Merge tag 'io_uring-5.15-2021-09-11' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / kernel / profile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/profile.c
4  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
5  *  with configurable resolution, support for restricting the cpus on
6  *  which profiling is done, and switching between cpu time and
7  *  schedule() calls via kernel command line parameters passed at boot.
8  *
9  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10  *      Red Hat, July 2004
11  *  Consolidation of architecture support code for profiling,
12  *      Nadia Yvette Chambers, Oracle, July 2004
13  *  Amortized hit count accounting via per-cpu open-addressed hashtables
14  *      to resolve timer interrupt livelocks, Nadia Yvette Chambers,
15  *      Oracle, 2004
16  */
17
18 #include <linux/export.h>
19 #include <linux/profile.h>
20 #include <linux/memblock.h>
21 #include <linux/notifier.h>
22 #include <linux/mm.h>
23 #include <linux/cpumask.h>
24 #include <linux/cpu.h>
25 #include <linux/highmem.h>
26 #include <linux/mutex.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched/stat.h>
30
31 #include <asm/sections.h>
32 #include <asm/irq_regs.h>
33 #include <asm/ptrace.h>
34
35 struct profile_hit {
36         u32 pc, hits;
37 };
38 #define PROFILE_GRPSHIFT        3
39 #define PROFILE_GRPSZ           (1 << PROFILE_GRPSHIFT)
40 #define NR_PROFILE_HIT          (PAGE_SIZE/sizeof(struct profile_hit))
41 #define NR_PROFILE_GRP          (NR_PROFILE_HIT/PROFILE_GRPSZ)
42
43 static atomic_t *prof_buffer;
44 static unsigned long prof_len;
45 static unsigned short int prof_shift;
46
47 int prof_on __read_mostly;
48 EXPORT_SYMBOL_GPL(prof_on);
49
50 static cpumask_var_t prof_cpu_mask;
51 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
52 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
53 static DEFINE_PER_CPU(int, cpu_profile_flip);
54 static DEFINE_MUTEX(profile_flip_mutex);
55 #endif /* CONFIG_SMP */
56
57 int profile_setup(char *str)
58 {
59         static const char schedstr[] = "schedule";
60         static const char sleepstr[] = "sleep";
61         static const char kvmstr[] = "kvm";
62         int par;
63
64         if (!strncmp(str, sleepstr, strlen(sleepstr))) {
65 #ifdef CONFIG_SCHEDSTATS
66                 force_schedstat_enabled();
67                 prof_on = SLEEP_PROFILING;
68                 if (str[strlen(sleepstr)] == ',')
69                         str += strlen(sleepstr) + 1;
70                 if (get_option(&str, &par))
71                         prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
72                 pr_info("kernel sleep profiling enabled (shift: %u)\n",
73                         prof_shift);
74 #else
75                 pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
76 #endif /* CONFIG_SCHEDSTATS */
77         } else if (!strncmp(str, schedstr, strlen(schedstr))) {
78                 prof_on = SCHED_PROFILING;
79                 if (str[strlen(schedstr)] == ',')
80                         str += strlen(schedstr) + 1;
81                 if (get_option(&str, &par))
82                         prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
83                 pr_info("kernel schedule profiling enabled (shift: %u)\n",
84                         prof_shift);
85         } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86                 prof_on = KVM_PROFILING;
87                 if (str[strlen(kvmstr)] == ',')
88                         str += strlen(kvmstr) + 1;
89                 if (get_option(&str, &par))
90                         prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
91                 pr_info("kernel KVM profiling enabled (shift: %u)\n",
92                         prof_shift);
93         } else if (get_option(&str, &par)) {
94                 prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
95                 prof_on = CPU_PROFILING;
96                 pr_info("kernel profiling enabled (shift: %u)\n",
97                         prof_shift);
98         }
99         return 1;
100 }
101 __setup("profile=", profile_setup);
102
103
104 int __ref profile_init(void)
105 {
106         int buffer_bytes;
107         if (!prof_on)
108                 return 0;
109
110         /* only text is profiled */
111         prof_len = (_etext - _stext) >> prof_shift;
112         buffer_bytes = prof_len*sizeof(atomic_t);
113
114         if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
115                 return -ENOMEM;
116
117         cpumask_copy(prof_cpu_mask, cpu_possible_mask);
118
119         prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
120         if (prof_buffer)
121                 return 0;
122
123         prof_buffer = alloc_pages_exact(buffer_bytes,
124                                         GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
125         if (prof_buffer)
126                 return 0;
127
128         prof_buffer = vzalloc(buffer_bytes);
129         if (prof_buffer)
130                 return 0;
131
132         free_cpumask_var(prof_cpu_mask);
133         return -ENOMEM;
134 }
135
136 /* Profile event notifications */
137
138 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
139 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
140 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
141
142 void profile_task_exit(struct task_struct *task)
143 {
144         blocking_notifier_call_chain(&task_exit_notifier, 0, task);
145 }
146
147 int profile_handoff_task(struct task_struct *task)
148 {
149         int ret;
150         ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
151         return (ret == NOTIFY_OK) ? 1 : 0;
152 }
153
154 void profile_munmap(unsigned long addr)
155 {
156         blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
157 }
158
159 int task_handoff_register(struct notifier_block *n)
160 {
161         return atomic_notifier_chain_register(&task_free_notifier, n);
162 }
163 EXPORT_SYMBOL_GPL(task_handoff_register);
164
165 int task_handoff_unregister(struct notifier_block *n)
166 {
167         return atomic_notifier_chain_unregister(&task_free_notifier, n);
168 }
169 EXPORT_SYMBOL_GPL(task_handoff_unregister);
170
171 int profile_event_register(enum profile_type type, struct notifier_block *n)
172 {
173         int err = -EINVAL;
174
175         switch (type) {
176         case PROFILE_TASK_EXIT:
177                 err = blocking_notifier_chain_register(
178                                 &task_exit_notifier, n);
179                 break;
180         case PROFILE_MUNMAP:
181                 err = blocking_notifier_chain_register(
182                                 &munmap_notifier, n);
183                 break;
184         }
185
186         return err;
187 }
188 EXPORT_SYMBOL_GPL(profile_event_register);
189
190 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
191 {
192         int err = -EINVAL;
193
194         switch (type) {
195         case PROFILE_TASK_EXIT:
196                 err = blocking_notifier_chain_unregister(
197                                 &task_exit_notifier, n);
198                 break;
199         case PROFILE_MUNMAP:
200                 err = blocking_notifier_chain_unregister(
201                                 &munmap_notifier, n);
202                 break;
203         }
204
205         return err;
206 }
207 EXPORT_SYMBOL_GPL(profile_event_unregister);
208
209 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
210 /*
211  * Each cpu has a pair of open-addressed hashtables for pending
212  * profile hits. read_profile() IPI's all cpus to request them
213  * to flip buffers and flushes their contents to prof_buffer itself.
214  * Flip requests are serialized by the profile_flip_mutex. The sole
215  * use of having a second hashtable is for avoiding cacheline
216  * contention that would otherwise happen during flushes of pending
217  * profile hits required for the accuracy of reported profile hits
218  * and so resurrect the interrupt livelock issue.
219  *
220  * The open-addressed hashtables are indexed by profile buffer slot
221  * and hold the number of pending hits to that profile buffer slot on
222  * a cpu in an entry. When the hashtable overflows, all pending hits
223  * are accounted to their corresponding profile buffer slots with
224  * atomic_add() and the hashtable emptied. As numerous pending hits
225  * may be accounted to a profile buffer slot in a hashtable entry,
226  * this amortizes a number of atomic profile buffer increments likely
227  * to be far larger than the number of entries in the hashtable,
228  * particularly given that the number of distinct profile buffer
229  * positions to which hits are accounted during short intervals (e.g.
230  * several seconds) is usually very small. Exclusion from buffer
231  * flipping is provided by interrupt disablement (note that for
232  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
233  * process context).
234  * The hash function is meant to be lightweight as opposed to strong,
235  * and was vaguely inspired by ppc64 firmware-supported inverted
236  * pagetable hash functions, but uses a full hashtable full of finite
237  * collision chains, not just pairs of them.
238  *
239  * -- nyc
240  */
241 static void __profile_flip_buffers(void *unused)
242 {
243         int cpu = smp_processor_id();
244
245         per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
246 }
247
248 static void profile_flip_buffers(void)
249 {
250         int i, j, cpu;
251
252         mutex_lock(&profile_flip_mutex);
253         j = per_cpu(cpu_profile_flip, get_cpu());
254         put_cpu();
255         on_each_cpu(__profile_flip_buffers, NULL, 1);
256         for_each_online_cpu(cpu) {
257                 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
258                 for (i = 0; i < NR_PROFILE_HIT; ++i) {
259                         if (!hits[i].hits) {
260                                 if (hits[i].pc)
261                                         hits[i].pc = 0;
262                                 continue;
263                         }
264                         atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
265                         hits[i].hits = hits[i].pc = 0;
266                 }
267         }
268         mutex_unlock(&profile_flip_mutex);
269 }
270
271 static void profile_discard_flip_buffers(void)
272 {
273         int i, cpu;
274
275         mutex_lock(&profile_flip_mutex);
276         i = per_cpu(cpu_profile_flip, get_cpu());
277         put_cpu();
278         on_each_cpu(__profile_flip_buffers, NULL, 1);
279         for_each_online_cpu(cpu) {
280                 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
281                 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
282         }
283         mutex_unlock(&profile_flip_mutex);
284 }
285
286 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
287 {
288         unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
289         int i, j, cpu;
290         struct profile_hit *hits;
291
292         pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
293         i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
294         secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
295         cpu = get_cpu();
296         hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
297         if (!hits) {
298                 put_cpu();
299                 return;
300         }
301         /*
302          * We buffer the global profiler buffer into a per-CPU
303          * queue and thus reduce the number of global (and possibly
304          * NUMA-alien) accesses. The write-queue is self-coalescing:
305          */
306         local_irq_save(flags);
307         do {
308                 for (j = 0; j < PROFILE_GRPSZ; ++j) {
309                         if (hits[i + j].pc == pc) {
310                                 hits[i + j].hits += nr_hits;
311                                 goto out;
312                         } else if (!hits[i + j].hits) {
313                                 hits[i + j].pc = pc;
314                                 hits[i + j].hits = nr_hits;
315                                 goto out;
316                         }
317                 }
318                 i = (i + secondary) & (NR_PROFILE_HIT - 1);
319         } while (i != primary);
320
321         /*
322          * Add the current hit(s) and flush the write-queue out
323          * to the global buffer:
324          */
325         atomic_add(nr_hits, &prof_buffer[pc]);
326         for (i = 0; i < NR_PROFILE_HIT; ++i) {
327                 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
328                 hits[i].pc = hits[i].hits = 0;
329         }
330 out:
331         local_irq_restore(flags);
332         put_cpu();
333 }
334
335 static int profile_dead_cpu(unsigned int cpu)
336 {
337         struct page *page;
338         int i;
339
340         if (cpumask_available(prof_cpu_mask))
341                 cpumask_clear_cpu(cpu, prof_cpu_mask);
342
343         for (i = 0; i < 2; i++) {
344                 if (per_cpu(cpu_profile_hits, cpu)[i]) {
345                         page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
346                         per_cpu(cpu_profile_hits, cpu)[i] = NULL;
347                         __free_page(page);
348                 }
349         }
350         return 0;
351 }
352
353 static int profile_prepare_cpu(unsigned int cpu)
354 {
355         int i, node = cpu_to_mem(cpu);
356         struct page *page;
357
358         per_cpu(cpu_profile_flip, cpu) = 0;
359
360         for (i = 0; i < 2; i++) {
361                 if (per_cpu(cpu_profile_hits, cpu)[i])
362                         continue;
363
364                 page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
365                 if (!page) {
366                         profile_dead_cpu(cpu);
367                         return -ENOMEM;
368                 }
369                 per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
370
371         }
372         return 0;
373 }
374
375 static int profile_online_cpu(unsigned int cpu)
376 {
377         if (cpumask_available(prof_cpu_mask))
378                 cpumask_set_cpu(cpu, prof_cpu_mask);
379
380         return 0;
381 }
382
383 #else /* !CONFIG_SMP */
384 #define profile_flip_buffers()          do { } while (0)
385 #define profile_discard_flip_buffers()  do { } while (0)
386
387 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
388 {
389         unsigned long pc;
390         pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
391         atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
392 }
393 #endif /* !CONFIG_SMP */
394
395 void profile_hits(int type, void *__pc, unsigned int nr_hits)
396 {
397         if (prof_on != type || !prof_buffer)
398                 return;
399         do_profile_hits(type, __pc, nr_hits);
400 }
401 EXPORT_SYMBOL_GPL(profile_hits);
402
403 void profile_tick(int type)
404 {
405         struct pt_regs *regs = get_irq_regs();
406
407         if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
408             cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
409                 profile_hit(type, (void *)profile_pc(regs));
410 }
411
412 #ifdef CONFIG_PROC_FS
413 #include <linux/proc_fs.h>
414 #include <linux/seq_file.h>
415 #include <linux/uaccess.h>
416
417 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
418 {
419         seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
420         return 0;
421 }
422
423 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
424 {
425         return single_open(file, prof_cpu_mask_proc_show, NULL);
426 }
427
428 static ssize_t prof_cpu_mask_proc_write(struct file *file,
429         const char __user *buffer, size_t count, loff_t *pos)
430 {
431         cpumask_var_t new_value;
432         int err;
433
434         if (!zalloc_cpumask_var(&new_value, GFP_KERNEL))
435                 return -ENOMEM;
436
437         err = cpumask_parse_user(buffer, count, new_value);
438         if (!err) {
439                 cpumask_copy(prof_cpu_mask, new_value);
440                 err = count;
441         }
442         free_cpumask_var(new_value);
443         return err;
444 }
445
446 static const struct proc_ops prof_cpu_mask_proc_ops = {
447         .proc_open      = prof_cpu_mask_proc_open,
448         .proc_read      = seq_read,
449         .proc_lseek     = seq_lseek,
450         .proc_release   = single_release,
451         .proc_write     = prof_cpu_mask_proc_write,
452 };
453
454 void create_prof_cpu_mask(void)
455 {
456         /* create /proc/irq/prof_cpu_mask */
457         proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops);
458 }
459
460 /*
461  * This function accesses profiling information. The returned data is
462  * binary: the sampling step and the actual contents of the profile
463  * buffer. Use of the program readprofile is recommended in order to
464  * get meaningful info out of these data.
465  */
466 static ssize_t
467 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
468 {
469         unsigned long p = *ppos;
470         ssize_t read;
471         char *pnt;
472         unsigned long sample_step = 1UL << prof_shift;
473
474         profile_flip_buffers();
475         if (p >= (prof_len+1)*sizeof(unsigned int))
476                 return 0;
477         if (count > (prof_len+1)*sizeof(unsigned int) - p)
478                 count = (prof_len+1)*sizeof(unsigned int) - p;
479         read = 0;
480
481         while (p < sizeof(unsigned int) && count > 0) {
482                 if (put_user(*((char *)(&sample_step)+p), buf))
483                         return -EFAULT;
484                 buf++; p++; count--; read++;
485         }
486         pnt = (char *)prof_buffer + p - sizeof(atomic_t);
487         if (copy_to_user(buf, (void *)pnt, count))
488                 return -EFAULT;
489         read += count;
490         *ppos += read;
491         return read;
492 }
493
494 /*
495  * Writing to /proc/profile resets the counters
496  *
497  * Writing a 'profiling multiplier' value into it also re-sets the profiling
498  * interrupt frequency, on architectures that support this.
499  */
500 static ssize_t write_profile(struct file *file, const char __user *buf,
501                              size_t count, loff_t *ppos)
502 {
503 #ifdef CONFIG_SMP
504         extern int setup_profiling_timer(unsigned int multiplier);
505
506         if (count == sizeof(int)) {
507                 unsigned int multiplier;
508
509                 if (copy_from_user(&multiplier, buf, sizeof(int)))
510                         return -EFAULT;
511
512                 if (setup_profiling_timer(multiplier))
513                         return -EINVAL;
514         }
515 #endif
516         profile_discard_flip_buffers();
517         memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
518         return count;
519 }
520
521 static const struct proc_ops profile_proc_ops = {
522         .proc_read      = read_profile,
523         .proc_write     = write_profile,
524         .proc_lseek     = default_llseek,
525 };
526
527 int __ref create_proc_profile(void)
528 {
529         struct proc_dir_entry *entry;
530 #ifdef CONFIG_SMP
531         enum cpuhp_state online_state;
532 #endif
533
534         int err = 0;
535
536         if (!prof_on)
537                 return 0;
538 #ifdef CONFIG_SMP
539         err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
540                                 profile_prepare_cpu, profile_dead_cpu);
541         if (err)
542                 return err;
543
544         err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
545                                 profile_online_cpu, NULL);
546         if (err < 0)
547                 goto err_state_prep;
548         online_state = err;
549         err = 0;
550 #endif
551         entry = proc_create("profile", S_IWUSR | S_IRUGO,
552                             NULL, &profile_proc_ops);
553         if (!entry)
554                 goto err_state_onl;
555         proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
556
557         return err;
558 err_state_onl:
559 #ifdef CONFIG_SMP
560         cpuhp_remove_state(online_state);
561 err_state_prep:
562         cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
563 #endif
564         return err;
565 }
566 subsys_initcall(create_proc_profile);
567 #endif /* CONFIG_PROC_FS */