Merge tag 'char-misc-5.15-rc1-lkdtm' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / kernel / locking / rwsem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30
31 #ifndef CONFIG_PREEMPT_RT
32 #include "lock_events.h"
33
34 /*
35  * The least significant 2 bits of the owner value has the following
36  * meanings when set.
37  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
38  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
39  *
40  * When the rwsem is reader-owned and a spinning writer has timed out,
41  * the nonspinnable bit will be set to disable optimistic spinning.
42
43  * When a writer acquires a rwsem, it puts its task_struct pointer
44  * into the owner field. It is cleared after an unlock.
45  *
46  * When a reader acquires a rwsem, it will also puts its task_struct
47  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
48  * On unlock, the owner field will largely be left untouched. So
49  * for a free or reader-owned rwsem, the owner value may contain
50  * information about the last reader that acquires the rwsem.
51  *
52  * That information may be helpful in debugging cases where the system
53  * seems to hang on a reader owned rwsem especially if only one reader
54  * is involved. Ideally we would like to track all the readers that own
55  * a rwsem, but the overhead is simply too big.
56  *
57  * A fast path reader optimistic lock stealing is supported when the rwsem
58  * is previously owned by a writer and the following conditions are met:
59  *  - OSQ is empty
60  *  - rwsem is not currently writer owned
61  *  - the handoff isn't set.
62  */
63 #define RWSEM_READER_OWNED      (1UL << 0)
64 #define RWSEM_NONSPINNABLE      (1UL << 1)
65 #define RWSEM_OWNER_FLAGS_MASK  (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
66
67 #ifdef CONFIG_DEBUG_RWSEMS
68 # define DEBUG_RWSEMS_WARN_ON(c, sem)   do {                    \
69         if (!debug_locks_silent &&                              \
70             WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71                 #c, atomic_long_read(&(sem)->count),            \
72                 (unsigned long) sem->magic,                     \
73                 atomic_long_read(&(sem)->owner), (long)current, \
74                 list_empty(&(sem)->wait_list) ? "" : "not "))   \
75                         debug_locks_off();                      \
76         } while (0)
77 #else
78 # define DEBUG_RWSEMS_WARN_ON(c, sem)
79 #endif
80
81 /*
82  * On 64-bit architectures, the bit definitions of the count are:
83  *
84  * Bit  0    - writer locked bit
85  * Bit  1    - waiters present bit
86  * Bit  2    - lock handoff bit
87  * Bits 3-7  - reserved
88  * Bits 8-62 - 55-bit reader count
89  * Bit  63   - read fail bit
90  *
91  * On 32-bit architectures, the bit definitions of the count are:
92  *
93  * Bit  0    - writer locked bit
94  * Bit  1    - waiters present bit
95  * Bit  2    - lock handoff bit
96  * Bits 3-7  - reserved
97  * Bits 8-30 - 23-bit reader count
98  * Bit  31   - read fail bit
99  *
100  * It is not likely that the most significant bit (read fail bit) will ever
101  * be set. This guard bit is still checked anyway in the down_read() fastpath
102  * just in case we need to use up more of the reader bits for other purpose
103  * in the future.
104  *
105  * atomic_long_fetch_add() is used to obtain reader lock, whereas
106  * atomic_long_cmpxchg() will be used to obtain writer lock.
107  *
108  * There are three places where the lock handoff bit may be set or cleared.
109  * 1) rwsem_mark_wake() for readers.
110  * 2) rwsem_try_write_lock() for writers.
111  * 3) Error path of rwsem_down_write_slowpath().
112  *
113  * For all the above cases, wait_lock will be held. A writer must also
114  * be the first one in the wait_list to be eligible for setting the handoff
115  * bit. So concurrent setting/clearing of handoff bit is not possible.
116  */
117 #define RWSEM_WRITER_LOCKED     (1UL << 0)
118 #define RWSEM_FLAG_WAITERS      (1UL << 1)
119 #define RWSEM_FLAG_HANDOFF      (1UL << 2)
120 #define RWSEM_FLAG_READFAIL     (1UL << (BITS_PER_LONG - 1))
121
122 #define RWSEM_READER_SHIFT      8
123 #define RWSEM_READER_BIAS       (1UL << RWSEM_READER_SHIFT)
124 #define RWSEM_READER_MASK       (~(RWSEM_READER_BIAS - 1))
125 #define RWSEM_WRITER_MASK       RWSEM_WRITER_LOCKED
126 #define RWSEM_LOCK_MASK         (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127 #define RWSEM_READ_FAILED_MASK  (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128                                  RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
129
130 /*
131  * All writes to owner are protected by WRITE_ONCE() to make sure that
132  * store tearing can't happen as optimistic spinners may read and use
133  * the owner value concurrently without lock. Read from owner, however,
134  * may not need READ_ONCE() as long as the pointer value is only used
135  * for comparison and isn't being dereferenced.
136  */
137 static inline void rwsem_set_owner(struct rw_semaphore *sem)
138 {
139         atomic_long_set(&sem->owner, (long)current);
140 }
141
142 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
143 {
144         atomic_long_set(&sem->owner, 0);
145 }
146
147 /*
148  * Test the flags in the owner field.
149  */
150 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
151 {
152         return atomic_long_read(&sem->owner) & flags;
153 }
154
155 /*
156  * The task_struct pointer of the last owning reader will be left in
157  * the owner field.
158  *
159  * Note that the owner value just indicates the task has owned the rwsem
160  * previously, it may not be the real owner or one of the real owners
161  * anymore when that field is examined, so take it with a grain of salt.
162  *
163  * The reader non-spinnable bit is preserved.
164  */
165 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
166                                             struct task_struct *owner)
167 {
168         unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
169                 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
170
171         atomic_long_set(&sem->owner, val);
172 }
173
174 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
175 {
176         __rwsem_set_reader_owned(sem, current);
177 }
178
179 /*
180  * Return true if the rwsem is owned by a reader.
181  */
182 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
183 {
184 #ifdef CONFIG_DEBUG_RWSEMS
185         /*
186          * Check the count to see if it is write-locked.
187          */
188         long count = atomic_long_read(&sem->count);
189
190         if (count & RWSEM_WRITER_MASK)
191                 return false;
192 #endif
193         return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
194 }
195
196 #ifdef CONFIG_DEBUG_RWSEMS
197 /*
198  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
199  * is a task pointer in owner of a reader-owned rwsem, it will be the
200  * real owner or one of the real owners. The only exception is when the
201  * unlock is done by up_read_non_owner().
202  */
203 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
204 {
205         unsigned long val = atomic_long_read(&sem->owner);
206
207         while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
208                 if (atomic_long_try_cmpxchg(&sem->owner, &val,
209                                             val & RWSEM_OWNER_FLAGS_MASK))
210                         return;
211         }
212 }
213 #else
214 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
215 {
216 }
217 #endif
218
219 /*
220  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
221  * remains set. Otherwise, the operation will be aborted.
222  */
223 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
224 {
225         unsigned long owner = atomic_long_read(&sem->owner);
226
227         do {
228                 if (!(owner & RWSEM_READER_OWNED))
229                         break;
230                 if (owner & RWSEM_NONSPINNABLE)
231                         break;
232         } while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
233                                           owner | RWSEM_NONSPINNABLE));
234 }
235
236 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
237 {
238         *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
239
240         if (WARN_ON_ONCE(*cntp < 0))
241                 rwsem_set_nonspinnable(sem);
242
243         if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
244                 rwsem_set_reader_owned(sem);
245                 return true;
246         }
247
248         return false;
249 }
250
251 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
252 {
253         long tmp = RWSEM_UNLOCKED_VALUE;
254
255         if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
256                 rwsem_set_owner(sem);
257                 return true;
258         }
259
260         return false;
261 }
262
263 /*
264  * Return just the real task structure pointer of the owner
265  */
266 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
267 {
268         return (struct task_struct *)
269                 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
270 }
271
272 /*
273  * Return the real task structure pointer of the owner and the embedded
274  * flags in the owner. pflags must be non-NULL.
275  */
276 static inline struct task_struct *
277 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
278 {
279         unsigned long owner = atomic_long_read(&sem->owner);
280
281         *pflags = owner & RWSEM_OWNER_FLAGS_MASK;
282         return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
283 }
284
285 /*
286  * Guide to the rw_semaphore's count field.
287  *
288  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
289  * by a writer.
290  *
291  * The lock is owned by readers when
292  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
293  * (2) some of the reader bits are set in count, and
294  * (3) the owner field has RWSEM_READ_OWNED bit set.
295  *
296  * Having some reader bits set is not enough to guarantee a readers owned
297  * lock as the readers may be in the process of backing out from the count
298  * and a writer has just released the lock. So another writer may steal
299  * the lock immediately after that.
300  */
301
302 /*
303  * Initialize an rwsem:
304  */
305 void __init_rwsem(struct rw_semaphore *sem, const char *name,
306                   struct lock_class_key *key)
307 {
308 #ifdef CONFIG_DEBUG_LOCK_ALLOC
309         /*
310          * Make sure we are not reinitializing a held semaphore:
311          */
312         debug_check_no_locks_freed((void *)sem, sizeof(*sem));
313         lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
314 #endif
315 #ifdef CONFIG_DEBUG_RWSEMS
316         sem->magic = sem;
317 #endif
318         atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
319         raw_spin_lock_init(&sem->wait_lock);
320         INIT_LIST_HEAD(&sem->wait_list);
321         atomic_long_set(&sem->owner, 0L);
322 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
323         osq_lock_init(&sem->osq);
324 #endif
325 }
326 EXPORT_SYMBOL(__init_rwsem);
327
328 enum rwsem_waiter_type {
329         RWSEM_WAITING_FOR_WRITE,
330         RWSEM_WAITING_FOR_READ
331 };
332
333 struct rwsem_waiter {
334         struct list_head list;
335         struct task_struct *task;
336         enum rwsem_waiter_type type;
337         unsigned long timeout;
338 };
339 #define rwsem_first_waiter(sem) \
340         list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
341
342 enum rwsem_wake_type {
343         RWSEM_WAKE_ANY,         /* Wake whatever's at head of wait list */
344         RWSEM_WAKE_READERS,     /* Wake readers only */
345         RWSEM_WAKE_READ_OWNED   /* Waker thread holds the read lock */
346 };
347
348 enum writer_wait_state {
349         WRITER_NOT_FIRST,       /* Writer is not first in wait list */
350         WRITER_FIRST,           /* Writer is first in wait list     */
351         WRITER_HANDOFF          /* Writer is first & handoff needed */
352 };
353
354 /*
355  * The typical HZ value is either 250 or 1000. So set the minimum waiting
356  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
357  * queue before initiating the handoff protocol.
358  */
359 #define RWSEM_WAIT_TIMEOUT      DIV_ROUND_UP(HZ, 250)
360
361 /*
362  * Magic number to batch-wakeup waiting readers, even when writers are
363  * also present in the queue. This both limits the amount of work the
364  * waking thread must do and also prevents any potential counter overflow,
365  * however unlikely.
366  */
367 #define MAX_READERS_WAKEUP      0x100
368
369 /*
370  * handle the lock release when processes blocked on it that can now run
371  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
372  *   have been set.
373  * - there must be someone on the queue
374  * - the wait_lock must be held by the caller
375  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
376  *   to actually wakeup the blocked task(s) and drop the reference count,
377  *   preferably when the wait_lock is released
378  * - woken process blocks are discarded from the list after having task zeroed
379  * - writers are only marked woken if downgrading is false
380  */
381 static void rwsem_mark_wake(struct rw_semaphore *sem,
382                             enum rwsem_wake_type wake_type,
383                             struct wake_q_head *wake_q)
384 {
385         struct rwsem_waiter *waiter, *tmp;
386         long oldcount, woken = 0, adjustment = 0;
387         struct list_head wlist;
388
389         lockdep_assert_held(&sem->wait_lock);
390
391         /*
392          * Take a peek at the queue head waiter such that we can determine
393          * the wakeup(s) to perform.
394          */
395         waiter = rwsem_first_waiter(sem);
396
397         if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
398                 if (wake_type == RWSEM_WAKE_ANY) {
399                         /*
400                          * Mark writer at the front of the queue for wakeup.
401                          * Until the task is actually later awoken later by
402                          * the caller, other writers are able to steal it.
403                          * Readers, on the other hand, will block as they
404                          * will notice the queued writer.
405                          */
406                         wake_q_add(wake_q, waiter->task);
407                         lockevent_inc(rwsem_wake_writer);
408                 }
409
410                 return;
411         }
412
413         /*
414          * No reader wakeup if there are too many of them already.
415          */
416         if (unlikely(atomic_long_read(&sem->count) < 0))
417                 return;
418
419         /*
420          * Writers might steal the lock before we grant it to the next reader.
421          * We prefer to do the first reader grant before counting readers
422          * so we can bail out early if a writer stole the lock.
423          */
424         if (wake_type != RWSEM_WAKE_READ_OWNED) {
425                 struct task_struct *owner;
426
427                 adjustment = RWSEM_READER_BIAS;
428                 oldcount = atomic_long_fetch_add(adjustment, &sem->count);
429                 if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
430                         /*
431                          * When we've been waiting "too" long (for writers
432                          * to give up the lock), request a HANDOFF to
433                          * force the issue.
434                          */
435                         if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
436                             time_after(jiffies, waiter->timeout)) {
437                                 adjustment -= RWSEM_FLAG_HANDOFF;
438                                 lockevent_inc(rwsem_rlock_handoff);
439                         }
440
441                         atomic_long_add(-adjustment, &sem->count);
442                         return;
443                 }
444                 /*
445                  * Set it to reader-owned to give spinners an early
446                  * indication that readers now have the lock.
447                  * The reader nonspinnable bit seen at slowpath entry of
448                  * the reader is copied over.
449                  */
450                 owner = waiter->task;
451                 __rwsem_set_reader_owned(sem, owner);
452         }
453
454         /*
455          * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
456          * queue. We know that the woken will be at least 1 as we accounted
457          * for above. Note we increment the 'active part' of the count by the
458          * number of readers before waking any processes up.
459          *
460          * This is an adaptation of the phase-fair R/W locks where at the
461          * reader phase (first waiter is a reader), all readers are eligible
462          * to acquire the lock at the same time irrespective of their order
463          * in the queue. The writers acquire the lock according to their
464          * order in the queue.
465          *
466          * We have to do wakeup in 2 passes to prevent the possibility that
467          * the reader count may be decremented before it is incremented. It
468          * is because the to-be-woken waiter may not have slept yet. So it
469          * may see waiter->task got cleared, finish its critical section and
470          * do an unlock before the reader count increment.
471          *
472          * 1) Collect the read-waiters in a separate list, count them and
473          *    fully increment the reader count in rwsem.
474          * 2) For each waiters in the new list, clear waiter->task and
475          *    put them into wake_q to be woken up later.
476          */
477         INIT_LIST_HEAD(&wlist);
478         list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
479                 if (waiter->type == RWSEM_WAITING_FOR_WRITE)
480                         continue;
481
482                 woken++;
483                 list_move_tail(&waiter->list, &wlist);
484
485                 /*
486                  * Limit # of readers that can be woken up per wakeup call.
487                  */
488                 if (woken >= MAX_READERS_WAKEUP)
489                         break;
490         }
491
492         adjustment = woken * RWSEM_READER_BIAS - adjustment;
493         lockevent_cond_inc(rwsem_wake_reader, woken);
494         if (list_empty(&sem->wait_list)) {
495                 /* hit end of list above */
496                 adjustment -= RWSEM_FLAG_WAITERS;
497         }
498
499         /*
500          * When we've woken a reader, we no longer need to force writers
501          * to give up the lock and we can clear HANDOFF.
502          */
503         if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF))
504                 adjustment -= RWSEM_FLAG_HANDOFF;
505
506         if (adjustment)
507                 atomic_long_add(adjustment, &sem->count);
508
509         /* 2nd pass */
510         list_for_each_entry_safe(waiter, tmp, &wlist, list) {
511                 struct task_struct *tsk;
512
513                 tsk = waiter->task;
514                 get_task_struct(tsk);
515
516                 /*
517                  * Ensure calling get_task_struct() before setting the reader
518                  * waiter to nil such that rwsem_down_read_slowpath() cannot
519                  * race with do_exit() by always holding a reference count
520                  * to the task to wakeup.
521                  */
522                 smp_store_release(&waiter->task, NULL);
523                 /*
524                  * Ensure issuing the wakeup (either by us or someone else)
525                  * after setting the reader waiter to nil.
526                  */
527                 wake_q_add_safe(wake_q, tsk);
528         }
529 }
530
531 /*
532  * This function must be called with the sem->wait_lock held to prevent
533  * race conditions between checking the rwsem wait list and setting the
534  * sem->count accordingly.
535  *
536  * If wstate is WRITER_HANDOFF, it will make sure that either the handoff
537  * bit is set or the lock is acquired with handoff bit cleared.
538  */
539 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
540                                         enum writer_wait_state wstate)
541 {
542         long count, new;
543
544         lockdep_assert_held(&sem->wait_lock);
545
546         count = atomic_long_read(&sem->count);
547         do {
548                 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
549
550                 if (has_handoff && wstate == WRITER_NOT_FIRST)
551                         return false;
552
553                 new = count;
554
555                 if (count & RWSEM_LOCK_MASK) {
556                         if (has_handoff || (wstate != WRITER_HANDOFF))
557                                 return false;
558
559                         new |= RWSEM_FLAG_HANDOFF;
560                 } else {
561                         new |= RWSEM_WRITER_LOCKED;
562                         new &= ~RWSEM_FLAG_HANDOFF;
563
564                         if (list_is_singular(&sem->wait_list))
565                                 new &= ~RWSEM_FLAG_WAITERS;
566                 }
567         } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
568
569         /*
570          * We have either acquired the lock with handoff bit cleared or
571          * set the handoff bit.
572          */
573         if (new & RWSEM_FLAG_HANDOFF)
574                 return false;
575
576         rwsem_set_owner(sem);
577         return true;
578 }
579
580 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
581 /*
582  * Try to acquire write lock before the writer has been put on wait queue.
583  */
584 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
585 {
586         long count = atomic_long_read(&sem->count);
587
588         while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
589                 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
590                                         count | RWSEM_WRITER_LOCKED)) {
591                         rwsem_set_owner(sem);
592                         lockevent_inc(rwsem_opt_lock);
593                         return true;
594                 }
595         }
596         return false;
597 }
598
599 static inline bool owner_on_cpu(struct task_struct *owner)
600 {
601         /*
602          * As lock holder preemption issue, we both skip spinning if
603          * task is not on cpu or its cpu is preempted
604          */
605         return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
606 }
607
608 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
609 {
610         struct task_struct *owner;
611         unsigned long flags;
612         bool ret = true;
613
614         if (need_resched()) {
615                 lockevent_inc(rwsem_opt_fail);
616                 return false;
617         }
618
619         preempt_disable();
620         rcu_read_lock();
621         owner = rwsem_owner_flags(sem, &flags);
622         /*
623          * Don't check the read-owner as the entry may be stale.
624          */
625         if ((flags & RWSEM_NONSPINNABLE) ||
626             (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
627                 ret = false;
628         rcu_read_unlock();
629         preempt_enable();
630
631         lockevent_cond_inc(rwsem_opt_fail, !ret);
632         return ret;
633 }
634
635 /*
636  * The rwsem_spin_on_owner() function returns the following 4 values
637  * depending on the lock owner state.
638  *   OWNER_NULL  : owner is currently NULL
639  *   OWNER_WRITER: when owner changes and is a writer
640  *   OWNER_READER: when owner changes and the new owner may be a reader.
641  *   OWNER_NONSPINNABLE:
642  *                 when optimistic spinning has to stop because either the
643  *                 owner stops running, is unknown, or its timeslice has
644  *                 been used up.
645  */
646 enum owner_state {
647         OWNER_NULL              = 1 << 0,
648         OWNER_WRITER            = 1 << 1,
649         OWNER_READER            = 1 << 2,
650         OWNER_NONSPINNABLE      = 1 << 3,
651 };
652 #define OWNER_SPINNABLE         (OWNER_NULL | OWNER_WRITER | OWNER_READER)
653
654 static inline enum owner_state
655 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
656 {
657         if (flags & RWSEM_NONSPINNABLE)
658                 return OWNER_NONSPINNABLE;
659
660         if (flags & RWSEM_READER_OWNED)
661                 return OWNER_READER;
662
663         return owner ? OWNER_WRITER : OWNER_NULL;
664 }
665
666 static noinline enum owner_state
667 rwsem_spin_on_owner(struct rw_semaphore *sem)
668 {
669         struct task_struct *new, *owner;
670         unsigned long flags, new_flags;
671         enum owner_state state;
672
673         owner = rwsem_owner_flags(sem, &flags);
674         state = rwsem_owner_state(owner, flags);
675         if (state != OWNER_WRITER)
676                 return state;
677
678         rcu_read_lock();
679         for (;;) {
680                 /*
681                  * When a waiting writer set the handoff flag, it may spin
682                  * on the owner as well. Once that writer acquires the lock,
683                  * we can spin on it. So we don't need to quit even when the
684                  * handoff bit is set.
685                  */
686                 new = rwsem_owner_flags(sem, &new_flags);
687                 if ((new != owner) || (new_flags != flags)) {
688                         state = rwsem_owner_state(new, new_flags);
689                         break;
690                 }
691
692                 /*
693                  * Ensure we emit the owner->on_cpu, dereference _after_
694                  * checking sem->owner still matches owner, if that fails,
695                  * owner might point to free()d memory, if it still matches,
696                  * the rcu_read_lock() ensures the memory stays valid.
697                  */
698                 barrier();
699
700                 if (need_resched() || !owner_on_cpu(owner)) {
701                         state = OWNER_NONSPINNABLE;
702                         break;
703                 }
704
705                 cpu_relax();
706         }
707         rcu_read_unlock();
708
709         return state;
710 }
711
712 /*
713  * Calculate reader-owned rwsem spinning threshold for writer
714  *
715  * The more readers own the rwsem, the longer it will take for them to
716  * wind down and free the rwsem. So the empirical formula used to
717  * determine the actual spinning time limit here is:
718  *
719  *   Spinning threshold = (10 + nr_readers/2)us
720  *
721  * The limit is capped to a maximum of 25us (30 readers). This is just
722  * a heuristic and is subjected to change in the future.
723  */
724 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
725 {
726         long count = atomic_long_read(&sem->count);
727         int readers = count >> RWSEM_READER_SHIFT;
728         u64 delta;
729
730         if (readers > 30)
731                 readers = 30;
732         delta = (20 + readers) * NSEC_PER_USEC / 2;
733
734         return sched_clock() + delta;
735 }
736
737 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
738 {
739         bool taken = false;
740         int prev_owner_state = OWNER_NULL;
741         int loop = 0;
742         u64 rspin_threshold = 0;
743
744         preempt_disable();
745
746         /* sem->wait_lock should not be held when doing optimistic spinning */
747         if (!osq_lock(&sem->osq))
748                 goto done;
749
750         /*
751          * Optimistically spin on the owner field and attempt to acquire the
752          * lock whenever the owner changes. Spinning will be stopped when:
753          *  1) the owning writer isn't running; or
754          *  2) readers own the lock and spinning time has exceeded limit.
755          */
756         for (;;) {
757                 enum owner_state owner_state;
758
759                 owner_state = rwsem_spin_on_owner(sem);
760                 if (!(owner_state & OWNER_SPINNABLE))
761                         break;
762
763                 /*
764                  * Try to acquire the lock
765                  */
766                 taken = rwsem_try_write_lock_unqueued(sem);
767
768                 if (taken)
769                         break;
770
771                 /*
772                  * Time-based reader-owned rwsem optimistic spinning
773                  */
774                 if (owner_state == OWNER_READER) {
775                         /*
776                          * Re-initialize rspin_threshold every time when
777                          * the owner state changes from non-reader to reader.
778                          * This allows a writer to steal the lock in between
779                          * 2 reader phases and have the threshold reset at
780                          * the beginning of the 2nd reader phase.
781                          */
782                         if (prev_owner_state != OWNER_READER) {
783                                 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
784                                         break;
785                                 rspin_threshold = rwsem_rspin_threshold(sem);
786                                 loop = 0;
787                         }
788
789                         /*
790                          * Check time threshold once every 16 iterations to
791                          * avoid calling sched_clock() too frequently so
792                          * as to reduce the average latency between the times
793                          * when the lock becomes free and when the spinner
794                          * is ready to do a trylock.
795                          */
796                         else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
797                                 rwsem_set_nonspinnable(sem);
798                                 lockevent_inc(rwsem_opt_nospin);
799                                 break;
800                         }
801                 }
802
803                 /*
804                  * An RT task cannot do optimistic spinning if it cannot
805                  * be sure the lock holder is running or live-lock may
806                  * happen if the current task and the lock holder happen
807                  * to run in the same CPU. However, aborting optimistic
808                  * spinning while a NULL owner is detected may miss some
809                  * opportunity where spinning can continue without causing
810                  * problem.
811                  *
812                  * There are 2 possible cases where an RT task may be able
813                  * to continue spinning.
814                  *
815                  * 1) The lock owner is in the process of releasing the
816                  *    lock, sem->owner is cleared but the lock has not
817                  *    been released yet.
818                  * 2) The lock was free and owner cleared, but another
819                  *    task just comes in and acquire the lock before
820                  *    we try to get it. The new owner may be a spinnable
821                  *    writer.
822                  *
823                  * To take advantage of two scenarios listed above, the RT
824                  * task is made to retry one more time to see if it can
825                  * acquire the lock or continue spinning on the new owning
826                  * writer. Of course, if the time lag is long enough or the
827                  * new owner is not a writer or spinnable, the RT task will
828                  * quit spinning.
829                  *
830                  * If the owner is a writer, the need_resched() check is
831                  * done inside rwsem_spin_on_owner(). If the owner is not
832                  * a writer, need_resched() check needs to be done here.
833                  */
834                 if (owner_state != OWNER_WRITER) {
835                         if (need_resched())
836                                 break;
837                         if (rt_task(current) &&
838                            (prev_owner_state != OWNER_WRITER))
839                                 break;
840                 }
841                 prev_owner_state = owner_state;
842
843                 /*
844                  * The cpu_relax() call is a compiler barrier which forces
845                  * everything in this loop to be re-loaded. We don't need
846                  * memory barriers as we'll eventually observe the right
847                  * values at the cost of a few extra spins.
848                  */
849                 cpu_relax();
850         }
851         osq_unlock(&sem->osq);
852 done:
853         preempt_enable();
854         lockevent_cond_inc(rwsem_opt_fail, !taken);
855         return taken;
856 }
857
858 /*
859  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
860  * only be called when the reader count reaches 0.
861  */
862 static inline void clear_nonspinnable(struct rw_semaphore *sem)
863 {
864         if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
865                 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
866 }
867
868 #else
869 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
870 {
871         return false;
872 }
873
874 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
875 {
876         return false;
877 }
878
879 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
880
881 static inline int
882 rwsem_spin_on_owner(struct rw_semaphore *sem)
883 {
884         return 0;
885 }
886 #define OWNER_NULL      1
887 #endif
888
889 /*
890  * Wait for the read lock to be granted
891  */
892 static struct rw_semaphore __sched *
893 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
894 {
895         long adjustment = -RWSEM_READER_BIAS;
896         long rcnt = (count >> RWSEM_READER_SHIFT);
897         struct rwsem_waiter waiter;
898         DEFINE_WAKE_Q(wake_q);
899         bool wake = false;
900
901         /*
902          * To prevent a constant stream of readers from starving a sleeping
903          * waiter, don't attempt optimistic lock stealing if the lock is
904          * currently owned by readers.
905          */
906         if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
907             (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
908                 goto queue;
909
910         /*
911          * Reader optimistic lock stealing.
912          */
913         if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
914                 rwsem_set_reader_owned(sem);
915                 lockevent_inc(rwsem_rlock_steal);
916
917                 /*
918                  * Wake up other readers in the wait queue if it is
919                  * the first reader.
920                  */
921                 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
922                         raw_spin_lock_irq(&sem->wait_lock);
923                         if (!list_empty(&sem->wait_list))
924                                 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
925                                                 &wake_q);
926                         raw_spin_unlock_irq(&sem->wait_lock);
927                         wake_up_q(&wake_q);
928                 }
929                 return sem;
930         }
931
932 queue:
933         waiter.task = current;
934         waiter.type = RWSEM_WAITING_FOR_READ;
935         waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
936
937         raw_spin_lock_irq(&sem->wait_lock);
938         if (list_empty(&sem->wait_list)) {
939                 /*
940                  * In case the wait queue is empty and the lock isn't owned
941                  * by a writer or has the handoff bit set, this reader can
942                  * exit the slowpath and return immediately as its
943                  * RWSEM_READER_BIAS has already been set in the count.
944                  */
945                 if (!(atomic_long_read(&sem->count) &
946                      (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
947                         /* Provide lock ACQUIRE */
948                         smp_acquire__after_ctrl_dep();
949                         raw_spin_unlock_irq(&sem->wait_lock);
950                         rwsem_set_reader_owned(sem);
951                         lockevent_inc(rwsem_rlock_fast);
952                         return sem;
953                 }
954                 adjustment += RWSEM_FLAG_WAITERS;
955         }
956         list_add_tail(&waiter.list, &sem->wait_list);
957
958         /* we're now waiting on the lock, but no longer actively locking */
959         count = atomic_long_add_return(adjustment, &sem->count);
960
961         /*
962          * If there are no active locks, wake the front queued process(es).
963          *
964          * If there are no writers and we are first in the queue,
965          * wake our own waiter to join the existing active readers !
966          */
967         if (!(count & RWSEM_LOCK_MASK)) {
968                 clear_nonspinnable(sem);
969                 wake = true;
970         }
971         if (wake || (!(count & RWSEM_WRITER_MASK) &&
972                     (adjustment & RWSEM_FLAG_WAITERS)))
973                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
974
975         raw_spin_unlock_irq(&sem->wait_lock);
976         wake_up_q(&wake_q);
977
978         /* wait to be given the lock */
979         for (;;) {
980                 set_current_state(state);
981                 if (!smp_load_acquire(&waiter.task)) {
982                         /* Matches rwsem_mark_wake()'s smp_store_release(). */
983                         break;
984                 }
985                 if (signal_pending_state(state, current)) {
986                         raw_spin_lock_irq(&sem->wait_lock);
987                         if (waiter.task)
988                                 goto out_nolock;
989                         raw_spin_unlock_irq(&sem->wait_lock);
990                         /* Ordered by sem->wait_lock against rwsem_mark_wake(). */
991                         break;
992                 }
993                 schedule();
994                 lockevent_inc(rwsem_sleep_reader);
995         }
996
997         __set_current_state(TASK_RUNNING);
998         lockevent_inc(rwsem_rlock);
999         return sem;
1000
1001 out_nolock:
1002         list_del(&waiter.list);
1003         if (list_empty(&sem->wait_list)) {
1004                 atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF,
1005                                    &sem->count);
1006         }
1007         raw_spin_unlock_irq(&sem->wait_lock);
1008         __set_current_state(TASK_RUNNING);
1009         lockevent_inc(rwsem_rlock_fail);
1010         return ERR_PTR(-EINTR);
1011 }
1012
1013 /*
1014  * Wait until we successfully acquire the write lock
1015  */
1016 static struct rw_semaphore *
1017 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1018 {
1019         long count;
1020         enum writer_wait_state wstate;
1021         struct rwsem_waiter waiter;
1022         struct rw_semaphore *ret = sem;
1023         DEFINE_WAKE_Q(wake_q);
1024
1025         /* do optimistic spinning and steal lock if possible */
1026         if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1027                 /* rwsem_optimistic_spin() implies ACQUIRE on success */
1028                 return sem;
1029         }
1030
1031         /*
1032          * Optimistic spinning failed, proceed to the slowpath
1033          * and block until we can acquire the sem.
1034          */
1035         waiter.task = current;
1036         waiter.type = RWSEM_WAITING_FOR_WRITE;
1037         waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1038
1039         raw_spin_lock_irq(&sem->wait_lock);
1040
1041         /* account for this before adding a new element to the list */
1042         wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST;
1043
1044         list_add_tail(&waiter.list, &sem->wait_list);
1045
1046         /* we're now waiting on the lock */
1047         if (wstate == WRITER_NOT_FIRST) {
1048                 count = atomic_long_read(&sem->count);
1049
1050                 /*
1051                  * If there were already threads queued before us and:
1052                  *  1) there are no active locks, wake the front
1053                  *     queued process(es) as the handoff bit might be set.
1054                  *  2) there are no active writers and some readers, the lock
1055                  *     must be read owned; so we try to wake any read lock
1056                  *     waiters that were queued ahead of us.
1057                  */
1058                 if (count & RWSEM_WRITER_MASK)
1059                         goto wait;
1060
1061                 rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
1062                                         ? RWSEM_WAKE_READERS
1063                                         : RWSEM_WAKE_ANY, &wake_q);
1064
1065                 if (!wake_q_empty(&wake_q)) {
1066                         /*
1067                          * We want to minimize wait_lock hold time especially
1068                          * when a large number of readers are to be woken up.
1069                          */
1070                         raw_spin_unlock_irq(&sem->wait_lock);
1071                         wake_up_q(&wake_q);
1072                         wake_q_init(&wake_q);   /* Used again, reinit */
1073                         raw_spin_lock_irq(&sem->wait_lock);
1074                 }
1075         } else {
1076                 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1077         }
1078
1079 wait:
1080         /* wait until we successfully acquire the lock */
1081         set_current_state(state);
1082         for (;;) {
1083                 if (rwsem_try_write_lock(sem, wstate)) {
1084                         /* rwsem_try_write_lock() implies ACQUIRE on success */
1085                         break;
1086                 }
1087
1088                 raw_spin_unlock_irq(&sem->wait_lock);
1089
1090                 /*
1091                  * After setting the handoff bit and failing to acquire
1092                  * the lock, attempt to spin on owner to accelerate lock
1093                  * transfer. If the previous owner is a on-cpu writer and it
1094                  * has just released the lock, OWNER_NULL will be returned.
1095                  * In this case, we attempt to acquire the lock again
1096                  * without sleeping.
1097                  */
1098                 if (wstate == WRITER_HANDOFF &&
1099                     rwsem_spin_on_owner(sem) == OWNER_NULL)
1100                         goto trylock_again;
1101
1102                 /* Block until there are no active lockers. */
1103                 for (;;) {
1104                         if (signal_pending_state(state, current))
1105                                 goto out_nolock;
1106
1107                         schedule();
1108                         lockevent_inc(rwsem_sleep_writer);
1109                         set_current_state(state);
1110                         /*
1111                          * If HANDOFF bit is set, unconditionally do
1112                          * a trylock.
1113                          */
1114                         if (wstate == WRITER_HANDOFF)
1115                                 break;
1116
1117                         if ((wstate == WRITER_NOT_FIRST) &&
1118                             (rwsem_first_waiter(sem) == &waiter))
1119                                 wstate = WRITER_FIRST;
1120
1121                         count = atomic_long_read(&sem->count);
1122                         if (!(count & RWSEM_LOCK_MASK))
1123                                 break;
1124
1125                         /*
1126                          * The setting of the handoff bit is deferred
1127                          * until rwsem_try_write_lock() is called.
1128                          */
1129                         if ((wstate == WRITER_FIRST) && (rt_task(current) ||
1130                             time_after(jiffies, waiter.timeout))) {
1131                                 wstate = WRITER_HANDOFF;
1132                                 lockevent_inc(rwsem_wlock_handoff);
1133                                 break;
1134                         }
1135                 }
1136 trylock_again:
1137                 raw_spin_lock_irq(&sem->wait_lock);
1138         }
1139         __set_current_state(TASK_RUNNING);
1140         list_del(&waiter.list);
1141         raw_spin_unlock_irq(&sem->wait_lock);
1142         lockevent_inc(rwsem_wlock);
1143
1144         return ret;
1145
1146 out_nolock:
1147         __set_current_state(TASK_RUNNING);
1148         raw_spin_lock_irq(&sem->wait_lock);
1149         list_del(&waiter.list);
1150
1151         if (unlikely(wstate == WRITER_HANDOFF))
1152                 atomic_long_add(-RWSEM_FLAG_HANDOFF,  &sem->count);
1153
1154         if (list_empty(&sem->wait_list))
1155                 atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count);
1156         else
1157                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1158         raw_spin_unlock_irq(&sem->wait_lock);
1159         wake_up_q(&wake_q);
1160         lockevent_inc(rwsem_wlock_fail);
1161
1162         return ERR_PTR(-EINTR);
1163 }
1164
1165 /*
1166  * handle waking up a waiter on the semaphore
1167  * - up_read/up_write has decremented the active part of count if we come here
1168  */
1169 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1170 {
1171         unsigned long flags;
1172         DEFINE_WAKE_Q(wake_q);
1173
1174         raw_spin_lock_irqsave(&sem->wait_lock, flags);
1175
1176         if (!list_empty(&sem->wait_list))
1177                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1178
1179         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1180         wake_up_q(&wake_q);
1181
1182         return sem;
1183 }
1184
1185 /*
1186  * downgrade a write lock into a read lock
1187  * - caller incremented waiting part of count and discovered it still negative
1188  * - just wake up any readers at the front of the queue
1189  */
1190 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1191 {
1192         unsigned long flags;
1193         DEFINE_WAKE_Q(wake_q);
1194
1195         raw_spin_lock_irqsave(&sem->wait_lock, flags);
1196
1197         if (!list_empty(&sem->wait_list))
1198                 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1199
1200         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1201         wake_up_q(&wake_q);
1202
1203         return sem;
1204 }
1205
1206 /*
1207  * lock for reading
1208  */
1209 static inline int __down_read_common(struct rw_semaphore *sem, int state)
1210 {
1211         long count;
1212
1213         if (!rwsem_read_trylock(sem, &count)) {
1214                 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1215                         return -EINTR;
1216                 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1217         }
1218         return 0;
1219 }
1220
1221 static inline void __down_read(struct rw_semaphore *sem)
1222 {
1223         __down_read_common(sem, TASK_UNINTERRUPTIBLE);
1224 }
1225
1226 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1227 {
1228         return __down_read_common(sem, TASK_INTERRUPTIBLE);
1229 }
1230
1231 static inline int __down_read_killable(struct rw_semaphore *sem)
1232 {
1233         return __down_read_common(sem, TASK_KILLABLE);
1234 }
1235
1236 static inline int __down_read_trylock(struct rw_semaphore *sem)
1237 {
1238         long tmp;
1239
1240         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1241
1242         /*
1243          * Optimize for the case when the rwsem is not locked at all.
1244          */
1245         tmp = RWSEM_UNLOCKED_VALUE;
1246         do {
1247                 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1248                                         tmp + RWSEM_READER_BIAS)) {
1249                         rwsem_set_reader_owned(sem);
1250                         return 1;
1251                 }
1252         } while (!(tmp & RWSEM_READ_FAILED_MASK));
1253         return 0;
1254 }
1255
1256 /*
1257  * lock for writing
1258  */
1259 static inline int __down_write_common(struct rw_semaphore *sem, int state)
1260 {
1261         if (unlikely(!rwsem_write_trylock(sem))) {
1262                 if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1263                         return -EINTR;
1264         }
1265
1266         return 0;
1267 }
1268
1269 static inline void __down_write(struct rw_semaphore *sem)
1270 {
1271         __down_write_common(sem, TASK_UNINTERRUPTIBLE);
1272 }
1273
1274 static inline int __down_write_killable(struct rw_semaphore *sem)
1275 {
1276         return __down_write_common(sem, TASK_KILLABLE);
1277 }
1278
1279 static inline int __down_write_trylock(struct rw_semaphore *sem)
1280 {
1281         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1282         return rwsem_write_trylock(sem);
1283 }
1284
1285 /*
1286  * unlock after reading
1287  */
1288 static inline void __up_read(struct rw_semaphore *sem)
1289 {
1290         long tmp;
1291
1292         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1293         DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1294
1295         rwsem_clear_reader_owned(sem);
1296         tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1297         DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1298         if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1299                       RWSEM_FLAG_WAITERS)) {
1300                 clear_nonspinnable(sem);
1301                 rwsem_wake(sem);
1302         }
1303 }
1304
1305 /*
1306  * unlock after writing
1307  */
1308 static inline void __up_write(struct rw_semaphore *sem)
1309 {
1310         long tmp;
1311
1312         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1313         /*
1314          * sem->owner may differ from current if the ownership is transferred
1315          * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1316          */
1317         DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1318                             !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1319
1320         rwsem_clear_owner(sem);
1321         tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1322         if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1323                 rwsem_wake(sem);
1324 }
1325
1326 /*
1327  * downgrade write lock to read lock
1328  */
1329 static inline void __downgrade_write(struct rw_semaphore *sem)
1330 {
1331         long tmp;
1332
1333         /*
1334          * When downgrading from exclusive to shared ownership,
1335          * anything inside the write-locked region cannot leak
1336          * into the read side. In contrast, anything in the
1337          * read-locked region is ok to be re-ordered into the
1338          * write side. As such, rely on RELEASE semantics.
1339          */
1340         DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1341         tmp = atomic_long_fetch_add_release(
1342                 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1343         rwsem_set_reader_owned(sem);
1344         if (tmp & RWSEM_FLAG_WAITERS)
1345                 rwsem_downgrade_wake(sem);
1346 }
1347
1348 #else /* !CONFIG_PREEMPT_RT */
1349
1350 #define RT_MUTEX_BUILD_MUTEX
1351 #include "rtmutex.c"
1352
1353 #define rwbase_set_and_save_current_state(state)        \
1354         set_current_state(state)
1355
1356 #define rwbase_restore_current_state()                  \
1357         __set_current_state(TASK_RUNNING)
1358
1359 #define rwbase_rtmutex_lock_state(rtm, state)           \
1360         __rt_mutex_lock(rtm, state)
1361
1362 #define rwbase_rtmutex_slowlock_locked(rtm, state)      \
1363         __rt_mutex_slowlock_locked(rtm, NULL, state)
1364
1365 #define rwbase_rtmutex_unlock(rtm)                      \
1366         __rt_mutex_unlock(rtm)
1367
1368 #define rwbase_rtmutex_trylock(rtm)                     \
1369         __rt_mutex_trylock(rtm)
1370
1371 #define rwbase_signal_pending_state(state, current)     \
1372         signal_pending_state(state, current)
1373
1374 #define rwbase_schedule()                               \
1375         schedule()
1376
1377 #include "rwbase_rt.c"
1378
1379 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1380                   struct lock_class_key *key)
1381 {
1382         init_rwbase_rt(&(sem)->rwbase);
1383
1384 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1385         debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1386         lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1387 #endif
1388 }
1389 EXPORT_SYMBOL(__init_rwsem);
1390
1391 static inline void __down_read(struct rw_semaphore *sem)
1392 {
1393         rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1394 }
1395
1396 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1397 {
1398         return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1399 }
1400
1401 static inline int __down_read_killable(struct rw_semaphore *sem)
1402 {
1403         return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1404 }
1405
1406 static inline int __down_read_trylock(struct rw_semaphore *sem)
1407 {
1408         return rwbase_read_trylock(&sem->rwbase);
1409 }
1410
1411 static inline void __up_read(struct rw_semaphore *sem)
1412 {
1413         rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1414 }
1415
1416 static inline void __sched __down_write(struct rw_semaphore *sem)
1417 {
1418         rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1419 }
1420
1421 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1422 {
1423         return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1424 }
1425
1426 static inline int __down_write_trylock(struct rw_semaphore *sem)
1427 {
1428         return rwbase_write_trylock(&sem->rwbase);
1429 }
1430
1431 static inline void __up_write(struct rw_semaphore *sem)
1432 {
1433         rwbase_write_unlock(&sem->rwbase);
1434 }
1435
1436 static inline void __downgrade_write(struct rw_semaphore *sem)
1437 {
1438         rwbase_write_downgrade(&sem->rwbase);
1439 }
1440
1441 /* Debug stubs for the common API */
1442 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1443
1444 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1445                                             struct task_struct *owner)
1446 {
1447 }
1448
1449 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1450 {
1451         int count = atomic_read(&sem->rwbase.readers);
1452
1453         return count < 0 && count != READER_BIAS;
1454 }
1455
1456 #endif /* CONFIG_PREEMPT_RT */
1457
1458 /*
1459  * lock for reading
1460  */
1461 void __sched down_read(struct rw_semaphore *sem)
1462 {
1463         might_sleep();
1464         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1465
1466         LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1467 }
1468 EXPORT_SYMBOL(down_read);
1469
1470 int __sched down_read_interruptible(struct rw_semaphore *sem)
1471 {
1472         might_sleep();
1473         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1474
1475         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1476                 rwsem_release(&sem->dep_map, _RET_IP_);
1477                 return -EINTR;
1478         }
1479
1480         return 0;
1481 }
1482 EXPORT_SYMBOL(down_read_interruptible);
1483
1484 int __sched down_read_killable(struct rw_semaphore *sem)
1485 {
1486         might_sleep();
1487         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1488
1489         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1490                 rwsem_release(&sem->dep_map, _RET_IP_);
1491                 return -EINTR;
1492         }
1493
1494         return 0;
1495 }
1496 EXPORT_SYMBOL(down_read_killable);
1497
1498 /*
1499  * trylock for reading -- returns 1 if successful, 0 if contention
1500  */
1501 int down_read_trylock(struct rw_semaphore *sem)
1502 {
1503         int ret = __down_read_trylock(sem);
1504
1505         if (ret == 1)
1506                 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1507         return ret;
1508 }
1509 EXPORT_SYMBOL(down_read_trylock);
1510
1511 /*
1512  * lock for writing
1513  */
1514 void __sched down_write(struct rw_semaphore *sem)
1515 {
1516         might_sleep();
1517         rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1518         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1519 }
1520 EXPORT_SYMBOL(down_write);
1521
1522 /*
1523  * lock for writing
1524  */
1525 int __sched down_write_killable(struct rw_semaphore *sem)
1526 {
1527         might_sleep();
1528         rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1529
1530         if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1531                                   __down_write_killable)) {
1532                 rwsem_release(&sem->dep_map, _RET_IP_);
1533                 return -EINTR;
1534         }
1535
1536         return 0;
1537 }
1538 EXPORT_SYMBOL(down_write_killable);
1539
1540 /*
1541  * trylock for writing -- returns 1 if successful, 0 if contention
1542  */
1543 int down_write_trylock(struct rw_semaphore *sem)
1544 {
1545         int ret = __down_write_trylock(sem);
1546
1547         if (ret == 1)
1548                 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1549
1550         return ret;
1551 }
1552 EXPORT_SYMBOL(down_write_trylock);
1553
1554 /*
1555  * release a read lock
1556  */
1557 void up_read(struct rw_semaphore *sem)
1558 {
1559         rwsem_release(&sem->dep_map, _RET_IP_);
1560         __up_read(sem);
1561 }
1562 EXPORT_SYMBOL(up_read);
1563
1564 /*
1565  * release a write lock
1566  */
1567 void up_write(struct rw_semaphore *sem)
1568 {
1569         rwsem_release(&sem->dep_map, _RET_IP_);
1570         __up_write(sem);
1571 }
1572 EXPORT_SYMBOL(up_write);
1573
1574 /*
1575  * downgrade write lock to read lock
1576  */
1577 void downgrade_write(struct rw_semaphore *sem)
1578 {
1579         lock_downgrade(&sem->dep_map, _RET_IP_);
1580         __downgrade_write(sem);
1581 }
1582 EXPORT_SYMBOL(downgrade_write);
1583
1584 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1585
1586 void down_read_nested(struct rw_semaphore *sem, int subclass)
1587 {
1588         might_sleep();
1589         rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1590         LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1591 }
1592 EXPORT_SYMBOL(down_read_nested);
1593
1594 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1595 {
1596         might_sleep();
1597         rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1598
1599         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1600                 rwsem_release(&sem->dep_map, _RET_IP_);
1601                 return -EINTR;
1602         }
1603
1604         return 0;
1605 }
1606 EXPORT_SYMBOL(down_read_killable_nested);
1607
1608 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1609 {
1610         might_sleep();
1611         rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1612         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1613 }
1614 EXPORT_SYMBOL(_down_write_nest_lock);
1615
1616 void down_read_non_owner(struct rw_semaphore *sem)
1617 {
1618         might_sleep();
1619         __down_read(sem);
1620         __rwsem_set_reader_owned(sem, NULL);
1621 }
1622 EXPORT_SYMBOL(down_read_non_owner);
1623
1624 void down_write_nested(struct rw_semaphore *sem, int subclass)
1625 {
1626         might_sleep();
1627         rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1628         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1629 }
1630 EXPORT_SYMBOL(down_write_nested);
1631
1632 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1633 {
1634         might_sleep();
1635         rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1636
1637         if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1638                                   __down_write_killable)) {
1639                 rwsem_release(&sem->dep_map, _RET_IP_);
1640                 return -EINTR;
1641         }
1642
1643         return 0;
1644 }
1645 EXPORT_SYMBOL(down_write_killable_nested);
1646
1647 void up_read_non_owner(struct rw_semaphore *sem)
1648 {
1649         DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1650         __up_read(sem);
1651 }
1652 EXPORT_SYMBOL(up_read_non_owner);
1653
1654 #endif