zlib: move EXPORT_SYMBOL() and MODULE_LICENSE() out of dfltcc_syms.c
[linux-2.6-microblaze.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *              Probes initial implementation (includes suggestions from
10  *              Rusty Russell).
11  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *              hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *              interface to access function arguments.
15  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *              exceptions notifier to be first on the priority list.
17  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *              <prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/perf_event.h>
39
40 #include <asm/sections.h>
41 #include <asm/cacheflush.h>
42 #include <asm/errno.h>
43 #include <linux/uaccess.h>
44
45 #define KPROBE_HASH_BITS 6
46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
47
48
49 static int kprobes_initialized;
50 /* kprobe_table can be accessed by
51  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
52  * Or
53  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
54  */
55 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
56
57 /* NOTE: change this value only with kprobe_mutex held */
58 static bool kprobes_all_disarmed;
59
60 /* This protects kprobe_table and optimizing_list */
61 static DEFINE_MUTEX(kprobe_mutex);
62 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
63
64 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
65                                         unsigned int __unused)
66 {
67         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
68 }
69
70 /* Blacklist -- list of struct kprobe_blacklist_entry */
71 static LIST_HEAD(kprobe_blacklist);
72
73 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
74 /*
75  * kprobe->ainsn.insn points to the copy of the instruction to be
76  * single-stepped. x86_64, POWER4 and above have no-exec support and
77  * stepping on the instruction on a vmalloced/kmalloced/data page
78  * is a recipe for disaster
79  */
80 struct kprobe_insn_page {
81         struct list_head list;
82         kprobe_opcode_t *insns;         /* Page of instruction slots */
83         struct kprobe_insn_cache *cache;
84         int nused;
85         int ngarbage;
86         char slot_used[];
87 };
88
89 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
90         (offsetof(struct kprobe_insn_page, slot_used) + \
91          (sizeof(char) * (slots)))
92
93 static int slots_per_page(struct kprobe_insn_cache *c)
94 {
95         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
96 }
97
98 enum kprobe_slot_state {
99         SLOT_CLEAN = 0,
100         SLOT_DIRTY = 1,
101         SLOT_USED = 2,
102 };
103
104 void __weak *alloc_insn_page(void)
105 {
106         return module_alloc(PAGE_SIZE);
107 }
108
109 void __weak free_insn_page(void *page)
110 {
111         module_memfree(page);
112 }
113
114 struct kprobe_insn_cache kprobe_insn_slots = {
115         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
116         .alloc = alloc_insn_page,
117         .free = free_insn_page,
118         .sym = KPROBE_INSN_PAGE_SYM,
119         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
120         .insn_size = MAX_INSN_SIZE,
121         .nr_garbage = 0,
122 };
123 static int collect_garbage_slots(struct kprobe_insn_cache *c);
124
125 /**
126  * __get_insn_slot() - Find a slot on an executable page for an instruction.
127  * We allocate an executable page if there's no room on existing ones.
128  */
129 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
130 {
131         struct kprobe_insn_page *kip;
132         kprobe_opcode_t *slot = NULL;
133
134         /* Since the slot array is not protected by rcu, we need a mutex */
135         mutex_lock(&c->mutex);
136  retry:
137         rcu_read_lock();
138         list_for_each_entry_rcu(kip, &c->pages, list) {
139                 if (kip->nused < slots_per_page(c)) {
140                         int i;
141                         for (i = 0; i < slots_per_page(c); i++) {
142                                 if (kip->slot_used[i] == SLOT_CLEAN) {
143                                         kip->slot_used[i] = SLOT_USED;
144                                         kip->nused++;
145                                         slot = kip->insns + (i * c->insn_size);
146                                         rcu_read_unlock();
147                                         goto out;
148                                 }
149                         }
150                         /* kip->nused is broken. Fix it. */
151                         kip->nused = slots_per_page(c);
152                         WARN_ON(1);
153                 }
154         }
155         rcu_read_unlock();
156
157         /* If there are any garbage slots, collect it and try again. */
158         if (c->nr_garbage && collect_garbage_slots(c) == 0)
159                 goto retry;
160
161         /* All out of space.  Need to allocate a new page. */
162         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
163         if (!kip)
164                 goto out;
165
166         /*
167          * Use module_alloc so this page is within +/- 2GB of where the
168          * kernel image and loaded module images reside. This is required
169          * so x86_64 can correctly handle the %rip-relative fixups.
170          */
171         kip->insns = c->alloc();
172         if (!kip->insns) {
173                 kfree(kip);
174                 goto out;
175         }
176         INIT_LIST_HEAD(&kip->list);
177         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
178         kip->slot_used[0] = SLOT_USED;
179         kip->nused = 1;
180         kip->ngarbage = 0;
181         kip->cache = c;
182         list_add_rcu(&kip->list, &c->pages);
183         slot = kip->insns;
184
185         /* Record the perf ksymbol register event after adding the page */
186         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
187                            PAGE_SIZE, false, c->sym);
188 out:
189         mutex_unlock(&c->mutex);
190         return slot;
191 }
192
193 /* Return 1 if all garbages are collected, otherwise 0. */
194 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
195 {
196         kip->slot_used[idx] = SLOT_CLEAN;
197         kip->nused--;
198         if (kip->nused == 0) {
199                 /*
200                  * Page is no longer in use.  Free it unless
201                  * it's the last one.  We keep the last one
202                  * so as not to have to set it up again the
203                  * next time somebody inserts a probe.
204                  */
205                 if (!list_is_singular(&kip->list)) {
206                         /*
207                          * Record perf ksymbol unregister event before removing
208                          * the page.
209                          */
210                         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
211                                            (unsigned long)kip->insns, PAGE_SIZE, true,
212                                            kip->cache->sym);
213                         list_del_rcu(&kip->list);
214                         synchronize_rcu();
215                         kip->cache->free(kip->insns);
216                         kfree(kip);
217                 }
218                 return 1;
219         }
220         return 0;
221 }
222
223 static int collect_garbage_slots(struct kprobe_insn_cache *c)
224 {
225         struct kprobe_insn_page *kip, *next;
226
227         /* Ensure no-one is interrupted on the garbages */
228         synchronize_rcu();
229
230         list_for_each_entry_safe(kip, next, &c->pages, list) {
231                 int i;
232                 if (kip->ngarbage == 0)
233                         continue;
234                 kip->ngarbage = 0;      /* we will collect all garbages */
235                 for (i = 0; i < slots_per_page(c); i++) {
236                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
237                                 break;
238                 }
239         }
240         c->nr_garbage = 0;
241         return 0;
242 }
243
244 void __free_insn_slot(struct kprobe_insn_cache *c,
245                       kprobe_opcode_t *slot, int dirty)
246 {
247         struct kprobe_insn_page *kip;
248         long idx;
249
250         mutex_lock(&c->mutex);
251         rcu_read_lock();
252         list_for_each_entry_rcu(kip, &c->pages, list) {
253                 idx = ((long)slot - (long)kip->insns) /
254                         (c->insn_size * sizeof(kprobe_opcode_t));
255                 if (idx >= 0 && idx < slots_per_page(c))
256                         goto out;
257         }
258         /* Could not find this slot. */
259         WARN_ON(1);
260         kip = NULL;
261 out:
262         rcu_read_unlock();
263         /* Mark and sweep: this may sleep */
264         if (kip) {
265                 /* Check double free */
266                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
267                 if (dirty) {
268                         kip->slot_used[idx] = SLOT_DIRTY;
269                         kip->ngarbage++;
270                         if (++c->nr_garbage > slots_per_page(c))
271                                 collect_garbage_slots(c);
272                 } else {
273                         collect_one_slot(kip, idx);
274                 }
275         }
276         mutex_unlock(&c->mutex);
277 }
278
279 /*
280  * Check given address is on the page of kprobe instruction slots.
281  * This will be used for checking whether the address on a stack
282  * is on a text area or not.
283  */
284 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
285 {
286         struct kprobe_insn_page *kip;
287         bool ret = false;
288
289         rcu_read_lock();
290         list_for_each_entry_rcu(kip, &c->pages, list) {
291                 if (addr >= (unsigned long)kip->insns &&
292                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
293                         ret = true;
294                         break;
295                 }
296         }
297         rcu_read_unlock();
298
299         return ret;
300 }
301
302 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
303                              unsigned long *value, char *type, char *sym)
304 {
305         struct kprobe_insn_page *kip;
306         int ret = -ERANGE;
307
308         rcu_read_lock();
309         list_for_each_entry_rcu(kip, &c->pages, list) {
310                 if ((*symnum)--)
311                         continue;
312                 strlcpy(sym, c->sym, KSYM_NAME_LEN);
313                 *type = 't';
314                 *value = (unsigned long)kip->insns;
315                 ret = 0;
316                 break;
317         }
318         rcu_read_unlock();
319
320         return ret;
321 }
322
323 #ifdef CONFIG_OPTPROBES
324 /* For optimized_kprobe buffer */
325 struct kprobe_insn_cache kprobe_optinsn_slots = {
326         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
327         .alloc = alloc_insn_page,
328         .free = free_insn_page,
329         .sym = KPROBE_OPTINSN_PAGE_SYM,
330         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
331         /* .insn_size is initialized later */
332         .nr_garbage = 0,
333 };
334 #endif
335 #endif
336
337 /* We have preemption disabled.. so it is safe to use __ versions */
338 static inline void set_kprobe_instance(struct kprobe *kp)
339 {
340         __this_cpu_write(kprobe_instance, kp);
341 }
342
343 static inline void reset_kprobe_instance(void)
344 {
345         __this_cpu_write(kprobe_instance, NULL);
346 }
347
348 /*
349  * This routine is called either:
350  *      - under the kprobe_mutex - during kprobe_[un]register()
351  *                              OR
352  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
353  */
354 struct kprobe *get_kprobe(void *addr)
355 {
356         struct hlist_head *head;
357         struct kprobe *p;
358
359         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
360         hlist_for_each_entry_rcu(p, head, hlist,
361                                  lockdep_is_held(&kprobe_mutex)) {
362                 if (p->addr == addr)
363                         return p;
364         }
365
366         return NULL;
367 }
368 NOKPROBE_SYMBOL(get_kprobe);
369
370 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
371
372 /* Return true if the kprobe is an aggregator */
373 static inline int kprobe_aggrprobe(struct kprobe *p)
374 {
375         return p->pre_handler == aggr_pre_handler;
376 }
377
378 /* Return true(!0) if the kprobe is unused */
379 static inline int kprobe_unused(struct kprobe *p)
380 {
381         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
382                list_empty(&p->list);
383 }
384
385 /*
386  * Keep all fields in the kprobe consistent
387  */
388 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
389 {
390         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
391         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
392 }
393
394 #ifdef CONFIG_OPTPROBES
395 /* NOTE: change this value only with kprobe_mutex held */
396 static bool kprobes_allow_optimization;
397
398 /*
399  * Call all pre_handler on the list, but ignores its return value.
400  * This must be called from arch-dep optimized caller.
401  */
402 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
403 {
404         struct kprobe *kp;
405
406         list_for_each_entry_rcu(kp, &p->list, list) {
407                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
408                         set_kprobe_instance(kp);
409                         kp->pre_handler(kp, regs);
410                 }
411                 reset_kprobe_instance();
412         }
413 }
414 NOKPROBE_SYMBOL(opt_pre_handler);
415
416 /* Free optimized instructions and optimized_kprobe */
417 static void free_aggr_kprobe(struct kprobe *p)
418 {
419         struct optimized_kprobe *op;
420
421         op = container_of(p, struct optimized_kprobe, kp);
422         arch_remove_optimized_kprobe(op);
423         arch_remove_kprobe(p);
424         kfree(op);
425 }
426
427 /* Return true(!0) if the kprobe is ready for optimization. */
428 static inline int kprobe_optready(struct kprobe *p)
429 {
430         struct optimized_kprobe *op;
431
432         if (kprobe_aggrprobe(p)) {
433                 op = container_of(p, struct optimized_kprobe, kp);
434                 return arch_prepared_optinsn(&op->optinsn);
435         }
436
437         return 0;
438 }
439
440 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
441 static inline int kprobe_disarmed(struct kprobe *p)
442 {
443         struct optimized_kprobe *op;
444
445         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
446         if (!kprobe_aggrprobe(p))
447                 return kprobe_disabled(p);
448
449         op = container_of(p, struct optimized_kprobe, kp);
450
451         return kprobe_disabled(p) && list_empty(&op->list);
452 }
453
454 /* Return true(!0) if the probe is queued on (un)optimizing lists */
455 static int kprobe_queued(struct kprobe *p)
456 {
457         struct optimized_kprobe *op;
458
459         if (kprobe_aggrprobe(p)) {
460                 op = container_of(p, struct optimized_kprobe, kp);
461                 if (!list_empty(&op->list))
462                         return 1;
463         }
464         return 0;
465 }
466
467 /*
468  * Return an optimized kprobe whose optimizing code replaces
469  * instructions including addr (exclude breakpoint).
470  */
471 static struct kprobe *get_optimized_kprobe(unsigned long addr)
472 {
473         int i;
474         struct kprobe *p = NULL;
475         struct optimized_kprobe *op;
476
477         /* Don't check i == 0, since that is a breakpoint case. */
478         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
479                 p = get_kprobe((void *)(addr - i));
480
481         if (p && kprobe_optready(p)) {
482                 op = container_of(p, struct optimized_kprobe, kp);
483                 if (arch_within_optimized_kprobe(op, addr))
484                         return p;
485         }
486
487         return NULL;
488 }
489
490 /* Optimization staging list, protected by kprobe_mutex */
491 static LIST_HEAD(optimizing_list);
492 static LIST_HEAD(unoptimizing_list);
493 static LIST_HEAD(freeing_list);
494
495 static void kprobe_optimizer(struct work_struct *work);
496 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
497 #define OPTIMIZE_DELAY 5
498
499 /*
500  * Optimize (replace a breakpoint with a jump) kprobes listed on
501  * optimizing_list.
502  */
503 static void do_optimize_kprobes(void)
504 {
505         lockdep_assert_held(&text_mutex);
506         /*
507          * The optimization/unoptimization refers online_cpus via
508          * stop_machine() and cpu-hotplug modifies online_cpus.
509          * And same time, text_mutex will be held in cpu-hotplug and here.
510          * This combination can cause a deadlock (cpu-hotplug try to lock
511          * text_mutex but stop_machine can not be done because online_cpus
512          * has been changed)
513          * To avoid this deadlock, caller must have locked cpu hotplug
514          * for preventing cpu-hotplug outside of text_mutex locking.
515          */
516         lockdep_assert_cpus_held();
517
518         /* Optimization never be done when disarmed */
519         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
520             list_empty(&optimizing_list))
521                 return;
522
523         arch_optimize_kprobes(&optimizing_list);
524 }
525
526 /*
527  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
528  * if need) kprobes listed on unoptimizing_list.
529  */
530 static void do_unoptimize_kprobes(void)
531 {
532         struct optimized_kprobe *op, *tmp;
533
534         lockdep_assert_held(&text_mutex);
535         /* See comment in do_optimize_kprobes() */
536         lockdep_assert_cpus_held();
537
538         /* Unoptimization must be done anytime */
539         if (list_empty(&unoptimizing_list))
540                 return;
541
542         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
543         /* Loop free_list for disarming */
544         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
545                 /* Switching from detour code to origin */
546                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
547                 /* Disarm probes if marked disabled */
548                 if (kprobe_disabled(&op->kp))
549                         arch_disarm_kprobe(&op->kp);
550                 if (kprobe_unused(&op->kp)) {
551                         /*
552                          * Remove unused probes from hash list. After waiting
553                          * for synchronization, these probes are reclaimed.
554                          * (reclaiming is done by do_free_cleaned_kprobes.)
555                          */
556                         hlist_del_rcu(&op->kp.hlist);
557                 } else
558                         list_del_init(&op->list);
559         }
560 }
561
562 /* Reclaim all kprobes on the free_list */
563 static void do_free_cleaned_kprobes(void)
564 {
565         struct optimized_kprobe *op, *tmp;
566
567         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
568                 list_del_init(&op->list);
569                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
570                         /*
571                          * This must not happen, but if there is a kprobe
572                          * still in use, keep it on kprobes hash list.
573                          */
574                         continue;
575                 }
576                 free_aggr_kprobe(&op->kp);
577         }
578 }
579
580 /* Start optimizer after OPTIMIZE_DELAY passed */
581 static void kick_kprobe_optimizer(void)
582 {
583         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
584 }
585
586 /* Kprobe jump optimizer */
587 static void kprobe_optimizer(struct work_struct *work)
588 {
589         mutex_lock(&kprobe_mutex);
590         cpus_read_lock();
591         mutex_lock(&text_mutex);
592
593         /*
594          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
595          * kprobes before waiting for quiesence period.
596          */
597         do_unoptimize_kprobes();
598
599         /*
600          * Step 2: Wait for quiesence period to ensure all potentially
601          * preempted tasks to have normally scheduled. Because optprobe
602          * may modify multiple instructions, there is a chance that Nth
603          * instruction is preempted. In that case, such tasks can return
604          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
605          * Note that on non-preemptive kernel, this is transparently converted
606          * to synchronoze_sched() to wait for all interrupts to have completed.
607          */
608         synchronize_rcu_tasks();
609
610         /* Step 3: Optimize kprobes after quiesence period */
611         do_optimize_kprobes();
612
613         /* Step 4: Free cleaned kprobes after quiesence period */
614         do_free_cleaned_kprobes();
615
616         mutex_unlock(&text_mutex);
617         cpus_read_unlock();
618
619         /* Step 5: Kick optimizer again if needed */
620         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
621                 kick_kprobe_optimizer();
622
623         mutex_unlock(&kprobe_mutex);
624 }
625
626 /* Wait for completing optimization and unoptimization */
627 void wait_for_kprobe_optimizer(void)
628 {
629         mutex_lock(&kprobe_mutex);
630
631         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
632                 mutex_unlock(&kprobe_mutex);
633
634                 /* this will also make optimizing_work execute immmediately */
635                 flush_delayed_work(&optimizing_work);
636                 /* @optimizing_work might not have been queued yet, relax */
637                 cpu_relax();
638
639                 mutex_lock(&kprobe_mutex);
640         }
641
642         mutex_unlock(&kprobe_mutex);
643 }
644
645 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
646 {
647         struct optimized_kprobe *_op;
648
649         list_for_each_entry(_op, &unoptimizing_list, list) {
650                 if (op == _op)
651                         return true;
652         }
653
654         return false;
655 }
656
657 /* Optimize kprobe if p is ready to be optimized */
658 static void optimize_kprobe(struct kprobe *p)
659 {
660         struct optimized_kprobe *op;
661
662         /* Check if the kprobe is disabled or not ready for optimization. */
663         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
664             (kprobe_disabled(p) || kprobes_all_disarmed))
665                 return;
666
667         /* kprobes with post_handler can not be optimized */
668         if (p->post_handler)
669                 return;
670
671         op = container_of(p, struct optimized_kprobe, kp);
672
673         /* Check there is no other kprobes at the optimized instructions */
674         if (arch_check_optimized_kprobe(op) < 0)
675                 return;
676
677         /* Check if it is already optimized. */
678         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
679                 if (optprobe_queued_unopt(op)) {
680                         /* This is under unoptimizing. Just dequeue the probe */
681                         list_del_init(&op->list);
682                 }
683                 return;
684         }
685         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
686
687         /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
688         if (WARN_ON_ONCE(!list_empty(&op->list)))
689                 return;
690
691         list_add(&op->list, &optimizing_list);
692         kick_kprobe_optimizer();
693 }
694
695 /* Short cut to direct unoptimizing */
696 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
697 {
698         lockdep_assert_cpus_held();
699         arch_unoptimize_kprobe(op);
700         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
701 }
702
703 /* Unoptimize a kprobe if p is optimized */
704 static void unoptimize_kprobe(struct kprobe *p, bool force)
705 {
706         struct optimized_kprobe *op;
707
708         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
709                 return; /* This is not an optprobe nor optimized */
710
711         op = container_of(p, struct optimized_kprobe, kp);
712         if (!kprobe_optimized(p))
713                 return;
714
715         if (!list_empty(&op->list)) {
716                 if (optprobe_queued_unopt(op)) {
717                         /* Queued in unoptimizing queue */
718                         if (force) {
719                                 /*
720                                  * Forcibly unoptimize the kprobe here, and queue it
721                                  * in the freeing list for release afterwards.
722                                  */
723                                 force_unoptimize_kprobe(op);
724                                 list_move(&op->list, &freeing_list);
725                         }
726                 } else {
727                         /* Dequeue from the optimizing queue */
728                         list_del_init(&op->list);
729                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
730                 }
731                 return;
732         }
733
734         /* Optimized kprobe case */
735         if (force) {
736                 /* Forcibly update the code: this is a special case */
737                 force_unoptimize_kprobe(op);
738         } else {
739                 list_add(&op->list, &unoptimizing_list);
740                 kick_kprobe_optimizer();
741         }
742 }
743
744 /* Cancel unoptimizing for reusing */
745 static int reuse_unused_kprobe(struct kprobe *ap)
746 {
747         struct optimized_kprobe *op;
748
749         /*
750          * Unused kprobe MUST be on the way of delayed unoptimizing (means
751          * there is still a relative jump) and disabled.
752          */
753         op = container_of(ap, struct optimized_kprobe, kp);
754         WARN_ON_ONCE(list_empty(&op->list));
755         /* Enable the probe again */
756         ap->flags &= ~KPROBE_FLAG_DISABLED;
757         /* Optimize it again (remove from op->list) */
758         if (!kprobe_optready(ap))
759                 return -EINVAL;
760
761         optimize_kprobe(ap);
762         return 0;
763 }
764
765 /* Remove optimized instructions */
766 static void kill_optimized_kprobe(struct kprobe *p)
767 {
768         struct optimized_kprobe *op;
769
770         op = container_of(p, struct optimized_kprobe, kp);
771         if (!list_empty(&op->list))
772                 /* Dequeue from the (un)optimization queue */
773                 list_del_init(&op->list);
774         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
775
776         if (kprobe_unused(p)) {
777                 /* Enqueue if it is unused */
778                 list_add(&op->list, &freeing_list);
779                 /*
780                  * Remove unused probes from the hash list. After waiting
781                  * for synchronization, this probe is reclaimed.
782                  * (reclaiming is done by do_free_cleaned_kprobes().)
783                  */
784                 hlist_del_rcu(&op->kp.hlist);
785         }
786
787         /* Don't touch the code, because it is already freed. */
788         arch_remove_optimized_kprobe(op);
789 }
790
791 static inline
792 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
793 {
794         if (!kprobe_ftrace(p))
795                 arch_prepare_optimized_kprobe(op, p);
796 }
797
798 /* Try to prepare optimized instructions */
799 static void prepare_optimized_kprobe(struct kprobe *p)
800 {
801         struct optimized_kprobe *op;
802
803         op = container_of(p, struct optimized_kprobe, kp);
804         __prepare_optimized_kprobe(op, p);
805 }
806
807 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
808 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
809 {
810         struct optimized_kprobe *op;
811
812         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
813         if (!op)
814                 return NULL;
815
816         INIT_LIST_HEAD(&op->list);
817         op->kp.addr = p->addr;
818         __prepare_optimized_kprobe(op, p);
819
820         return &op->kp;
821 }
822
823 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
824
825 /*
826  * Prepare an optimized_kprobe and optimize it
827  * NOTE: p must be a normal registered kprobe
828  */
829 static void try_to_optimize_kprobe(struct kprobe *p)
830 {
831         struct kprobe *ap;
832         struct optimized_kprobe *op;
833
834         /* Impossible to optimize ftrace-based kprobe */
835         if (kprobe_ftrace(p))
836                 return;
837
838         /* For preparing optimization, jump_label_text_reserved() is called */
839         cpus_read_lock();
840         jump_label_lock();
841         mutex_lock(&text_mutex);
842
843         ap = alloc_aggr_kprobe(p);
844         if (!ap)
845                 goto out;
846
847         op = container_of(ap, struct optimized_kprobe, kp);
848         if (!arch_prepared_optinsn(&op->optinsn)) {
849                 /* If failed to setup optimizing, fallback to kprobe */
850                 arch_remove_optimized_kprobe(op);
851                 kfree(op);
852                 goto out;
853         }
854
855         init_aggr_kprobe(ap, p);
856         optimize_kprobe(ap);    /* This just kicks optimizer thread */
857
858 out:
859         mutex_unlock(&text_mutex);
860         jump_label_unlock();
861         cpus_read_unlock();
862 }
863
864 #ifdef CONFIG_SYSCTL
865 static void optimize_all_kprobes(void)
866 {
867         struct hlist_head *head;
868         struct kprobe *p;
869         unsigned int i;
870
871         mutex_lock(&kprobe_mutex);
872         /* If optimization is already allowed, just return */
873         if (kprobes_allow_optimization)
874                 goto out;
875
876         cpus_read_lock();
877         kprobes_allow_optimization = true;
878         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
879                 head = &kprobe_table[i];
880                 hlist_for_each_entry(p, head, hlist)
881                         if (!kprobe_disabled(p))
882                                 optimize_kprobe(p);
883         }
884         cpus_read_unlock();
885         printk(KERN_INFO "Kprobes globally optimized\n");
886 out:
887         mutex_unlock(&kprobe_mutex);
888 }
889
890 static void unoptimize_all_kprobes(void)
891 {
892         struct hlist_head *head;
893         struct kprobe *p;
894         unsigned int i;
895
896         mutex_lock(&kprobe_mutex);
897         /* If optimization is already prohibited, just return */
898         if (!kprobes_allow_optimization) {
899                 mutex_unlock(&kprobe_mutex);
900                 return;
901         }
902
903         cpus_read_lock();
904         kprobes_allow_optimization = false;
905         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
906                 head = &kprobe_table[i];
907                 hlist_for_each_entry(p, head, hlist) {
908                         if (!kprobe_disabled(p))
909                                 unoptimize_kprobe(p, false);
910                 }
911         }
912         cpus_read_unlock();
913         mutex_unlock(&kprobe_mutex);
914
915         /* Wait for unoptimizing completion */
916         wait_for_kprobe_optimizer();
917         printk(KERN_INFO "Kprobes globally unoptimized\n");
918 }
919
920 static DEFINE_MUTEX(kprobe_sysctl_mutex);
921 int sysctl_kprobes_optimization;
922 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
923                                       void *buffer, size_t *length,
924                                       loff_t *ppos)
925 {
926         int ret;
927
928         mutex_lock(&kprobe_sysctl_mutex);
929         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
930         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
931
932         if (sysctl_kprobes_optimization)
933                 optimize_all_kprobes();
934         else
935                 unoptimize_all_kprobes();
936         mutex_unlock(&kprobe_sysctl_mutex);
937
938         return ret;
939 }
940 #endif /* CONFIG_SYSCTL */
941
942 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
943 static void __arm_kprobe(struct kprobe *p)
944 {
945         struct kprobe *_p;
946
947         /* Check collision with other optimized kprobes */
948         _p = get_optimized_kprobe((unsigned long)p->addr);
949         if (unlikely(_p))
950                 /* Fallback to unoptimized kprobe */
951                 unoptimize_kprobe(_p, true);
952
953         arch_arm_kprobe(p);
954         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
955 }
956
957 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
958 static void __disarm_kprobe(struct kprobe *p, bool reopt)
959 {
960         struct kprobe *_p;
961
962         /* Try to unoptimize */
963         unoptimize_kprobe(p, kprobes_all_disarmed);
964
965         if (!kprobe_queued(p)) {
966                 arch_disarm_kprobe(p);
967                 /* If another kprobe was blocked, optimize it. */
968                 _p = get_optimized_kprobe((unsigned long)p->addr);
969                 if (unlikely(_p) && reopt)
970                         optimize_kprobe(_p);
971         }
972         /* TODO: reoptimize others after unoptimized this probe */
973 }
974
975 #else /* !CONFIG_OPTPROBES */
976
977 #define optimize_kprobe(p)                      do {} while (0)
978 #define unoptimize_kprobe(p, f)                 do {} while (0)
979 #define kill_optimized_kprobe(p)                do {} while (0)
980 #define prepare_optimized_kprobe(p)             do {} while (0)
981 #define try_to_optimize_kprobe(p)               do {} while (0)
982 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
983 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
984 #define kprobe_disarmed(p)                      kprobe_disabled(p)
985 #define wait_for_kprobe_optimizer()             do {} while (0)
986
987 static int reuse_unused_kprobe(struct kprobe *ap)
988 {
989         /*
990          * If the optimized kprobe is NOT supported, the aggr kprobe is
991          * released at the same time that the last aggregated kprobe is
992          * unregistered.
993          * Thus there should be no chance to reuse unused kprobe.
994          */
995         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
996         return -EINVAL;
997 }
998
999 static void free_aggr_kprobe(struct kprobe *p)
1000 {
1001         arch_remove_kprobe(p);
1002         kfree(p);
1003 }
1004
1005 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1006 {
1007         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1008 }
1009 #endif /* CONFIG_OPTPROBES */
1010
1011 #ifdef CONFIG_KPROBES_ON_FTRACE
1012 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1013         .func = kprobe_ftrace_handler,
1014         .flags = FTRACE_OPS_FL_SAVE_REGS,
1015 };
1016
1017 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1018         .func = kprobe_ftrace_handler,
1019         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1020 };
1021
1022 static int kprobe_ipmodify_enabled;
1023 static int kprobe_ftrace_enabled;
1024
1025 /* Must ensure p->addr is really on ftrace */
1026 static int prepare_kprobe(struct kprobe *p)
1027 {
1028         if (!kprobe_ftrace(p))
1029                 return arch_prepare_kprobe(p);
1030
1031         return arch_prepare_kprobe_ftrace(p);
1032 }
1033
1034 /* Caller must lock kprobe_mutex */
1035 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1036                                int *cnt)
1037 {
1038         int ret = 0;
1039
1040         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1041         if (ret) {
1042                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1043                          p->addr, ret);
1044                 return ret;
1045         }
1046
1047         if (*cnt == 0) {
1048                 ret = register_ftrace_function(ops);
1049                 if (ret) {
1050                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1051                         goto err_ftrace;
1052                 }
1053         }
1054
1055         (*cnt)++;
1056         return ret;
1057
1058 err_ftrace:
1059         /*
1060          * At this point, sinec ops is not registered, we should be sefe from
1061          * registering empty filter.
1062          */
1063         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1064         return ret;
1065 }
1066
1067 static int arm_kprobe_ftrace(struct kprobe *p)
1068 {
1069         bool ipmodify = (p->post_handler != NULL);
1070
1071         return __arm_kprobe_ftrace(p,
1072                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1073                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1074 }
1075
1076 /* Caller must lock kprobe_mutex */
1077 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1078                                   int *cnt)
1079 {
1080         int ret = 0;
1081
1082         if (*cnt == 1) {
1083                 ret = unregister_ftrace_function(ops);
1084                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1085                         return ret;
1086         }
1087
1088         (*cnt)--;
1089
1090         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1091         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1092                   p->addr, ret);
1093         return ret;
1094 }
1095
1096 static int disarm_kprobe_ftrace(struct kprobe *p)
1097 {
1098         bool ipmodify = (p->post_handler != NULL);
1099
1100         return __disarm_kprobe_ftrace(p,
1101                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1102                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1103 }
1104 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1105 static inline int prepare_kprobe(struct kprobe *p)
1106 {
1107         return arch_prepare_kprobe(p);
1108 }
1109
1110 static inline int arm_kprobe_ftrace(struct kprobe *p)
1111 {
1112         return -ENODEV;
1113 }
1114
1115 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1116 {
1117         return -ENODEV;
1118 }
1119 #endif
1120
1121 /* Arm a kprobe with text_mutex */
1122 static int arm_kprobe(struct kprobe *kp)
1123 {
1124         if (unlikely(kprobe_ftrace(kp)))
1125                 return arm_kprobe_ftrace(kp);
1126
1127         cpus_read_lock();
1128         mutex_lock(&text_mutex);
1129         __arm_kprobe(kp);
1130         mutex_unlock(&text_mutex);
1131         cpus_read_unlock();
1132
1133         return 0;
1134 }
1135
1136 /* Disarm a kprobe with text_mutex */
1137 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1138 {
1139         if (unlikely(kprobe_ftrace(kp)))
1140                 return disarm_kprobe_ftrace(kp);
1141
1142         cpus_read_lock();
1143         mutex_lock(&text_mutex);
1144         __disarm_kprobe(kp, reopt);
1145         mutex_unlock(&text_mutex);
1146         cpus_read_unlock();
1147
1148         return 0;
1149 }
1150
1151 /*
1152  * Aggregate handlers for multiple kprobes support - these handlers
1153  * take care of invoking the individual kprobe handlers on p->list
1154  */
1155 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1156 {
1157         struct kprobe *kp;
1158
1159         list_for_each_entry_rcu(kp, &p->list, list) {
1160                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1161                         set_kprobe_instance(kp);
1162                         if (kp->pre_handler(kp, regs))
1163                                 return 1;
1164                 }
1165                 reset_kprobe_instance();
1166         }
1167         return 0;
1168 }
1169 NOKPROBE_SYMBOL(aggr_pre_handler);
1170
1171 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1172                               unsigned long flags)
1173 {
1174         struct kprobe *kp;
1175
1176         list_for_each_entry_rcu(kp, &p->list, list) {
1177                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1178                         set_kprobe_instance(kp);
1179                         kp->post_handler(kp, regs, flags);
1180                         reset_kprobe_instance();
1181                 }
1182         }
1183 }
1184 NOKPROBE_SYMBOL(aggr_post_handler);
1185
1186 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1187                               int trapnr)
1188 {
1189         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1190
1191         /*
1192          * if we faulted "during" the execution of a user specified
1193          * probe handler, invoke just that probe's fault handler
1194          */
1195         if (cur && cur->fault_handler) {
1196                 if (cur->fault_handler(cur, regs, trapnr))
1197                         return 1;
1198         }
1199         return 0;
1200 }
1201 NOKPROBE_SYMBOL(aggr_fault_handler);
1202
1203 /* Walks the list and increments nmissed count for multiprobe case */
1204 void kprobes_inc_nmissed_count(struct kprobe *p)
1205 {
1206         struct kprobe *kp;
1207         if (!kprobe_aggrprobe(p)) {
1208                 p->nmissed++;
1209         } else {
1210                 list_for_each_entry_rcu(kp, &p->list, list)
1211                         kp->nmissed++;
1212         }
1213         return;
1214 }
1215 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1216
1217 static void free_rp_inst_rcu(struct rcu_head *head)
1218 {
1219         struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1220
1221         if (refcount_dec_and_test(&ri->rph->ref))
1222                 kfree(ri->rph);
1223         kfree(ri);
1224 }
1225 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1226
1227 static void recycle_rp_inst(struct kretprobe_instance *ri)
1228 {
1229         struct kretprobe *rp = get_kretprobe(ri);
1230
1231         if (likely(rp)) {
1232                 freelist_add(&ri->freelist, &rp->freelist);
1233         } else
1234                 call_rcu(&ri->rcu, free_rp_inst_rcu);
1235 }
1236 NOKPROBE_SYMBOL(recycle_rp_inst);
1237
1238 static struct kprobe kprobe_busy = {
1239         .addr = (void *) get_kprobe,
1240 };
1241
1242 void kprobe_busy_begin(void)
1243 {
1244         struct kprobe_ctlblk *kcb;
1245
1246         preempt_disable();
1247         __this_cpu_write(current_kprobe, &kprobe_busy);
1248         kcb = get_kprobe_ctlblk();
1249         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1250 }
1251
1252 void kprobe_busy_end(void)
1253 {
1254         __this_cpu_write(current_kprobe, NULL);
1255         preempt_enable();
1256 }
1257
1258 /*
1259  * This function is called from finish_task_switch when task tk becomes dead,
1260  * so that we can recycle any function-return probe instances associated
1261  * with this task. These left over instances represent probed functions
1262  * that have been called but will never return.
1263  */
1264 void kprobe_flush_task(struct task_struct *tk)
1265 {
1266         struct kretprobe_instance *ri;
1267         struct llist_node *node;
1268
1269         /* Early boot, not yet initialized. */
1270         if (unlikely(!kprobes_initialized))
1271                 return;
1272
1273         kprobe_busy_begin();
1274
1275         node = __llist_del_all(&tk->kretprobe_instances);
1276         while (node) {
1277                 ri = container_of(node, struct kretprobe_instance, llist);
1278                 node = node->next;
1279
1280                 recycle_rp_inst(ri);
1281         }
1282
1283         kprobe_busy_end();
1284 }
1285 NOKPROBE_SYMBOL(kprobe_flush_task);
1286
1287 static inline void free_rp_inst(struct kretprobe *rp)
1288 {
1289         struct kretprobe_instance *ri;
1290         struct freelist_node *node;
1291         int count = 0;
1292
1293         node = rp->freelist.head;
1294         while (node) {
1295                 ri = container_of(node, struct kretprobe_instance, freelist);
1296                 node = node->next;
1297
1298                 kfree(ri);
1299                 count++;
1300         }
1301
1302         if (refcount_sub_and_test(count, &rp->rph->ref)) {
1303                 kfree(rp->rph);
1304                 rp->rph = NULL;
1305         }
1306 }
1307
1308 /* Add the new probe to ap->list */
1309 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1310 {
1311         if (p->post_handler)
1312                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1313
1314         list_add_rcu(&p->list, &ap->list);
1315         if (p->post_handler && !ap->post_handler)
1316                 ap->post_handler = aggr_post_handler;
1317
1318         return 0;
1319 }
1320
1321 /*
1322  * Fill in the required fields of the "manager kprobe". Replace the
1323  * earlier kprobe in the hlist with the manager kprobe
1324  */
1325 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1326 {
1327         /* Copy p's insn slot to ap */
1328         copy_kprobe(p, ap);
1329         flush_insn_slot(ap);
1330         ap->addr = p->addr;
1331         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1332         ap->pre_handler = aggr_pre_handler;
1333         ap->fault_handler = aggr_fault_handler;
1334         /* We don't care the kprobe which has gone. */
1335         if (p->post_handler && !kprobe_gone(p))
1336                 ap->post_handler = aggr_post_handler;
1337
1338         INIT_LIST_HEAD(&ap->list);
1339         INIT_HLIST_NODE(&ap->hlist);
1340
1341         list_add_rcu(&p->list, &ap->list);
1342         hlist_replace_rcu(&p->hlist, &ap->hlist);
1343 }
1344
1345 /*
1346  * This is the second or subsequent kprobe at the address - handle
1347  * the intricacies
1348  */
1349 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1350 {
1351         int ret = 0;
1352         struct kprobe *ap = orig_p;
1353
1354         cpus_read_lock();
1355
1356         /* For preparing optimization, jump_label_text_reserved() is called */
1357         jump_label_lock();
1358         mutex_lock(&text_mutex);
1359
1360         if (!kprobe_aggrprobe(orig_p)) {
1361                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1362                 ap = alloc_aggr_kprobe(orig_p);
1363                 if (!ap) {
1364                         ret = -ENOMEM;
1365                         goto out;
1366                 }
1367                 init_aggr_kprobe(ap, orig_p);
1368         } else if (kprobe_unused(ap)) {
1369                 /* This probe is going to die. Rescue it */
1370                 ret = reuse_unused_kprobe(ap);
1371                 if (ret)
1372                         goto out;
1373         }
1374
1375         if (kprobe_gone(ap)) {
1376                 /*
1377                  * Attempting to insert new probe at the same location that
1378                  * had a probe in the module vaddr area which already
1379                  * freed. So, the instruction slot has already been
1380                  * released. We need a new slot for the new probe.
1381                  */
1382                 ret = arch_prepare_kprobe(ap);
1383                 if (ret)
1384                         /*
1385                          * Even if fail to allocate new slot, don't need to
1386                          * free aggr_probe. It will be used next time, or
1387                          * freed by unregister_kprobe.
1388                          */
1389                         goto out;
1390
1391                 /* Prepare optimized instructions if possible. */
1392                 prepare_optimized_kprobe(ap);
1393
1394                 /*
1395                  * Clear gone flag to prevent allocating new slot again, and
1396                  * set disabled flag because it is not armed yet.
1397                  */
1398                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1399                             | KPROBE_FLAG_DISABLED;
1400         }
1401
1402         /* Copy ap's insn slot to p */
1403         copy_kprobe(ap, p);
1404         ret = add_new_kprobe(ap, p);
1405
1406 out:
1407         mutex_unlock(&text_mutex);
1408         jump_label_unlock();
1409         cpus_read_unlock();
1410
1411         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1412                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1413                 if (!kprobes_all_disarmed) {
1414                         /* Arm the breakpoint again. */
1415                         ret = arm_kprobe(ap);
1416                         if (ret) {
1417                                 ap->flags |= KPROBE_FLAG_DISABLED;
1418                                 list_del_rcu(&p->list);
1419                                 synchronize_rcu();
1420                         }
1421                 }
1422         }
1423         return ret;
1424 }
1425
1426 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1427 {
1428         /* The __kprobes marked functions and entry code must not be probed */
1429         return addr >= (unsigned long)__kprobes_text_start &&
1430                addr < (unsigned long)__kprobes_text_end;
1431 }
1432
1433 static bool __within_kprobe_blacklist(unsigned long addr)
1434 {
1435         struct kprobe_blacklist_entry *ent;
1436
1437         if (arch_within_kprobe_blacklist(addr))
1438                 return true;
1439         /*
1440          * If there exists a kprobe_blacklist, verify and
1441          * fail any probe registration in the prohibited area
1442          */
1443         list_for_each_entry(ent, &kprobe_blacklist, list) {
1444                 if (addr >= ent->start_addr && addr < ent->end_addr)
1445                         return true;
1446         }
1447         return false;
1448 }
1449
1450 bool within_kprobe_blacklist(unsigned long addr)
1451 {
1452         char symname[KSYM_NAME_LEN], *p;
1453
1454         if (__within_kprobe_blacklist(addr))
1455                 return true;
1456
1457         /* Check if the address is on a suffixed-symbol */
1458         if (!lookup_symbol_name(addr, symname)) {
1459                 p = strchr(symname, '.');
1460                 if (!p)
1461                         return false;
1462                 *p = '\0';
1463                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1464                 if (addr)
1465                         return __within_kprobe_blacklist(addr);
1466         }
1467         return false;
1468 }
1469
1470 /*
1471  * If we have a symbol_name argument, look it up and add the offset field
1472  * to it. This way, we can specify a relative address to a symbol.
1473  * This returns encoded errors if it fails to look up symbol or invalid
1474  * combination of parameters.
1475  */
1476 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1477                         const char *symbol_name, unsigned int offset)
1478 {
1479         if ((symbol_name && addr) || (!symbol_name && !addr))
1480                 goto invalid;
1481
1482         if (symbol_name) {
1483                 addr = kprobe_lookup_name(symbol_name, offset);
1484                 if (!addr)
1485                         return ERR_PTR(-ENOENT);
1486         }
1487
1488         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1489         if (addr)
1490                 return addr;
1491
1492 invalid:
1493         return ERR_PTR(-EINVAL);
1494 }
1495
1496 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1497 {
1498         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1499 }
1500
1501 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1502 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1503 {
1504         struct kprobe *ap, *list_p;
1505
1506         lockdep_assert_held(&kprobe_mutex);
1507
1508         ap = get_kprobe(p->addr);
1509         if (unlikely(!ap))
1510                 return NULL;
1511
1512         if (p != ap) {
1513                 list_for_each_entry(list_p, &ap->list, list)
1514                         if (list_p == p)
1515                         /* kprobe p is a valid probe */
1516                                 goto valid;
1517                 return NULL;
1518         }
1519 valid:
1520         return ap;
1521 }
1522
1523 /* Return error if the kprobe is being re-registered */
1524 static inline int check_kprobe_rereg(struct kprobe *p)
1525 {
1526         int ret = 0;
1527
1528         mutex_lock(&kprobe_mutex);
1529         if (__get_valid_kprobe(p))
1530                 ret = -EINVAL;
1531         mutex_unlock(&kprobe_mutex);
1532
1533         return ret;
1534 }
1535
1536 int __weak arch_check_ftrace_location(struct kprobe *p)
1537 {
1538         unsigned long ftrace_addr;
1539
1540         ftrace_addr = ftrace_location((unsigned long)p->addr);
1541         if (ftrace_addr) {
1542 #ifdef CONFIG_KPROBES_ON_FTRACE
1543                 /* Given address is not on the instruction boundary */
1544                 if ((unsigned long)p->addr != ftrace_addr)
1545                         return -EILSEQ;
1546                 p->flags |= KPROBE_FLAG_FTRACE;
1547 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1548                 return -EINVAL;
1549 #endif
1550         }
1551         return 0;
1552 }
1553
1554 static int check_kprobe_address_safe(struct kprobe *p,
1555                                      struct module **probed_mod)
1556 {
1557         int ret;
1558
1559         ret = arch_check_ftrace_location(p);
1560         if (ret)
1561                 return ret;
1562         jump_label_lock();
1563         preempt_disable();
1564
1565         /* Ensure it is not in reserved area nor out of text */
1566         if (!kernel_text_address((unsigned long) p->addr) ||
1567             within_kprobe_blacklist((unsigned long) p->addr) ||
1568             jump_label_text_reserved(p->addr, p->addr) ||
1569             find_bug((unsigned long)p->addr)) {
1570                 ret = -EINVAL;
1571                 goto out;
1572         }
1573
1574         /* Check if are we probing a module */
1575         *probed_mod = __module_text_address((unsigned long) p->addr);
1576         if (*probed_mod) {
1577                 /*
1578                  * We must hold a refcount of the probed module while updating
1579                  * its code to prohibit unexpected unloading.
1580                  */
1581                 if (unlikely(!try_module_get(*probed_mod))) {
1582                         ret = -ENOENT;
1583                         goto out;
1584                 }
1585
1586                 /*
1587                  * If the module freed .init.text, we couldn't insert
1588                  * kprobes in there.
1589                  */
1590                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1591                     (*probed_mod)->state != MODULE_STATE_COMING) {
1592                         module_put(*probed_mod);
1593                         *probed_mod = NULL;
1594                         ret = -ENOENT;
1595                 }
1596         }
1597 out:
1598         preempt_enable();
1599         jump_label_unlock();
1600
1601         return ret;
1602 }
1603
1604 int register_kprobe(struct kprobe *p)
1605 {
1606         int ret;
1607         struct kprobe *old_p;
1608         struct module *probed_mod;
1609         kprobe_opcode_t *addr;
1610
1611         /* Adjust probe address from symbol */
1612         addr = kprobe_addr(p);
1613         if (IS_ERR(addr))
1614                 return PTR_ERR(addr);
1615         p->addr = addr;
1616
1617         ret = check_kprobe_rereg(p);
1618         if (ret)
1619                 return ret;
1620
1621         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1622         p->flags &= KPROBE_FLAG_DISABLED;
1623         p->nmissed = 0;
1624         INIT_LIST_HEAD(&p->list);
1625
1626         ret = check_kprobe_address_safe(p, &probed_mod);
1627         if (ret)
1628                 return ret;
1629
1630         mutex_lock(&kprobe_mutex);
1631
1632         old_p = get_kprobe(p->addr);
1633         if (old_p) {
1634                 /* Since this may unoptimize old_p, locking text_mutex. */
1635                 ret = register_aggr_kprobe(old_p, p);
1636                 goto out;
1637         }
1638
1639         cpus_read_lock();
1640         /* Prevent text modification */
1641         mutex_lock(&text_mutex);
1642         ret = prepare_kprobe(p);
1643         mutex_unlock(&text_mutex);
1644         cpus_read_unlock();
1645         if (ret)
1646                 goto out;
1647
1648         INIT_HLIST_NODE(&p->hlist);
1649         hlist_add_head_rcu(&p->hlist,
1650                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1651
1652         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1653                 ret = arm_kprobe(p);
1654                 if (ret) {
1655                         hlist_del_rcu(&p->hlist);
1656                         synchronize_rcu();
1657                         goto out;
1658                 }
1659         }
1660
1661         /* Try to optimize kprobe */
1662         try_to_optimize_kprobe(p);
1663 out:
1664         mutex_unlock(&kprobe_mutex);
1665
1666         if (probed_mod)
1667                 module_put(probed_mod);
1668
1669         return ret;
1670 }
1671 EXPORT_SYMBOL_GPL(register_kprobe);
1672
1673 /* Check if all probes on the aggrprobe are disabled */
1674 static int aggr_kprobe_disabled(struct kprobe *ap)
1675 {
1676         struct kprobe *kp;
1677
1678         lockdep_assert_held(&kprobe_mutex);
1679
1680         list_for_each_entry(kp, &ap->list, list)
1681                 if (!kprobe_disabled(kp))
1682                         /*
1683                          * There is an active probe on the list.
1684                          * We can't disable this ap.
1685                          */
1686                         return 0;
1687
1688         return 1;
1689 }
1690
1691 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1692 static struct kprobe *__disable_kprobe(struct kprobe *p)
1693 {
1694         struct kprobe *orig_p;
1695         int ret;
1696
1697         /* Get an original kprobe for return */
1698         orig_p = __get_valid_kprobe(p);
1699         if (unlikely(orig_p == NULL))
1700                 return ERR_PTR(-EINVAL);
1701
1702         if (!kprobe_disabled(p)) {
1703                 /* Disable probe if it is a child probe */
1704                 if (p != orig_p)
1705                         p->flags |= KPROBE_FLAG_DISABLED;
1706
1707                 /* Try to disarm and disable this/parent probe */
1708                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1709                         /*
1710                          * If kprobes_all_disarmed is set, orig_p
1711                          * should have already been disarmed, so
1712                          * skip unneed disarming process.
1713                          */
1714                         if (!kprobes_all_disarmed) {
1715                                 ret = disarm_kprobe(orig_p, true);
1716                                 if (ret) {
1717                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1718                                         return ERR_PTR(ret);
1719                                 }
1720                         }
1721                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1722                 }
1723         }
1724
1725         return orig_p;
1726 }
1727
1728 /*
1729  * Unregister a kprobe without a scheduler synchronization.
1730  */
1731 static int __unregister_kprobe_top(struct kprobe *p)
1732 {
1733         struct kprobe *ap, *list_p;
1734
1735         /* Disable kprobe. This will disarm it if needed. */
1736         ap = __disable_kprobe(p);
1737         if (IS_ERR(ap))
1738                 return PTR_ERR(ap);
1739
1740         if (ap == p)
1741                 /*
1742                  * This probe is an independent(and non-optimized) kprobe
1743                  * (not an aggrprobe). Remove from the hash list.
1744                  */
1745                 goto disarmed;
1746
1747         /* Following process expects this probe is an aggrprobe */
1748         WARN_ON(!kprobe_aggrprobe(ap));
1749
1750         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1751                 /*
1752                  * !disarmed could be happen if the probe is under delayed
1753                  * unoptimizing.
1754                  */
1755                 goto disarmed;
1756         else {
1757                 /* If disabling probe has special handlers, update aggrprobe */
1758                 if (p->post_handler && !kprobe_gone(p)) {
1759                         list_for_each_entry(list_p, &ap->list, list) {
1760                                 if ((list_p != p) && (list_p->post_handler))
1761                                         goto noclean;
1762                         }
1763                         ap->post_handler = NULL;
1764                 }
1765 noclean:
1766                 /*
1767                  * Remove from the aggrprobe: this path will do nothing in
1768                  * __unregister_kprobe_bottom().
1769                  */
1770                 list_del_rcu(&p->list);
1771                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1772                         /*
1773                          * Try to optimize this probe again, because post
1774                          * handler may have been changed.
1775                          */
1776                         optimize_kprobe(ap);
1777         }
1778         return 0;
1779
1780 disarmed:
1781         hlist_del_rcu(&ap->hlist);
1782         return 0;
1783 }
1784
1785 static void __unregister_kprobe_bottom(struct kprobe *p)
1786 {
1787         struct kprobe *ap;
1788
1789         if (list_empty(&p->list))
1790                 /* This is an independent kprobe */
1791                 arch_remove_kprobe(p);
1792         else if (list_is_singular(&p->list)) {
1793                 /* This is the last child of an aggrprobe */
1794                 ap = list_entry(p->list.next, struct kprobe, list);
1795                 list_del(&p->list);
1796                 free_aggr_kprobe(ap);
1797         }
1798         /* Otherwise, do nothing. */
1799 }
1800
1801 int register_kprobes(struct kprobe **kps, int num)
1802 {
1803         int i, ret = 0;
1804
1805         if (num <= 0)
1806                 return -EINVAL;
1807         for (i = 0; i < num; i++) {
1808                 ret = register_kprobe(kps[i]);
1809                 if (ret < 0) {
1810                         if (i > 0)
1811                                 unregister_kprobes(kps, i);
1812                         break;
1813                 }
1814         }
1815         return ret;
1816 }
1817 EXPORT_SYMBOL_GPL(register_kprobes);
1818
1819 void unregister_kprobe(struct kprobe *p)
1820 {
1821         unregister_kprobes(&p, 1);
1822 }
1823 EXPORT_SYMBOL_GPL(unregister_kprobe);
1824
1825 void unregister_kprobes(struct kprobe **kps, int num)
1826 {
1827         int i;
1828
1829         if (num <= 0)
1830                 return;
1831         mutex_lock(&kprobe_mutex);
1832         for (i = 0; i < num; i++)
1833                 if (__unregister_kprobe_top(kps[i]) < 0)
1834                         kps[i]->addr = NULL;
1835         mutex_unlock(&kprobe_mutex);
1836
1837         synchronize_rcu();
1838         for (i = 0; i < num; i++)
1839                 if (kps[i]->addr)
1840                         __unregister_kprobe_bottom(kps[i]);
1841 }
1842 EXPORT_SYMBOL_GPL(unregister_kprobes);
1843
1844 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1845                                         unsigned long val, void *data)
1846 {
1847         return NOTIFY_DONE;
1848 }
1849 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1850
1851 static struct notifier_block kprobe_exceptions_nb = {
1852         .notifier_call = kprobe_exceptions_notify,
1853         .priority = 0x7fffffff /* we need to be notified first */
1854 };
1855
1856 unsigned long __weak arch_deref_entry_point(void *entry)
1857 {
1858         return (unsigned long)entry;
1859 }
1860
1861 #ifdef CONFIG_KRETPROBES
1862
1863 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1864                                              void *trampoline_address,
1865                                              void *frame_pointer)
1866 {
1867         kprobe_opcode_t *correct_ret_addr = NULL;
1868         struct kretprobe_instance *ri = NULL;
1869         struct llist_node *first, *node;
1870         struct kretprobe *rp;
1871
1872         /* Find all nodes for this frame. */
1873         first = node = current->kretprobe_instances.first;
1874         while (node) {
1875                 ri = container_of(node, struct kretprobe_instance, llist);
1876
1877                 BUG_ON(ri->fp != frame_pointer);
1878
1879                 if (ri->ret_addr != trampoline_address) {
1880                         correct_ret_addr = ri->ret_addr;
1881                         /*
1882                          * This is the real return address. Any other
1883                          * instances associated with this task are for
1884                          * other calls deeper on the call stack
1885                          */
1886                         goto found;
1887                 }
1888
1889                 node = node->next;
1890         }
1891         pr_err("Oops! Kretprobe fails to find correct return address.\n");
1892         BUG_ON(1);
1893
1894 found:
1895         /* Unlink all nodes for this frame. */
1896         current->kretprobe_instances.first = node->next;
1897         node->next = NULL;
1898
1899         /* Run them..  */
1900         while (first) {
1901                 ri = container_of(first, struct kretprobe_instance, llist);
1902                 first = first->next;
1903
1904                 rp = get_kretprobe(ri);
1905                 if (rp && rp->handler) {
1906                         struct kprobe *prev = kprobe_running();
1907
1908                         __this_cpu_write(current_kprobe, &rp->kp);
1909                         ri->ret_addr = correct_ret_addr;
1910                         rp->handler(ri, regs);
1911                         __this_cpu_write(current_kprobe, prev);
1912                 }
1913
1914                 recycle_rp_inst(ri);
1915         }
1916
1917         return (unsigned long)correct_ret_addr;
1918 }
1919 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1920
1921 /*
1922  * This kprobe pre_handler is registered with every kretprobe. When probe
1923  * hits it will set up the return probe.
1924  */
1925 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1926 {
1927         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1928         struct kretprobe_instance *ri;
1929         struct freelist_node *fn;
1930
1931         fn = freelist_try_get(&rp->freelist);
1932         if (!fn) {
1933                 rp->nmissed++;
1934                 return 0;
1935         }
1936
1937         ri = container_of(fn, struct kretprobe_instance, freelist);
1938
1939         if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1940                 freelist_add(&ri->freelist, &rp->freelist);
1941                 return 0;
1942         }
1943
1944         arch_prepare_kretprobe(ri, regs);
1945
1946         __llist_add(&ri->llist, &current->kretprobe_instances);
1947
1948         return 0;
1949 }
1950 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1951
1952 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1953 {
1954         return !offset;
1955 }
1956
1957 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1958 {
1959         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1960
1961         if (IS_ERR(kp_addr))
1962                 return false;
1963
1964         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1965                                                 !arch_kprobe_on_func_entry(offset))
1966                 return false;
1967
1968         return true;
1969 }
1970
1971 int register_kretprobe(struct kretprobe *rp)
1972 {
1973         int ret = 0;
1974         struct kretprobe_instance *inst;
1975         int i;
1976         void *addr;
1977
1978         if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1979                 return -EINVAL;
1980
1981         if (kretprobe_blacklist_size) {
1982                 addr = kprobe_addr(&rp->kp);
1983                 if (IS_ERR(addr))
1984                         return PTR_ERR(addr);
1985
1986                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1987                         if (kretprobe_blacklist[i].addr == addr)
1988                                 return -EINVAL;
1989                 }
1990         }
1991
1992         rp->kp.pre_handler = pre_handler_kretprobe;
1993         rp->kp.post_handler = NULL;
1994         rp->kp.fault_handler = NULL;
1995
1996         /* Pre-allocate memory for max kretprobe instances */
1997         if (rp->maxactive <= 0) {
1998 #ifdef CONFIG_PREEMPTION
1999                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2000 #else
2001                 rp->maxactive = num_possible_cpus();
2002 #endif
2003         }
2004         rp->freelist.head = NULL;
2005         rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2006         if (!rp->rph)
2007                 return -ENOMEM;
2008
2009         rp->rph->rp = rp;
2010         for (i = 0; i < rp->maxactive; i++) {
2011                 inst = kzalloc(sizeof(struct kretprobe_instance) +
2012                                rp->data_size, GFP_KERNEL);
2013                 if (inst == NULL) {
2014                         refcount_set(&rp->rph->ref, i);
2015                         free_rp_inst(rp);
2016                         return -ENOMEM;
2017                 }
2018                 inst->rph = rp->rph;
2019                 freelist_add(&inst->freelist, &rp->freelist);
2020         }
2021         refcount_set(&rp->rph->ref, i);
2022
2023         rp->nmissed = 0;
2024         /* Establish function entry probe point */
2025         ret = register_kprobe(&rp->kp);
2026         if (ret != 0)
2027                 free_rp_inst(rp);
2028         return ret;
2029 }
2030 EXPORT_SYMBOL_GPL(register_kretprobe);
2031
2032 int register_kretprobes(struct kretprobe **rps, int num)
2033 {
2034         int ret = 0, i;
2035
2036         if (num <= 0)
2037                 return -EINVAL;
2038         for (i = 0; i < num; i++) {
2039                 ret = register_kretprobe(rps[i]);
2040                 if (ret < 0) {
2041                         if (i > 0)
2042                                 unregister_kretprobes(rps, i);
2043                         break;
2044                 }
2045         }
2046         return ret;
2047 }
2048 EXPORT_SYMBOL_GPL(register_kretprobes);
2049
2050 void unregister_kretprobe(struct kretprobe *rp)
2051 {
2052         unregister_kretprobes(&rp, 1);
2053 }
2054 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2055
2056 void unregister_kretprobes(struct kretprobe **rps, int num)
2057 {
2058         int i;
2059
2060         if (num <= 0)
2061                 return;
2062         mutex_lock(&kprobe_mutex);
2063         for (i = 0; i < num; i++) {
2064                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2065                         rps[i]->kp.addr = NULL;
2066                 rps[i]->rph->rp = NULL;
2067         }
2068         mutex_unlock(&kprobe_mutex);
2069
2070         synchronize_rcu();
2071         for (i = 0; i < num; i++) {
2072                 if (rps[i]->kp.addr) {
2073                         __unregister_kprobe_bottom(&rps[i]->kp);
2074                         free_rp_inst(rps[i]);
2075                 }
2076         }
2077 }
2078 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2079
2080 #else /* CONFIG_KRETPROBES */
2081 int register_kretprobe(struct kretprobe *rp)
2082 {
2083         return -ENOSYS;
2084 }
2085 EXPORT_SYMBOL_GPL(register_kretprobe);
2086
2087 int register_kretprobes(struct kretprobe **rps, int num)
2088 {
2089         return -ENOSYS;
2090 }
2091 EXPORT_SYMBOL_GPL(register_kretprobes);
2092
2093 void unregister_kretprobe(struct kretprobe *rp)
2094 {
2095 }
2096 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2097
2098 void unregister_kretprobes(struct kretprobe **rps, int num)
2099 {
2100 }
2101 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2102
2103 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2104 {
2105         return 0;
2106 }
2107 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2108
2109 #endif /* CONFIG_KRETPROBES */
2110
2111 /* Set the kprobe gone and remove its instruction buffer. */
2112 static void kill_kprobe(struct kprobe *p)
2113 {
2114         struct kprobe *kp;
2115
2116         lockdep_assert_held(&kprobe_mutex);
2117
2118         p->flags |= KPROBE_FLAG_GONE;
2119         if (kprobe_aggrprobe(p)) {
2120                 /*
2121                  * If this is an aggr_kprobe, we have to list all the
2122                  * chained probes and mark them GONE.
2123                  */
2124                 list_for_each_entry(kp, &p->list, list)
2125                         kp->flags |= KPROBE_FLAG_GONE;
2126                 p->post_handler = NULL;
2127                 kill_optimized_kprobe(p);
2128         }
2129         /*
2130          * Here, we can remove insn_slot safely, because no thread calls
2131          * the original probed function (which will be freed soon) any more.
2132          */
2133         arch_remove_kprobe(p);
2134
2135         /*
2136          * The module is going away. We should disarm the kprobe which
2137          * is using ftrace, because ftrace framework is still available at
2138          * MODULE_STATE_GOING notification.
2139          */
2140         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2141                 disarm_kprobe_ftrace(p);
2142 }
2143
2144 /* Disable one kprobe */
2145 int disable_kprobe(struct kprobe *kp)
2146 {
2147         int ret = 0;
2148         struct kprobe *p;
2149
2150         mutex_lock(&kprobe_mutex);
2151
2152         /* Disable this kprobe */
2153         p = __disable_kprobe(kp);
2154         if (IS_ERR(p))
2155                 ret = PTR_ERR(p);
2156
2157         mutex_unlock(&kprobe_mutex);
2158         return ret;
2159 }
2160 EXPORT_SYMBOL_GPL(disable_kprobe);
2161
2162 /* Enable one kprobe */
2163 int enable_kprobe(struct kprobe *kp)
2164 {
2165         int ret = 0;
2166         struct kprobe *p;
2167
2168         mutex_lock(&kprobe_mutex);
2169
2170         /* Check whether specified probe is valid. */
2171         p = __get_valid_kprobe(kp);
2172         if (unlikely(p == NULL)) {
2173                 ret = -EINVAL;
2174                 goto out;
2175         }
2176
2177         if (kprobe_gone(kp)) {
2178                 /* This kprobe has gone, we couldn't enable it. */
2179                 ret = -EINVAL;
2180                 goto out;
2181         }
2182
2183         if (p != kp)
2184                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2185
2186         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2187                 p->flags &= ~KPROBE_FLAG_DISABLED;
2188                 ret = arm_kprobe(p);
2189                 if (ret)
2190                         p->flags |= KPROBE_FLAG_DISABLED;
2191         }
2192 out:
2193         mutex_unlock(&kprobe_mutex);
2194         return ret;
2195 }
2196 EXPORT_SYMBOL_GPL(enable_kprobe);
2197
2198 /* Caller must NOT call this in usual path. This is only for critical case */
2199 void dump_kprobe(struct kprobe *kp)
2200 {
2201         pr_err("Dumping kprobe:\n");
2202         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2203                kp->symbol_name, kp->offset, kp->addr);
2204 }
2205 NOKPROBE_SYMBOL(dump_kprobe);
2206
2207 int kprobe_add_ksym_blacklist(unsigned long entry)
2208 {
2209         struct kprobe_blacklist_entry *ent;
2210         unsigned long offset = 0, size = 0;
2211
2212         if (!kernel_text_address(entry) ||
2213             !kallsyms_lookup_size_offset(entry, &size, &offset))
2214                 return -EINVAL;
2215
2216         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2217         if (!ent)
2218                 return -ENOMEM;
2219         ent->start_addr = entry;
2220         ent->end_addr = entry + size;
2221         INIT_LIST_HEAD(&ent->list);
2222         list_add_tail(&ent->list, &kprobe_blacklist);
2223
2224         return (int)size;
2225 }
2226
2227 /* Add all symbols in given area into kprobe blacklist */
2228 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2229 {
2230         unsigned long entry;
2231         int ret = 0;
2232
2233         for (entry = start; entry < end; entry += ret) {
2234                 ret = kprobe_add_ksym_blacklist(entry);
2235                 if (ret < 0)
2236                         return ret;
2237                 if (ret == 0)   /* In case of alias symbol */
2238                         ret = 1;
2239         }
2240         return 0;
2241 }
2242
2243 /* Remove all symbols in given area from kprobe blacklist */
2244 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2245 {
2246         struct kprobe_blacklist_entry *ent, *n;
2247
2248         list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2249                 if (ent->start_addr < start || ent->start_addr >= end)
2250                         continue;
2251                 list_del(&ent->list);
2252                 kfree(ent);
2253         }
2254 }
2255
2256 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2257 {
2258         kprobe_remove_area_blacklist(entry, entry + 1);
2259 }
2260
2261 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2262                                    char *type, char *sym)
2263 {
2264         return -ERANGE;
2265 }
2266
2267 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2268                        char *sym)
2269 {
2270 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2271         if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2272                 return 0;
2273 #ifdef CONFIG_OPTPROBES
2274         if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2275                 return 0;
2276 #endif
2277 #endif
2278         if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2279                 return 0;
2280         return -ERANGE;
2281 }
2282
2283 int __init __weak arch_populate_kprobe_blacklist(void)
2284 {
2285         return 0;
2286 }
2287
2288 /*
2289  * Lookup and populate the kprobe_blacklist.
2290  *
2291  * Unlike the kretprobe blacklist, we'll need to determine
2292  * the range of addresses that belong to the said functions,
2293  * since a kprobe need not necessarily be at the beginning
2294  * of a function.
2295  */
2296 static int __init populate_kprobe_blacklist(unsigned long *start,
2297                                              unsigned long *end)
2298 {
2299         unsigned long entry;
2300         unsigned long *iter;
2301         int ret;
2302
2303         for (iter = start; iter < end; iter++) {
2304                 entry = arch_deref_entry_point((void *)*iter);
2305                 ret = kprobe_add_ksym_blacklist(entry);
2306                 if (ret == -EINVAL)
2307                         continue;
2308                 if (ret < 0)
2309                         return ret;
2310         }
2311
2312         /* Symbols in __kprobes_text are blacklisted */
2313         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2314                                         (unsigned long)__kprobes_text_end);
2315         if (ret)
2316                 return ret;
2317
2318         /* Symbols in noinstr section are blacklisted */
2319         ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2320                                         (unsigned long)__noinstr_text_end);
2321
2322         return ret ? : arch_populate_kprobe_blacklist();
2323 }
2324
2325 static void add_module_kprobe_blacklist(struct module *mod)
2326 {
2327         unsigned long start, end;
2328         int i;
2329
2330         if (mod->kprobe_blacklist) {
2331                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2332                         kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2333         }
2334
2335         start = (unsigned long)mod->kprobes_text_start;
2336         if (start) {
2337                 end = start + mod->kprobes_text_size;
2338                 kprobe_add_area_blacklist(start, end);
2339         }
2340
2341         start = (unsigned long)mod->noinstr_text_start;
2342         if (start) {
2343                 end = start + mod->noinstr_text_size;
2344                 kprobe_add_area_blacklist(start, end);
2345         }
2346 }
2347
2348 static void remove_module_kprobe_blacklist(struct module *mod)
2349 {
2350         unsigned long start, end;
2351         int i;
2352
2353         if (mod->kprobe_blacklist) {
2354                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2355                         kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2356         }
2357
2358         start = (unsigned long)mod->kprobes_text_start;
2359         if (start) {
2360                 end = start + mod->kprobes_text_size;
2361                 kprobe_remove_area_blacklist(start, end);
2362         }
2363
2364         start = (unsigned long)mod->noinstr_text_start;
2365         if (start) {
2366                 end = start + mod->noinstr_text_size;
2367                 kprobe_remove_area_blacklist(start, end);
2368         }
2369 }
2370
2371 /* Module notifier call back, checking kprobes on the module */
2372 static int kprobes_module_callback(struct notifier_block *nb,
2373                                    unsigned long val, void *data)
2374 {
2375         struct module *mod = data;
2376         struct hlist_head *head;
2377         struct kprobe *p;
2378         unsigned int i;
2379         int checkcore = (val == MODULE_STATE_GOING);
2380
2381         if (val == MODULE_STATE_COMING) {
2382                 mutex_lock(&kprobe_mutex);
2383                 add_module_kprobe_blacklist(mod);
2384                 mutex_unlock(&kprobe_mutex);
2385         }
2386         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2387                 return NOTIFY_DONE;
2388
2389         /*
2390          * When MODULE_STATE_GOING was notified, both of module .text and
2391          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2392          * notified, only .init.text section would be freed. We need to
2393          * disable kprobes which have been inserted in the sections.
2394          */
2395         mutex_lock(&kprobe_mutex);
2396         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2397                 head = &kprobe_table[i];
2398                 hlist_for_each_entry(p, head, hlist)
2399                         if (within_module_init((unsigned long)p->addr, mod) ||
2400                             (checkcore &&
2401                              within_module_core((unsigned long)p->addr, mod))) {
2402                                 /*
2403                                  * The vaddr this probe is installed will soon
2404                                  * be vfreed buy not synced to disk. Hence,
2405                                  * disarming the breakpoint isn't needed.
2406                                  *
2407                                  * Note, this will also move any optimized probes
2408                                  * that are pending to be removed from their
2409                                  * corresponding lists to the freeing_list and
2410                                  * will not be touched by the delayed
2411                                  * kprobe_optimizer work handler.
2412                                  */
2413                                 kill_kprobe(p);
2414                         }
2415         }
2416         if (val == MODULE_STATE_GOING)
2417                 remove_module_kprobe_blacklist(mod);
2418         mutex_unlock(&kprobe_mutex);
2419         return NOTIFY_DONE;
2420 }
2421
2422 static struct notifier_block kprobe_module_nb = {
2423         .notifier_call = kprobes_module_callback,
2424         .priority = 0
2425 };
2426
2427 /* Markers of _kprobe_blacklist section */
2428 extern unsigned long __start_kprobe_blacklist[];
2429 extern unsigned long __stop_kprobe_blacklist[];
2430
2431 void kprobe_free_init_mem(void)
2432 {
2433         void *start = (void *)(&__init_begin);
2434         void *end = (void *)(&__init_end);
2435         struct hlist_head *head;
2436         struct kprobe *p;
2437         int i;
2438
2439         mutex_lock(&kprobe_mutex);
2440
2441         /* Kill all kprobes on initmem */
2442         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2443                 head = &kprobe_table[i];
2444                 hlist_for_each_entry(p, head, hlist) {
2445                         if (start <= (void *)p->addr && (void *)p->addr < end)
2446                                 kill_kprobe(p);
2447                 }
2448         }
2449
2450         mutex_unlock(&kprobe_mutex);
2451 }
2452
2453 static int __init init_kprobes(void)
2454 {
2455         int i, err = 0;
2456
2457         /* FIXME allocate the probe table, currently defined statically */
2458         /* initialize all list heads */
2459         for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2460                 INIT_HLIST_HEAD(&kprobe_table[i]);
2461
2462         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2463                                         __stop_kprobe_blacklist);
2464         if (err) {
2465                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2466                 pr_err("Please take care of using kprobes.\n");
2467         }
2468
2469         if (kretprobe_blacklist_size) {
2470                 /* lookup the function address from its name */
2471                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2472                         kretprobe_blacklist[i].addr =
2473                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2474                         if (!kretprobe_blacklist[i].addr)
2475                                 printk("kretprobe: lookup failed: %s\n",
2476                                        kretprobe_blacklist[i].name);
2477                 }
2478         }
2479
2480 #if defined(CONFIG_OPTPROBES)
2481 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2482         /* Init kprobe_optinsn_slots */
2483         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2484 #endif
2485         /* By default, kprobes can be optimized */
2486         kprobes_allow_optimization = true;
2487 #endif
2488
2489         /* By default, kprobes are armed */
2490         kprobes_all_disarmed = false;
2491
2492         err = arch_init_kprobes();
2493         if (!err)
2494                 err = register_die_notifier(&kprobe_exceptions_nb);
2495         if (!err)
2496                 err = register_module_notifier(&kprobe_module_nb);
2497
2498         kprobes_initialized = (err == 0);
2499
2500         if (!err)
2501                 init_test_probes();
2502         return err;
2503 }
2504 early_initcall(init_kprobes);
2505
2506 #ifdef CONFIG_DEBUG_FS
2507 static void report_probe(struct seq_file *pi, struct kprobe *p,
2508                 const char *sym, int offset, char *modname, struct kprobe *pp)
2509 {
2510         char *kprobe_type;
2511         void *addr = p->addr;
2512
2513         if (p->pre_handler == pre_handler_kretprobe)
2514                 kprobe_type = "r";
2515         else
2516                 kprobe_type = "k";
2517
2518         if (!kallsyms_show_value(pi->file->f_cred))
2519                 addr = NULL;
2520
2521         if (sym)
2522                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2523                         addr, kprobe_type, sym, offset,
2524                         (modname ? modname : " "));
2525         else    /* try to use %pS */
2526                 seq_printf(pi, "%px  %s  %pS ",
2527                         addr, kprobe_type, p->addr);
2528
2529         if (!pp)
2530                 pp = p;
2531         seq_printf(pi, "%s%s%s%s\n",
2532                 (kprobe_gone(p) ? "[GONE]" : ""),
2533                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2534                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2535                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2536 }
2537
2538 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2539 {
2540         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2541 }
2542
2543 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2544 {
2545         (*pos)++;
2546         if (*pos >= KPROBE_TABLE_SIZE)
2547                 return NULL;
2548         return pos;
2549 }
2550
2551 static void kprobe_seq_stop(struct seq_file *f, void *v)
2552 {
2553         /* Nothing to do */
2554 }
2555
2556 static int show_kprobe_addr(struct seq_file *pi, void *v)
2557 {
2558         struct hlist_head *head;
2559         struct kprobe *p, *kp;
2560         const char *sym = NULL;
2561         unsigned int i = *(loff_t *) v;
2562         unsigned long offset = 0;
2563         char *modname, namebuf[KSYM_NAME_LEN];
2564
2565         head = &kprobe_table[i];
2566         preempt_disable();
2567         hlist_for_each_entry_rcu(p, head, hlist) {
2568                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2569                                         &offset, &modname, namebuf);
2570                 if (kprobe_aggrprobe(p)) {
2571                         list_for_each_entry_rcu(kp, &p->list, list)
2572                                 report_probe(pi, kp, sym, offset, modname, p);
2573                 } else
2574                         report_probe(pi, p, sym, offset, modname, NULL);
2575         }
2576         preempt_enable();
2577         return 0;
2578 }
2579
2580 static const struct seq_operations kprobes_sops = {
2581         .start = kprobe_seq_start,
2582         .next  = kprobe_seq_next,
2583         .stop  = kprobe_seq_stop,
2584         .show  = show_kprobe_addr
2585 };
2586
2587 DEFINE_SEQ_ATTRIBUTE(kprobes);
2588
2589 /* kprobes/blacklist -- shows which functions can not be probed */
2590 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2591 {
2592         mutex_lock(&kprobe_mutex);
2593         return seq_list_start(&kprobe_blacklist, *pos);
2594 }
2595
2596 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2597 {
2598         return seq_list_next(v, &kprobe_blacklist, pos);
2599 }
2600
2601 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2602 {
2603         struct kprobe_blacklist_entry *ent =
2604                 list_entry(v, struct kprobe_blacklist_entry, list);
2605
2606         /*
2607          * If /proc/kallsyms is not showing kernel address, we won't
2608          * show them here either.
2609          */
2610         if (!kallsyms_show_value(m->file->f_cred))
2611                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2612                            (void *)ent->start_addr);
2613         else
2614                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2615                            (void *)ent->end_addr, (void *)ent->start_addr);
2616         return 0;
2617 }
2618
2619 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2620 {
2621         mutex_unlock(&kprobe_mutex);
2622 }
2623
2624 static const struct seq_operations kprobe_blacklist_sops = {
2625         .start = kprobe_blacklist_seq_start,
2626         .next  = kprobe_blacklist_seq_next,
2627         .stop  = kprobe_blacklist_seq_stop,
2628         .show  = kprobe_blacklist_seq_show,
2629 };
2630 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2631
2632 static int arm_all_kprobes(void)
2633 {
2634         struct hlist_head *head;
2635         struct kprobe *p;
2636         unsigned int i, total = 0, errors = 0;
2637         int err, ret = 0;
2638
2639         mutex_lock(&kprobe_mutex);
2640
2641         /* If kprobes are armed, just return */
2642         if (!kprobes_all_disarmed)
2643                 goto already_enabled;
2644
2645         /*
2646          * optimize_kprobe() called by arm_kprobe() checks
2647          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2648          * arm_kprobe.
2649          */
2650         kprobes_all_disarmed = false;
2651         /* Arming kprobes doesn't optimize kprobe itself */
2652         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2653                 head = &kprobe_table[i];
2654                 /* Arm all kprobes on a best-effort basis */
2655                 hlist_for_each_entry(p, head, hlist) {
2656                         if (!kprobe_disabled(p)) {
2657                                 err = arm_kprobe(p);
2658                                 if (err)  {
2659                                         errors++;
2660                                         ret = err;
2661                                 }
2662                                 total++;
2663                         }
2664                 }
2665         }
2666
2667         if (errors)
2668                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2669                         errors, total);
2670         else
2671                 pr_info("Kprobes globally enabled\n");
2672
2673 already_enabled:
2674         mutex_unlock(&kprobe_mutex);
2675         return ret;
2676 }
2677
2678 static int disarm_all_kprobes(void)
2679 {
2680         struct hlist_head *head;
2681         struct kprobe *p;
2682         unsigned int i, total = 0, errors = 0;
2683         int err, ret = 0;
2684
2685         mutex_lock(&kprobe_mutex);
2686
2687         /* If kprobes are already disarmed, just return */
2688         if (kprobes_all_disarmed) {
2689                 mutex_unlock(&kprobe_mutex);
2690                 return 0;
2691         }
2692
2693         kprobes_all_disarmed = true;
2694
2695         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2696                 head = &kprobe_table[i];
2697                 /* Disarm all kprobes on a best-effort basis */
2698                 hlist_for_each_entry(p, head, hlist) {
2699                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2700                                 err = disarm_kprobe(p, false);
2701                                 if (err) {
2702                                         errors++;
2703                                         ret = err;
2704                                 }
2705                                 total++;
2706                         }
2707                 }
2708         }
2709
2710         if (errors)
2711                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2712                         errors, total);
2713         else
2714                 pr_info("Kprobes globally disabled\n");
2715
2716         mutex_unlock(&kprobe_mutex);
2717
2718         /* Wait for disarming all kprobes by optimizer */
2719         wait_for_kprobe_optimizer();
2720
2721         return ret;
2722 }
2723
2724 /*
2725  * XXX: The debugfs bool file interface doesn't allow for callbacks
2726  * when the bool state is switched. We can reuse that facility when
2727  * available
2728  */
2729 static ssize_t read_enabled_file_bool(struct file *file,
2730                char __user *user_buf, size_t count, loff_t *ppos)
2731 {
2732         char buf[3];
2733
2734         if (!kprobes_all_disarmed)
2735                 buf[0] = '1';
2736         else
2737                 buf[0] = '0';
2738         buf[1] = '\n';
2739         buf[2] = 0x00;
2740         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2741 }
2742
2743 static ssize_t write_enabled_file_bool(struct file *file,
2744                const char __user *user_buf, size_t count, loff_t *ppos)
2745 {
2746         char buf[32];
2747         size_t buf_size;
2748         int ret = 0;
2749
2750         buf_size = min(count, (sizeof(buf)-1));
2751         if (copy_from_user(buf, user_buf, buf_size))
2752                 return -EFAULT;
2753
2754         buf[buf_size] = '\0';
2755         switch (buf[0]) {
2756         case 'y':
2757         case 'Y':
2758         case '1':
2759                 ret = arm_all_kprobes();
2760                 break;
2761         case 'n':
2762         case 'N':
2763         case '0':
2764                 ret = disarm_all_kprobes();
2765                 break;
2766         default:
2767                 return -EINVAL;
2768         }
2769
2770         if (ret)
2771                 return ret;
2772
2773         return count;
2774 }
2775
2776 static const struct file_operations fops_kp = {
2777         .read =         read_enabled_file_bool,
2778         .write =        write_enabled_file_bool,
2779         .llseek =       default_llseek,
2780 };
2781
2782 static int __init debugfs_kprobe_init(void)
2783 {
2784         struct dentry *dir;
2785         unsigned int value = 1;
2786
2787         dir = debugfs_create_dir("kprobes", NULL);
2788
2789         debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2790
2791         debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2792
2793         debugfs_create_file("blacklist", 0400, dir, NULL,
2794                             &kprobe_blacklist_fops);
2795
2796         return 0;
2797 }
2798
2799 late_initcall(debugfs_kprobe_init);
2800 #endif /* CONFIG_DEBUG_FS */