Merge tag 'perf-tools-for-v5.15-2021-09-11' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / kernel / locking / rtmutex.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4  *
5  * started by Ingo Molnar and Thomas Gleixner.
6  *
7  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10  *  Copyright (C) 2006 Esben Nielsen
11  * Adaptive Spinlocks:
12  *  Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
13  *                                   and Peter Morreale,
14  * Adaptive Spinlocks simplification:
15  *  Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
16  *
17  *  See Documentation/locking/rt-mutex-design.rst for details.
18  */
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/deadline.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/ww_mutex.h>
26
27 #include "rtmutex_common.h"
28
29 #ifndef WW_RT
30 # define build_ww_mutex()       (false)
31 # define ww_container_of(rtm)   NULL
32
33 static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
34                                         struct rt_mutex *lock,
35                                         struct ww_acquire_ctx *ww_ctx)
36 {
37         return 0;
38 }
39
40 static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
41                                             struct ww_acquire_ctx *ww_ctx)
42 {
43 }
44
45 static inline void ww_mutex_lock_acquired(struct ww_mutex *lock,
46                                           struct ww_acquire_ctx *ww_ctx)
47 {
48 }
49
50 static inline int __ww_mutex_check_kill(struct rt_mutex *lock,
51                                         struct rt_mutex_waiter *waiter,
52                                         struct ww_acquire_ctx *ww_ctx)
53 {
54         return 0;
55 }
56
57 #else
58 # define build_ww_mutex()       (true)
59 # define ww_container_of(rtm)   container_of(rtm, struct ww_mutex, base)
60 # include "ww_mutex.h"
61 #endif
62
63 /*
64  * lock->owner state tracking:
65  *
66  * lock->owner holds the task_struct pointer of the owner. Bit 0
67  * is used to keep track of the "lock has waiters" state.
68  *
69  * owner        bit0
70  * NULL         0       lock is free (fast acquire possible)
71  * NULL         1       lock is free and has waiters and the top waiter
72  *                              is going to take the lock*
73  * taskpointer  0       lock is held (fast release possible)
74  * taskpointer  1       lock is held and has waiters**
75  *
76  * The fast atomic compare exchange based acquire and release is only
77  * possible when bit 0 of lock->owner is 0.
78  *
79  * (*) It also can be a transitional state when grabbing the lock
80  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
81  * we need to set the bit0 before looking at the lock, and the owner may be
82  * NULL in this small time, hence this can be a transitional state.
83  *
84  * (**) There is a small time when bit 0 is set but there are no
85  * waiters. This can happen when grabbing the lock in the slow path.
86  * To prevent a cmpxchg of the owner releasing the lock, we need to
87  * set this bit before looking at the lock.
88  */
89
90 static __always_inline void
91 rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner)
92 {
93         unsigned long val = (unsigned long)owner;
94
95         if (rt_mutex_has_waiters(lock))
96                 val |= RT_MUTEX_HAS_WAITERS;
97
98         WRITE_ONCE(lock->owner, (struct task_struct *)val);
99 }
100
101 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock)
102 {
103         lock->owner = (struct task_struct *)
104                         ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
105 }
106
107 static __always_inline void fixup_rt_mutex_waiters(struct rt_mutex_base *lock)
108 {
109         unsigned long owner, *p = (unsigned long *) &lock->owner;
110
111         if (rt_mutex_has_waiters(lock))
112                 return;
113
114         /*
115          * The rbtree has no waiters enqueued, now make sure that the
116          * lock->owner still has the waiters bit set, otherwise the
117          * following can happen:
118          *
119          * CPU 0        CPU 1           CPU2
120          * l->owner=T1
121          *              rt_mutex_lock(l)
122          *              lock(l->lock)
123          *              l->owner = T1 | HAS_WAITERS;
124          *              enqueue(T2)
125          *              boost()
126          *                unlock(l->lock)
127          *              block()
128          *
129          *                              rt_mutex_lock(l)
130          *                              lock(l->lock)
131          *                              l->owner = T1 | HAS_WAITERS;
132          *                              enqueue(T3)
133          *                              boost()
134          *                                unlock(l->lock)
135          *                              block()
136          *              signal(->T2)    signal(->T3)
137          *              lock(l->lock)
138          *              dequeue(T2)
139          *              deboost()
140          *                unlock(l->lock)
141          *                              lock(l->lock)
142          *                              dequeue(T3)
143          *                               ==> wait list is empty
144          *                              deboost()
145          *                               unlock(l->lock)
146          *              lock(l->lock)
147          *              fixup_rt_mutex_waiters()
148          *                if (wait_list_empty(l) {
149          *                  l->owner = owner
150          *                  owner = l->owner & ~HAS_WAITERS;
151          *                    ==> l->owner = T1
152          *                }
153          *                              lock(l->lock)
154          * rt_mutex_unlock(l)           fixup_rt_mutex_waiters()
155          *                                if (wait_list_empty(l) {
156          *                                  owner = l->owner & ~HAS_WAITERS;
157          * cmpxchg(l->owner, T1, NULL)
158          *  ===> Success (l->owner = NULL)
159          *
160          *                                  l->owner = owner
161          *                                    ==> l->owner = T1
162          *                                }
163          *
164          * With the check for the waiter bit in place T3 on CPU2 will not
165          * overwrite. All tasks fiddling with the waiters bit are
166          * serialized by l->lock, so nothing else can modify the waiters
167          * bit. If the bit is set then nothing can change l->owner either
168          * so the simple RMW is safe. The cmpxchg() will simply fail if it
169          * happens in the middle of the RMW because the waiters bit is
170          * still set.
171          */
172         owner = READ_ONCE(*p);
173         if (owner & RT_MUTEX_HAS_WAITERS)
174                 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
175 }
176
177 /*
178  * We can speed up the acquire/release, if there's no debugging state to be
179  * set up.
180  */
181 #ifndef CONFIG_DEBUG_RT_MUTEXES
182 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
183                                                      struct task_struct *old,
184                                                      struct task_struct *new)
185 {
186         return try_cmpxchg_acquire(&lock->owner, &old, new);
187 }
188
189 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
190                                                      struct task_struct *old,
191                                                      struct task_struct *new)
192 {
193         return try_cmpxchg_release(&lock->owner, &old, new);
194 }
195
196 /*
197  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
198  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
199  * relaxed semantics suffice.
200  */
201 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
202 {
203         unsigned long owner, *p = (unsigned long *) &lock->owner;
204
205         do {
206                 owner = *p;
207         } while (cmpxchg_relaxed(p, owner,
208                                  owner | RT_MUTEX_HAS_WAITERS) != owner);
209 }
210
211 /*
212  * Safe fastpath aware unlock:
213  * 1) Clear the waiters bit
214  * 2) Drop lock->wait_lock
215  * 3) Try to unlock the lock with cmpxchg
216  */
217 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
218                                                  unsigned long flags)
219         __releases(lock->wait_lock)
220 {
221         struct task_struct *owner = rt_mutex_owner(lock);
222
223         clear_rt_mutex_waiters(lock);
224         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
225         /*
226          * If a new waiter comes in between the unlock and the cmpxchg
227          * we have two situations:
228          *
229          * unlock(wait_lock);
230          *                                      lock(wait_lock);
231          * cmpxchg(p, owner, 0) == owner
232          *                                      mark_rt_mutex_waiters(lock);
233          *                                      acquire(lock);
234          * or:
235          *
236          * unlock(wait_lock);
237          *                                      lock(wait_lock);
238          *                                      mark_rt_mutex_waiters(lock);
239          *
240          * cmpxchg(p, owner, 0) != owner
241          *                                      enqueue_waiter();
242          *                                      unlock(wait_lock);
243          * lock(wait_lock);
244          * wake waiter();
245          * unlock(wait_lock);
246          *                                      lock(wait_lock);
247          *                                      acquire(lock);
248          */
249         return rt_mutex_cmpxchg_release(lock, owner, NULL);
250 }
251
252 #else
253 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
254                                                      struct task_struct *old,
255                                                      struct task_struct *new)
256 {
257         return false;
258
259 }
260
261 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
262                                                      struct task_struct *old,
263                                                      struct task_struct *new)
264 {
265         return false;
266 }
267
268 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
269 {
270         lock->owner = (struct task_struct *)
271                         ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
272 }
273
274 /*
275  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
276  */
277 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
278                                                  unsigned long flags)
279         __releases(lock->wait_lock)
280 {
281         lock->owner = NULL;
282         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
283         return true;
284 }
285 #endif
286
287 static __always_inline int __waiter_prio(struct task_struct *task)
288 {
289         int prio = task->prio;
290
291         if (!rt_prio(prio))
292                 return DEFAULT_PRIO;
293
294         return prio;
295 }
296
297 static __always_inline void
298 waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
299 {
300         waiter->prio = __waiter_prio(task);
301         waiter->deadline = task->dl.deadline;
302 }
303
304 /*
305  * Only use with rt_mutex_waiter_{less,equal}()
306  */
307 #define task_to_waiter(p)       \
308         &(struct rt_mutex_waiter){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
309
310 static __always_inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left,
311                                                 struct rt_mutex_waiter *right)
312 {
313         if (left->prio < right->prio)
314                 return 1;
315
316         /*
317          * If both waiters have dl_prio(), we check the deadlines of the
318          * associated tasks.
319          * If left waiter has a dl_prio(), and we didn't return 1 above,
320          * then right waiter has a dl_prio() too.
321          */
322         if (dl_prio(left->prio))
323                 return dl_time_before(left->deadline, right->deadline);
324
325         return 0;
326 }
327
328 static __always_inline int rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
329                                                  struct rt_mutex_waiter *right)
330 {
331         if (left->prio != right->prio)
332                 return 0;
333
334         /*
335          * If both waiters have dl_prio(), we check the deadlines of the
336          * associated tasks.
337          * If left waiter has a dl_prio(), and we didn't return 0 above,
338          * then right waiter has a dl_prio() too.
339          */
340         if (dl_prio(left->prio))
341                 return left->deadline == right->deadline;
342
343         return 1;
344 }
345
346 static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
347                                   struct rt_mutex_waiter *top_waiter)
348 {
349         if (rt_mutex_waiter_less(waiter, top_waiter))
350                 return true;
351
352 #ifdef RT_MUTEX_BUILD_SPINLOCKS
353         /*
354          * Note that RT tasks are excluded from same priority (lateral)
355          * steals to prevent the introduction of an unbounded latency.
356          */
357         if (rt_prio(waiter->prio) || dl_prio(waiter->prio))
358                 return false;
359
360         return rt_mutex_waiter_equal(waiter, top_waiter);
361 #else
362         return false;
363 #endif
364 }
365
366 #define __node_2_waiter(node) \
367         rb_entry((node), struct rt_mutex_waiter, tree_entry)
368
369 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
370 {
371         struct rt_mutex_waiter *aw = __node_2_waiter(a);
372         struct rt_mutex_waiter *bw = __node_2_waiter(b);
373
374         if (rt_mutex_waiter_less(aw, bw))
375                 return 1;
376
377         if (!build_ww_mutex())
378                 return 0;
379
380         if (rt_mutex_waiter_less(bw, aw))
381                 return 0;
382
383         /* NOTE: relies on waiter->ww_ctx being set before insertion */
384         if (aw->ww_ctx) {
385                 if (!bw->ww_ctx)
386                         return 1;
387
388                 return (signed long)(aw->ww_ctx->stamp -
389                                      bw->ww_ctx->stamp) < 0;
390         }
391
392         return 0;
393 }
394
395 static __always_inline void
396 rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
397 {
398         rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
399 }
400
401 static __always_inline void
402 rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
403 {
404         if (RB_EMPTY_NODE(&waiter->tree_entry))
405                 return;
406
407         rb_erase_cached(&waiter->tree_entry, &lock->waiters);
408         RB_CLEAR_NODE(&waiter->tree_entry);
409 }
410
411 #define __node_2_pi_waiter(node) \
412         rb_entry((node), struct rt_mutex_waiter, pi_tree_entry)
413
414 static __always_inline bool
415 __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
416 {
417         return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b));
418 }
419
420 static __always_inline void
421 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
422 {
423         rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less);
424 }
425
426 static __always_inline void
427 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
428 {
429         if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
430                 return;
431
432         rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
433         RB_CLEAR_NODE(&waiter->pi_tree_entry);
434 }
435
436 static __always_inline void rt_mutex_adjust_prio(struct task_struct *p)
437 {
438         struct task_struct *pi_task = NULL;
439
440         lockdep_assert_held(&p->pi_lock);
441
442         if (task_has_pi_waiters(p))
443                 pi_task = task_top_pi_waiter(p)->task;
444
445         rt_mutex_setprio(p, pi_task);
446 }
447
448 /* RT mutex specific wake_q wrappers */
449 static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh,
450                                                 struct rt_mutex_waiter *w)
451 {
452         if (IS_ENABLED(CONFIG_PREEMPT_RT) && w->wake_state != TASK_NORMAL) {
453                 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
454                         WARN_ON_ONCE(wqh->rtlock_task);
455                 get_task_struct(w->task);
456                 wqh->rtlock_task = w->task;
457         } else {
458                 wake_q_add(&wqh->head, w->task);
459         }
460 }
461
462 static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh)
463 {
464         if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) {
465                 wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT);
466                 put_task_struct(wqh->rtlock_task);
467                 wqh->rtlock_task = NULL;
468         }
469
470         if (!wake_q_empty(&wqh->head))
471                 wake_up_q(&wqh->head);
472
473         /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
474         preempt_enable();
475 }
476
477 /*
478  * Deadlock detection is conditional:
479  *
480  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
481  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
482  *
483  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
484  * conducted independent of the detect argument.
485  *
486  * If the waiter argument is NULL this indicates the deboost path and
487  * deadlock detection is disabled independent of the detect argument
488  * and the config settings.
489  */
490 static __always_inline bool
491 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
492                               enum rtmutex_chainwalk chwalk)
493 {
494         if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
495                 return waiter != NULL;
496         return chwalk == RT_MUTEX_FULL_CHAINWALK;
497 }
498
499 static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p)
500 {
501         return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
502 }
503
504 /*
505  * Adjust the priority chain. Also used for deadlock detection.
506  * Decreases task's usage by one - may thus free the task.
507  *
508  * @task:       the task owning the mutex (owner) for which a chain walk is
509  *              probably needed
510  * @chwalk:     do we have to carry out deadlock detection?
511  * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
512  *              things for a task that has just got its priority adjusted, and
513  *              is waiting on a mutex)
514  * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
515  *              we dropped its pi_lock. Is never dereferenced, only used for
516  *              comparison to detect lock chain changes.
517  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
518  *              its priority to the mutex owner (can be NULL in the case
519  *              depicted above or if the top waiter is gone away and we are
520  *              actually deboosting the owner)
521  * @top_task:   the current top waiter
522  *
523  * Returns 0 or -EDEADLK.
524  *
525  * Chain walk basics and protection scope
526  *
527  * [R] refcount on task
528  * [P] task->pi_lock held
529  * [L] rtmutex->wait_lock held
530  *
531  * Step Description                             Protected by
532  *      function arguments:
533  *      @task                                   [R]
534  *      @orig_lock if != NULL                   @top_task is blocked on it
535  *      @next_lock                              Unprotected. Cannot be
536  *                                              dereferenced. Only used for
537  *                                              comparison.
538  *      @orig_waiter if != NULL                 @top_task is blocked on it
539  *      @top_task                               current, or in case of proxy
540  *                                              locking protected by calling
541  *                                              code
542  *      again:
543  *        loop_sanity_check();
544  *      retry:
545  * [1]    lock(task->pi_lock);                  [R] acquire [P]
546  * [2]    waiter = task->pi_blocked_on;         [P]
547  * [3]    check_exit_conditions_1();            [P]
548  * [4]    lock = waiter->lock;                  [P]
549  * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
550  *          unlock(task->pi_lock);              release [P]
551  *          goto retry;
552  *        }
553  * [6]    check_exit_conditions_2();            [P] + [L]
554  * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
555  * [8]    unlock(task->pi_lock);                release [P]
556  *        put_task_struct(task);                release [R]
557  * [9]    check_exit_conditions_3();            [L]
558  * [10]   task = owner(lock);                   [L]
559  *        get_task_struct(task);                [L] acquire [R]
560  *        lock(task->pi_lock);                  [L] acquire [P]
561  * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
562  * [12]   check_exit_conditions_4();            [P] + [L]
563  * [13]   unlock(task->pi_lock);                release [P]
564  *        unlock(lock->wait_lock);              release [L]
565  *        goto again;
566  */
567 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
568                                               enum rtmutex_chainwalk chwalk,
569                                               struct rt_mutex_base *orig_lock,
570                                               struct rt_mutex_base *next_lock,
571                                               struct rt_mutex_waiter *orig_waiter,
572                                               struct task_struct *top_task)
573 {
574         struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
575         struct rt_mutex_waiter *prerequeue_top_waiter;
576         int ret = 0, depth = 0;
577         struct rt_mutex_base *lock;
578         bool detect_deadlock;
579         bool requeue = true;
580
581         detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
582
583         /*
584          * The (de)boosting is a step by step approach with a lot of
585          * pitfalls. We want this to be preemptible and we want hold a
586          * maximum of two locks per step. So we have to check
587          * carefully whether things change under us.
588          */
589  again:
590         /*
591          * We limit the lock chain length for each invocation.
592          */
593         if (++depth > max_lock_depth) {
594                 static int prev_max;
595
596                 /*
597                  * Print this only once. If the admin changes the limit,
598                  * print a new message when reaching the limit again.
599                  */
600                 if (prev_max != max_lock_depth) {
601                         prev_max = max_lock_depth;
602                         printk(KERN_WARNING "Maximum lock depth %d reached "
603                                "task: %s (%d)\n", max_lock_depth,
604                                top_task->comm, task_pid_nr(top_task));
605                 }
606                 put_task_struct(task);
607
608                 return -EDEADLK;
609         }
610
611         /*
612          * We are fully preemptible here and only hold the refcount on
613          * @task. So everything can have changed under us since the
614          * caller or our own code below (goto retry/again) dropped all
615          * locks.
616          */
617  retry:
618         /*
619          * [1] Task cannot go away as we did a get_task() before !
620          */
621         raw_spin_lock_irq(&task->pi_lock);
622
623         /*
624          * [2] Get the waiter on which @task is blocked on.
625          */
626         waiter = task->pi_blocked_on;
627
628         /*
629          * [3] check_exit_conditions_1() protected by task->pi_lock.
630          */
631
632         /*
633          * Check whether the end of the boosting chain has been
634          * reached or the state of the chain has changed while we
635          * dropped the locks.
636          */
637         if (!waiter)
638                 goto out_unlock_pi;
639
640         /*
641          * Check the orig_waiter state. After we dropped the locks,
642          * the previous owner of the lock might have released the lock.
643          */
644         if (orig_waiter && !rt_mutex_owner(orig_lock))
645                 goto out_unlock_pi;
646
647         /*
648          * We dropped all locks after taking a refcount on @task, so
649          * the task might have moved on in the lock chain or even left
650          * the chain completely and blocks now on an unrelated lock or
651          * on @orig_lock.
652          *
653          * We stored the lock on which @task was blocked in @next_lock,
654          * so we can detect the chain change.
655          */
656         if (next_lock != waiter->lock)
657                 goto out_unlock_pi;
658
659         /*
660          * There could be 'spurious' loops in the lock graph due to ww_mutex,
661          * consider:
662          *
663          *   P1: A, ww_A, ww_B
664          *   P2: ww_B, ww_A
665          *   P3: A
666          *
667          * P3 should not return -EDEADLK because it gets trapped in the cycle
668          * created by P1 and P2 (which will resolve -- and runs into
669          * max_lock_depth above). Therefore disable detect_deadlock such that
670          * the below termination condition can trigger once all relevant tasks
671          * are boosted.
672          *
673          * Even when we start with ww_mutex we can disable deadlock detection,
674          * since we would supress a ww_mutex induced deadlock at [6] anyway.
675          * Supressing it here however is not sufficient since we might still
676          * hit [6] due to adjustment driven iteration.
677          *
678          * NOTE: if someone were to create a deadlock between 2 ww_classes we'd
679          * utterly fail to report it; lockdep should.
680          */
681         if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock)
682                 detect_deadlock = false;
683
684         /*
685          * Drop out, when the task has no waiters. Note,
686          * top_waiter can be NULL, when we are in the deboosting
687          * mode!
688          */
689         if (top_waiter) {
690                 if (!task_has_pi_waiters(task))
691                         goto out_unlock_pi;
692                 /*
693                  * If deadlock detection is off, we stop here if we
694                  * are not the top pi waiter of the task. If deadlock
695                  * detection is enabled we continue, but stop the
696                  * requeueing in the chain walk.
697                  */
698                 if (top_waiter != task_top_pi_waiter(task)) {
699                         if (!detect_deadlock)
700                                 goto out_unlock_pi;
701                         else
702                                 requeue = false;
703                 }
704         }
705
706         /*
707          * If the waiter priority is the same as the task priority
708          * then there is no further priority adjustment necessary.  If
709          * deadlock detection is off, we stop the chain walk. If its
710          * enabled we continue, but stop the requeueing in the chain
711          * walk.
712          */
713         if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
714                 if (!detect_deadlock)
715                         goto out_unlock_pi;
716                 else
717                         requeue = false;
718         }
719
720         /*
721          * [4] Get the next lock
722          */
723         lock = waiter->lock;
724         /*
725          * [5] We need to trylock here as we are holding task->pi_lock,
726          * which is the reverse lock order versus the other rtmutex
727          * operations.
728          */
729         if (!raw_spin_trylock(&lock->wait_lock)) {
730                 raw_spin_unlock_irq(&task->pi_lock);
731                 cpu_relax();
732                 goto retry;
733         }
734
735         /*
736          * [6] check_exit_conditions_2() protected by task->pi_lock and
737          * lock->wait_lock.
738          *
739          * Deadlock detection. If the lock is the same as the original
740          * lock which caused us to walk the lock chain or if the
741          * current lock is owned by the task which initiated the chain
742          * walk, we detected a deadlock.
743          */
744         if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
745                 ret = -EDEADLK;
746
747                 /*
748                  * When the deadlock is due to ww_mutex; also see above. Don't
749                  * report the deadlock and instead let the ww_mutex wound/die
750                  * logic pick which of the contending threads gets -EDEADLK.
751                  *
752                  * NOTE: assumes the cycle only contains a single ww_class; any
753                  * other configuration and we fail to report; also, see
754                  * lockdep.
755                  */
756                 if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx)
757                         ret = 0;
758
759                 raw_spin_unlock(&lock->wait_lock);
760                 goto out_unlock_pi;
761         }
762
763         /*
764          * If we just follow the lock chain for deadlock detection, no
765          * need to do all the requeue operations. To avoid a truckload
766          * of conditionals around the various places below, just do the
767          * minimum chain walk checks.
768          */
769         if (!requeue) {
770                 /*
771                  * No requeue[7] here. Just release @task [8]
772                  */
773                 raw_spin_unlock(&task->pi_lock);
774                 put_task_struct(task);
775
776                 /*
777                  * [9] check_exit_conditions_3 protected by lock->wait_lock.
778                  * If there is no owner of the lock, end of chain.
779                  */
780                 if (!rt_mutex_owner(lock)) {
781                         raw_spin_unlock_irq(&lock->wait_lock);
782                         return 0;
783                 }
784
785                 /* [10] Grab the next task, i.e. owner of @lock */
786                 task = get_task_struct(rt_mutex_owner(lock));
787                 raw_spin_lock(&task->pi_lock);
788
789                 /*
790                  * No requeue [11] here. We just do deadlock detection.
791                  *
792                  * [12] Store whether owner is blocked
793                  * itself. Decision is made after dropping the locks
794                  */
795                 next_lock = task_blocked_on_lock(task);
796                 /*
797                  * Get the top waiter for the next iteration
798                  */
799                 top_waiter = rt_mutex_top_waiter(lock);
800
801                 /* [13] Drop locks */
802                 raw_spin_unlock(&task->pi_lock);
803                 raw_spin_unlock_irq(&lock->wait_lock);
804
805                 /* If owner is not blocked, end of chain. */
806                 if (!next_lock)
807                         goto out_put_task;
808                 goto again;
809         }
810
811         /*
812          * Store the current top waiter before doing the requeue
813          * operation on @lock. We need it for the boost/deboost
814          * decision below.
815          */
816         prerequeue_top_waiter = rt_mutex_top_waiter(lock);
817
818         /* [7] Requeue the waiter in the lock waiter tree. */
819         rt_mutex_dequeue(lock, waiter);
820
821         /*
822          * Update the waiter prio fields now that we're dequeued.
823          *
824          * These values can have changed through either:
825          *
826          *   sys_sched_set_scheduler() / sys_sched_setattr()
827          *
828          * or
829          *
830          *   DL CBS enforcement advancing the effective deadline.
831          *
832          * Even though pi_waiters also uses these fields, and that tree is only
833          * updated in [11], we can do this here, since we hold [L], which
834          * serializes all pi_waiters access and rb_erase() does not care about
835          * the values of the node being removed.
836          */
837         waiter_update_prio(waiter, task);
838
839         rt_mutex_enqueue(lock, waiter);
840
841         /* [8] Release the task */
842         raw_spin_unlock(&task->pi_lock);
843         put_task_struct(task);
844
845         /*
846          * [9] check_exit_conditions_3 protected by lock->wait_lock.
847          *
848          * We must abort the chain walk if there is no lock owner even
849          * in the dead lock detection case, as we have nothing to
850          * follow here. This is the end of the chain we are walking.
851          */
852         if (!rt_mutex_owner(lock)) {
853                 /*
854                  * If the requeue [7] above changed the top waiter,
855                  * then we need to wake the new top waiter up to try
856                  * to get the lock.
857                  */
858                 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
859                         wake_up_state(waiter->task, waiter->wake_state);
860                 raw_spin_unlock_irq(&lock->wait_lock);
861                 return 0;
862         }
863
864         /* [10] Grab the next task, i.e. the owner of @lock */
865         task = get_task_struct(rt_mutex_owner(lock));
866         raw_spin_lock(&task->pi_lock);
867
868         /* [11] requeue the pi waiters if necessary */
869         if (waiter == rt_mutex_top_waiter(lock)) {
870                 /*
871                  * The waiter became the new top (highest priority)
872                  * waiter on the lock. Replace the previous top waiter
873                  * in the owner tasks pi waiters tree with this waiter
874                  * and adjust the priority of the owner.
875                  */
876                 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
877                 rt_mutex_enqueue_pi(task, waiter);
878                 rt_mutex_adjust_prio(task);
879
880         } else if (prerequeue_top_waiter == waiter) {
881                 /*
882                  * The waiter was the top waiter on the lock, but is
883                  * no longer the top priority waiter. Replace waiter in
884                  * the owner tasks pi waiters tree with the new top
885                  * (highest priority) waiter and adjust the priority
886                  * of the owner.
887                  * The new top waiter is stored in @waiter so that
888                  * @waiter == @top_waiter evaluates to true below and
889                  * we continue to deboost the rest of the chain.
890                  */
891                 rt_mutex_dequeue_pi(task, waiter);
892                 waiter = rt_mutex_top_waiter(lock);
893                 rt_mutex_enqueue_pi(task, waiter);
894                 rt_mutex_adjust_prio(task);
895         } else {
896                 /*
897                  * Nothing changed. No need to do any priority
898                  * adjustment.
899                  */
900         }
901
902         /*
903          * [12] check_exit_conditions_4() protected by task->pi_lock
904          * and lock->wait_lock. The actual decisions are made after we
905          * dropped the locks.
906          *
907          * Check whether the task which owns the current lock is pi
908          * blocked itself. If yes we store a pointer to the lock for
909          * the lock chain change detection above. After we dropped
910          * task->pi_lock next_lock cannot be dereferenced anymore.
911          */
912         next_lock = task_blocked_on_lock(task);
913         /*
914          * Store the top waiter of @lock for the end of chain walk
915          * decision below.
916          */
917         top_waiter = rt_mutex_top_waiter(lock);
918
919         /* [13] Drop the locks */
920         raw_spin_unlock(&task->pi_lock);
921         raw_spin_unlock_irq(&lock->wait_lock);
922
923         /*
924          * Make the actual exit decisions [12], based on the stored
925          * values.
926          *
927          * We reached the end of the lock chain. Stop right here. No
928          * point to go back just to figure that out.
929          */
930         if (!next_lock)
931                 goto out_put_task;
932
933         /*
934          * If the current waiter is not the top waiter on the lock,
935          * then we can stop the chain walk here if we are not in full
936          * deadlock detection mode.
937          */
938         if (!detect_deadlock && waiter != top_waiter)
939                 goto out_put_task;
940
941         goto again;
942
943  out_unlock_pi:
944         raw_spin_unlock_irq(&task->pi_lock);
945  out_put_task:
946         put_task_struct(task);
947
948         return ret;
949 }
950
951 /*
952  * Try to take an rt-mutex
953  *
954  * Must be called with lock->wait_lock held and interrupts disabled
955  *
956  * @lock:   The lock to be acquired.
957  * @task:   The task which wants to acquire the lock
958  * @waiter: The waiter that is queued to the lock's wait tree if the
959  *          callsite called task_blocked_on_lock(), otherwise NULL
960  */
961 static int __sched
962 try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task,
963                      struct rt_mutex_waiter *waiter)
964 {
965         lockdep_assert_held(&lock->wait_lock);
966
967         /*
968          * Before testing whether we can acquire @lock, we set the
969          * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
970          * other tasks which try to modify @lock into the slow path
971          * and they serialize on @lock->wait_lock.
972          *
973          * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
974          * as explained at the top of this file if and only if:
975          *
976          * - There is a lock owner. The caller must fixup the
977          *   transient state if it does a trylock or leaves the lock
978          *   function due to a signal or timeout.
979          *
980          * - @task acquires the lock and there are no other
981          *   waiters. This is undone in rt_mutex_set_owner(@task) at
982          *   the end of this function.
983          */
984         mark_rt_mutex_waiters(lock);
985
986         /*
987          * If @lock has an owner, give up.
988          */
989         if (rt_mutex_owner(lock))
990                 return 0;
991
992         /*
993          * If @waiter != NULL, @task has already enqueued the waiter
994          * into @lock waiter tree. If @waiter == NULL then this is a
995          * trylock attempt.
996          */
997         if (waiter) {
998                 struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock);
999
1000                 /*
1001                  * If waiter is the highest priority waiter of @lock,
1002                  * or allowed to steal it, take it over.
1003                  */
1004                 if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) {
1005                         /*
1006                          * We can acquire the lock. Remove the waiter from the
1007                          * lock waiters tree.
1008                          */
1009                         rt_mutex_dequeue(lock, waiter);
1010                 } else {
1011                         return 0;
1012                 }
1013         } else {
1014                 /*
1015                  * If the lock has waiters already we check whether @task is
1016                  * eligible to take over the lock.
1017                  *
1018                  * If there are no other waiters, @task can acquire
1019                  * the lock.  @task->pi_blocked_on is NULL, so it does
1020                  * not need to be dequeued.
1021                  */
1022                 if (rt_mutex_has_waiters(lock)) {
1023                         /* Check whether the trylock can steal it. */
1024                         if (!rt_mutex_steal(task_to_waiter(task),
1025                                             rt_mutex_top_waiter(lock)))
1026                                 return 0;
1027
1028                         /*
1029                          * The current top waiter stays enqueued. We
1030                          * don't have to change anything in the lock
1031                          * waiters order.
1032                          */
1033                 } else {
1034                         /*
1035                          * No waiters. Take the lock without the
1036                          * pi_lock dance.@task->pi_blocked_on is NULL
1037                          * and we have no waiters to enqueue in @task
1038                          * pi waiters tree.
1039                          */
1040                         goto takeit;
1041                 }
1042         }
1043
1044         /*
1045          * Clear @task->pi_blocked_on. Requires protection by
1046          * @task->pi_lock. Redundant operation for the @waiter == NULL
1047          * case, but conditionals are more expensive than a redundant
1048          * store.
1049          */
1050         raw_spin_lock(&task->pi_lock);
1051         task->pi_blocked_on = NULL;
1052         /*
1053          * Finish the lock acquisition. @task is the new owner. If
1054          * other waiters exist we have to insert the highest priority
1055          * waiter into @task->pi_waiters tree.
1056          */
1057         if (rt_mutex_has_waiters(lock))
1058                 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
1059         raw_spin_unlock(&task->pi_lock);
1060
1061 takeit:
1062         /*
1063          * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
1064          * are still waiters or clears it.
1065          */
1066         rt_mutex_set_owner(lock, task);
1067
1068         return 1;
1069 }
1070
1071 /*
1072  * Task blocks on lock.
1073  *
1074  * Prepare waiter and propagate pi chain
1075  *
1076  * This must be called with lock->wait_lock held and interrupts disabled
1077  */
1078 static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
1079                                            struct rt_mutex_waiter *waiter,
1080                                            struct task_struct *task,
1081                                            struct ww_acquire_ctx *ww_ctx,
1082                                            enum rtmutex_chainwalk chwalk)
1083 {
1084         struct task_struct *owner = rt_mutex_owner(lock);
1085         struct rt_mutex_waiter *top_waiter = waiter;
1086         struct rt_mutex_base *next_lock;
1087         int chain_walk = 0, res;
1088
1089         lockdep_assert_held(&lock->wait_lock);
1090
1091         /*
1092          * Early deadlock detection. We really don't want the task to
1093          * enqueue on itself just to untangle the mess later. It's not
1094          * only an optimization. We drop the locks, so another waiter
1095          * can come in before the chain walk detects the deadlock. So
1096          * the other will detect the deadlock and return -EDEADLOCK,
1097          * which is wrong, as the other waiter is not in a deadlock
1098          * situation.
1099          */
1100         if (owner == task)
1101                 return -EDEADLK;
1102
1103         raw_spin_lock(&task->pi_lock);
1104         waiter->task = task;
1105         waiter->lock = lock;
1106         waiter_update_prio(waiter, task);
1107
1108         /* Get the top priority waiter on the lock */
1109         if (rt_mutex_has_waiters(lock))
1110                 top_waiter = rt_mutex_top_waiter(lock);
1111         rt_mutex_enqueue(lock, waiter);
1112
1113         task->pi_blocked_on = waiter;
1114
1115         raw_spin_unlock(&task->pi_lock);
1116
1117         if (build_ww_mutex() && ww_ctx) {
1118                 struct rt_mutex *rtm;
1119
1120                 /* Check whether the waiter should back out immediately */
1121                 rtm = container_of(lock, struct rt_mutex, rtmutex);
1122                 res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx);
1123                 if (res) {
1124                         raw_spin_lock(&task->pi_lock);
1125                         rt_mutex_dequeue(lock, waiter);
1126                         task->pi_blocked_on = NULL;
1127                         raw_spin_unlock(&task->pi_lock);
1128                         return res;
1129                 }
1130         }
1131
1132         if (!owner)
1133                 return 0;
1134
1135         raw_spin_lock(&owner->pi_lock);
1136         if (waiter == rt_mutex_top_waiter(lock)) {
1137                 rt_mutex_dequeue_pi(owner, top_waiter);
1138                 rt_mutex_enqueue_pi(owner, waiter);
1139
1140                 rt_mutex_adjust_prio(owner);
1141                 if (owner->pi_blocked_on)
1142                         chain_walk = 1;
1143         } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1144                 chain_walk = 1;
1145         }
1146
1147         /* Store the lock on which owner is blocked or NULL */
1148         next_lock = task_blocked_on_lock(owner);
1149
1150         raw_spin_unlock(&owner->pi_lock);
1151         /*
1152          * Even if full deadlock detection is on, if the owner is not
1153          * blocked itself, we can avoid finding this out in the chain
1154          * walk.
1155          */
1156         if (!chain_walk || !next_lock)
1157                 return 0;
1158
1159         /*
1160          * The owner can't disappear while holding a lock,
1161          * so the owner struct is protected by wait_lock.
1162          * Gets dropped in rt_mutex_adjust_prio_chain()!
1163          */
1164         get_task_struct(owner);
1165
1166         raw_spin_unlock_irq(&lock->wait_lock);
1167
1168         res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1169                                          next_lock, waiter, task);
1170
1171         raw_spin_lock_irq(&lock->wait_lock);
1172
1173         return res;
1174 }
1175
1176 /*
1177  * Remove the top waiter from the current tasks pi waiter tree and
1178  * queue it up.
1179  *
1180  * Called with lock->wait_lock held and interrupts disabled.
1181  */
1182 static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
1183                                             struct rt_mutex_base *lock)
1184 {
1185         struct rt_mutex_waiter *waiter;
1186
1187         raw_spin_lock(&current->pi_lock);
1188
1189         waiter = rt_mutex_top_waiter(lock);
1190
1191         /*
1192          * Remove it from current->pi_waiters and deboost.
1193          *
1194          * We must in fact deboost here in order to ensure we call
1195          * rt_mutex_setprio() to update p->pi_top_task before the
1196          * task unblocks.
1197          */
1198         rt_mutex_dequeue_pi(current, waiter);
1199         rt_mutex_adjust_prio(current);
1200
1201         /*
1202          * As we are waking up the top waiter, and the waiter stays
1203          * queued on the lock until it gets the lock, this lock
1204          * obviously has waiters. Just set the bit here and this has
1205          * the added benefit of forcing all new tasks into the
1206          * slow path making sure no task of lower priority than
1207          * the top waiter can steal this lock.
1208          */
1209         lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1210
1211         /*
1212          * We deboosted before waking the top waiter task such that we don't
1213          * run two tasks with the 'same' priority (and ensure the
1214          * p->pi_top_task pointer points to a blocked task). This however can
1215          * lead to priority inversion if we would get preempted after the
1216          * deboost but before waking our donor task, hence the preempt_disable()
1217          * before unlock.
1218          *
1219          * Pairs with preempt_enable() in rt_mutex_wake_up_q();
1220          */
1221         preempt_disable();
1222         rt_mutex_wake_q_add(wqh, waiter);
1223         raw_spin_unlock(&current->pi_lock);
1224 }
1225
1226 static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1227 {
1228         int ret = try_to_take_rt_mutex(lock, current, NULL);
1229
1230         /*
1231          * try_to_take_rt_mutex() sets the lock waiters bit
1232          * unconditionally. Clean this up.
1233          */
1234         fixup_rt_mutex_waiters(lock);
1235
1236         return ret;
1237 }
1238
1239 /*
1240  * Slow path try-lock function:
1241  */
1242 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1243 {
1244         unsigned long flags;
1245         int ret;
1246
1247         /*
1248          * If the lock already has an owner we fail to get the lock.
1249          * This can be done without taking the @lock->wait_lock as
1250          * it is only being read, and this is a trylock anyway.
1251          */
1252         if (rt_mutex_owner(lock))
1253                 return 0;
1254
1255         /*
1256          * The mutex has currently no owner. Lock the wait lock and try to
1257          * acquire the lock. We use irqsave here to support early boot calls.
1258          */
1259         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1260
1261         ret = __rt_mutex_slowtrylock(lock);
1262
1263         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1264
1265         return ret;
1266 }
1267
1268 static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock)
1269 {
1270         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1271                 return 1;
1272
1273         return rt_mutex_slowtrylock(lock);
1274 }
1275
1276 /*
1277  * Slow path to release a rt-mutex.
1278  */
1279 static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock)
1280 {
1281         DEFINE_RT_WAKE_Q(wqh);
1282         unsigned long flags;
1283
1284         /* irqsave required to support early boot calls */
1285         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1286
1287         debug_rt_mutex_unlock(lock);
1288
1289         /*
1290          * We must be careful here if the fast path is enabled. If we
1291          * have no waiters queued we cannot set owner to NULL here
1292          * because of:
1293          *
1294          * foo->lock->owner = NULL;
1295          *                      rtmutex_lock(foo->lock);   <- fast path
1296          *                      free = atomic_dec_and_test(foo->refcnt);
1297          *                      rtmutex_unlock(foo->lock); <- fast path
1298          *                      if (free)
1299          *                              kfree(foo);
1300          * raw_spin_unlock(foo->lock->wait_lock);
1301          *
1302          * So for the fastpath enabled kernel:
1303          *
1304          * Nothing can set the waiters bit as long as we hold
1305          * lock->wait_lock. So we do the following sequence:
1306          *
1307          *      owner = rt_mutex_owner(lock);
1308          *      clear_rt_mutex_waiters(lock);
1309          *      raw_spin_unlock(&lock->wait_lock);
1310          *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1311          *              return;
1312          *      goto retry;
1313          *
1314          * The fastpath disabled variant is simple as all access to
1315          * lock->owner is serialized by lock->wait_lock:
1316          *
1317          *      lock->owner = NULL;
1318          *      raw_spin_unlock(&lock->wait_lock);
1319          */
1320         while (!rt_mutex_has_waiters(lock)) {
1321                 /* Drops lock->wait_lock ! */
1322                 if (unlock_rt_mutex_safe(lock, flags) == true)
1323                         return;
1324                 /* Relock the rtmutex and try again */
1325                 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1326         }
1327
1328         /*
1329          * The wakeup next waiter path does not suffer from the above
1330          * race. See the comments there.
1331          *
1332          * Queue the next waiter for wakeup once we release the wait_lock.
1333          */
1334         mark_wakeup_next_waiter(&wqh, lock);
1335         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1336
1337         rt_mutex_wake_up_q(&wqh);
1338 }
1339
1340 static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock)
1341 {
1342         if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1343                 return;
1344
1345         rt_mutex_slowunlock(lock);
1346 }
1347
1348 #ifdef CONFIG_SMP
1349 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1350                                   struct rt_mutex_waiter *waiter,
1351                                   struct task_struct *owner)
1352 {
1353         bool res = true;
1354
1355         rcu_read_lock();
1356         for (;;) {
1357                 /* If owner changed, trylock again. */
1358                 if (owner != rt_mutex_owner(lock))
1359                         break;
1360                 /*
1361                  * Ensure that @owner is dereferenced after checking that
1362                  * the lock owner still matches @owner. If that fails,
1363                  * @owner might point to freed memory. If it still matches,
1364                  * the rcu_read_lock() ensures the memory stays valid.
1365                  */
1366                 barrier();
1367                 /*
1368                  * Stop spinning when:
1369                  *  - the lock owner has been scheduled out
1370                  *  - current is not longer the top waiter
1371                  *  - current is requested to reschedule (redundant
1372                  *    for CONFIG_PREEMPT_RCU=y)
1373                  *  - the VCPU on which owner runs is preempted
1374                  */
1375                 if (!owner->on_cpu || need_resched() ||
1376                     rt_mutex_waiter_is_top_waiter(lock, waiter) ||
1377                     vcpu_is_preempted(task_cpu(owner))) {
1378                         res = false;
1379                         break;
1380                 }
1381                 cpu_relax();
1382         }
1383         rcu_read_unlock();
1384         return res;
1385 }
1386 #else
1387 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1388                                   struct rt_mutex_waiter *waiter,
1389                                   struct task_struct *owner)
1390 {
1391         return false;
1392 }
1393 #endif
1394
1395 #ifdef RT_MUTEX_BUILD_MUTEX
1396 /*
1397  * Functions required for:
1398  *      - rtmutex, futex on all kernels
1399  *      - mutex and rwsem substitutions on RT kernels
1400  */
1401
1402 /*
1403  * Remove a waiter from a lock and give up
1404  *
1405  * Must be called with lock->wait_lock held and interrupts disabled. It must
1406  * have just failed to try_to_take_rt_mutex().
1407  */
1408 static void __sched remove_waiter(struct rt_mutex_base *lock,
1409                                   struct rt_mutex_waiter *waiter)
1410 {
1411         bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1412         struct task_struct *owner = rt_mutex_owner(lock);
1413         struct rt_mutex_base *next_lock;
1414
1415         lockdep_assert_held(&lock->wait_lock);
1416
1417         raw_spin_lock(&current->pi_lock);
1418         rt_mutex_dequeue(lock, waiter);
1419         current->pi_blocked_on = NULL;
1420         raw_spin_unlock(&current->pi_lock);
1421
1422         /*
1423          * Only update priority if the waiter was the highest priority
1424          * waiter of the lock and there is an owner to update.
1425          */
1426         if (!owner || !is_top_waiter)
1427                 return;
1428
1429         raw_spin_lock(&owner->pi_lock);
1430
1431         rt_mutex_dequeue_pi(owner, waiter);
1432
1433         if (rt_mutex_has_waiters(lock))
1434                 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1435
1436         rt_mutex_adjust_prio(owner);
1437
1438         /* Store the lock on which owner is blocked or NULL */
1439         next_lock = task_blocked_on_lock(owner);
1440
1441         raw_spin_unlock(&owner->pi_lock);
1442
1443         /*
1444          * Don't walk the chain, if the owner task is not blocked
1445          * itself.
1446          */
1447         if (!next_lock)
1448                 return;
1449
1450         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1451         get_task_struct(owner);
1452
1453         raw_spin_unlock_irq(&lock->wait_lock);
1454
1455         rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1456                                    next_lock, NULL, current);
1457
1458         raw_spin_lock_irq(&lock->wait_lock);
1459 }
1460
1461 /**
1462  * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop
1463  * @lock:                the rt_mutex to take
1464  * @ww_ctx:              WW mutex context pointer
1465  * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1466  *                       or TASK_UNINTERRUPTIBLE)
1467  * @timeout:             the pre-initialized and started timer, or NULL for none
1468  * @waiter:              the pre-initialized rt_mutex_waiter
1469  *
1470  * Must be called with lock->wait_lock held and interrupts disabled
1471  */
1472 static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
1473                                            struct ww_acquire_ctx *ww_ctx,
1474                                            unsigned int state,
1475                                            struct hrtimer_sleeper *timeout,
1476                                            struct rt_mutex_waiter *waiter)
1477 {
1478         struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1479         struct task_struct *owner;
1480         int ret = 0;
1481
1482         for (;;) {
1483                 /* Try to acquire the lock: */
1484                 if (try_to_take_rt_mutex(lock, current, waiter))
1485                         break;
1486
1487                 if (timeout && !timeout->task) {
1488                         ret = -ETIMEDOUT;
1489                         break;
1490                 }
1491                 if (signal_pending_state(state, current)) {
1492                         ret = -EINTR;
1493                         break;
1494                 }
1495
1496                 if (build_ww_mutex() && ww_ctx) {
1497                         ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx);
1498                         if (ret)
1499                                 break;
1500                 }
1501
1502                 if (waiter == rt_mutex_top_waiter(lock))
1503                         owner = rt_mutex_owner(lock);
1504                 else
1505                         owner = NULL;
1506                 raw_spin_unlock_irq(&lock->wait_lock);
1507
1508                 if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner))
1509                         schedule();
1510
1511                 raw_spin_lock_irq(&lock->wait_lock);
1512                 set_current_state(state);
1513         }
1514
1515         __set_current_state(TASK_RUNNING);
1516         return ret;
1517 }
1518
1519 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1520                                              struct rt_mutex_waiter *w)
1521 {
1522         /*
1523          * If the result is not -EDEADLOCK or the caller requested
1524          * deadlock detection, nothing to do here.
1525          */
1526         if (res != -EDEADLOCK || detect_deadlock)
1527                 return;
1528
1529         if (build_ww_mutex() && w->ww_ctx)
1530                 return;
1531
1532         /*
1533          * Yell loudly and stop the task right here.
1534          */
1535         WARN(1, "rtmutex deadlock detected\n");
1536         while (1) {
1537                 set_current_state(TASK_INTERRUPTIBLE);
1538                 schedule();
1539         }
1540 }
1541
1542 /**
1543  * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held
1544  * @lock:       The rtmutex to block lock
1545  * @ww_ctx:     WW mutex context pointer
1546  * @state:      The task state for sleeping
1547  * @chwalk:     Indicator whether full or partial chainwalk is requested
1548  * @waiter:     Initializer waiter for blocking
1549  */
1550 static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
1551                                        struct ww_acquire_ctx *ww_ctx,
1552                                        unsigned int state,
1553                                        enum rtmutex_chainwalk chwalk,
1554                                        struct rt_mutex_waiter *waiter)
1555 {
1556         struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1557         struct ww_mutex *ww = ww_container_of(rtm);
1558         int ret;
1559
1560         lockdep_assert_held(&lock->wait_lock);
1561
1562         /* Try to acquire the lock again: */
1563         if (try_to_take_rt_mutex(lock, current, NULL)) {
1564                 if (build_ww_mutex() && ww_ctx) {
1565                         __ww_mutex_check_waiters(rtm, ww_ctx);
1566                         ww_mutex_lock_acquired(ww, ww_ctx);
1567                 }
1568                 return 0;
1569         }
1570
1571         set_current_state(state);
1572
1573         ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk);
1574         if (likely(!ret))
1575                 ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter);
1576
1577         if (likely(!ret)) {
1578                 /* acquired the lock */
1579                 if (build_ww_mutex() && ww_ctx) {
1580                         if (!ww_ctx->is_wait_die)
1581                                 __ww_mutex_check_waiters(rtm, ww_ctx);
1582                         ww_mutex_lock_acquired(ww, ww_ctx);
1583                 }
1584         } else {
1585                 __set_current_state(TASK_RUNNING);
1586                 remove_waiter(lock, waiter);
1587                 rt_mutex_handle_deadlock(ret, chwalk, waiter);
1588         }
1589
1590         /*
1591          * try_to_take_rt_mutex() sets the waiter bit
1592          * unconditionally. We might have to fix that up.
1593          */
1594         fixup_rt_mutex_waiters(lock);
1595         return ret;
1596 }
1597
1598 static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
1599                                              struct ww_acquire_ctx *ww_ctx,
1600                                              unsigned int state)
1601 {
1602         struct rt_mutex_waiter waiter;
1603         int ret;
1604
1605         rt_mutex_init_waiter(&waiter);
1606         waiter.ww_ctx = ww_ctx;
1607
1608         ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
1609                                   &waiter);
1610
1611         debug_rt_mutex_free_waiter(&waiter);
1612         return ret;
1613 }
1614
1615 /*
1616  * rt_mutex_slowlock - Locking slowpath invoked when fast path fails
1617  * @lock:       The rtmutex to block lock
1618  * @ww_ctx:     WW mutex context pointer
1619  * @state:      The task state for sleeping
1620  */
1621 static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
1622                                      struct ww_acquire_ctx *ww_ctx,
1623                                      unsigned int state)
1624 {
1625         unsigned long flags;
1626         int ret;
1627
1628         /*
1629          * Technically we could use raw_spin_[un]lock_irq() here, but this can
1630          * be called in early boot if the cmpxchg() fast path is disabled
1631          * (debug, no architecture support). In this case we will acquire the
1632          * rtmutex with lock->wait_lock held. But we cannot unconditionally
1633          * enable interrupts in that early boot case. So we need to use the
1634          * irqsave/restore variants.
1635          */
1636         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1637         ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state);
1638         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1639
1640         return ret;
1641 }
1642
1643 static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
1644                                            unsigned int state)
1645 {
1646         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1647                 return 0;
1648
1649         return rt_mutex_slowlock(lock, NULL, state);
1650 }
1651 #endif /* RT_MUTEX_BUILD_MUTEX */
1652
1653 #ifdef RT_MUTEX_BUILD_SPINLOCKS
1654 /*
1655  * Functions required for spin/rw_lock substitution on RT kernels
1656  */
1657
1658 /**
1659  * rtlock_slowlock_locked - Slow path lock acquisition for RT locks
1660  * @lock:       The underlying RT mutex
1661  */
1662 static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
1663 {
1664         struct rt_mutex_waiter waiter;
1665         struct task_struct *owner;
1666
1667         lockdep_assert_held(&lock->wait_lock);
1668
1669         if (try_to_take_rt_mutex(lock, current, NULL))
1670                 return;
1671
1672         rt_mutex_init_rtlock_waiter(&waiter);
1673
1674         /* Save current state and set state to TASK_RTLOCK_WAIT */
1675         current_save_and_set_rtlock_wait_state();
1676
1677         task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK);
1678
1679         for (;;) {
1680                 /* Try to acquire the lock again */
1681                 if (try_to_take_rt_mutex(lock, current, &waiter))
1682                         break;
1683
1684                 if (&waiter == rt_mutex_top_waiter(lock))
1685                         owner = rt_mutex_owner(lock);
1686                 else
1687                         owner = NULL;
1688                 raw_spin_unlock_irq(&lock->wait_lock);
1689
1690                 if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
1691                         schedule_rtlock();
1692
1693                 raw_spin_lock_irq(&lock->wait_lock);
1694                 set_current_state(TASK_RTLOCK_WAIT);
1695         }
1696
1697         /* Restore the task state */
1698         current_restore_rtlock_saved_state();
1699
1700         /*
1701          * try_to_take_rt_mutex() sets the waiter bit unconditionally.
1702          * We might have to fix that up:
1703          */
1704         fixup_rt_mutex_waiters(lock);
1705         debug_rt_mutex_free_waiter(&waiter);
1706 }
1707
1708 static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
1709 {
1710         unsigned long flags;
1711
1712         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1713         rtlock_slowlock_locked(lock);
1714         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1715 }
1716
1717 #endif /* RT_MUTEX_BUILD_SPINLOCKS */