * for PageLRU while target looks for PageBuddy. When the scanner
351          * is found, both PageBuddy and PageLRU are checked as the pageblock
352          * is suitable as both source and target.
353          */
354         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
355                                         free_pfn -= pageblock_nr_pages) {
356                 cond_resched();
357
358                 /* Update the migrate PFN */
359                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
360                     migrate_pfn < reset_migrate) {
361                         source_set = true;
362                         reset_migrate = migrate_pfn;
363                         zone->compact_init_migrate_pfn = reset_migrate;
364                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
365                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
366                 }
367
368                 /* Update the free PFN */
369                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
370                     free_pfn > reset_free) {
371                         free_set = true;
372                         reset_free = free_pfn;
373                         zone->compact_init_free_pfn = reset_free;
374                         zone->compact_cached_free_pfn = reset_free;
375                 }
376         }
377
378         /* Leave no distance if no suitable block was reset */
379         if (reset_migrate >= reset_free) {
380                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
381                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
382                 zone->compact_cached_free_pfn = free_pfn;
383         }
384 }
385
386 void reset_isolation_suitable(pg_data_t *pgdat)
387 {
388         int zoneid;
389
390         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
391                 struct zone *zone = &pgdat->node_zones[zoneid];
392                 if (!populated_zone(zone))
393                         continue;
394
395                 /* Only flush if a full compaction finished recently */
396                 if (zone->compact_blockskip_flush)
397                         __reset_isolation_suitable(zone);
398         }
399 }
400
401 /*
402  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
403  * locks are not required for read/writers. Returns true if it was already set.
404  */
405 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
406                                                         unsigned long pfn)
407 {
408         bool skip;
409
410         /* Do no update if skip hint is being ignored */
411         if (cc->ignore_skip_hint)
412                 return false;
413
414         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
415                 return false;
416
417         skip = get_pageblock_skip(page);
418         if (!skip && !cc->no_set_skip_hint)
419                 set_pageblock_skip(page);
420
421         return skip;
422 }
423
424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
425 {
426         struct zone *zone = cc->zone;
427
428         pfn = pageblock_end_pfn(pfn);
429
430         /* Set for isolation rather than compaction */
431         if (cc->no_set_skip_hint)
432                 return;
433
434         if (pfn > zone->compact_cached_migrate_pfn[0])
435                 zone->compact_cached_migrate_pfn[0] = pfn;
436         if (cc->mode != MIGRATE_ASYNC &&
437             pfn > zone->compact_cached_migrate_pfn[1])
438                 zone->compact_cached_migrate_pfn[1] = pfn;
439 }
440
441 /*
442  * If no pages were isolated then mark this pageblock to be skipped in the
443  * future. The information is later cleared by __reset_isolation_suitable().
444  */
445 static void update_pageblock_skip(struct compact_control *cc,
446                         struct page *page, unsigned long pfn)
447 {
448         struct zone *zone = cc->zone;
449
450         if (cc->no_set_skip_hint)
451                 return;
452
453         if (!page)
454                 return;
455
456         set_pageblock_skip(page);
457
458         /* Update where async and sync compaction should restart */
459         if (pfn < zone->compact_cached_free_pfn)
460                 zone->compact_cached_free_pfn = pfn;
461 }
462 #else
463 static inline bool isolation_suitable(struct compact_control *cc,
464                                         struct page *page)
465 {
466         return true;
467 }
468
469 static inline bool pageblock_skip_persistent(struct page *page)
470 {
471         return false;
472 }
473
474 static inline void update_pageblock_skip(struct compact_control *cc,
475                         struct page *page, unsigned long pfn)
476 {
477 }
478
479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
480 {
481 }
482
483 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
484                                                         unsigned long pfn)
485 {
486         return false;
487 }
488 #endif /* CONFIG_COMPACTION */
489
490 /*
491  * Compaction requires the taking of some coarse locks that are potentially
492  * very heavily contended. For async compaction, trylock and record if the
493  * lock is contended. The lock will still be acquired but compaction will
494  * abort when the current block is finished regardless of success rate.
495  * Sync compaction acquires the lock.
496  *
497  * Always returns true which makes it easier to track lock state in callers.
498  */
499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
500                                                 struct compact_control *cc)
501         __acquires(lock)
502 {
503         /* Track if the lock is contended in async mode */
504         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
505                 if (spin_trylock_irqsave(lock, *flags))
506                         return true;
507
508                 cc->contended = true;
509         }
510
511         spin_lock_irqsave(lock, *flags);
512         return true;
513 }
514
515 /*
516  * Compaction requires the taking of some coarse locks that are potentially
517  * very heavily contended. The lock should be periodically unlocked to avoid
518  * having disabled IRQs for a long time, even when there is nobody waiting on
519  * the lock. It might also be that allowing the IRQs will result in
520  * need_resched() becoming true. If scheduling is needed, async compaction
521  * aborts. Sync compaction schedules.
522  * Either compaction type will also abort if a fatal signal is pending.
523  * In either case if the lock was locked, it is dropped and not regained.
524  *
525  * Returns true if compaction should abort due to fatal signal pending, or
526  *              async compaction due to need_resched()
527  * Returns false when compaction can continue (sync compaction might have
528  *              scheduled)
529  */
530 static bool compact_unlock_should_abort(spinlock_t *lock,
531                 unsigned long flags, bool *locked, struct compact_control *cc)
532 {
533         if (*locked) {
534                 spin_unlock_irqrestore(lock, flags);
535                 *locked = false;
536         }
537
538         if (fatal_signal_pending(current)) {
539                 cc->contended = true;
540                 return true;
541         }
542
543         cond_resched();
544
545         return false;
546 }
547
548 /*
549  * Isolate free pages onto a private freelist. If @strict is true, will abort
550  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
551  * (even though it may still end up isolating some pages).
552  */
553 static unsigned long isolate_freepages_block(struct compact_control *cc,
554                                 unsigned long *start_pfn,
555                                 unsigned long end_pfn,
556                                 struct list_head *freelist,
557                                 unsigned int stride,
558                                 bool strict)
559 {
560         int nr_scanned = 0, total_isolated = 0;
561         struct page *cursor;
562         unsigned long flags = 0;
563         bool locked = false;
564         unsigned long blockpfn = *start_pfn;
565         unsigned int order;
566
567         /* Strict mode is for isolation, speed is secondary */
568         if (strict)
569                 stride = 1;
570
571         cursor = pfn_to_page(blockpfn);
572
573         /* Isolate free pages. */
574         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
575                 int isolated;
576                 struct page *page = cursor;
577
578                 /*
579                  * Periodically drop the lock (if held) regardless of its
580                  * contention, to give chance to IRQs. Abort if fatal signal
581                  * pending or async compaction detects need_resched()
582                  */
583                 if (!(blockpfn % SWAP_CLUSTER_MAX)
584                     && compact_unlock_should_abort(&cc->zone->lock, flags,
585                                                                 &locked, cc))
586                         break;
587
588                 nr_scanned++;
589                 if (!pfn_valid_within(blockpfn))
590                         goto isolate_fail;
591
592                 /*
593                  * For compound pages such as THP and hugetlbfs, we can save
594                  * potentially a lot of iterations if we skip them at once.
595                  * The check is racy, but we can consider only valid values
596                  * and the only danger is skipping too much.
597                  */
598                 if (PageCompound(page)) {
599                         const unsigned int order = compound_order(page);
600
601                         if (likely(order < MAX_ORDER)) {
602                                 blockpfn += (1UL << order) - 1;
603                                 cursor += (1UL << order) - 1;
604                         }
605                         goto isolate_fail;
606                 }
607
608                 if (!PageBuddy(page))
609                         goto isolate_fail;
610
611                 /*
612                  * If we already hold the lock, we can skip some rechecking.
613                  * Note that if we hold the lock now, checked_pageblock was
614                  * already set in some previous iteration (or strict is true),
615                  * so it is correct to skip the suitable migration target
616                  * recheck as well.
617                  */
618                 if (!locked) {
619                         locked = compact_lock_irqsave(&cc->zone->lock,
620                                                                 &flags, cc);
621
622                         /* Recheck this is a buddy page under lock */
623                         if (!PageBuddy(page))
624                                 goto isolate_fail;
625                 }
626
627                 /* Found a free page, will break it into order-0 pages */
628                 order = buddy_order(page);
629                 isolated = __isolate_free_page(page, order);
630                 if (!isolated)
631                         break;
632                 set_page_private(page, order);
633
634                 total_isolated += isolated;
635                 cc->nr_freepages += isolated;
636                 list_add_tail(&page->lru, freelist);
637
638                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639                         blockpfn += isolated;
640                         break;
641                 }
642                 /* Advance to the end of split page */
643                 blockpfn += isolated - 1;
644                 cursor += isolated - 1;
645                 continue;
646
647 isolate_fail:
648                 if (strict)
649                         break;
650                 else
651                         continue;
652
653         }
654
655         if (locked)
656                 spin_unlock_irqrestore(&cc->zone->lock, flags);
657
658         /*
659          * There is a tiny chance that we have read bogus compound_order(),
660          * so be careful to not go outside of the pageblock.
661          */
662         if (unlikely(blockpfn > end_pfn))
663                 blockpfn = end_pfn;
664
665         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666                                         nr_scanned, total_isolated);
667
668         /* Record how far we have got within the block */
669         *start_pfn = blockpfn;
670
671         /*
672          * If strict isolation is requested by CMA then check that all the
673          * pages requested were isolated. If there were any failures, 0 is
674          * returned and CMA will fail.
675          */
676         if (strict && blockpfn < end_pfn)
677                 total_isolated = 0;
678
679         cc->total_free_scanned += nr_scanned;
680         if (total_isolated)
681                 count_compact_events(COMPACTISOLATED, total_isolated);
682         return total_isolated;
683 }
684
685 /**
686  * isolate_freepages_range() - isolate free pages.
687  * @cc:        Compaction control structure.
688  * @start_pfn: The first PFN to start isolating.
689  * @end_pfn:   The one-past-last PFN.
690  *
691  * Non-free pages, invalid PFNs, or zone boundaries within the
692  * [start_pfn, end_pfn) range are considered errors, cause function to
693  * undo its actions and return zero.
694  *
695  * Otherwise, function returns one-past-the-last PFN of isolated page
696  * (which may be greater then end_pfn if end fell in a middle of
697  * a free page).
698  */
699 unsigned long
700 isolate_freepages_range(struct compact_control *cc,
701                         unsigned long start_pfn, unsigned long end_pfn)
702 {
703         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704         LIST_HEAD(freelist);
705
706         pfn = start_pfn;
707         block_start_pfn = pageblock_start_pfn(pfn);
708         if (block_start_pfn < cc->zone->zone_start_pfn)
709                 block_start_pfn = cc->zone->zone_start_pfn;
710         block_end_pfn = pageblock_end_pfn(pfn);
711
712         for (; pfn < end_pfn; pfn += isolated,
713                                 block_start_pfn = block_end_pfn,
714                                 block_end_pfn += pageblock_nr_pages) {
715                 /* Protect pfn from changing by isolate_freepages_block */
716                 unsigned long isolate_start_pfn = pfn;
717
718                 block_end_pfn = min(block_end_pfn, end_pfn);
719
720                 /*
721                  * pfn could pass the block_end_pfn if isolated freepage
722                  * is more than pageblock order. In this case, we adjust
723                  * scanning range to right one.
724                  */
725                 if (pfn >= block_end_pfn) {
726                         block_start_pfn = pageblock_start_pfn(pfn);
727                         block_end_pfn = pageblock_end_pfn(pfn);
728                         block_end_pfn = min(block_end_pfn, end_pfn);
729                 }
730
731                 if (!pageblock_pfn_to_page(block_start_pfn,
732                                         block_end_pfn, cc->zone))
733                         break;
734
735                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736                                         block_end_pfn, &freelist, 0, true);
737
738                 /*
739                  * In strict mode, isolate_freepages_block() returns 0 if
740                  * there are any holes in the block (ie. invalid PFNs or
741                  * non-free pages).
742                  */
743                 if (!isolated)
744                         break;
745
746                 /*
747                  * If we managed to isolate pages, it is always (1 << n) *
748                  * pageblock_nr_pages for some non-negative n.  (Max order
749                  * page may span two pageblocks).
750                  */
751         }
752
753         /* __isolate_free_page() does not map the pages */
754         split_map_pages(&freelist);
755
756         if (pfn < end_pfn) {
757                 /* Loop terminated early, cleanup. */
758                 release_freepages(&freelist);
759                 return 0;
760         }
761
762         /* We don't use freelists for anything. */
763         return pfn;
764 }
765
766 /* Similar to reclaim, but different enough that they don't share logic */
767 static bool too_many_isolated(pg_data_t *pgdat)
768 {
769         unsigned long active, inactive, isolated;
770
771         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
772                         node_page_state(pgdat, NR_INACTIVE_ANON);
773         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
774                         node_page_state(pgdat, NR_ACTIVE_ANON);
775         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
776                         node_page_state(pgdat, NR_ISOLATED_ANON);
777
778         return isolated > (inactive + active) / 2;
779 }
780
781 /**
782  * isolate_migratepages_block() - isolate all migrate-able pages within
783  *                                a single pageblock
784  * @cc:         Compaction control structure.
785  * @low_pfn:    The first PFN to isolate
786  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
787  * @isolate_mode: Isolation mode to be used.
788  *
789  * Isolate all pages that can be migrated from the range specified by
790  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
791  * Returns zero if there is a fatal signal pending, otherwise PFN of the
792  * first page that was not scanned (which may be both less, equal to or more
793  * than end_pfn).
794  *
795  * The pages are isolated on cc->migratepages list (not required to be empty),
796  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
797  * is neither read nor updated.
798  */
799 static unsigned long
800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801                         unsigned long end_pfn, isolate_mode_t isolate_mode)
802 {
803         pg_data_t *pgdat = cc->zone->zone_pgdat;
804         unsigned long nr_scanned = 0, nr_isolated = 0;
805         struct lruvec *lruvec;
806         unsigned long flags = 0;
807         struct lruvec *locked = NULL;
808         struct page *page = NULL, *valid_page = NULL;
809         unsigned long start_pfn = low_pfn;
810         bool skip_on_failure = false;
811         unsigned long next_skip_pfn = 0;
812         bool skip_updated = false;
813
814         /*
815          * Ensure that there are not too many pages isolated from the LRU
816          * list by either parallel reclaimers or compaction. If there are,
817          * delay for some time until fewer pages are isolated
818          */
819         while (unlikely(too_many_isolated(pgdat))) {
820                 /* stop isolation if there are still pages not migrated */
821                 if (cc->nr_migratepages)
822                         return 0;
823
824                 /* async migration should just abort */
825                 if (cc->mode == MIGRATE_ASYNC)
826                         return 0;
827
828                 congestion_wait(BLK_RW_ASYNC, HZ/10);
829
830                 if (fatal_signal_pending(current))
831                         return 0;
832         }
833
834         cond_resched();
835
836         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
837                 skip_on_failure = true;
838                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
839         }
840
841         /* Time to isolate some pages for migration */
842         for (; low_pfn < end_pfn; low_pfn++) {
843
844                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
845                         /*
846                          * We have isolated all migration candidates in the
847                          * previous order-aligned block, and did not skip it due
848                          * to failure. We should migrate the pages now and
849                          * hopefully succeed compaction.
850                          */
851                         if (nr_isolated)
852                                 break;
853
854                         /*
855                          * We failed to isolate in the previous order-aligned
856                          * block. Set the new boundary to the end of the
857                          * current block. Note we can't simply increase
858                          * next_skip_pfn by 1 << order, as low_pfn might have
859                          * been incremented by a higher number due to skipping
860                          * a compound or a high-order buddy page in the
861                          * previous loop iteration.
862                          */
863                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
864                 }
865
866                 /*
867                  * Periodically drop the lock (if held) regardless of its
868                  * contention, to give chance to IRQs. Abort completely if
869                  * a fatal signal is pending.
870                  */
871                 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
872                         if (locked) {
873                                 unlock_page_lruvec_irqrestore(locked, flags);
874                                 locked = NULL;
875                         }
876
877                         if (fatal_signal_pending(current)) {
878                                 cc->contended = true;
879
880                                 low_pfn = 0;
881                                 goto fatal_pending;
882                         }
883
884                         cond_resched();
885                 }
886
887                 if (!pfn_valid_within(low_pfn))
888                         goto isolate_fail;
889                 nr_scanned++;
890
891                 page = pfn_to_page(low_pfn);
892
893                 /*
894                  * Check if the pageblock has already been marked skipped.
895                  * Only the aligned PFN is checked as the caller isolates
896                  * COMPACT_CLUSTER_MAX at a time so the second call must
897                  * not falsely conclude that the block should be skipped.
898                  */
899                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
900                         if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
901                                 low_pfn = end_pfn;
902                                 page = NULL;
903                                 goto isolate_abort;
904                         }
905                         valid_page = page;
906                 }
907
908                 /*
909                  * Skip if free. We read page order here without zone lock
910                  * which is generally unsafe, but the race window is small and
911                  * the worst thing that can happen is that we skip some
912                  * potential isolation targets.
913                  */
914                 if (PageBuddy(page)) {
915                         unsigned long freepage_order = buddy_order_unsafe(page);
916
917                         /*
918                          * Without lock, we cannot be sure that what we got is
919                          * a valid page order. Consider only values in the
920                          * valid order range to prevent low_pfn overflow.
921                          */
922                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
923                                 low_pfn += (1UL << freepage_order) - 1;
924                         continue;
925                 }
926
927                 /*
928                  * Regardless of being on LRU, compound pages such as THP and
929                  * hugetlbfs are not to be compacted unless we are attempting
930                  * an allocation much larger than the huge page size (eg CMA).
931                  * We can potentially save a lot of iterations if we skip them
932                  * at once. The check is racy, but we can consider only valid
933                  * values and the only danger is skipping too much.
934                  */
935                 if (PageCompound(page) && !cc->alloc_contig) {
936                         const unsigned int order = compound_order(page);
937
938                         if (likely(order < MAX_ORDER))
939                                 low_pfn += (1UL << order) - 1;
940                         goto isolate_fail;
941                 }
942
943                 /*
944                  * Check may be lockless but that's ok as we recheck later.
945                  * It's possible to migrate LRU and non-lru movable pages.
946                  * Skip any other type of page
947                  */
948                 if (!PageLRU(page)) {
949                         /*
950                          * __PageMovable can return false positive so we need
951                          * to verify it under page_lock.
952                          */
953                         if (unlikely(__PageMovable(page)) &&
954                                         !PageIsolated(page)) {
955                                 if (locked) {
956                                         unlock_page_lruvec_irqrestore(locked, flags);
957                                         locked = NULL;
958                                 }
959
960                                 if (!isolate_movable_page(page, isolate_mode))
961                                         goto isolate_success;
962                         }
963
964                         goto isolate_fail;
965                 }
966
967                 /*
968                  * Migration will fail if an anonymous page is pinned in memory,
969                  * so avoid taking lru_lock and isolating it unnecessarily in an
970                  * admittedly racy check.
971                  */
972                 if (!page_mapping(page) &&
973                     page_count(page) > page_mapcount(page))
974                         goto isolate_fail;
975
976                 /*
977                  * Only allow to migrate anonymous pages in GFP_NOFS context
978                  * because those do not depend on fs locks.
979                  */
980                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
981                         goto isolate_fail;
982
983                 /*
984                  * Be careful not to clear PageLRU until after we're
985                  * sure the page is not being freed elsewhere -- the
986                  * page release code relies on it.
987                  */
988                 if (unlikely(!get_page_unless_zero(page)))
989                         goto isolate_fail;
990
991                 if (__isolate_lru_page_prepare(page, isolate_mode) != 0)
992                         goto isolate_fail_put;
993
994                 /* Try isolate the page */
995                 if (!TestClearPageLRU(page))
996                         goto isolate_fail_put;
997
998                 rcu_read_lock();
999                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1000
1001                 /* If we already hold the lock, we can skip some rechecking */
1002                 if (lruvec != locked) {
1003                         if (locked)
1004                                 unlock_page_lruvec_irqrestore(locked, flags);
1005
1006                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1007                         locked = lruvec;
1008                         rcu_read_unlock();
1009
1010                         lruvec_memcg_debug(lruvec, page);
1011
1012                         /* Try get exclusive access under lock */
1013                         if (!skip_updated) {
1014                                 skip_updated = true;
1015                                 if (test_and_set_skip(cc, page, low_pfn))
1016                                         goto isolate_abort;
1017                         }
1018
1019                         /*
1020                          * Page become compound since the non-locked check,
1021                          * and it's on LRU. It can only be a THP so the order
1022                          * is safe to read and it's 0 for tail pages.
1023                          */
1024                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1025                                 low_pfn += compound_nr(page) - 1;
1026                                 SetPageLRU(page);
1027                                 goto isolate_fail_put;
1028                         }
1029                 } else
1030                         rcu_read_unlock();
1031
1032                 /* The whole page is taken off the LRU; skip the tail pages. */
1033                 if (PageCompound(page))
1034                         low_pfn += compound_nr(page) - 1;
1035
1036                 /* Successfully isolated */
1037                 del_page_from_lru_list(page, lruvec, page_lru(page));
1038                 mod_node_page_state(page_pgdat(page),
1039                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1040                                 thp_nr_pages(page));
1041
1042 isolate_success:
1043                 list_add(&page->lru, &cc->migratepages);
1044                 cc->nr_migratepages += compound_nr(page);
1045                 nr_isolated += compound_nr(page);
1046
1047                 /*
1048                  * Avoid isolating too much unless this block is being
1049                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1050                  * or a lock is contended. For contention, isolate quickly to
1051                  * potentially remove one source of contention.
1052                  */
1053                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1054                     !cc->rescan && !cc->contended) {
1055                         ++low_pfn;
1056                         break;
1057                 }
1058
1059                 continue;
1060
1061 isolate_fail_put:
1062                 /* Avoid potential deadlock in freeing page under lru_lock */
1063                 if (locked) {
1064                         unlock_page_lruvec_irqrestore(locked, flags);
1065                         locked = NULL;
1066                 }
1067                 put_page(page);
1068
1069 isolate_fail:
1070                 if (!skip_on_failure)
1071                         continue;
1072
1073                 /*
1074                  * We have isolated some pages, but then failed. Release them
1075                  * instead of migrating, as we cannot form the cc->order buddy
1076                  * page anyway.
1077                  */
1078                 if (nr_isolated) {
1079                         if (locked) {
1080                                 unlock_page_lruvec_irqrestore(locked, flags);
1081                                 locked = NULL;
1082                         }
1083                         putback_movable_pages(&cc->migratepages);
1084                         cc->nr_migratepages = 0;
1085                         nr_isolated = 0;
1086                 }
1087
1088                 if (low_pfn < next_skip_pfn) {
1089                         low_pfn = next_skip_pfn - 1;
1090                         /*
1091                          * The check near the loop beginning would have updated
1092                          * next_skip_pfn too, but this is a bit simpler.
1093                          */
1094                         next_skip_pfn += 1UL << cc->order;
1095                 }
1096         }
1097
1098         /*
1099          * The PageBuddy() check could have potentially brought us outside
1100          * the range to be scanned.
1101          */
1102         if (unlikely(low_pfn > end_pfn))
1103                 low_pfn = end_pfn;
1104
1105         page = NULL;
1106
1107 isolate_abort:
1108         if (locked)
1109                 unlock_page_lruvec_irqrestore(locked, flags);
1110         if (page) {
1111                 SetPageLRU(page);
1112                 put_page(page);
1113         }
1114
1115         /*
1116          * Updated the cached scanner pfn once the pageblock has been scanned
1117          * Pages will either be migrated in which case there is no point
1118          * scanning in the near future or migration failed in which case the
1119          * failure reason may persist. The block is marked for skipping if
1120          * there were no pages isolated in the block or if the block is
1121          * rescanned twice in a row.
1122          */
1123         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1124                 if (valid_page && !skip_updated)
1125                         set_pageblock_skip(valid_page);
1126                 update_cached_migrate(cc, low_pfn);
1127         }
1128
1129         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1130                                                 nr_scanned, nr_isolated);
1131
1132 fatal_pending:
1133         cc->total_migrate_scanned += nr_scanned;
1134         if (nr_isolated)
1135                 count_compact_events(COMPACTISOLATED, nr_isolated);
1136
1137         return low_pfn;
1138 }
1139
1140 /**
1141  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1142  * @cc:        Compaction control structure.
1143  * @start_pfn: The first PFN to start isolating.
1144  * @end_pfn:   The one-past-last PFN.
1145  *
1146  * Returns zero if isolation fails fatally due to e.g. pending signal.
1147  * Otherwise, function returns one-past-the-last PFN of isolated page
1148  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1149  */
1150 unsigned long
1151 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1152                                                         unsigned long end_pfn)
1153 {
1154         unsigned long pfn, block_start_pfn, block_end_pfn;
1155
1156         /* Scan block by block. First and last block may be incomplete */
1157         pfn = start_pfn;
1158         block_start_pfn = pageblock_start_pfn(pfn);
1159         if (block_start_pfn < cc->zone->zone_start_pfn)
1160                 block_start_pfn = cc->zone->zone_start_pfn;
1161         block_end_pfn = pageblock_end_pfn(pfn);
1162
1163         for (; pfn < end_pfn; pfn = block_end_pfn,
1164                                 block_start_pfn = block_end_pfn,
1165                                 block_end_pfn += pageblock_nr_pages) {
1166
1167                 block_end_pfn = min(block_end_pfn, end_pfn);
1168
1169                 if (!pageblock_pfn_to_page(block_start_pfn,
1170                                         block_end_pfn, cc->zone))
1171                         continue;
1172
1173                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1174                                                         ISOLATE_UNEVICTABLE);
1175
1176                 if (!pfn)
1177                         break;
1178
1179                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1180                         break;
1181         }
1182
1183         return pfn;
1184 }
1185
1186 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1187 #ifdef CONFIG_COMPACTION
1188
1189 static bool suitable_migration_source(struct compact_control *cc,
1190                                                         struct page *page)
1191 {
1192         int block_mt;
1193
1194         if (pageblock_skip_persistent(page))
1195                 return false;
1196
1197         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1198                 return true;
1199
1200         block_mt = get_pageblock_migratetype(page);
1201
1202         if (cc->migratetype == MIGRATE_MOVABLE)
1203                 return is_migrate_movable(block_mt);
1204         else
1205                 return block_mt == cc->migratetype;
1206 }
1207
1208 /* Returns true if the page is within a block suitable for migration to */
1209 static bool suitable_migration_target(struct compact_control *cc,
1210                                                         struct page *page)
1211 {
1212         /* If the page is a large free page, then disallow migration */
1213         if (PageBuddy(page)) {
1214                 /*
1215                  * We are checking page_order without zone->lock taken. But
1216                  * the only small danger is that we skip a potentially suitable
1217                  * pageblock, so it's not worth to check order for valid range.
1218                  */
1219                 if (buddy_order_unsafe(page) >= pageblock_order)
1220                         return false;
1221         }
1222
1223         if (cc->ignore_block_suitable)
1224                 return true;
1225
1226         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1227         if (is_migrate_movable(get_pageblock_migratetype(page)))
1228                 return true;
1229
1230         /* Otherwise skip the block */
1231         return false;
1232 }
1233
1234 static inline unsigned int
1235 freelist_scan_limit(struct compact_control *cc)
1236 {
1237         unsigned short shift = BITS_PER_LONG - 1;
1238
1239         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1240 }
1241
1242 /*
1243  * Test whether the free scanner has reached the same or lower pageblock than
1244  * the migration scanner, and compaction should thus terminate.
1245  */
1246 static inline bool compact_scanners_met(struct compact_control *cc)
1247 {
1248         return (cc->free_pfn >> pageblock_order)
1249                 <= (cc->migrate_pfn >> pageblock_order);
1250 }
1251
1252 /*
1253  * Used when scanning for a suitable migration target which scans freelists
1254  * in reverse. Reorders the list such as the unscanned pages are scanned
1255  * first on the next iteration of the free scanner
1256  */
1257 static void
1258 move_freelist_head(struct list_head *freelist, struct page *freepage)
1259 {
1260         LIST_HEAD(sublist);
1261
1262         if (!list_is_last(freelist, &freepage->lru)) {
1263                 list_cut_before(&sublist, freelist, &freepage->lru);
1264                 if (!list_empty(&sublist))
1265                         list_splice_tail(&sublist, freelist);
1266         }
1267 }
1268
1269 /*
1270  * Similar to move_freelist_head except used by the migration scanner
1271  * when scanning forward. It's possible for these list operations to
1272  * move against each other if they search the free list exactly in
1273  * lockstep.
1274  */
1275 static void
1276 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1277 {
1278         LIST_HEAD(sublist);
1279
1280         if (!list_is_first(freelist, &freepage->lru)) {
1281                 list_cut_position(&sublist, freelist, &freepage->lru);
1282                 if (!list_empty(&sublist))
1283                         list_splice_tail(&sublist, freelist);
1284         }
1285 }
1286
1287 static void
1288 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1289 {
1290         unsigned long start_pfn, end_pfn;
1291         struct page *page = pfn_to_page(pfn);
1292
1293         /* Do not search around if there are enough pages already */
1294         if (cc->nr_freepages >= cc->nr_migratepages)
1295                 return;
1296
1297         /* Minimise scanning during async compaction */
1298         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1299                 return;
1300
1301         /* Pageblock boundaries */
1302         start_pfn = pageblock_start_pfn(pfn);
1303         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1304
1305         /* Scan before */
1306         if (start_pfn != pfn) {
1307                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1308                 if (cc->nr_freepages >= cc->nr_migratepages)
1309                         return;
1310         }
1311
1312         /* Scan after */
1313         start_pfn = pfn + nr_isolated;
1314         if (start_pfn < end_pfn)
1315                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1316
1317         /* Skip this pageblock in the future as it's full or nearly full */
1318         if (cc->nr_freepages < cc->nr_migratepages)
1319                 set_pageblock_skip(page);
1320 }
1321
1322 /* Search orders in round-robin fashion */
1323 static int next_search_order(struct compact_control *cc, int order)
1324 {
1325         order--;
1326         if (order < 0)
1327                 order = cc->order - 1;
1328
1329         /* Search wrapped around? */
1330         if (order == cc->search_order) {
1331                 cc->search_order--;
1332                 if (cc->search_order < 0)
1333                         cc->search_order = cc->order - 1;
1334                 return -1;
1335         }
1336
1337         return order;
1338 }
1339
1340 static unsigned long
1341 fast_isolate_freepages(struct compact_control *cc)
1342 {
1343         unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1344         unsigned int nr_scanned = 0;
1345         unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1346         unsigned long nr_isolated = 0;
1347         unsigned long distance;
1348         struct page *page = NULL;
1349         bool scan_start = false;
1350         int order;
1351
1352         /* Full compaction passes in a negative order */
1353         if (cc->order <= 0)
1354                 return cc->free_pfn;
1355
1356         /*
1357          * If starting the scan, use a deeper search and use the highest
1358          * PFN found if a suitable one is not found.
1359          */
1360         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1361                 limit = pageblock_nr_pages >> 1;
1362                 scan_start = true;
1363         }
1364
1365         /*
1366          * Preferred point is in the top quarter of the scan space but take
1367          * a pfn from the top half if the search is problematic.
1368          */
1369         distance = (cc->free_pfn - cc->migrate_pfn);
1370         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1371         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1372
1373         if (WARN_ON_ONCE(min_pfn > low_pfn))
1374                 low_pfn = min_pfn;
1375
1376         /*
1377          * Search starts from the last successful isolation order or the next
1378          * order to search after a previous failure
1379          */
1380         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1381
1382         for (order = cc->search_order;
1383              !page && order >= 0;
1384              order = next_search_order(cc, order)) {
1385                 struct free_area *area = &cc->zone->free_area[order];
1386                 struct list_head *freelist;
1387                 struct page *freepage;
1388                 unsigned long flags;
1389                 unsigned int order_scanned = 0;
1390
1391                 if (!area->nr_free)
1392                         continue;
1393
1394                 spin_lock_irqsave(&cc->zone->lock, flags);
1395                 freelist = &area->free_list[MIGRATE_MOVABLE];
1396                 list_for_each_entry_reverse(freepage, freelist, lru) {
1397                         unsigned long pfn;
1398
1399                         order_scanned++;
1400                         nr_scanned++;
1401                         pfn = page_to_pfn(freepage);
1402
1403                         if (pfn >= highest)
1404                                 highest = pageblock_start_pfn(pfn);
1405
1406                         if (pfn >= low_pfn) {
1407                                 cc->fast_search_fail = 0;
1408                                 cc->search_order = order;
1409                                 page = freepage;
1410                                 break;
1411                         }
1412
1413                         if (pfn >= min_pfn && pfn > high_pfn) {
1414                                 high_pfn = pfn;
1415
1416                                 /* Shorten the scan if a candidate is found */
1417                                 limit >>= 1;
1418                         }
1419
1420                         if (order_scanned >= limit)
1421                                 break;
1422                 }
1423
1424                 /* Use a minimum pfn if a preferred one was not found */
1425                 if (!page && high_pfn) {
1426                         page = pfn_to_page(high_pfn);
1427
1428                         /* Update freepage for the list reorder below */
1429                         freepage = page;
1430                 }
1431
1432                 /* Reorder to so a future search skips recent pages */
1433                 move_freelist_head(freelist, freepage);
1434
1435                 /* Isolate the page if available */
1436                 if (page) {
1437                         if (__isolate_free_page(page, order)) {
1438                                 set_page_private(page, order);
1439                                 nr_isolated = 1 << order;
1440                                 cc->nr_freepages += nr_isolated;
1441                                 list_add_tail(&page->lru, &cc->freepages);
1442                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1443                         } else {
1444                                 /* If isolation fails, abort the search */
1445                                 order = cc->search_order + 1;
1446                                 page = NULL;
1447                         }
1448                 }
1449
1450                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1451
1452                 /*
1453                  * Smaller scan on next order so the total scan ig related
1454                  * to freelist_scan_limit.
1455                  */
1456                 if (order_scanned >= limit)
1457                         limit = min(1U, limit >> 1);
1458         }
1459
1460         if (!page) {
1461                 cc->fast_search_fail++;
1462                 if (scan_start) {
1463                         /*
1464                          * Use the highest PFN found above min. If one was
1465                          * not found, be pessimistic for direct compaction
1466                          * and use the min mark.
1467                          */
1468                         if (highest) {
1469                                 page = pfn_to_page(highest);
1470                                 cc->free_pfn = highest;
1471                         } else {
1472                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1473                                         page = pageblock_pfn_to_page(min_pfn,
1474                                                 pageblock_end_pfn(min_pfn),
1475                                                 cc->zone);
1476                                         cc->free_pfn = min_pfn;
1477                                 }
1478                         }
1479                 }
1480         }
1481
1482         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1483                 highest -= pageblock_nr_pages;
1484                 cc->zone->compact_cached_free_pfn = highest;
1485         }
1486
1487         cc->total_free_scanned += nr_scanned;
1488         if (!page)
1489                 return cc->free_pfn;
1490
1491         low_pfn = page_to_pfn(page);
1492         fast_isolate_around(cc, low_pfn, nr_isolated);
1493         return low_pfn;
1494 }
1495
1496 /*
1497  * Based on information in the current compact_control, find blocks
1498  * suitable for isolating free pages from and then isolate them.
1499  */
1500 static void isolate_freepages(struct compact_control *cc)
1501 {
1502         struct zone *zone = cc->zone;
1503         struct page *page;
1504         unsigned long block_start_pfn;  /* start of current pageblock */
1505         unsigned long isolate_start_pfn; /* exact pfn we start at */
1506         unsigned long block_end_pfn;    /* end of current pageblock */
1507         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1508         struct list_head *freelist = &cc->freepages;
1509         unsigned int stride;
1510
1511         /* Try a small search of the free lists for a candidate */
1512         isolate_start_pfn = fast_isolate_freepages(cc);
1513         if (cc->nr_freepages)
1514                 goto splitmap;
1515
1516         /*
1517          * Initialise the free scanner. The starting point is where we last
1518          * successfully isolated from, zone-cached value, or the end of the
1519          * zone when isolating for the first time. For looping we also need
1520          * this pfn aligned down to the pageblock boundary, because we do
1521          * block_start_pfn -= pageblock_nr_pages in the for loop.
1522          * For ending point, take care when isolating in last pageblock of a
1523          * zone which ends in the middle of a pageblock.
1524          * The low boundary is the end of the pageblock the migration scanner
1525          * is using.
1526          */
1527         isolate_start_pfn = cc->free_pfn;
1528         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1529         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1530                                                 zone_end_pfn(zone));
1531         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1532         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1533
1534         /*
1535          * Isolate free pages until enough are available to migrate the
1536          * pages on cc->migratepages. We stop searching if the migrate
1537          * and free page scanners meet or enough free pages are isolated.
1538          */
1539         for (; block_start_pfn >= low_pfn;
1540                                 block_end_pfn = block_start_pfn,
1541                                 block_start_pfn -= pageblock_nr_pages,
1542                                 isolate_start_pfn = block_start_pfn) {
1543                 unsigned long nr_isolated;
1544
1545                 /*
1546                  * This can iterate a massively long zone without finding any
1547                  * suitable migration targets, so periodically check resched.
1548                  */
1549                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1550                         cond_resched();
1551
1552                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1553                                                                         zone);
1554                 if (!page)
1555                         continue;
1556
1557                 /* Check the block is suitable for migration */
1558                 if (!suitable_migration_target(cc, page))
1559                         continue;
1560
1561                 /* If isolation recently failed, do not retry */
1562                 if (!isolation_suitable(cc, page))
1563                         continue;
1564
1565                 /* Found a block suitable for isolating free pages from. */
1566                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1567                                         block_end_pfn, freelist, stride, false);
1568
1569                 /* Update the skip hint if the full pageblock was scanned */
1570                 if (isolate_start_pfn == block_end_pfn)
1571                         update_pageblock_skip(cc, page, block_start_pfn);
1572
1573                 /* Are enough freepages isolated? */
1574                 if (cc->nr_freepages >= cc->nr_migratepages) {
1575                         if (isolate_start_pfn >= block_end_pfn) {
1576                                 /*
1577                                  * Restart at previous pageblock if more
1578                                  * freepages can be isolated next time.
1579                                  */
1580                                 isolate_start_pfn =
1581                                         block_start_pfn - pageblock_nr_pages;
1582                         }
1583                         break;
1584                 } else if (isolate_start_pfn < block_end_pfn) {
1585                         /*
1586                          * If isolation failed early, do not continue
1587                          * needlessly.
1588                          */
1589                         break;
1590                 }
1591
1592                 /* Adjust stride depending on isolation */
1593                 if (nr_isolated) {
1594                         stride = 1;
1595                         continue;
1596                 }
1597                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1598         }
1599
1600         /*
1601          * Record where the free scanner will restart next time. Either we
1602          * broke from the loop and set isolate_start_pfn based on the last
1603          * call to isolate_freepages_block(), or we met the migration scanner
1604          * and the loop terminated due to isolate_start_pfn < low_pfn
1605          */
1606         cc->free_pfn = isolate_start_pfn;
1607
1608 splitmap:
1609         /* __isolate_free_page() does not map the pages */
1610         split_map_pages(freelist);
1611 }
1612
1613 /*
1614  * This is a migrate-callback that "allocates" freepages by taking pages
1615  * from the isolated freelists in the block we are migrating to.
1616  */
1617 static struct page *compaction_alloc(struct page *migratepage,
1618                                         unsigned long data)
1619 {
1620         struct compact_control *cc = (struct compact_control *)data;
1621         struct page *freepage;
1622
1623         if (list_empty(&cc->freepages)) {
1624                 isolate_freepages(cc);
1625
1626                 if (list_empty(&cc->freepages))
1627                         return NULL;
1628         }
1629
1630         freepage = list_entry(cc->freepages.next, struct page, lru);
1631         list_del(&freepage->lru);
1632         cc->nr_freepages--;
1633
1634         return freepage;
1635 }
1636
1637 /*
1638  * This is a migrate-callback that "frees" freepages back to the isolated
1639  * freelist.  All pages on the freelist are from the same zone, so there is no
1640  * special handling needed for NUMA.
1641  */
1642 static void compaction_free(struct page *page, unsigned long data)
1643 {
1644         struct compact_control *cc = (struct compact_control *)data;
1645
1646         list_add(&page->lru, &cc->freepages);
1647         cc->nr_freepages++;
1648 }
1649
1650 /* possible outcome of isolate_migratepages */
1651 typedef enum {
1652         ISOLATE_ABORT,          /* Abort compaction now */
1653         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1654         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1655 } isolate_migrate_t;
1656
1657 /*
1658  * Allow userspace to control policy on scanning the unevictable LRU for
1659  * compactable pages.
1660  */
1661 #ifdef CONFIG_PREEMPT_RT
1662 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1663 #else
1664 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1665 #endif
1666
1667 static inline void
1668 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1669 {
1670         if (cc->fast_start_pfn == ULONG_MAX)
1671                 return;
1672
1673         if (!cc->fast_start_pfn)
1674                 cc->fast_start_pfn = pfn;
1675
1676         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1677 }
1678
1679 static inline unsigned long
1680 reinit_migrate_pfn(struct compact_control *cc)
1681 {
1682         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1683                 return cc->migrate_pfn;
1684
1685         cc->migrate_pfn = cc->fast_start_pfn;
1686         cc->fast_start_pfn = ULONG_MAX;
1687
1688         return cc->migrate_pfn;
1689 }
1690
1691 /*
1692  * Briefly search the free lists for a migration source that already has
1693  * some free pages to reduce the number of pages that need migration
1694  * before a pageblock is free.
1695  */
1696 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1697 {
1698         unsigned int limit = freelist_scan_limit(cc);
1699         unsigned int nr_scanned = 0;
1700         unsigned long distance;
1701         unsigned long pfn = cc->migrate_pfn;
1702         unsigned long high_pfn;
1703         int order;
1704
1705         /* Skip hints are relied on to avoid repeats on the fast search */
1706         if (cc->ignore_skip_hint)
1707                 return pfn;
1708
1709         /*
1710          * If the migrate_pfn is not at the start of a zone or the start
1711          * of a pageblock then assume this is a continuation of a previous
1712          * scan restarted due to COMPACT_CLUSTER_MAX.
1713          */
1714         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1715                 return pfn;
1716
1717         /*
1718          * For smaller orders, just linearly scan as the number of pages
1719          * to migrate should be relatively small and does not necessarily
1720          * justify freeing up a large block for a small allocation.
1721          */
1722         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1723                 return pfn;
1724
1725         /*
1726          * Only allow kcompactd and direct requests for movable pages to
1727          * quickly clear out a MOVABLE pageblock for allocation. This
1728          * reduces the risk that a large movable pageblock is freed for
1729          * an unmovable/reclaimable small allocation.
1730          */
1731         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1732                 return pfn;
1733
1734         /*
1735          * When starting the migration scanner, pick any pageblock within the
1736          * first half of the search space. Otherwise try and pick a pageblock
1737          * within the first eighth to reduce the chances that a migration
1738          * target later becomes a source.
1739          */
1740         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1741         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1742                 distance >>= 2;
1743         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1744
1745         for (order = cc->order - 1;
1746              order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1747              order--) {
1748                 struct free_area *area = &cc->zone->free_area[order];
1749                 struct list_head *freelist;
1750                 unsigned long flags;
1751                 struct page *freepage;
1752
1753                 if (!area->nr_free)
1754                         continue;
1755
1756                 spin_lock_irqsave(&cc->zone->lock, flags);
1757                 freelist = &area->free_list[MIGRATE_MOVABLE];
1758                 list_for_each_entry(freepage, freelist, lru) {
1759                         unsigned long free_pfn;
1760
1761                         nr_scanned++;
1762                         free_pfn = page_to_pfn(freepage);
1763                         if (free_pfn < high_pfn) {
1764                                 /*
1765                                  * Avoid if skipped recently. Ideally it would
1766                                  * move to the tail but even safe iteration of
1767                                  * the list assumes an entry is deleted, not
1768                                  * reordered.
1769                                  */
1770                                 if (get_pageblock_skip(freepage)) {
1771                                         if (list_is_last(freelist, &freepage->lru))
1772                                                 break;
1773
1774                                         continue;
1775                                 }
1776
1777                                 /* Reorder to so a future search skips recent pages */
1778                                 move_freelist_tail(freelist, freepage);
1779
1780                                 update_fast_start_pfn(cc, free_pfn);
1781                                 pfn = pageblock_start_pfn(free_pfn);
1782                                 cc->fast_search_fail = 0;
1783                                 set_pageblock_skip(freepage);
1784                                 break;
1785                         }
1786
1787                         if (nr_scanned >= limit) {
1788                                 cc->fast_search_fail++;
1789                                 move_freelist_tail(freelist, freepage);
1790                                 break;
1791                         }
1792                 }
1793                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1794         }
1795
1796         cc->total_migrate_scanned += nr_scanned;
1797
1798         /*
1799          * If fast scanning failed then use a cached entry for a page block
1800          * that had free pages as the basis for starting a linear scan.
1801          */
1802         if (pfn == cc->migrate_pfn)
1803                 pfn = reinit_migrate_pfn(cc);
1804
1805         return pfn;
1806 }
1807
1808 /*
1809  * Isolate all pages that can be migrated from the first suitable block,
1810  * starting at the block pointed to by the migrate scanner pfn within
1811  * compact_control.
1812  */
1813 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1814 {
1815         unsigned long block_start_pfn;
1816         unsigned long block_end_pfn;
1817         unsigned long low_pfn;
1818         struct page *page;
1819         const isolate_mode_t isolate_mode =
1820                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1821                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1822         bool fast_find_block;
1823
1824         /*
1825          * Start at where we last stopped, or beginning of the zone as
1826          * initialized by compact_zone(). The first failure will use
1827          * the lowest PFN as the starting point for linear scanning.
1828          */
1829         low_pfn = fast_find_migrateblock(cc);
1830         block_start_pfn = pageblock_start_pfn(low_pfn);
1831         if (block_start_pfn < cc->zone->zone_start_pfn)
1832                 block_start_pfn = cc->zone->zone_start_pfn;
1833
1834         /*
1835          * fast_find_migrateblock marks a pageblock skipped so to avoid
1836          * the isolation_suitable check below, check whether the fast
1837          * search was successful.
1838          */
1839         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1840
1841         /* Only scan within a pageblock boundary */
1842         block_end_pfn = pageblock_end_pfn(low_pfn);
1843
1844         /*
1845          * Iterate over whole pageblocks until we find the first suitable.
1846          * Do not cross the free scanner.
1847          */
1848         for (; block_end_pfn <= cc->free_pfn;
1849                         fast_find_block = false,
1850                         low_pfn = block_end_pfn,
1851                         block_start_pfn = block_end_pfn,
1852                         block_end_pfn += pageblock_nr_pages) {
1853
1854                 /*
1855                  * This can potentially iterate a massively long zone with
1856                  * many pageblocks unsuitable, so periodically check if we
1857                  * need to schedule.
1858                  */
1859                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1860                         cond_resched();
1861
1862                 page = pageblock_pfn_to_page(block_start_pfn,
1863                                                 block_end_pfn, cc->zone);
1864                 if (!page)
1865                         continue;
1866
1867                 /*
1868                  * If isolation recently failed, do not retry. Only check the
1869                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1870                  * to be visited multiple times. Assume skip was checked
1871                  * before making it "skip" so other compaction instances do
1872                  * not scan the same block.
1873                  */
1874                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1875                     !fast_find_block && !isolation_suitable(cc, page))
1876                         continue;
1877
1878                 /*
1879                  * For async compaction, also only scan in MOVABLE blocks
1880                  * without huge pages. Async compaction is optimistic to see
1881                  * if the minimum amount of work satisfies the allocation.
1882                  * The cached PFN is updated as it's possible that all
1883                  * remaining blocks between source and target are unsuitable
1884                  * and the compaction scanners fail to meet.
1885                  */
1886                 if (!suitable_migration_source(cc, page)) {
1887                         update_cached_migrate(cc, block_end_pfn);
1888                         continue;
1889                 }
1890
1891                 /* Perform the isolation */
1892                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1893                                                 block_end_pfn, isolate_mode);
1894
1895                 if (!low_pfn)
1896                         return ISOLATE_ABORT;
1897
1898                 /*
1899                  * Either we isolated something and proceed with migration. Or
1900                  * we failed and compact_zone should decide if we should
1901                  * continue or not.
1902                  */
1903                 break;
1904         }
1905
1906         /* Record where migration scanner will be restarted. */
1907         cc->migrate_pfn = low_pfn;
1908
1909         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1910 }
1911
1912 /*
1913  * order == -1 is expected when compacting via
1914  * /proc/sys/vm/compact_memory
1915  */
1916 static inline bool is_via_compact_memory(int order)
1917 {
1918         return order == -1;
1919 }
1920
1921 static bool kswapd_is_running(pg_data_t *pgdat)
1922 {
1923         return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1924 }
1925
1926 /*
1927  * A zone's fragmentation score is the external fragmentation wrt to the
1928  * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1929  * in the range [0, 100].
1930  *
1931  * The scaling factor ensures that proactive compaction focuses on larger
1932  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1933  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1934  * and thus never exceeds the high threshold for proactive compaction.
1935  */
1936 static unsigned int fragmentation_score_zone(struct zone *zone)
1937 {
1938         unsigned long score;
1939
1940         score = zone->present_pages *
1941                         extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1942         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1943 }
1944
1945 /*
1946  * The per-node proactive (background) compaction process is started by its
1947  * corresponding kcompactd thread when the node's fragmentation score
1948  * exceeds the high threshold. The compaction process remains active till
1949  * the node's score falls below the low threshold, or one of the back-off
1950  * conditions is met.
1951  */
1952 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1953 {
1954         unsigned int score = 0;
1955         int zoneid;
1956
1957         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1958                 struct zone *zone;
1959
1960                 zone = &pgdat->node_zones[zoneid];
1961                 score += fragmentation_score_zone(zone);
1962         }
1963
1964         return score;
1965 }
1966
1967 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1968 {
1969         unsigned int wmark_low;
1970
1971         /*
1972          * Cap the low watermak to avoid excessive compaction
1973          * activity in case a user sets the proactivess tunable
1974          * close to 100 (maximum).
1975          */
1976         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1977         return low ? wmark_low : min(wmark_low + 10, 100U);
1978 }
1979
1980 static bool should_proactive_compact_node(pg_data_t *pgdat)
1981 {
1982         int wmark_high;
1983
1984         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1985                 return false;
1986
1987         wmark_high = fragmentation_score_wmark(pgdat, false);
1988         return fragmentation_score_node(pgdat) > wmark_high;
1989 }
1990
1991 static enum compact_result __compact_finished(struct compact_control *cc)
1992 {
1993         unsigned int order;
1994         const int migratetype = cc->migratetype;
1995         int ret;
1996
1997         /* Compaction run completes if the migrate and free scanner meet */
1998         if (compact_scanners_met(cc)) {
1999                 /* Let the next compaction start anew. */
2000                 reset_cached_positions(cc->zone);
2001
2002                 /*
2003                  * Mark that the PG_migrate_skip information should be cleared
2004                  * by kswapd when it goes to sleep. kcompactd does not set the
2005                  * flag itself as the decision to be clear should be directly
2006                  * based on an allocation request.
2007                  */
2008                 if (cc->direct_compaction)
2009                         cc->zone->compact_blockskip_flush = true;
2010
2011                 if (cc->whole_zone)
2012                         return COMPACT_COMPLETE;
2013                 else
2014                         return COMPACT_PARTIAL_SKIPPED;
2015         }
2016
2017         if (cc->proactive_compaction) {
2018                 int score, wmark_low;
2019                 pg_data_t *pgdat;
2020
2021                 pgdat = cc->zone->zone_pgdat;
2022                 if (kswapd_is_running(pgdat))
2023                         return COMPACT_PARTIAL_SKIPPED;
2024
2025                 score = fragmentation_score_zone(cc->zone);
2026                 wmark_low = fragmentation_score_wmark(pgdat, true);
2027
2028                 if (score > wmark_low)
2029                         ret = COMPACT_CONTINUE;
2030                 else
2031                         ret = COMPACT_SUCCESS;
2032
2033                 goto out;
2034         }
2035
2036         if (is_via_compact_memory(cc->order))
2037                 return COMPACT_CONTINUE;
2038
2039         /*
2040          * Always finish scanning a pageblock to reduce the possibility of
2041          * fallbacks in the future. This is particularly important when
2042          * migration source is unmovable/reclaimable but it's not worth
2043          * special casing.
2044          */
2045         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2046                 return COMPACT_CONTINUE;
2047
2048         /* Direct compactor: Is a suitable page free? */
2049         ret = COMPACT_NO_SUITABLE_PAGE;
2050         for (order = cc->order; order < MAX_ORDER; order++) {
2051                 struct free_area *area = &cc->zone->free_area[order];
2052                 bool can_steal;
2053
2054                 /* Job done if page is free of the right migratetype */
2055                 if (!free_area_empty(area, migratetype))
2056                         return COMPACT_SUCCESS;
2057
2058 #ifdef CONFIG_CMA
2059                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2060                 if (migratetype == MIGRATE_MOVABLE &&
2061                         !free_area_empty(area, MIGRATE_CMA))
2062                         return COMPACT_SUCCESS;
2063 #endif
2064                 /*
2065                  * Job done if allocation would steal freepages from
2066                  * other migratetype buddy lists.
2067                  */
2068                 if (find_suitable_fallback(area, order, migratetype,
2069                                                 true, &can_steal) != -1) {
2070
2071                         /* movable pages are OK in any pageblock */
2072                         if (migratetype == MIGRATE_MOVABLE)
2073                                 return COMPACT_SUCCESS;
2074
2075                         /*
2076                          * We are stealing for a non-movable allocation. Make
2077                          * sure we finish compacting the current pageblock
2078                          * first so it is as free as possible and we won't
2079                          * have to steal another one soon. This only applies
2080                          * to sync compaction, as async compaction operates
2081                          * on pageblocks of the same migratetype.
2082                          */
2083                         if (cc->mode == MIGRATE_ASYNC ||
2084                                         IS_ALIGNED(cc->migrate_pfn,
2085                                                         pageblock_nr_pages)) {
2086                                 return COMPACT_SUCCESS;
2087                         }
2088
2089                         ret = COMPACT_CONTINUE;
2090                         break;
2091                 }
2092         }
2093
2094 out:
2095         if (cc->contended || fatal_signal_pending(current))
2096                 ret = COMPACT_CONTENDED;
2097
2098         return ret;
2099 }
2100
2101 static enum compact_result compact_finished(struct compact_control *cc)
2102 {
2103         int ret;
2104
2105         ret = __compact_finished(cc);
2106         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2107         if (ret == COMPACT_NO_SUITABLE_PAGE)
2108                 ret = COMPACT_CONTINUE;
2109
2110         return ret;
2111 }
2112
2113 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2114                                         unsigned int alloc_flags,
2115                                         int highest_zoneidx,
2116                                         unsigned long wmark_target)
2117 {
2118         unsigned long watermark;
2119
2120         if (is_via_compact_memory(order))
2121                 return COMPACT_CONTINUE;
2122
2123         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2124         /*
2125          * If watermarks for high-order allocation are already met, there
2126          * should be no need for compaction at all.
2127          */
2128         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2129                                                                 alloc_flags))
2130                 return COMPACT_SUCCESS;
2131
2132         /*
2133          * Watermarks for order-0 must be met for compaction to be able to
2134          * isolate free pages for migration targets. This means that the
2135          * watermark and alloc_flags have to match, or be more pessimistic than
2136          * the check in __isolate_free_page(). We don't use the direct
2137          * compactor's alloc_flags, as they are not relevant for freepage
2138          * isolation. We however do use the direct compactor's highest_zoneidx
2139          * to skip over zones where lowmem reserves would prevent allocation
2140          * even if compaction succeeds.
2141          * For costly orders, we require low watermark instead of min for
2142          * compaction to proceed to increase its chances.
2143          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2144          * suitable migration targets
2145          */
2146         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2147                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2148         watermark += compact_gap(order);
2149         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2150                                                 ALLOC_CMA, wmark_target))
2151                 return COMPACT_SKIPPED;
2152
2153         return COMPACT_CONTINUE;
2154 }
2155
2156 /*
2157  * compaction_suitable: Is this suitable to run compaction on this zone now?
2158  * Returns
2159  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2160  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2161  *   COMPACT_CONTINUE - If compaction should run now
2162  */
2163 enum compact_result compaction_suitable(struct zone *zone, int order,
2164                                         unsigned int alloc_flags,
2165                                         int highest_zoneidx)
2166 {
2167         enum compact_result ret;
2168         int fragindex;
2169
2170         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2171                                     zone_page_state(zone, NR_FREE_PAGES));
2172         /*
2173          * fragmentation index determines if allocation failures are due to
2174          * low memory or external fragmentation
2175          *
2176          * index of -1000 would imply allocations might succeed depending on
2177          * watermarks, but we already failed the high-order watermark check
2178          * index towards 0 implies failure is due to lack of memory
2179          * index towards 1000 implies failure is due to fragmentation
2180          *
2181          * Only compact if a failure would be due to fragmentation. Also
2182          * ignore fragindex for non-costly orders where the alternative to
2183          * a successful reclaim/compaction is OOM. Fragindex and the
2184          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2185          * excessive compaction for costly orders, but it should not be at the
2186          * expense of system stability.
2187          */
2188         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2189                 fragindex = fragmentation_index(zone, order);
2190                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2191                         ret = COMPACT_NOT_SUITABLE_ZONE;
2192         }
2193
2194         trace_mm_compaction_suitable(zone, order, ret);
2195         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2196                 ret = COMPACT_SKIPPED;
2197
2198         return ret;
2199 }
2200
2201 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2202                 int alloc_flags)
2203 {
2204         struct zone *zone;
2205         struct zoneref *z;
2206
2207         /*
2208          * Make sure at least one zone would pass __compaction_suitable if we continue
2209          * retrying the reclaim.
2210          */
2211         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2212                                 ac->highest_zoneidx, ac->nodemask) {
2213                 unsigned long available;
2214                 enum compact_result compact_result;
2215
2216                 /*
2217                  * Do not consider all the reclaimable memory because we do not
2218                  * want to trash just for a single high order allocation which
2219                  * is even not guaranteed to appear even if __compaction_suitable
2220                  * is happy about the watermark check.
2221                  */
2222                 available = zone_reclaimable_pages(zone) / order;
2223                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2224                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2225                                 ac->highest_zoneidx, available);
2226                 if (compact_result != COMPACT_SKIPPED)
2227                         return true;
2228         }
2229
2230         return false;
2231 }
2232
2233 static enum compact_result
2234 compact_zone(struct compact_control *cc, struct capture_control *capc)
2235 {
2236         enum compact_result ret;
2237         unsigned long start_pfn = cc->zone->zone_start_pfn;
2238         unsigned long end_pfn = zone_end_pfn(cc->zone);
2239         unsigned long last_migrated_pfn;
2240         const bool sync = cc->mode != MIGRATE_ASYNC;
2241         bool update_cached;
2242
2243         /*
2244          * These counters track activities during zone compaction.  Initialize
2245          * them before compacting a new zone.
2246          */
2247         cc->total_migrate_scanned = 0;
2248         cc->total_free_scanned = 0;
2249         cc->nr_migratepages = 0;
2250         cc->nr_freepages = 0;
2251         INIT_LIST_HEAD(&cc->freepages);
2252         INIT_LIST_HEAD(&cc->migratepages);
2253
2254         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2255         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2256                                                         cc->highest_zoneidx);
2257         /* Compaction is likely to fail */
2258         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2259                 return ret;
2260
2261         /* huh, compaction_suitable is returning something unexpected */
2262         VM_BUG_ON(ret != COMPACT_CONTINUE);
2263
2264         /*
2265          * Clear pageblock skip if there were failures recently and compaction
2266          * is about to be retried after being deferred.
2267          */
2268         if (compaction_restarting(cc->zone, cc->order))
2269                 __reset_isolation_suitable(cc->zone);
2270
2271         /*
2272          * Setup to move all movable pages to the end of the zone. Used cached
2273          * information on where the scanners should start (unless we explicitly
2274          * want to compact the whole zone), but check that it is initialised
2275          * by ensuring the values are within zone boundaries.
2276          */
2277         cc->fast_start_pfn = 0;
2278         if (cc->whole_zone) {
2279                 cc->migrate_pfn = start_pfn;
2280                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2281         } else {
2282                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2283                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2284                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2285                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2286                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2287                 }
2288                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2289                         cc->migrate_pfn = start_pfn;
2290                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2291                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2292                 }
2293
2294                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2295                         cc->whole_zone = true;
2296         }
2297
2298         last_migrated_pfn = 0;
2299
2300         /*
2301          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2302          * the basis that some migrations will fail in ASYNC mode. However,
2303          * if the cached PFNs match and pageblocks are skipped due to having
2304          * no isolation candidates, then the sync state does not matter.
2305          * Until a pageblock with isolation candidates is found, keep the
2306          * cached PFNs in sync to avoid revisiting the same blocks.
2307          */
2308         update_cached = !sync &&
2309                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2310
2311         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2312                                 cc->free_pfn, end_pfn, sync);
2313
2314         migrate_prep_local();
2315
2316         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2317                 int err;
2318                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2319
2320                 /*
2321                  * Avoid multiple rescans which can happen if a page cannot be
2322                  * isolated (dirty/writeback in async mode) or if the migrated
2323                  * pages are being allocated before the pageblock is cleared.
2324                  * The first rescan will capture the entire pageblock for
2325                  * migration. If it fails, it'll be marked skip and scanning
2326                  * will proceed as normal.
2327                  */
2328                 cc->rescan = false;
2329                 if (pageblock_start_pfn(last_migrated_pfn) ==
2330                     pageblock_start_pfn(iteration_start_pfn)) {
2331                         cc->rescan = true;
2332                 }
2333
2334                 switch (isolate_migratepages(cc)) {
2335                 case ISOLATE_ABORT:
2336                         ret = COMPACT_CONTENDED;
2337                         putback_movable_pages(&cc->migratepages);
2338                         cc->nr_migratepages = 0;
2339                         goto out;
2340                 case ISOLATE_NONE:
2341                         if (update_cached) {
2342                                 cc->zone->compact_cached_migrate_pfn[1] =
2343                                         cc->zone->compact_cached_migrate_pfn[0];
2344                         }
2345
2346                         /*
2347                          * We haven't isolated and migrated anything, but
2348                          * there might still be unflushed migrations from
2349                          * previous cc->order aligned block.
2350                          */
2351                         goto check_drain;
2352                 case ISOLATE_SUCCESS:
2353                         update_cached = false;
2354                         last_migrated_pfn = iteration_start_pfn;
2355                 }
2356
2357                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2358                                 compaction_free, (unsigned long)cc, cc->mode,
2359                                 MR_COMPACTION);
2360
2361                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2362                                                         &cc->migratepages);
2363
2364                 /* All pages were either migrated or will be released */
2365                 cc->nr_migratepages = 0;
2366                 if (err) {
2367                         putback_movable_pages(&cc->migratepages);
2368                         /*
2369                          * migrate_pages() may return -ENOMEM when scanners meet
2370                          * and we want compact_finished() to detect it
2371                          */
2372                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2373                                 ret = COMPACT_CONTENDED;
2374                                 goto out;
2375                         }
2376                         /*
2377                          * We failed to migrate at least one page in the current
2378                          * order-aligned block, so skip the rest of it.
2379                          */
2380                         if (cc->direct_compaction &&
2381                                                 (cc->mode == MIGRATE_ASYNC)) {
2382                                 cc->migrate_pfn = block_end_pfn(
2383                                                 cc->migrate_pfn - 1, cc->order);
2384                                 /* Draining pcplists is useless in this case */
2385                                 last_migrated_pfn = 0;
2386                         }
2387                 }
2388
2389 check_drain:
2390                 /*
2391                  * Has the migration scanner moved away from the previous
2392                  * cc->order aligned block where we migrated from? If yes,
2393                  * flush the pages that were freed, so that they can merge and
2394                  * compact_finished() can detect immediately if allocation
2395                  * would succeed.
2396                  */
2397                 if (cc->order > 0 && last_migrated_pfn) {
2398                         unsigned long current_block_start =
2399                                 block_start_pfn(cc->migrate_pfn, cc->order);
2400
2401                         if (last_migrated_pfn < current_block_start) {
2402                                 lru_add_drain_cpu_zone(cc->zone);
2403                                 /* No more flushing until we migrate again */
2404                                 last_migrated_pfn = 0;
2405                         }
2406                 }
2407
2408                 /* Stop if a page has been captured */
2409                 if (capc && capc->page) {
2410                         ret = COMPACT_SUCCESS;
2411                         break;
2412                 }
2413         }
2414
2415 out:
2416         /*
2417          * Release free pages and update where the free scanner should restart,
2418          * so we don't leave any returned pages behind in the next attempt.
2419          */
2420         if (cc->nr_freepages > 0) {
2421                 unsigned long free_pfn = release_freepages(&cc->freepages);
2422
2423                 cc->nr_freepages = 0;
2424                 VM_BUG_ON(free_pfn == 0);
2425                 /* The cached pfn is always the first in a pageblock */
2426                 free_pfn = pageblock_start_pfn(free_pfn);
2427                 /*
2428                  * Only go back, not forward. The cached pfn might have been
2429                  * already reset to zone end in compact_finished()
2430                  */
2431                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2432                         cc->zone->compact_cached_free_pfn = free_pfn;
2433         }
2434
2435         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2436         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2437
2438         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2439                                 cc->free_pfn, end_pfn, sync, ret);
2440
2441         return ret;
2442 }
2443
2444 static enum compact_result compact_zone_order(struct zone *zone, int order,
2445                 gfp_t gfp_mask, enum compact_priority prio,
2446                 unsigned int alloc_flags, int highest_zoneidx,
2447                 struct page **capture)
2448 {
2449         enum compact_result ret;
2450         struct compact_control cc = {
2451                 .order = order,
2452                 .search_order = order,
2453                 .gfp_mask = gfp_mask,
2454                 .zone = zone,
2455                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2456                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2457                 .alloc_flags = alloc_flags,
2458                 .highest_zoneidx = highest_zoneidx,
2459                 .direct_compaction = true,
2460                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2461                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2462                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2463         };
2464         struct capture_control capc = {
2465                 .cc = &cc,
2466                 .page = NULL,
2467         };
2468
2469         /*
2470          * Make sure the structs are really initialized before we expose the
2471          * capture control, in case we are interrupted and the interrupt handler
2472          * frees a page.
2473          */
2474         barrier();
2475         WRITE_ONCE(current->capture_control, &capc);
2476
2477         ret = compact_zone(&cc, &capc);
2478
2479         VM_BUG_ON(!list_empty(&cc.freepages));
2480         VM_BUG_ON(!list_empty(&cc.migratepages));
2481
2482         /*
2483          * Make sure we hide capture control first before we read the captured
2484          * page pointer, otherwise an interrupt could free and capture a page
2485          * and we would leak it.
2486          */
2487         WRITE_ONCE(current->capture_control, NULL);
2488         *capture = READ_ONCE(capc.page);
2489
2490         return ret;
2491 }
2492
2493 int sysctl_extfrag_threshold = 500;
2494
2495 /**
2496  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2497  * @gfp_mask: The GFP mask of the current allocation
2498  * @order: The order of the current allocation
2499  * @alloc_flags: The allocation flags of the current allocation
2500  * @ac: The context of current allocation
2501  * @prio: Determines how hard direct compaction should try to succeed
2502  * @capture: Pointer to free page created by compaction will be stored here
2503  *
2504  * This is the main entry point for direct page compaction.
2505  */
2506 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2507                 unsigned int alloc_flags, const struct alloc_context *ac,
2508                 enum compact_priority prio, struct page **capture)
2509 {
2510         int may_perform_io = gfp_mask & __GFP_IO;
2511         struct zoneref *z;
2512         struct zone *zone;
2513         enum compact_result rc = COMPACT_SKIPPED;
2514
2515         /*
2516          * Check if the GFP flags allow compaction - GFP_NOIO is really
2517          * tricky context because the migration might require IO
2518          */
2519         if (!may_perform_io)
2520                 return COMPACT_SKIPPED;
2521
2522         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2523
2524         /* Compact each zone in the list */
2525         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2526                                         ac->highest_zoneidx, ac->nodemask) {
2527                 enum compact_result status;
2528
2529                 if (prio > MIN_COMPACT_PRIORITY
2530                                         && compaction_deferred(zone, order)) {
2531                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2532                         continue;
2533                 }
2534
2535                 status = compact_zone_order(zone, order, gfp_mask, prio,
2536                                 alloc_flags, ac->highest_zoneidx, capture);
2537                 rc = max(status, rc);
2538
2539                 /* The allocation should succeed, stop compacting */
2540                 if (status == COMPACT_SUCCESS) {
2541                         /*
2542                          * We think the allocation will succeed in this zone,
2543                          * but it is not certain, hence the false. The caller
2544                          * will repeat this with true if allocation indeed
2545                          * succeeds in this zone.
2546                          */
2547                         compaction_defer_reset(zone, order, false);
2548
2549                         break;
2550                 }
2551
2552                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2553                                         status == COMPACT_PARTIAL_SKIPPED))
2554                         /*
2555                          * We think that allocation won't succeed in this zone
2556                          * so we defer compaction there. If it ends up
2557                          * succeeding after all, it will be reset.
2558                          */
2559                         defer_compaction(zone, order);
2560
2561                 /*
2562                  * We might have stopped compacting due to need_resched() in
2563                  * async compaction, or due to a fatal signal detected. In that
2564                  * case do not try further zones
2565                  */
2566                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2567                                         || fatal_signal_pending(current))
2568                         break;
2569         }
2570
2571         return rc;
2572 }
2573
2574 /*
2575  * Compact all zones within a node till each zone's fragmentation score
2576  * reaches within proactive compaction thresholds (as determined by the
2577  * proactiveness tunable).
2578  *
2579  * It is possible that the function returns before reaching score targets
2580  * due to various back-off conditions, such as, contention on per-node or
2581  * per-zone locks.
2582  */
2583 static void proactive_compact_node(pg_data_t *pgdat)
2584 {
2585         int zoneid;
2586         struct zone *zone;
2587         struct compact_control cc = {
2588                 .order = -1,
2589                 .mode = MIGRATE_SYNC_LIGHT,
2590                 .ignore_skip_hint = true,
2591                 .whole_zone = true,
2592                 .gfp_mask = GFP_KERNEL,
2593                 .proactive_compaction = true,
2594         };
2595
2596         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2597                 zone = &pgdat->node_zones[zoneid];
2598                 if (!populated_zone(zone))
2599                         continue;
2600
2601                 cc.zone = zone;
2602
2603                 compact_zone(&cc, NULL);
2604
2605                 VM_BUG_ON(!list_empty(&cc.freepages));
2606                 VM_BUG_ON(!list_empty(&cc.migratepages));
2607         }
2608 }
2609
2610 /* Compact all zones within a node */
2611 static void compact_node(int nid)
2612 {
2613         pg_data_t *pgdat = NODE_DATA(nid);
2614         int zoneid;
2615         struct zone *zone;
2616         struct compact_control cc = {
2617                 .order = -1,
2618                 .mode = MIGRATE_SYNC,
2619                 .ignore_skip_hint = true,
2620                 .whole_zone = true,
2621                 .gfp_mask = GFP_KERNEL,
2622         };
2623
2624
2625         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2626
2627                 zone = &pgdat->node_zones[zoneid];
2628                 if (!populated_zone(zone))
2629                         continue;
2630
2631                 cc.zone = zone;
2632
2633                 compact_zone(&cc, NULL);
2634
2635                 VM_BUG_ON(!list_empty(&cc.freepages));
2636                 VM_BUG_ON(!list_empty(&cc.migratepages));
2637         }
2638 }
2639
2640 /* Compact all nodes in the system */
2641 static void compact_nodes(void)
2642 {
2643         int nid;
2644
2645         /* Flush pending updates to the LRU lists */
2646         lru_add_drain_all();
2647
2648         for_each_online_node(nid)
2649                 compact_node(nid);
2650 }
2651
2652 /* The written value is actually unused, all memory is compacted */
2653 int sysctl_compact_memory;
2654
2655 /*
2656  * Tunable for proactive compaction. It determines how
2657  * aggressively the kernel should compact memory in the
2658  * background. It takes values in the range [0, 100].
2659  */
2660 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2661
2662 /*
2663  * This is the entry point for compacting all nodes via
2664  * /proc/sys/vm/compact_memory
2665  */
2666 int sysctl_compaction_handler(struct ctl_table *table, int write,
2667                         void *buffer, size_t *length, loff_t *ppos)
2668 {
2669         if (write)
2670                 compact_nodes();
2671
2672         return 0;
2673 }
2674
2675 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2676 static ssize_t sysfs_compact_node(struct device *dev,
2677                         struct device_attribute *attr,
2678                         const char *buf, size_t count)
2679 {
2680         int nid = dev->id;
2681
2682         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2683                 /* Flush pending updates to the LRU lists */
2684                 lru_add_drain_all();
2685
2686                 compact_node(nid);
2687         }
2688
2689         return count;
2690 }
2691 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2692
2693 int compaction_register_node(struct node *node)
2694 {
2695         return device_create_file(&node->dev, &dev_attr_compact);
2696 }
2697
2698 void compaction_unregister_node(struct node *node)
2699 {
2700         return device_remove_file(&node->dev, &dev_attr_compact);
2701 }
2702 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2703
2704 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2705 {
2706         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2707 }
2708
2709 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2710 {
2711         int zoneid;
2712         struct zone *zone;
2713         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2714
2715         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2716                 zone = &pgdat->node_zones[zoneid];
2717
2718                 if (!populated_zone(zone))
2719                         continue;
2720
2721                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2722                                         highest_zoneidx) == COMPACT_CONTINUE)
2723                         return true;
2724         }
2725
2726         return false;
2727 }
2728
2729 static void kcompactd_do_work(pg_data_t *pgdat)
2730 {
2731         /*
2732          * With no special task, compact all zones so that a page of requested
2733          * order is allocatable.
2734          */
2735         int zoneid;
2736         struct zone *zone;
2737         struct compact_control cc = {
2738                 .order = pgdat->kcompactd_max_order,
2739                 .search_order = pgdat->kcompactd_max_order,
2740                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2741                 .mode = MIGRATE_SYNC_LIGHT,
2742                 .ignore_skip_hint = false,
2743                 .gfp_mask = GFP_KERNEL,
2744         };
2745         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2746                                                         cc.highest_zoneidx);
2747         count_compact_event(KCOMPACTD_WAKE);
2748
2749         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2750                 int status;
2751
2752                 zone = &pgdat->node_zones[zoneid];
2753                 if (!populated_zone(zone))
2754                         continue;
2755
2756                 if (compaction_deferred(zone, cc.order))
2757                         continue;
2758
2759                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2760                                                         COMPACT_CONTINUE)
2761                         continue;
2762
2763                 if (kthread_should_stop())
2764                         return;
2765
2766                 cc.zone = zone;
2767                 status = compact_zone(&cc, NULL);
2768
2769                 if (status == COMPACT_SUCCESS) {
2770                         compaction_defer_reset(zone, cc.order, false);
2771                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2772                         /*
2773                          * Buddy pages may become stranded on pcps that could
2774                          * otherwise coalesce on the zone's free area for
2775                          * order >= cc.order.  This is ratelimited by the
2776                          * upcoming deferral.
2777                          */
2778                         drain_all_pages(zone);
2779
2780                         /*
2781                          * We use sync migration mode here, so we defer like
2782                          * sync direct compaction does.
2783                          */
2784                         defer_compaction(zone, cc.order);
2785                 }
2786
2787                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2788                                      cc.total_migrate_scanned);
2789                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2790                                      cc.total_free_scanned);
2791
2792                 VM_BUG_ON(!list_empty(&cc.freepages));
2793                 VM_BUG_ON(!list_empty(&cc.migratepages));
2794         }
2795
2796         /*
2797          * Regardless of success, we are done until woken up next. But remember
2798          * the requested order/highest_zoneidx in case it was higher/tighter
2799          * than our current ones
2800          */
2801         if (pgdat->kcompactd_max_order <= cc.order)
2802                 pgdat->kcompactd_max_order = 0;
2803         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2804                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2805 }
2806
2807 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2808 {
2809         if (!order)
2810                 return;
2811
2812         if (pgdat->kcompactd_max_order < order)
2813                 pgdat->kcompactd_max_order = order;
2814
2815         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2816                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2817
2818         /*
2819          * Pairs with implicit barrier in wait_event_freezable()
2820          * such that wakeups are not missed.
2821          */
2822         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2823                 return;
2824
2825         if (!kcompactd_node_suitable(pgdat))
2826                 return;
2827
2828         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2829                                                         highest_zoneidx);
2830         wake_up_interruptible(&pgdat->kcompactd_wait);
2831 }
2832
2833 /*
2834  * The background compaction daemon, started as a kernel thread
2835  * from the init process.
2836  */
2837 static int kcompactd(void *p)
2838 {
2839         pg_data_t *pgdat = (pg_data_t*)p;
2840         struct task_struct *tsk = current;
2841         unsigned int proactive_defer = 0;
2842
2843         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2844
2845         if (!cpumask_empty(cpumask))
2846                 set_cpus_allowed_ptr(tsk, cpumask);
2847
2848         set_freezable();
2849
2850         pgdat->kcompactd_max_order = 0;
2851         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2852
2853         while (!kthread_should_stop()) {
2854                 unsigned long pflags;
2855
2856                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2857                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2858                         kcompactd_work_requested(pgdat),
2859                         msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2860
2861                         psi_memstall_enter(&pflags);
2862                         kcompactd_do_work(pgdat);
2863                         psi_memstall_leave(&pflags);
2864                         continue;
2865                 }
2866
2867                 /* kcompactd wait timeout */
2868                 if (should_proactive_compact_node(pgdat)) {
2869                         unsigned int prev_score, score;
2870
2871                         if (proactive_defer) {
2872                                 proactive_defer--;
2873                                 continue;
2874                         }
2875                         prev_score = fragmentation_score_node(pgdat);
2876                         proactive_compact_node(pgdat);
2877                         score = fragmentation_score_node(pgdat);
2878                         /*
2879                          * Defer proactive compaction if the fragmentation
2880                          * score did not go down i.e. no progress made.
2881                          */
2882                         proactive_defer = score < prev_score ?
2883                                         0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2884                 }
2885         }
2886
2887         return 0;
2888 }
2889
2890 /*
2891  * This kcompactd start function will be called by init and node-hot-add.
2892  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2893  */
2894 int kcompactd_run(int nid)
2895 {
2896         pg_data_t *pgdat = NODE_DATA(nid);
2897         int ret = 0;
2898
2899         if (pgdat->kcompactd)
2900                 return 0;
2901
2902         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2903         if (IS_ERR(pgdat->kcompactd)) {
2904                 pr_err("Failed to start kcompactd on node %d\n", nid);
2905                 ret = PTR_ERR(pgdat->kcompactd);
2906                 pgdat->kcompactd = NULL;
2907         }
2908         return ret;
2909 }
2910
2911 /*
2912  * Called by memory hotplug when all memory in a node is offlined. Caller must
2913  * hold mem_hotplug_begin/end().
2914  */
2915 void kcompactd_stop(int nid)
2916 {
2917         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2918
2919         if (kcompactd) {
2920                 kthread_stop(kcompactd);
2921                 NODE_DATA(nid)->kcompactd = NULL;
2922         }
2923 }
2924
2925 /*
2926  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2927  * not required for correctness. So if the last cpu in a node goes
2928  * away, we get changed to run anywhere: as the first one comes back,
2929  * restore their cpu bindings.
2930  */
2931 static int kcompactd_cpu_online(unsigned int cpu)
2932 {
2933         int nid;
2934
2935         for_each_node_state(nid, N_MEMORY) {
2936                 pg_data_t *pgdat = NODE_DATA(nid);
2937                 const struct cpumask *mask;
2938
2939                 mask = cpumask_of_node(pgdat->node_id);
2940
2941                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2942                         /* One of our CPUs online: restore mask */
2943                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2944         }
2945         return 0;
2946 }
2947
2948 static int __init kcompactd_init(void)
2949 {
2950         int nid;
2951         int ret;
2952
2953         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2954                                         "mm/compaction:online",
2955                                         kcompactd_cpu_online, NULL);
2956         if (ret < 0) {
2957                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2958                 return ret;
2959         }
2960
2961         for_each_node_state(nid, N_MEMORY)
2962                 kcompactd_run(nid);
2963         return 0;
2964 }
2965 subsys_initcall(kcompactd_init)
2966
2967 #endif /* CONFIG_COMPACTION */