tools headers UAPI: Sync openat2.h with the kernel sources
[linux-2.6-microblaze.git] / lib / iov_iter.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <net/checksum.h>
13 #include <linux/scatterlist.h>
14 #include <linux/instrumented.h>
15
16 #define PIPE_PARANOIA /* for now */
17
18 #define iterate_iovec(i, n, __v, __p, skip, STEP) {     \
19         size_t left;                                    \
20         size_t wanted = n;                              \
21         __p = i->iov;                                   \
22         __v.iov_len = min(n, __p->iov_len - skip);      \
23         if (likely(__v.iov_len)) {                      \
24                 __v.iov_base = __p->iov_base + skip;    \
25                 left = (STEP);                          \
26                 __v.iov_len -= left;                    \
27                 skip += __v.iov_len;                    \
28                 n -= __v.iov_len;                       \
29         } else {                                        \
30                 left = 0;                               \
31         }                                               \
32         while (unlikely(!left && n)) {                  \
33                 __p++;                                  \
34                 __v.iov_len = min(n, __p->iov_len);     \
35                 if (unlikely(!__v.iov_len))             \
36                         continue;                       \
37                 __v.iov_base = __p->iov_base;           \
38                 left = (STEP);                          \
39                 __v.iov_len -= left;                    \
40                 skip = __v.iov_len;                     \
41                 n -= __v.iov_len;                       \
42         }                                               \
43         n = wanted - n;                                 \
44 }
45
46 #define iterate_kvec(i, n, __v, __p, skip, STEP) {      \
47         size_t wanted = n;                              \
48         __p = i->kvec;                                  \
49         __v.iov_len = min(n, __p->iov_len - skip);      \
50         if (likely(__v.iov_len)) {                      \
51                 __v.iov_base = __p->iov_base + skip;    \
52                 (void)(STEP);                           \
53                 skip += __v.iov_len;                    \
54                 n -= __v.iov_len;                       \
55         }                                               \
56         while (unlikely(n)) {                           \
57                 __p++;                                  \
58                 __v.iov_len = min(n, __p->iov_len);     \
59                 if (unlikely(!__v.iov_len))             \
60                         continue;                       \
61                 __v.iov_base = __p->iov_base;           \
62                 (void)(STEP);                           \
63                 skip = __v.iov_len;                     \
64                 n -= __v.iov_len;                       \
65         }                                               \
66         n = wanted;                                     \
67 }
68
69 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {     \
70         struct bvec_iter __start;                       \
71         __start.bi_size = n;                            \
72         __start.bi_bvec_done = skip;                    \
73         __start.bi_idx = 0;                             \
74         for_each_bvec(__v, i->bvec, __bi, __start) {    \
75                 (void)(STEP);                           \
76         }                                               \
77 }
78
79 #define iterate_all_kinds(i, n, v, I, B, K) {                   \
80         if (likely(n)) {                                        \
81                 size_t skip = i->iov_offset;                    \
82                 if (unlikely(i->type & ITER_BVEC)) {            \
83                         struct bio_vec v;                       \
84                         struct bvec_iter __bi;                  \
85                         iterate_bvec(i, n, v, __bi, skip, (B))  \
86                 } else if (unlikely(i->type & ITER_KVEC)) {     \
87                         const struct kvec *kvec;                \
88                         struct kvec v;                          \
89                         iterate_kvec(i, n, v, kvec, skip, (K))  \
90                 } else if (unlikely(i->type & ITER_DISCARD)) {  \
91                 } else {                                        \
92                         const struct iovec *iov;                \
93                         struct iovec v;                         \
94                         iterate_iovec(i, n, v, iov, skip, (I))  \
95                 }                                               \
96         }                                                       \
97 }
98
99 #define iterate_and_advance(i, n, v, I, B, K) {                 \
100         if (unlikely(i->count < n))                             \
101                 n = i->count;                                   \
102         if (i->count) {                                         \
103                 size_t skip = i->iov_offset;                    \
104                 if (unlikely(i->type & ITER_BVEC)) {            \
105                         const struct bio_vec *bvec = i->bvec;   \
106                         struct bio_vec v;                       \
107                         struct bvec_iter __bi;                  \
108                         iterate_bvec(i, n, v, __bi, skip, (B))  \
109                         i->bvec = __bvec_iter_bvec(i->bvec, __bi);      \
110                         i->nr_segs -= i->bvec - bvec;           \
111                         skip = __bi.bi_bvec_done;               \
112                 } else if (unlikely(i->type & ITER_KVEC)) {     \
113                         const struct kvec *kvec;                \
114                         struct kvec v;                          \
115                         iterate_kvec(i, n, v, kvec, skip, (K))  \
116                         if (skip == kvec->iov_len) {            \
117                                 kvec++;                         \
118                                 skip = 0;                       \
119                         }                                       \
120                         i->nr_segs -= kvec - i->kvec;           \
121                         i->kvec = kvec;                         \
122                 } else if (unlikely(i->type & ITER_DISCARD)) {  \
123                         skip += n;                              \
124                 } else {                                        \
125                         const struct iovec *iov;                \
126                         struct iovec v;                         \
127                         iterate_iovec(i, n, v, iov, skip, (I))  \
128                         if (skip == iov->iov_len) {             \
129                                 iov++;                          \
130                                 skip = 0;                       \
131                         }                                       \
132                         i->nr_segs -= iov - i->iov;             \
133                         i->iov = iov;                           \
134                 }                                               \
135                 i->count -= n;                                  \
136                 i->iov_offset = skip;                           \
137         }                                                       \
138 }
139
140 static int copyout(void __user *to, const void *from, size_t n)
141 {
142         if (should_fail_usercopy())
143                 return n;
144         if (access_ok(to, n)) {
145                 instrument_copy_to_user(to, from, n);
146                 n = raw_copy_to_user(to, from, n);
147         }
148         return n;
149 }
150
151 static int copyin(void *to, const void __user *from, size_t n)
152 {
153         if (should_fail_usercopy())
154                 return n;
155         if (access_ok(from, n)) {
156                 instrument_copy_from_user(to, from, n);
157                 n = raw_copy_from_user(to, from, n);
158         }
159         return n;
160 }
161
162 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
163                          struct iov_iter *i)
164 {
165         size_t skip, copy, left, wanted;
166         const struct iovec *iov;
167         char __user *buf;
168         void *kaddr, *from;
169
170         if (unlikely(bytes > i->count))
171                 bytes = i->count;
172
173         if (unlikely(!bytes))
174                 return 0;
175
176         might_fault();
177         wanted = bytes;
178         iov = i->iov;
179         skip = i->iov_offset;
180         buf = iov->iov_base + skip;
181         copy = min(bytes, iov->iov_len - skip);
182
183         if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
184                 kaddr = kmap_atomic(page);
185                 from = kaddr + offset;
186
187                 /* first chunk, usually the only one */
188                 left = copyout(buf, from, copy);
189                 copy -= left;
190                 skip += copy;
191                 from += copy;
192                 bytes -= copy;
193
194                 while (unlikely(!left && bytes)) {
195                         iov++;
196                         buf = iov->iov_base;
197                         copy = min(bytes, iov->iov_len);
198                         left = copyout(buf, from, copy);
199                         copy -= left;
200                         skip = copy;
201                         from += copy;
202                         bytes -= copy;
203                 }
204                 if (likely(!bytes)) {
205                         kunmap_atomic(kaddr);
206                         goto done;
207                 }
208                 offset = from - kaddr;
209                 buf += copy;
210                 kunmap_atomic(kaddr);
211                 copy = min(bytes, iov->iov_len - skip);
212         }
213         /* Too bad - revert to non-atomic kmap */
214
215         kaddr = kmap(page);
216         from = kaddr + offset;
217         left = copyout(buf, from, copy);
218         copy -= left;
219         skip += copy;
220         from += copy;
221         bytes -= copy;
222         while (unlikely(!left && bytes)) {
223                 iov++;
224                 buf = iov->iov_base;
225                 copy = min(bytes, iov->iov_len);
226                 left = copyout(buf, from, copy);
227                 copy -= left;
228                 skip = copy;
229                 from += copy;
230                 bytes -= copy;
231         }
232         kunmap(page);
233
234 done:
235         if (skip == iov->iov_len) {
236                 iov++;
237                 skip = 0;
238         }
239         i->count -= wanted - bytes;
240         i->nr_segs -= iov - i->iov;
241         i->iov = iov;
242         i->iov_offset = skip;
243         return wanted - bytes;
244 }
245
246 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
247                          struct iov_iter *i)
248 {
249         size_t skip, copy, left, wanted;
250         const struct iovec *iov;
251         char __user *buf;
252         void *kaddr, *to;
253
254         if (unlikely(bytes > i->count))
255                 bytes = i->count;
256
257         if (unlikely(!bytes))
258                 return 0;
259
260         might_fault();
261         wanted = bytes;
262         iov = i->iov;
263         skip = i->iov_offset;
264         buf = iov->iov_base + skip;
265         copy = min(bytes, iov->iov_len - skip);
266
267         if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
268                 kaddr = kmap_atomic(page);
269                 to = kaddr + offset;
270
271                 /* first chunk, usually the only one */
272                 left = copyin(to, buf, copy);
273                 copy -= left;
274                 skip += copy;
275                 to += copy;
276                 bytes -= copy;
277
278                 while (unlikely(!left && bytes)) {
279                         iov++;
280                         buf = iov->iov_base;
281                         copy = min(bytes, iov->iov_len);
282                         left = copyin(to, buf, copy);
283                         copy -= left;
284                         skip = copy;
285                         to += copy;
286                         bytes -= copy;
287                 }
288                 if (likely(!bytes)) {
289                         kunmap_atomic(kaddr);
290                         goto done;
291                 }
292                 offset = to - kaddr;
293                 buf += copy;
294                 kunmap_atomic(kaddr);
295                 copy = min(bytes, iov->iov_len - skip);
296         }
297         /* Too bad - revert to non-atomic kmap */
298
299         kaddr = kmap(page);
300         to = kaddr + offset;
301         left = copyin(to, buf, copy);
302         copy -= left;
303         skip += copy;
304         to += copy;
305         bytes -= copy;
306         while (unlikely(!left && bytes)) {
307                 iov++;
308                 buf = iov->iov_base;
309                 copy = min(bytes, iov->iov_len);
310                 left = copyin(to, buf, copy);
311                 copy -= left;
312                 skip = copy;
313                 to += copy;
314                 bytes -= copy;
315         }
316         kunmap(page);
317
318 done:
319         if (skip == iov->iov_len) {
320                 iov++;
321                 skip = 0;
322         }
323         i->count -= wanted - bytes;
324         i->nr_segs -= iov - i->iov;
325         i->iov = iov;
326         i->iov_offset = skip;
327         return wanted - bytes;
328 }
329
330 #ifdef PIPE_PARANOIA
331 static bool sanity(const struct iov_iter *i)
332 {
333         struct pipe_inode_info *pipe = i->pipe;
334         unsigned int p_head = pipe->head;
335         unsigned int p_tail = pipe->tail;
336         unsigned int p_mask = pipe->ring_size - 1;
337         unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
338         unsigned int i_head = i->head;
339         unsigned int idx;
340
341         if (i->iov_offset) {
342                 struct pipe_buffer *p;
343                 if (unlikely(p_occupancy == 0))
344                         goto Bad;       // pipe must be non-empty
345                 if (unlikely(i_head != p_head - 1))
346                         goto Bad;       // must be at the last buffer...
347
348                 p = &pipe->bufs[i_head & p_mask];
349                 if (unlikely(p->offset + p->len != i->iov_offset))
350                         goto Bad;       // ... at the end of segment
351         } else {
352                 if (i_head != p_head)
353                         goto Bad;       // must be right after the last buffer
354         }
355         return true;
356 Bad:
357         printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
358         printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
359                         p_head, p_tail, pipe->ring_size);
360         for (idx = 0; idx < pipe->ring_size; idx++)
361                 printk(KERN_ERR "[%p %p %d %d]\n",
362                         pipe->bufs[idx].ops,
363                         pipe->bufs[idx].page,
364                         pipe->bufs[idx].offset,
365                         pipe->bufs[idx].len);
366         WARN_ON(1);
367         return false;
368 }
369 #else
370 #define sanity(i) true
371 #endif
372
373 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
374                          struct iov_iter *i)
375 {
376         struct pipe_inode_info *pipe = i->pipe;
377         struct pipe_buffer *buf;
378         unsigned int p_tail = pipe->tail;
379         unsigned int p_mask = pipe->ring_size - 1;
380         unsigned int i_head = i->head;
381         size_t off;
382
383         if (unlikely(bytes > i->count))
384                 bytes = i->count;
385
386         if (unlikely(!bytes))
387                 return 0;
388
389         if (!sanity(i))
390                 return 0;
391
392         off = i->iov_offset;
393         buf = &pipe->bufs[i_head & p_mask];
394         if (off) {
395                 if (offset == off && buf->page == page) {
396                         /* merge with the last one */
397                         buf->len += bytes;
398                         i->iov_offset += bytes;
399                         goto out;
400                 }
401                 i_head++;
402                 buf = &pipe->bufs[i_head & p_mask];
403         }
404         if (pipe_full(i_head, p_tail, pipe->max_usage))
405                 return 0;
406
407         buf->ops = &page_cache_pipe_buf_ops;
408         get_page(page);
409         buf->page = page;
410         buf->offset = offset;
411         buf->len = bytes;
412
413         pipe->head = i_head + 1;
414         i->iov_offset = offset + bytes;
415         i->head = i_head;
416 out:
417         i->count -= bytes;
418         return bytes;
419 }
420
421 /*
422  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
423  * bytes.  For each iovec, fault in each page that constitutes the iovec.
424  *
425  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
426  * because it is an invalid address).
427  */
428 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
429 {
430         size_t skip = i->iov_offset;
431         const struct iovec *iov;
432         int err;
433         struct iovec v;
434
435         if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
436                 iterate_iovec(i, bytes, v, iov, skip, ({
437                         err = fault_in_pages_readable(v.iov_base, v.iov_len);
438                         if (unlikely(err))
439                         return err;
440                 0;}))
441         }
442         return 0;
443 }
444 EXPORT_SYMBOL(iov_iter_fault_in_readable);
445
446 void iov_iter_init(struct iov_iter *i, unsigned int direction,
447                         const struct iovec *iov, unsigned long nr_segs,
448                         size_t count)
449 {
450         WARN_ON(direction & ~(READ | WRITE));
451         direction &= READ | WRITE;
452
453         /* It will get better.  Eventually... */
454         if (uaccess_kernel()) {
455                 i->type = ITER_KVEC | direction;
456                 i->kvec = (struct kvec *)iov;
457         } else {
458                 i->type = ITER_IOVEC | direction;
459                 i->iov = iov;
460         }
461         i->nr_segs = nr_segs;
462         i->iov_offset = 0;
463         i->count = count;
464 }
465 EXPORT_SYMBOL(iov_iter_init);
466
467 static void memzero_page(struct page *page, size_t offset, size_t len)
468 {
469         char *addr = kmap_atomic(page);
470         memset(addr + offset, 0, len);
471         kunmap_atomic(addr);
472 }
473
474 static inline bool allocated(struct pipe_buffer *buf)
475 {
476         return buf->ops == &default_pipe_buf_ops;
477 }
478
479 static inline void data_start(const struct iov_iter *i,
480                               unsigned int *iter_headp, size_t *offp)
481 {
482         unsigned int p_mask = i->pipe->ring_size - 1;
483         unsigned int iter_head = i->head;
484         size_t off = i->iov_offset;
485
486         if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
487                     off == PAGE_SIZE)) {
488                 iter_head++;
489                 off = 0;
490         }
491         *iter_headp = iter_head;
492         *offp = off;
493 }
494
495 static size_t push_pipe(struct iov_iter *i, size_t size,
496                         int *iter_headp, size_t *offp)
497 {
498         struct pipe_inode_info *pipe = i->pipe;
499         unsigned int p_tail = pipe->tail;
500         unsigned int p_mask = pipe->ring_size - 1;
501         unsigned int iter_head;
502         size_t off;
503         ssize_t left;
504
505         if (unlikely(size > i->count))
506                 size = i->count;
507         if (unlikely(!size))
508                 return 0;
509
510         left = size;
511         data_start(i, &iter_head, &off);
512         *iter_headp = iter_head;
513         *offp = off;
514         if (off) {
515                 left -= PAGE_SIZE - off;
516                 if (left <= 0) {
517                         pipe->bufs[iter_head & p_mask].len += size;
518                         return size;
519                 }
520                 pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
521                 iter_head++;
522         }
523         while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
524                 struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
525                 struct page *page = alloc_page(GFP_USER);
526                 if (!page)
527                         break;
528
529                 buf->ops = &default_pipe_buf_ops;
530                 buf->page = page;
531                 buf->offset = 0;
532                 buf->len = min_t(ssize_t, left, PAGE_SIZE);
533                 left -= buf->len;
534                 iter_head++;
535                 pipe->head = iter_head;
536
537                 if (left == 0)
538                         return size;
539         }
540         return size - left;
541 }
542
543 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
544                                 struct iov_iter *i)
545 {
546         struct pipe_inode_info *pipe = i->pipe;
547         unsigned int p_mask = pipe->ring_size - 1;
548         unsigned int i_head;
549         size_t n, off;
550
551         if (!sanity(i))
552                 return 0;
553
554         bytes = n = push_pipe(i, bytes, &i_head, &off);
555         if (unlikely(!n))
556                 return 0;
557         do {
558                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
559                 memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
560                 i->head = i_head;
561                 i->iov_offset = off + chunk;
562                 n -= chunk;
563                 addr += chunk;
564                 off = 0;
565                 i_head++;
566         } while (n);
567         i->count -= bytes;
568         return bytes;
569 }
570
571 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
572                               __wsum sum, size_t off)
573 {
574         __wsum next = csum_partial_copy_nocheck(from, to, len);
575         return csum_block_add(sum, next, off);
576 }
577
578 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
579                                          struct csum_state *csstate,
580                                          struct iov_iter *i)
581 {
582         struct pipe_inode_info *pipe = i->pipe;
583         unsigned int p_mask = pipe->ring_size - 1;
584         __wsum sum = csstate->csum;
585         size_t off = csstate->off;
586         unsigned int i_head;
587         size_t n, r;
588
589         if (!sanity(i))
590                 return 0;
591
592         bytes = n = push_pipe(i, bytes, &i_head, &r);
593         if (unlikely(!n))
594                 return 0;
595         do {
596                 size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
597                 char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
598                 sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
599                 kunmap_atomic(p);
600                 i->head = i_head;
601                 i->iov_offset = r + chunk;
602                 n -= chunk;
603                 off += chunk;
604                 addr += chunk;
605                 r = 0;
606                 i_head++;
607         } while (n);
608         i->count -= bytes;
609         csstate->csum = sum;
610         csstate->off = off;
611         return bytes;
612 }
613
614 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
615 {
616         const char *from = addr;
617         if (unlikely(iov_iter_is_pipe(i)))
618                 return copy_pipe_to_iter(addr, bytes, i);
619         if (iter_is_iovec(i))
620                 might_fault();
621         iterate_and_advance(i, bytes, v,
622                 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
623                 memcpy_to_page(v.bv_page, v.bv_offset,
624                                (from += v.bv_len) - v.bv_len, v.bv_len),
625                 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
626         )
627
628         return bytes;
629 }
630 EXPORT_SYMBOL(_copy_to_iter);
631
632 #ifdef CONFIG_ARCH_HAS_COPY_MC
633 static int copyout_mc(void __user *to, const void *from, size_t n)
634 {
635         if (access_ok(to, n)) {
636                 instrument_copy_to_user(to, from, n);
637                 n = copy_mc_to_user((__force void *) to, from, n);
638         }
639         return n;
640 }
641
642 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
643                 const char *from, size_t len)
644 {
645         unsigned long ret;
646         char *to;
647
648         to = kmap_atomic(page);
649         ret = copy_mc_to_kernel(to + offset, from, len);
650         kunmap_atomic(to);
651
652         return ret;
653 }
654
655 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
656                                 struct iov_iter *i)
657 {
658         struct pipe_inode_info *pipe = i->pipe;
659         unsigned int p_mask = pipe->ring_size - 1;
660         unsigned int i_head;
661         size_t n, off, xfer = 0;
662
663         if (!sanity(i))
664                 return 0;
665
666         bytes = n = push_pipe(i, bytes, &i_head, &off);
667         if (unlikely(!n))
668                 return 0;
669         do {
670                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
671                 unsigned long rem;
672
673                 rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
674                                             off, addr, chunk);
675                 i->head = i_head;
676                 i->iov_offset = off + chunk - rem;
677                 xfer += chunk - rem;
678                 if (rem)
679                         break;
680                 n -= chunk;
681                 addr += chunk;
682                 off = 0;
683                 i_head++;
684         } while (n);
685         i->count -= xfer;
686         return xfer;
687 }
688
689 /**
690  * _copy_mc_to_iter - copy to iter with source memory error exception handling
691  * @addr: source kernel address
692  * @bytes: total transfer length
693  * @iter: destination iterator
694  *
695  * The pmem driver deploys this for the dax operation
696  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
697  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
698  * successfully copied.
699  *
700  * The main differences between this and typical _copy_to_iter().
701  *
702  * * Typical tail/residue handling after a fault retries the copy
703  *   byte-by-byte until the fault happens again. Re-triggering machine
704  *   checks is potentially fatal so the implementation uses source
705  *   alignment and poison alignment assumptions to avoid re-triggering
706  *   hardware exceptions.
707  *
708  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
709  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
710  *   a short copy.
711  */
712 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
713 {
714         const char *from = addr;
715         unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
716
717         if (unlikely(iov_iter_is_pipe(i)))
718                 return copy_mc_pipe_to_iter(addr, bytes, i);
719         if (iter_is_iovec(i))
720                 might_fault();
721         iterate_and_advance(i, bytes, v,
722                 copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
723                            v.iov_len),
724                 ({
725                 rem = copy_mc_to_page(v.bv_page, v.bv_offset,
726                                       (from += v.bv_len) - v.bv_len, v.bv_len);
727                 if (rem) {
728                         curr_addr = (unsigned long) from;
729                         bytes = curr_addr - s_addr - rem;
730                         return bytes;
731                 }
732                 }),
733                 ({
734                 rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
735                                         - v.iov_len, v.iov_len);
736                 if (rem) {
737                         curr_addr = (unsigned long) from;
738                         bytes = curr_addr - s_addr - rem;
739                         return bytes;
740                 }
741                 })
742         )
743
744         return bytes;
745 }
746 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
747 #endif /* CONFIG_ARCH_HAS_COPY_MC */
748
749 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
750 {
751         char *to = addr;
752         if (unlikely(iov_iter_is_pipe(i))) {
753                 WARN_ON(1);
754                 return 0;
755         }
756         if (iter_is_iovec(i))
757                 might_fault();
758         iterate_and_advance(i, bytes, v,
759                 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
760                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
761                                  v.bv_offset, v.bv_len),
762                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
763         )
764
765         return bytes;
766 }
767 EXPORT_SYMBOL(_copy_from_iter);
768
769 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
770 {
771         char *to = addr;
772         if (unlikely(iov_iter_is_pipe(i))) {
773                 WARN_ON(1);
774                 return false;
775         }
776         if (unlikely(i->count < bytes))
777                 return false;
778
779         if (iter_is_iovec(i))
780                 might_fault();
781         iterate_all_kinds(i, bytes, v, ({
782                 if (copyin((to += v.iov_len) - v.iov_len,
783                                       v.iov_base, v.iov_len))
784                         return false;
785                 0;}),
786                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
787                                  v.bv_offset, v.bv_len),
788                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
789         )
790
791         iov_iter_advance(i, bytes);
792         return true;
793 }
794 EXPORT_SYMBOL(_copy_from_iter_full);
795
796 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
797 {
798         char *to = addr;
799         if (unlikely(iov_iter_is_pipe(i))) {
800                 WARN_ON(1);
801                 return 0;
802         }
803         iterate_and_advance(i, bytes, v,
804                 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
805                                          v.iov_base, v.iov_len),
806                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
807                                  v.bv_offset, v.bv_len),
808                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
809         )
810
811         return bytes;
812 }
813 EXPORT_SYMBOL(_copy_from_iter_nocache);
814
815 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
816 /**
817  * _copy_from_iter_flushcache - write destination through cpu cache
818  * @addr: destination kernel address
819  * @bytes: total transfer length
820  * @iter: source iterator
821  *
822  * The pmem driver arranges for filesystem-dax to use this facility via
823  * dax_copy_from_iter() for ensuring that writes to persistent memory
824  * are flushed through the CPU cache. It is differentiated from
825  * _copy_from_iter_nocache() in that guarantees all data is flushed for
826  * all iterator types. The _copy_from_iter_nocache() only attempts to
827  * bypass the cache for the ITER_IOVEC case, and on some archs may use
828  * instructions that strand dirty-data in the cache.
829  */
830 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
831 {
832         char *to = addr;
833         if (unlikely(iov_iter_is_pipe(i))) {
834                 WARN_ON(1);
835                 return 0;
836         }
837         iterate_and_advance(i, bytes, v,
838                 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
839                                          v.iov_base, v.iov_len),
840                 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
841                                  v.bv_offset, v.bv_len),
842                 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
843                         v.iov_len)
844         )
845
846         return bytes;
847 }
848 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
849 #endif
850
851 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
852 {
853         char *to = addr;
854         if (unlikely(iov_iter_is_pipe(i))) {
855                 WARN_ON(1);
856                 return false;
857         }
858         if (unlikely(i->count < bytes))
859                 return false;
860         iterate_all_kinds(i, bytes, v, ({
861                 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
862                                              v.iov_base, v.iov_len))
863                         return false;
864                 0;}),
865                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
866                                  v.bv_offset, v.bv_len),
867                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
868         )
869
870         iov_iter_advance(i, bytes);
871         return true;
872 }
873 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
874
875 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
876 {
877         struct page *head;
878         size_t v = n + offset;
879
880         /*
881          * The general case needs to access the page order in order
882          * to compute the page size.
883          * However, we mostly deal with order-0 pages and thus can
884          * avoid a possible cache line miss for requests that fit all
885          * page orders.
886          */
887         if (n <= v && v <= PAGE_SIZE)
888                 return true;
889
890         head = compound_head(page);
891         v += (page - head) << PAGE_SHIFT;
892
893         if (likely(n <= v && v <= (page_size(head))))
894                 return true;
895         WARN_ON(1);
896         return false;
897 }
898
899 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
900                          struct iov_iter *i)
901 {
902         if (unlikely(!page_copy_sane(page, offset, bytes)))
903                 return 0;
904         if (i->type & (ITER_BVEC|ITER_KVEC)) {
905                 void *kaddr = kmap_atomic(page);
906                 size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
907                 kunmap_atomic(kaddr);
908                 return wanted;
909         } else if (unlikely(iov_iter_is_discard(i)))
910                 return bytes;
911         else if (likely(!iov_iter_is_pipe(i)))
912                 return copy_page_to_iter_iovec(page, offset, bytes, i);
913         else
914                 return copy_page_to_iter_pipe(page, offset, bytes, i);
915 }
916 EXPORT_SYMBOL(copy_page_to_iter);
917
918 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
919                          struct iov_iter *i)
920 {
921         if (unlikely(!page_copy_sane(page, offset, bytes)))
922                 return 0;
923         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
924                 WARN_ON(1);
925                 return 0;
926         }
927         if (i->type & (ITER_BVEC|ITER_KVEC)) {
928                 void *kaddr = kmap_atomic(page);
929                 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
930                 kunmap_atomic(kaddr);
931                 return wanted;
932         } else
933                 return copy_page_from_iter_iovec(page, offset, bytes, i);
934 }
935 EXPORT_SYMBOL(copy_page_from_iter);
936
937 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
938 {
939         struct pipe_inode_info *pipe = i->pipe;
940         unsigned int p_mask = pipe->ring_size - 1;
941         unsigned int i_head;
942         size_t n, off;
943
944         if (!sanity(i))
945                 return 0;
946
947         bytes = n = push_pipe(i, bytes, &i_head, &off);
948         if (unlikely(!n))
949                 return 0;
950
951         do {
952                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
953                 memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
954                 i->head = i_head;
955                 i->iov_offset = off + chunk;
956                 n -= chunk;
957                 off = 0;
958                 i_head++;
959         } while (n);
960         i->count -= bytes;
961         return bytes;
962 }
963
964 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
965 {
966         if (unlikely(iov_iter_is_pipe(i)))
967                 return pipe_zero(bytes, i);
968         iterate_and_advance(i, bytes, v,
969                 clear_user(v.iov_base, v.iov_len),
970                 memzero_page(v.bv_page, v.bv_offset, v.bv_len),
971                 memset(v.iov_base, 0, v.iov_len)
972         )
973
974         return bytes;
975 }
976 EXPORT_SYMBOL(iov_iter_zero);
977
978 size_t iov_iter_copy_from_user_atomic(struct page *page,
979                 struct iov_iter *i, unsigned long offset, size_t bytes)
980 {
981         char *kaddr = kmap_atomic(page), *p = kaddr + offset;
982         if (unlikely(!page_copy_sane(page, offset, bytes))) {
983                 kunmap_atomic(kaddr);
984                 return 0;
985         }
986         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
987                 kunmap_atomic(kaddr);
988                 WARN_ON(1);
989                 return 0;
990         }
991         iterate_all_kinds(i, bytes, v,
992                 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
993                 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
994                                  v.bv_offset, v.bv_len),
995                 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
996         )
997         kunmap_atomic(kaddr);
998         return bytes;
999 }
1000 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1001
1002 static inline void pipe_truncate(struct iov_iter *i)
1003 {
1004         struct pipe_inode_info *pipe = i->pipe;
1005         unsigned int p_tail = pipe->tail;
1006         unsigned int p_head = pipe->head;
1007         unsigned int p_mask = pipe->ring_size - 1;
1008
1009         if (!pipe_empty(p_head, p_tail)) {
1010                 struct pipe_buffer *buf;
1011                 unsigned int i_head = i->head;
1012                 size_t off = i->iov_offset;
1013
1014                 if (off) {
1015                         buf = &pipe->bufs[i_head & p_mask];
1016                         buf->len = off - buf->offset;
1017                         i_head++;
1018                 }
1019                 while (p_head != i_head) {
1020                         p_head--;
1021                         pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1022                 }
1023
1024                 pipe->head = p_head;
1025         }
1026 }
1027
1028 static void pipe_advance(struct iov_iter *i, size_t size)
1029 {
1030         struct pipe_inode_info *pipe = i->pipe;
1031         if (unlikely(i->count < size))
1032                 size = i->count;
1033         if (size) {
1034                 struct pipe_buffer *buf;
1035                 unsigned int p_mask = pipe->ring_size - 1;
1036                 unsigned int i_head = i->head;
1037                 size_t off = i->iov_offset, left = size;
1038
1039                 if (off) /* make it relative to the beginning of buffer */
1040                         left += off - pipe->bufs[i_head & p_mask].offset;
1041                 while (1) {
1042                         buf = &pipe->bufs[i_head & p_mask];
1043                         if (left <= buf->len)
1044                                 break;
1045                         left -= buf->len;
1046                         i_head++;
1047                 }
1048                 i->head = i_head;
1049                 i->iov_offset = buf->offset + left;
1050         }
1051         i->count -= size;
1052         /* ... and discard everything past that point */
1053         pipe_truncate(i);
1054 }
1055
1056 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
1057 {
1058         struct bvec_iter bi;
1059
1060         bi.bi_size = i->count;
1061         bi.bi_bvec_done = i->iov_offset;
1062         bi.bi_idx = 0;
1063         bvec_iter_advance(i->bvec, &bi, size);
1064
1065         i->bvec += bi.bi_idx;
1066         i->nr_segs -= bi.bi_idx;
1067         i->count = bi.bi_size;
1068         i->iov_offset = bi.bi_bvec_done;
1069 }
1070
1071 void iov_iter_advance(struct iov_iter *i, size_t size)
1072 {
1073         if (unlikely(iov_iter_is_pipe(i))) {
1074                 pipe_advance(i, size);
1075                 return;
1076         }
1077         if (unlikely(iov_iter_is_discard(i))) {
1078                 i->count -= size;
1079                 return;
1080         }
1081         if (iov_iter_is_bvec(i)) {
1082                 iov_iter_bvec_advance(i, size);
1083                 return;
1084         }
1085         iterate_and_advance(i, size, v, 0, 0, 0)
1086 }
1087 EXPORT_SYMBOL(iov_iter_advance);
1088
1089 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1090 {
1091         if (!unroll)
1092                 return;
1093         if (WARN_ON(unroll > MAX_RW_COUNT))
1094                 return;
1095         i->count += unroll;
1096         if (unlikely(iov_iter_is_pipe(i))) {
1097                 struct pipe_inode_info *pipe = i->pipe;
1098                 unsigned int p_mask = pipe->ring_size - 1;
1099                 unsigned int i_head = i->head;
1100                 size_t off = i->iov_offset;
1101                 while (1) {
1102                         struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1103                         size_t n = off - b->offset;
1104                         if (unroll < n) {
1105                                 off -= unroll;
1106                                 break;
1107                         }
1108                         unroll -= n;
1109                         if (!unroll && i_head == i->start_head) {
1110                                 off = 0;
1111                                 break;
1112                         }
1113                         i_head--;
1114                         b = &pipe->bufs[i_head & p_mask];
1115                         off = b->offset + b->len;
1116                 }
1117                 i->iov_offset = off;
1118                 i->head = i_head;
1119                 pipe_truncate(i);
1120                 return;
1121         }
1122         if (unlikely(iov_iter_is_discard(i)))
1123                 return;
1124         if (unroll <= i->iov_offset) {
1125                 i->iov_offset -= unroll;
1126                 return;
1127         }
1128         unroll -= i->iov_offset;
1129         if (iov_iter_is_bvec(i)) {
1130                 const struct bio_vec *bvec = i->bvec;
1131                 while (1) {
1132                         size_t n = (--bvec)->bv_len;
1133                         i->nr_segs++;
1134                         if (unroll <= n) {
1135                                 i->bvec = bvec;
1136                                 i->iov_offset = n - unroll;
1137                                 return;
1138                         }
1139                         unroll -= n;
1140                 }
1141         } else { /* same logics for iovec and kvec */
1142                 const struct iovec *iov = i->iov;
1143                 while (1) {
1144                         size_t n = (--iov)->iov_len;
1145                         i->nr_segs++;
1146                         if (unroll <= n) {
1147                                 i->iov = iov;
1148                                 i->iov_offset = n - unroll;
1149                                 return;
1150                         }
1151                         unroll -= n;
1152                 }
1153         }
1154 }
1155 EXPORT_SYMBOL(iov_iter_revert);
1156
1157 /*
1158  * Return the count of just the current iov_iter segment.
1159  */
1160 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1161 {
1162         if (unlikely(iov_iter_is_pipe(i)))
1163                 return i->count;        // it is a silly place, anyway
1164         if (i->nr_segs == 1)
1165                 return i->count;
1166         if (unlikely(iov_iter_is_discard(i)))
1167                 return i->count;
1168         else if (iov_iter_is_bvec(i))
1169                 return min(i->count, i->bvec->bv_len - i->iov_offset);
1170         else
1171                 return min(i->count, i->iov->iov_len - i->iov_offset);
1172 }
1173 EXPORT_SYMBOL(iov_iter_single_seg_count);
1174
1175 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1176                         const struct kvec *kvec, unsigned long nr_segs,
1177                         size_t count)
1178 {
1179         WARN_ON(direction & ~(READ | WRITE));
1180         i->type = ITER_KVEC | (direction & (READ | WRITE));
1181         i->kvec = kvec;
1182         i->nr_segs = nr_segs;
1183         i->iov_offset = 0;
1184         i->count = count;
1185 }
1186 EXPORT_SYMBOL(iov_iter_kvec);
1187
1188 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1189                         const struct bio_vec *bvec, unsigned long nr_segs,
1190                         size_t count)
1191 {
1192         WARN_ON(direction & ~(READ | WRITE));
1193         i->type = ITER_BVEC | (direction & (READ | WRITE));
1194         i->bvec = bvec;
1195         i->nr_segs = nr_segs;
1196         i->iov_offset = 0;
1197         i->count = count;
1198 }
1199 EXPORT_SYMBOL(iov_iter_bvec);
1200
1201 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1202                         struct pipe_inode_info *pipe,
1203                         size_t count)
1204 {
1205         BUG_ON(direction != READ);
1206         WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1207         i->type = ITER_PIPE | READ;
1208         i->pipe = pipe;
1209         i->head = pipe->head;
1210         i->iov_offset = 0;
1211         i->count = count;
1212         i->start_head = i->head;
1213 }
1214 EXPORT_SYMBOL(iov_iter_pipe);
1215
1216 /**
1217  * iov_iter_discard - Initialise an I/O iterator that discards data
1218  * @i: The iterator to initialise.
1219  * @direction: The direction of the transfer.
1220  * @count: The size of the I/O buffer in bytes.
1221  *
1222  * Set up an I/O iterator that just discards everything that's written to it.
1223  * It's only available as a READ iterator.
1224  */
1225 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1226 {
1227         BUG_ON(direction != READ);
1228         i->type = ITER_DISCARD | READ;
1229         i->count = count;
1230         i->iov_offset = 0;
1231 }
1232 EXPORT_SYMBOL(iov_iter_discard);
1233
1234 unsigned long iov_iter_alignment(const struct iov_iter *i)
1235 {
1236         unsigned long res = 0;
1237         size_t size = i->count;
1238
1239         if (unlikely(iov_iter_is_pipe(i))) {
1240                 unsigned int p_mask = i->pipe->ring_size - 1;
1241
1242                 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1243                         return size | i->iov_offset;
1244                 return size;
1245         }
1246         iterate_all_kinds(i, size, v,
1247                 (res |= (unsigned long)v.iov_base | v.iov_len, 0),
1248                 res |= v.bv_offset | v.bv_len,
1249                 res |= (unsigned long)v.iov_base | v.iov_len
1250         )
1251         return res;
1252 }
1253 EXPORT_SYMBOL(iov_iter_alignment);
1254
1255 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1256 {
1257         unsigned long res = 0;
1258         size_t size = i->count;
1259
1260         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1261                 WARN_ON(1);
1262                 return ~0U;
1263         }
1264
1265         iterate_all_kinds(i, size, v,
1266                 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1267                         (size != v.iov_len ? size : 0), 0),
1268                 (res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1269                         (size != v.bv_len ? size : 0)),
1270                 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1271                         (size != v.iov_len ? size : 0))
1272                 );
1273         return res;
1274 }
1275 EXPORT_SYMBOL(iov_iter_gap_alignment);
1276
1277 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1278                                 size_t maxsize,
1279                                 struct page **pages,
1280                                 int iter_head,
1281                                 size_t *start)
1282 {
1283         struct pipe_inode_info *pipe = i->pipe;
1284         unsigned int p_mask = pipe->ring_size - 1;
1285         ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1286         if (!n)
1287                 return -EFAULT;
1288
1289         maxsize = n;
1290         n += *start;
1291         while (n > 0) {
1292                 get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1293                 iter_head++;
1294                 n -= PAGE_SIZE;
1295         }
1296
1297         return maxsize;
1298 }
1299
1300 static ssize_t pipe_get_pages(struct iov_iter *i,
1301                    struct page **pages, size_t maxsize, unsigned maxpages,
1302                    size_t *start)
1303 {
1304         unsigned int iter_head, npages;
1305         size_t capacity;
1306
1307         if (!maxsize)
1308                 return 0;
1309
1310         if (!sanity(i))
1311                 return -EFAULT;
1312
1313         data_start(i, &iter_head, start);
1314         /* Amount of free space: some of this one + all after this one */
1315         npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1316         capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1317
1318         return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1319 }
1320
1321 ssize_t iov_iter_get_pages(struct iov_iter *i,
1322                    struct page **pages, size_t maxsize, unsigned maxpages,
1323                    size_t *start)
1324 {
1325         if (maxsize > i->count)
1326                 maxsize = i->count;
1327
1328         if (unlikely(iov_iter_is_pipe(i)))
1329                 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1330         if (unlikely(iov_iter_is_discard(i)))
1331                 return -EFAULT;
1332
1333         iterate_all_kinds(i, maxsize, v, ({
1334                 unsigned long addr = (unsigned long)v.iov_base;
1335                 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1336                 int n;
1337                 int res;
1338
1339                 if (len > maxpages * PAGE_SIZE)
1340                         len = maxpages * PAGE_SIZE;
1341                 addr &= ~(PAGE_SIZE - 1);
1342                 n = DIV_ROUND_UP(len, PAGE_SIZE);
1343                 res = get_user_pages_fast(addr, n,
1344                                 iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1345                                 pages);
1346                 if (unlikely(res < 0))
1347                         return res;
1348                 return (res == n ? len : res * PAGE_SIZE) - *start;
1349         0;}),({
1350                 /* can't be more than PAGE_SIZE */
1351                 *start = v.bv_offset;
1352                 get_page(*pages = v.bv_page);
1353                 return v.bv_len;
1354         }),({
1355                 return -EFAULT;
1356         })
1357         )
1358         return 0;
1359 }
1360 EXPORT_SYMBOL(iov_iter_get_pages);
1361
1362 static struct page **get_pages_array(size_t n)
1363 {
1364         return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1365 }
1366
1367 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1368                    struct page ***pages, size_t maxsize,
1369                    size_t *start)
1370 {
1371         struct page **p;
1372         unsigned int iter_head, npages;
1373         ssize_t n;
1374
1375         if (!maxsize)
1376                 return 0;
1377
1378         if (!sanity(i))
1379                 return -EFAULT;
1380
1381         data_start(i, &iter_head, start);
1382         /* Amount of free space: some of this one + all after this one */
1383         npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1384         n = npages * PAGE_SIZE - *start;
1385         if (maxsize > n)
1386                 maxsize = n;
1387         else
1388                 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1389         p = get_pages_array(npages);
1390         if (!p)
1391                 return -ENOMEM;
1392         n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1393         if (n > 0)
1394                 *pages = p;
1395         else
1396                 kvfree(p);
1397         return n;
1398 }
1399
1400 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1401                    struct page ***pages, size_t maxsize,
1402                    size_t *start)
1403 {
1404         struct page **p;
1405
1406         if (maxsize > i->count)
1407                 maxsize = i->count;
1408
1409         if (unlikely(iov_iter_is_pipe(i)))
1410                 return pipe_get_pages_alloc(i, pages, maxsize, start);
1411         if (unlikely(iov_iter_is_discard(i)))
1412                 return -EFAULT;
1413
1414         iterate_all_kinds(i, maxsize, v, ({
1415                 unsigned long addr = (unsigned long)v.iov_base;
1416                 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1417                 int n;
1418                 int res;
1419
1420                 addr &= ~(PAGE_SIZE - 1);
1421                 n = DIV_ROUND_UP(len, PAGE_SIZE);
1422                 p = get_pages_array(n);
1423                 if (!p)
1424                         return -ENOMEM;
1425                 res = get_user_pages_fast(addr, n,
1426                                 iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1427                 if (unlikely(res < 0)) {
1428                         kvfree(p);
1429                         return res;
1430                 }
1431                 *pages = p;
1432                 return (res == n ? len : res * PAGE_SIZE) - *start;
1433         0;}),({
1434                 /* can't be more than PAGE_SIZE */
1435                 *start = v.bv_offset;
1436                 *pages = p = get_pages_array(1);
1437                 if (!p)
1438                         return -ENOMEM;
1439                 get_page(*p = v.bv_page);
1440                 return v.bv_len;
1441         }),({
1442                 return -EFAULT;
1443         })
1444         )
1445         return 0;
1446 }
1447 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1448
1449 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1450                                struct iov_iter *i)
1451 {
1452         char *to = addr;
1453         __wsum sum, next;
1454         size_t off = 0;
1455         sum = *csum;
1456         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1457                 WARN_ON(1);
1458                 return 0;
1459         }
1460         iterate_and_advance(i, bytes, v, ({
1461                 next = csum_and_copy_from_user(v.iov_base,
1462                                                (to += v.iov_len) - v.iov_len,
1463                                                v.iov_len);
1464                 if (next) {
1465                         sum = csum_block_add(sum, next, off);
1466                         off += v.iov_len;
1467                 }
1468                 next ? 0 : v.iov_len;
1469         }), ({
1470                 char *p = kmap_atomic(v.bv_page);
1471                 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1472                                       p + v.bv_offset, v.bv_len,
1473                                       sum, off);
1474                 kunmap_atomic(p);
1475                 off += v.bv_len;
1476         }),({
1477                 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1478                                       v.iov_base, v.iov_len,
1479                                       sum, off);
1480                 off += v.iov_len;
1481         })
1482         )
1483         *csum = sum;
1484         return bytes;
1485 }
1486 EXPORT_SYMBOL(csum_and_copy_from_iter);
1487
1488 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1489                                struct iov_iter *i)
1490 {
1491         char *to = addr;
1492         __wsum sum, next;
1493         size_t off = 0;
1494         sum = *csum;
1495         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1496                 WARN_ON(1);
1497                 return false;
1498         }
1499         if (unlikely(i->count < bytes))
1500                 return false;
1501         iterate_all_kinds(i, bytes, v, ({
1502                 next = csum_and_copy_from_user(v.iov_base,
1503                                                (to += v.iov_len) - v.iov_len,
1504                                                v.iov_len);
1505                 if (!next)
1506                         return false;
1507                 sum = csum_block_add(sum, next, off);
1508                 off += v.iov_len;
1509                 0;
1510         }), ({
1511                 char *p = kmap_atomic(v.bv_page);
1512                 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1513                                       p + v.bv_offset, v.bv_len,
1514                                       sum, off);
1515                 kunmap_atomic(p);
1516                 off += v.bv_len;
1517         }),({
1518                 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1519                                       v.iov_base, v.iov_len,
1520                                       sum, off);
1521                 off += v.iov_len;
1522         })
1523         )
1524         *csum = sum;
1525         iov_iter_advance(i, bytes);
1526         return true;
1527 }
1528 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1529
1530 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1531                              struct iov_iter *i)
1532 {
1533         struct csum_state *csstate = _csstate;
1534         const char *from = addr;
1535         __wsum sum, next;
1536         size_t off;
1537
1538         if (unlikely(iov_iter_is_pipe(i)))
1539                 return csum_and_copy_to_pipe_iter(addr, bytes, _csstate, i);
1540
1541         sum = csstate->csum;
1542         off = csstate->off;
1543         if (unlikely(iov_iter_is_discard(i))) {
1544                 WARN_ON(1);     /* for now */
1545                 return 0;
1546         }
1547         iterate_and_advance(i, bytes, v, ({
1548                 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1549                                              v.iov_base,
1550                                              v.iov_len);
1551                 if (next) {
1552                         sum = csum_block_add(sum, next, off);
1553                         off += v.iov_len;
1554                 }
1555                 next ? 0 : v.iov_len;
1556         }), ({
1557                 char *p = kmap_atomic(v.bv_page);
1558                 sum = csum_and_memcpy(p + v.bv_offset,
1559                                       (from += v.bv_len) - v.bv_len,
1560                                       v.bv_len, sum, off);
1561                 kunmap_atomic(p);
1562                 off += v.bv_len;
1563         }),({
1564                 sum = csum_and_memcpy(v.iov_base,
1565                                      (from += v.iov_len) - v.iov_len,
1566                                      v.iov_len, sum, off);
1567                 off += v.iov_len;
1568         })
1569         )
1570         csstate->csum = sum;
1571         csstate->off = off;
1572         return bytes;
1573 }
1574 EXPORT_SYMBOL(csum_and_copy_to_iter);
1575
1576 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1577                 struct iov_iter *i)
1578 {
1579 #ifdef CONFIG_CRYPTO_HASH
1580         struct ahash_request *hash = hashp;
1581         struct scatterlist sg;
1582         size_t copied;
1583
1584         copied = copy_to_iter(addr, bytes, i);
1585         sg_init_one(&sg, addr, copied);
1586         ahash_request_set_crypt(hash, &sg, NULL, copied);
1587         crypto_ahash_update(hash);
1588         return copied;
1589 #else
1590         return 0;
1591 #endif
1592 }
1593 EXPORT_SYMBOL(hash_and_copy_to_iter);
1594
1595 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1596 {
1597         size_t size = i->count;
1598         int npages = 0;
1599
1600         if (!size)
1601                 return 0;
1602         if (unlikely(iov_iter_is_discard(i)))
1603                 return 0;
1604
1605         if (unlikely(iov_iter_is_pipe(i))) {
1606                 struct pipe_inode_info *pipe = i->pipe;
1607                 unsigned int iter_head;
1608                 size_t off;
1609
1610                 if (!sanity(i))
1611                         return 0;
1612
1613                 data_start(i, &iter_head, &off);
1614                 /* some of this one + all after this one */
1615                 npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1616                 if (npages >= maxpages)
1617                         return maxpages;
1618         } else iterate_all_kinds(i, size, v, ({
1619                 unsigned long p = (unsigned long)v.iov_base;
1620                 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1621                         - p / PAGE_SIZE;
1622                 if (npages >= maxpages)
1623                         return maxpages;
1624         0;}),({
1625                 npages++;
1626                 if (npages >= maxpages)
1627                         return maxpages;
1628         }),({
1629                 unsigned long p = (unsigned long)v.iov_base;
1630                 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1631                         - p / PAGE_SIZE;
1632                 if (npages >= maxpages)
1633                         return maxpages;
1634         })
1635         )
1636         return npages;
1637 }
1638 EXPORT_SYMBOL(iov_iter_npages);
1639
1640 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1641 {
1642         *new = *old;
1643         if (unlikely(iov_iter_is_pipe(new))) {
1644                 WARN_ON(1);
1645                 return NULL;
1646         }
1647         if (unlikely(iov_iter_is_discard(new)))
1648                 return NULL;
1649         if (iov_iter_is_bvec(new))
1650                 return new->bvec = kmemdup(new->bvec,
1651                                     new->nr_segs * sizeof(struct bio_vec),
1652                                     flags);
1653         else
1654                 /* iovec and kvec have identical layout */
1655                 return new->iov = kmemdup(new->iov,
1656                                    new->nr_segs * sizeof(struct iovec),
1657                                    flags);
1658 }
1659 EXPORT_SYMBOL(dup_iter);
1660
1661 static int copy_compat_iovec_from_user(struct iovec *iov,
1662                 const struct iovec __user *uvec, unsigned long nr_segs)
1663 {
1664         const struct compat_iovec __user *uiov =
1665                 (const struct compat_iovec __user *)uvec;
1666         int ret = -EFAULT, i;
1667
1668         if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1669                 return -EFAULT;
1670
1671         for (i = 0; i < nr_segs; i++) {
1672                 compat_uptr_t buf;
1673                 compat_ssize_t len;
1674
1675                 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1676                 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1677
1678                 /* check for compat_size_t not fitting in compat_ssize_t .. */
1679                 if (len < 0) {
1680                         ret = -EINVAL;
1681                         goto uaccess_end;
1682                 }
1683                 iov[i].iov_base = compat_ptr(buf);
1684                 iov[i].iov_len = len;
1685         }
1686
1687         ret = 0;
1688 uaccess_end:
1689         user_access_end();
1690         return ret;
1691 }
1692
1693 static int copy_iovec_from_user(struct iovec *iov,
1694                 const struct iovec __user *uvec, unsigned long nr_segs)
1695 {
1696         unsigned long seg;
1697
1698         if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1699                 return -EFAULT;
1700         for (seg = 0; seg < nr_segs; seg++) {
1701                 if ((ssize_t)iov[seg].iov_len < 0)
1702                         return -EINVAL;
1703         }
1704
1705         return 0;
1706 }
1707
1708 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1709                 unsigned long nr_segs, unsigned long fast_segs,
1710                 struct iovec *fast_iov, bool compat)
1711 {
1712         struct iovec *iov = fast_iov;
1713         int ret;
1714
1715         /*
1716          * SuS says "The readv() function *may* fail if the iovcnt argument was
1717          * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1718          * traditionally returned zero for zero segments, so...
1719          */
1720         if (nr_segs == 0)
1721                 return iov;
1722         if (nr_segs > UIO_MAXIOV)
1723                 return ERR_PTR(-EINVAL);
1724         if (nr_segs > fast_segs) {
1725                 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1726                 if (!iov)
1727                         return ERR_PTR(-ENOMEM);
1728         }
1729
1730         if (compat)
1731                 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1732         else
1733                 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1734         if (ret) {
1735                 if (iov != fast_iov)
1736                         kfree(iov);
1737                 return ERR_PTR(ret);
1738         }
1739
1740         return iov;
1741 }
1742
1743 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1744                  unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1745                  struct iov_iter *i, bool compat)
1746 {
1747         ssize_t total_len = 0;
1748         unsigned long seg;
1749         struct iovec *iov;
1750
1751         iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1752         if (IS_ERR(iov)) {
1753                 *iovp = NULL;
1754                 return PTR_ERR(iov);
1755         }
1756
1757         /*
1758          * According to the Single Unix Specification we should return EINVAL if
1759          * an element length is < 0 when cast to ssize_t or if the total length
1760          * would overflow the ssize_t return value of the system call.
1761          *
1762          * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1763          * overflow case.
1764          */
1765         for (seg = 0; seg < nr_segs; seg++) {
1766                 ssize_t len = (ssize_t)iov[seg].iov_len;
1767
1768                 if (!access_ok(iov[seg].iov_base, len)) {
1769                         if (iov != *iovp)
1770                                 kfree(iov);
1771                         *iovp = NULL;
1772                         return -EFAULT;
1773                 }
1774
1775                 if (len > MAX_RW_COUNT - total_len) {
1776                         len = MAX_RW_COUNT - total_len;
1777                         iov[seg].iov_len = len;
1778                 }
1779                 total_len += len;
1780         }
1781
1782         iov_iter_init(i, type, iov, nr_segs, total_len);
1783         if (iov == *iovp)
1784                 *iovp = NULL;
1785         else
1786                 *iovp = iov;
1787         return total_len;
1788 }
1789
1790 /**
1791  * import_iovec() - Copy an array of &struct iovec from userspace
1792  *     into the kernel, check that it is valid, and initialize a new
1793  *     &struct iov_iter iterator to access it.
1794  *
1795  * @type: One of %READ or %WRITE.
1796  * @uvec: Pointer to the userspace array.
1797  * @nr_segs: Number of elements in userspace array.
1798  * @fast_segs: Number of elements in @iov.
1799  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1800  *     on-stack) kernel array.
1801  * @i: Pointer to iterator that will be initialized on success.
1802  *
1803  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1804  * then this function places %NULL in *@iov on return. Otherwise, a new
1805  * array will be allocated and the result placed in *@iov. This means that
1806  * the caller may call kfree() on *@iov regardless of whether the small
1807  * on-stack array was used or not (and regardless of whether this function
1808  * returns an error or not).
1809  *
1810  * Return: Negative error code on error, bytes imported on success
1811  */
1812 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1813                  unsigned nr_segs, unsigned fast_segs,
1814                  struct iovec **iovp, struct iov_iter *i)
1815 {
1816         return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1817                               in_compat_syscall());
1818 }
1819 EXPORT_SYMBOL(import_iovec);
1820
1821 int import_single_range(int rw, void __user *buf, size_t len,
1822                  struct iovec *iov, struct iov_iter *i)
1823 {
1824         if (len > MAX_RW_COUNT)
1825                 len = MAX_RW_COUNT;
1826         if (unlikely(!access_ok(buf, len)))
1827                 return -EFAULT;
1828
1829         iov->iov_base = buf;
1830         iov->iov_len = len;
1831         iov_iter_init(i, rw, iov, 1, len);
1832         return 0;
1833 }
1834 EXPORT_SYMBOL(import_single_range);
1835
1836 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1837                             int (*f)(struct kvec *vec, void *context),
1838                             void *context)
1839 {
1840         struct kvec w;
1841         int err = -EINVAL;
1842         if (!bytes)
1843                 return 0;
1844
1845         iterate_all_kinds(i, bytes, v, -EINVAL, ({
1846                 w.iov_base = kmap(v.bv_page) + v.bv_offset;
1847                 w.iov_len = v.bv_len;
1848                 err = f(&w, context);
1849                 kunmap(v.bv_page);
1850                 err;}), ({
1851                 w = v;
1852                 err = f(&w, context);})
1853         )
1854         return err;
1855 }
1856 EXPORT_SYMBOL(iov_iter_for_each_range);